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Introduction

We introduce the standard Master Theorem and indicate two
directions for generalization



Master Recurrence and Generalizations

Introduction

Solving Recurrences in Computer Science

Sources of recurrences
Probabilistic analysis

Combinatorial analysis

Analysis of algorithms ( this talk )

Divide-and-Conquer recurrences

(Mergesort) T (n) = 2T (n/2) + n

(Strassen Matrix Mult.) T (n) = 7T (n/2) + n2

(Pan Matrix Multiplication) T (n) = 143640 ·T (n/70) + n2

(Schönhage-Strassen Mult.) T (n) = 2T (n/2) + n logn log logn
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The Master Recurrence

These are instances of:

Master Recurrence (M.R.): T (n) = aT (n/b)+d(n)
where a > 0 and b > 1 are real constants
and d(n) is the driving function .

The solution T (n) is controlled by:

the watershed function w(n) := nα

where α := logb a ( watershed constant )

E.g., α = log2 7 = 2.807 . . . in Strassen matrix multiplication.
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The Standard Master Theorem (M.T.)

The Master Recurrence solution satisfies a “trichotomy”:

By comparing d(n) with w(n) = nα ,

T (n) =

Θ


nα if d(n) =O(w(n)n−ε ) Case (−)
nα logn if d(n) = Θ(w(n)) Case (0)

d(n) if “ d(n) = Ω(w(n)nε ) ” Case (+) .

Remarks
From [Bentley-Haken-Saxe 1980, Cormen-Leiserson-Rivest 1990]

Regularity Condition: d(n) = Ω(w(n)nε ) means:

(∃C > 1) s.t. d(n)≥ C ·a ·d(n/b)
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Two Directions for Generalization

A. More General Driving Functions
Trichotomy captures d(n) = Θ(nα ), or when d(n) = Θ(nα±ε ) (ε > 0)

Does not capture: d(n) = nα f (n) s.t. f (n) is polylogarithmic

E.g., d(n) = nα logn (this arises in integer GCD)

B. Multiterm Master Recurrence (M.M.R.)
Linear Median Algorithm: T (n) = T (n/5) + T (7n/10) + n

Conjugation tree [Welzl-Edels.]: T (n) = T (n/2) + T (n/4) + logn

Generally, the M.M.R. is T (n) = d(n) + ∑
k
i=1 aiT (n/bi )

where ai > 0 and bi > 1 are real constants
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Literature

A. “Tetrachotomous” Master Theorem
Trichotomy→ “Tetrachotomy” (4 Cases)

[Brassard-Bratley 1996, Verma 1994, Wang-Fu 1996, Roura 1997]

B. Multiterm Master Theorem
Discussed in [Brown & Purdom (1985, Text, p. 243]

2-Term Case: [Kao 1997]

Trichotomous Version: [Roura 1997, Akra-Bazzi 1998]

C. Other Topics
General Integral bounds: [Akra-Bazzi, Verma, Wang-Fu]

Master Recurrence with a(n),b(n): [Wang-Fu 1996]

Robustness issues: [Leighton 1996, Roura 1997]
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“Tetrachotomous” Master Theorem

The Master Recurrence solution satisfies a “tetrachotomy”:

By comparing d(n) with w(n) logδ n,

T (n) = Θ
nα if d(n) =O(w(n) logδ n), δ <−1 Case (−)

d(n) logn log logn if d(n) = Θ(w(n) logδ n), δ =−1 Case (1)

d(n) logn if d(n) = Θ(w(n) logδ n), δ >−1 Case (0)

d(n) if “ d(n) = Ω(w(n)nε ) ” Case (+)

Remarks
From [Brassard-Bratley 1996, Verma 1994, Wang-Fu 1996, Roura

1997]

Still does not capture the Schönhage-Strassen recurrence,

T (n) = 2T (n/2) + n logn log logn
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Our Results

We state our two main theorems, and illustrate their
applications.
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Overview of Results

Two Main Theorems
Theorem A extends the Tetrachotomous M.T. to infinitely many cases

A natural completion of Tetrachotomous M.T.

Theorem B is a Multiterm generalization of Tetrachotomous M.T.

Proof uses a Principle of Real Induction

Our Approach
We propose a “real approach” to such recurrences

Treat all variables in recurrences as real numbers
This is essential for the multiterm theorem

We introduce “elementary techniques” to derive these results

“Elementary” means non-calculus
Possible because we stress Θ-order results
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Statement of Theorem B

Recall the Multiterm Master Recurrence (M.M.R.):

T (n) = d(n)+∑
k
i=1 aiT (n/bi)

Its watershed function w(n) := nα

where α satisfies ∑
k
i=1

ai
bα

i
= 1.

The M.M.R. solution satisfies a “tetrachotomy”:

By comparing d(n) with w(n) logδ n,

T (n) = Θ
nα if d(n) =O(w(n) logδ n), δ <−1 Case (−)

d(n) logn log logn if d(n) = Θ(w(n) logδ n), δ =−1 Case (1)

d(n) logn if d(n) = Θ(w(n) logδ n), δ >−1 Case (0)

d(n) if “ d(n) = Ω(w(n)nε ) ” Case (+)
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Remarks on Theorem B

The first “tetrachotomous” Multiterm Master Theorem

“ d(n) = Ω(w(n)nε ) ” is the multiterm regularity condition :

(∃C > 1) d(n)≥ C ·∑k
i=1 ai ·d

(
n
bi

)
which implies d(n) = Ω(w(n)nε ) .
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Iterated Logarithms

To state Theorem A, we need some preparation:

Iterated Logarithms
``gk (x) := lg(lg(· · ·(lg(x)) · · ·))︸ ︷︷ ︸

k times
where lg := log2 is “computer science logarithm”
E.g., ``g0(x) = x and ``g2(x) = lg lgx

Extend to negative indices for k :

E.g., ``g−1(x) = 2x and ``g−2(x) = 22x
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Exponential-Logarithmic (EL) Functions

Products of powers of iterated logs

E.g., f0(x) = 25x x4 lg−3 x(lg lgx)2

Exponent sequence of f0(x) is e = (5,4 ; −3,2)

Definition

EL function has the form f (x) = ELe(x) := ∏
i∈Z

``gei
i (x)

where ei = e(i) for some e :Z→R with finite support

Exponent sequence corresponding to e :Z→R can be

written as any finite sequence e = (e−k , . . . ,e−1,e0 ; e1, . . . ,e`)
s.t. e(i) 6= 0 implies −k ≤ i ≤ `

E.g., f0(x) = 25x x4 lg−3 x(lg lgx)2 is denoted EL(5,4 ; −3,2)
(x)
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Theorem A in Action

Consider d(n) near nα (“at the cusp of convergence”)

Driving Function Exponent Sequence
d0(n) := nα logn log logn e = (α ; 1,1) (Schönhage-Strassen)
d1(n) := nα (log logn)r e = (α ; 0, r)

d2(n) := nα (log log logn)s

logn log logn e = (α ; −1,−1,s) (s 6=−1)

Conclusion of Theorem A:
Solution Exponent Sequence
T0(n) = Θ(nα log2 n log logn e = (α ; 2,1)

T1(n) = Θ(nα logn(log logn)r ) e = (α ; 1, r)

T2(n) = Θ

{
nα (log log logn)s+1

nα

e = (α ; 0,0,s + 1), s >−1
e = (α ; 0,0,0), s <−1

}
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Cusp Order

Suppose e = (α ; e1,e2, . . .)

Its cusp order is h ≥ 1 if

e = (α ; −1,−1, . . . ,−1︸ ︷︷ ︸
≤h−1

,β , . . .) for some β 6=−1

Also, β is the cusp power

Transfer these concepts to EL-functions:

E.g., d2(n) = nα (log log logn)s

logn log logn = EL(α ; −1,−1,s)
(n)

So, its cusp order is 3 and cusp power is s
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Statement of Theorem A

Recall: Master Recurrence (MR) T (n) = aT (n/b) + d(n)

with watershed constant α = logb a

Also let d(n) = ELe(n)

where e = (e−k ,e−k+1, . . . ,e0 ; e1, . . . ,e`), and e−k 6= 0

If k = 0, let the cusp order be h and cusp power be β

The Generalized M.T.

The solution to the MR satisfies T (n) =

Θ


d(n) if (k < 0∧ c > 0) or (k ≥ 0∧e(0) > α), Case (+)

d(n)LLh(n) if (k = 0∧e(0) = α ∧β >−1), Case (h−1)

nα otherwise Case (−)
where LLh(n) := ∏

h
i=1 ``g i (n) = lgn · lg lgn · · ·``gh(n).
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Remarks on Theorem A

Infinitely many cases (for each h = 1,2,3, . . . ,)

h = 1 is Case (0) in the Standard M.T.

h = 2 is Case (1) in the “tetrachotomous” M.T.

h = 3 captures the Schönhage-Strassen recurrence
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Some Tools

We show three slides describing our basic tools
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Summation based on Growth Types

Given function f :R→R, we want to bound the summation

Sf (n) := ∑
n
x≥1 f (x) = f (n) + f (n−1) + · · ·+ f (n−bnc+ 1)

where n,x are real variables

Classify functions f :R→R as: polynomial-type , increasing or

decreasing exponential-type

THEOREM: Sf (n) = Θ

 nf (Θ(n)) if f is polynomial-type,
f (n) if f increases exponentially,
1 if f decreases exponentially.

REMARK: Thus we reduce the problem of summation to
classifying growth-types, which is an easier problem. Moreover,
growth-types are closed under various basic operations
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Elementary Sums

In case f is an EL-function, f (n) = ELe(n),

we write Se(n) for the sum Sf (n).

Call Se(n) an elementary sum

THEOREM:
Up to Θ-order, an elementary sum is an EL-function.
I.e., Se(n) = Θ(ELe′(n))

where e′ can be explicitly constructed from bfe

REMARK: THEOREM A can be reduced to this result on
elementary sums.
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Principal of Real Induction

Let P(x) be a real predicate.

Principle of Archimedean Induction :

Suppose there exists real numbers x1 ( cutoff constant )
and γ > 0 ( gap constant ) such that
Real Basis (RB): For all x < x1, P(x) holds

Real Induction (RI): For all y ≥ x1, if (∀x ≤ y−γ)P(x), then P(y)

REMARK: Proof of THEOREM B makes essential use of this
Principle. The principle is valid because of the Archimedean
property of the reals.
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Where are the Initial Conditions?

We deliberately ignored initial conditions

We may simply specify a “Default Initial Condition” (DIC):

T (n) = C for all n ≤ n0 and for some n0,C ≥ 0

All our Θ-bounds are robust under any choice of DIC
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Conclusion

Our results provide “Cookbook” Theorems for easy application

Theorems A and B have the cookbook form of the standard M.T.

Our real and elementary approach simplifies current literature

The full paper will discuss robustness issues, and unified

generalization of Theorems A and B.
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Thanks for Listening!

“A rapacious monster lurks within every computer,
and it dines exclusively on accurate digits.”

— B.D. MCCULLOUGH (2000)
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