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ABSTRACT
This paper introduces an algorithmic approach to the analysis of

bifurcation of limit cycles from the centers of nonlinear continuous

differential systems via the averaging method. We develop three

algorithms to implement the averaging method. The first algorithm

allows to transform the considered differential systems to the nor-

mal formal of averaging. Here, we restricted the unperturbed term

of the normal form of averaging to be identically zero. The sec-

ond algorithm is used to derive the computational formulae of the

averaged functions at any order. The third algorithm is based on

the first two algorithms that determines the exact expressions of

the averaged functions for the considered differential systems. The

proposed approach is implemented in Maple and its effectiveness

is shown by several examples. Moreover, we report some incorrect

results in published papers on the averaging method.

CCS CONCEPTS
• Computing methodologies → Symbolic and algebraic manip-

ulation; • Symbolic and algebraic algorithms → Symbolic cal-

culus algorithms.

KEYWORDS
Algorithmic approach; averaging method; center; limit cycle; non-

linear differential systems
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1 INTRODUCTION
Bounding the number of limit cycles for systems of polynomial

differential equations is a long standing problem in the field of

dynamical systems. As is well known, the second part of the 16th

Hilbert’s problem [15, 18] asks about “the maximal number H (n)
and relative configurations of limit cycles” for planar polynomial

differential systems of degree n:

Ûx = fn (x ,y), Ûy = дn (x ,y). (1)

Solving this problem, even in the case n = 2, at the present state

of knowledge seems to be hopeless. While it has not been possible

to obtain uniform upper bounds for H (n) in the near future, there

has been success in finding lower bounds. Some known results

are as follows: it is shown in [6, 39] that H (2) ≥ 4 and H (3) ≥ 13

in [21]. In [10], it is proved that H (n) grows at least as rapidly as

n2
logn. For the latest development about H (n), we refer the reader

to [9, 22].

Recall that a limit cycle of system (1) is an isolated periodic

orbit. It is the ω-(forward) or α-(backward) limit set of nearby

orbits. One classical way of producing limit cycles is by perturbing

a differential system which has a center. In this case the perturbed

system displays limit cycles that bifurcate, either from the center

(having the so-called Hopf bifurcation), or from some of the periodic

orbits of the period annulus surrounding the center, see for instance

Pontrjagin [35], the book of Christopher-Li [9], and the hundreds

of references quoted there.

In this paper we study the maximal number of limit cycles that

bifurcate from the centers of the unperturbed systems (the so-called

small-amplitude limit cycles). The main technique is based on the

averaging method. We point out that the method of averaging is a

classic and mature tool for studying isolated periodic solutions of

nonlinear differential systems in the presence of a small parame-

ter. The method has a long history that started with the classical

works of Lagrange and Laplace, who provided an intuitive justi-

fication of the method. The first formalization of this theory was

done in 1928 by Fatou. Important practical and theoretical con-

tributions to the averaging method were made in the 1930s by

Bogoliubov-Krylov, and in 1945 by Bogoliubov. The ideas of aver-

aging method have extended in several directions for finite and

infinite dimensional differentiable systems. We refer to the books

of Sanders-Verhulst-Murdock [37] and Llibre-Moeckel-Simó [28]

for a modern exposition of this subject.
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We remark that most of these previous results developed the

averaging method up to first order in a small parameter ε , and at

most up to third order. In [12, 29] the averaging method at any

order was developed to study isolated periodic solutions of non-

smooth but continuous differential systems. Recently, the averaging

method has also been extended to study isolated periodic solutions

of discontinuous differential systems; see [19, 27]. In practice, the

evaluation of the averaged functions is a computational problem

that require powerful computerized resources. Moreover, the com-

putational complexity grows very fast with the averaging order. In

view of this, our objective in this paper is to present an algorithmic

approach to develop the averaging method at any order and to fur-

ther study periodic solutions of nonlinear continuous differential

systems.

It is known that the Liapunov constants are a good tool for

studying the number of small-amplitude limit cycles which can

bifurcate from a singular point, i.e., a Hopf bifurcation. Over the

years, a number of algorithms for efficient computation of Liapunov

constants have been developed (see [11, 40, 41] for instance). But a

disadvantage of such an approach is that there is no clear geometry

of the bifurcated limit cycles. In contrast, using the expressions of

the averaged functions, we can estimate the size of the bifurcated

limit cycles as a function of ε for |ε | > 0 sufficiently small, see

[2, 13] for instance.

Overview of Paper. The structure of our paper is as follows. In
Section 2, we introduce the basic results on the averaging method

for planar differential systems before presenting our main results

in Section 3. We give our algorithms and briefly describe their im-

plementation in Maple in Section 4. Its application is illustrated

in Section 5 using several examples including a cubic polynomial

differential system known as Collins First Form and a class of gener-

alized Kukles polynomial differential systems of degree 6. We end

with some discussions in Section 6.

In view of space limitation, we moved the proof of Theorem 3.1

to Appendix A. Two of the examples are found in Appendices B

and C. The version with appendices may be found at our website

http://cs.nyu.edu/exact/paper/ as well as in the arXiv.

2 BASIC THEORY OF THE AVERAGING
METHOD

In this section we introduce the basic results on the averaging

method that we shall use for studying the limit cycles which bifur-

cate from the centers of polynomial differential systems of degree

n1 in the form of

Ûx = P(x ,y), Ûy = Q(x ,y). (2)

An accessible reference is [7] (see also [37]). The following defini-

tion is due to Poincaré (see [5], Section 2).

Definition 2.1. We say that an isolated singular point O of (2) is

a center if there exists a punctured neighbourhood V of O , such
that every orbit in V is a cycle surrounding O .

Without loss of generality we can assume that the center O of

system (2) is the origin of coordinates. In this case, after a linear

change of variables and a rescaling of time variable, we can write

system (2) in the form

Ûx = P̄ᾱ (x ,y) = −y +

n1∑
m=2

Pm (x ,y),

Ûy = Q̄ ¯β (x ,y) = x +

n1∑
m=2

Qm (x ,y),

(3)

where Pm ,Qm are homogeneous polynomials of degreem in x and

y with ᾱ and
¯β are parameters appearing as coefficients of P̄ , Q̄

satisfying that system (3) has a center at the origin. It is well known

since Poincaré [34] and Liapunov [24] that system (3) has a center

at the origin if and only if there exists a local analytic first integral

of the form H (x ,y) = x2 + y2 + F (x ,y) defined in a neighborhood

of the origin, where F starts with terms of order higher than 2. For

the well known center problem, see [31, 36].

We now consider the perturbations of (3) of the form

Ûx = P̄ᾱ (x ,y) + pα (x ,y, ε),

Ûy = Q̄ ¯β (x ,y) + qβ (x ,y, ε)
(4)

with

pα (x ,y, ε) =
k∑
j=1

ε j p̃j (x ,y), qβ (x ,y, ε) =
k∑
j=1

ε j q̃j (x ,y),

where the polynomials p̃j , q̃j are of degree at most n2 (usually

n2 ≥ n1 ≥ 2) in x and y with α and β are free parameters appearing

as coefficients of p̃j , q̃j , and ε is a small parameter. Note that by

“free parameters” we mean that the coefficient of each monomial in

pα and qβ is a distinct parameter in α or β . We are interested in the

maximum number of small-amplitude limit cycles of (4) for |ε | > 0

sufficiently small, which bifurcate at ε = 0 from the center of (3).

Usually, the averaging method deals with planar differential

systems in the following normal form

dr

dθ
=

k∑
i=0

εiFi (θ , r ) + ε
k+1R(θ , r , ε), (5)

where Fi : R×D → R for i = 0, 1, . . . ,k , and R : R×D×(−ε0, ε0) →

R are Ck
functions, 2π -periodic in the first variable, being D =

(0,a) for some a ∈ (0,∞), and ε0 is a small parameter. As one of

the main hypotheses, it is assumed that the solution φ(θ , z) of the
unperturbed differential system, dr/dθ = F0(θ , r ), is 2π -periodic in
the variable θ for every initial condition φ(0, z) = z ∈ D.

The averaging method consists in defining a collection of func-

tions fi : D → R, called the i-th order averaged function, for

i = 1, 2, . . . ,k , which control (their simple zeros control), for ε
sufficiently small, the isolated periodic solutions of the differential

system (5). In Llibre-Novaes-Teixeira [29] it has been established

that

fi (z) =
yi (2π , z)

i!
, (6)

http://cs.nyu.edu/exact/papers/


where yi : R × D → R, for i = 1, 2, . . . ,k , is defined recursively by

the following integral equation

yi (θ , z) = i!

∫ θ

0

[
Fi (s,φ(s, z)) +

i∑
ℓ=1

∑
Sℓ

1

b1!b2!2!
b2 · · ·bℓ !ℓ!bℓ

· ∂LFi−ℓ(s,φ(s, z))
ℓ∏
j=1

yj (s, z)
bj

]
ds,

(7)

where Sℓ is the set of all ℓ-tuples of non-negative integers [b1,b2, . . . ,bℓ]
satisfying b1 + 2b2 + · · · + ℓbℓ = ℓ and L = b1 + b2 + · · · + bℓ . Here,
∂LF (θ , r ) denotes the Fréchet’s derivative of order L with respect

to the variable r .
We remark that, in practical terms, the evaluation of the recur-

rence (7) is a computational problem. Recently in [32] the Bell

polynomials were used to provide a relatively simple alternative

formula for the recurrence. In this paper, we will exploit this new

formula in our algorithmic approach for solving this problem (see

Section 4.2).

Related to the averaging functions (6) there exist two fundamen-

tally different cases in (5), namely, when F0 = 0 and when F0 , 0.

We see that when F0 , 0, the formula for yi (θ , z) in (7) requires

the solution of a Cauchy problem because yi (θ , z) appears on both

sides of the equation (see Remark 3 in [29]). The investigation in

this paper is restricted to the case where F0 = 0. In this case, we

have φ(θ , z) = z for each θ ∈ R. Then the integral in equation (7)

simplifies to

y1(θ , z) =

∫ θ

0

F1(s, z)ds,

yi (θ , z) = i!

∫ θ

0

[
Fi (s, z) +

i−1∑
ℓ=1

∑
Sℓ

1

b1!b2!2!
b2 · · ·bℓ !ℓ!bℓ

· ∂LFi−ℓ(s, z)
ℓ∏
j=1

yj (s, z)
bj

]
ds .

(8)

The following k-th order averaging theorem gives a criterion for

the existence of limit cycles. Its proof can be found in Section 2 of

[19].

Theorem 2.2. [19] Assume that fi ≡ 0 for i = 1, 2, . . . , j − 1

and fj , 0 with j ∈ {1, 2, . . . ,k}. If there exists r̄ ∈ D such that
fj (r̄ ) = 0 and f ′j (r̄ ) , 0, then for |ε | > 0 sufficiently small, there
exists a 2π -periodic solution r (θ , ε) of (5) such that r (0, ε) → r̄ when
ε → 0.

We remark that in order to analyze the Hopf bifurcation for

system (4), applying Theorem 2.2, we introduce a small parameter

ε doing the change of coordinates x = εX , y = εY . After that we
perform the polar change of coordinates X = r cosθ , Y = r sinθ ,
and by doing a Taylor expansion truncated at k-th order in ε we
obtain an expression for dr/dθ similar to (5) up to k-th order in ε .
In doing so, the variable θ appears through sines and cosines, the

differential equation in the form dr/dθ is 2π -periodic. It suffices to

take D = {r : 0 < r < r0} with r0 > 0 is arbitrary, since we restrict

F0 = 0, the unperturbed system has periodic solutions passing

through the points (0, r ) with 0 < r < r0.

In general, it is not an easy thing to determine the exact number

of simple zeros of the averaged functions (6), since the averaged

functions may be too complicated, such as including square root

functions, logarithmic functions, and the elliptic integrals. In the

literature there is an abundance of papers dealing with zeros of

the averaged functions (see for instance [16, 23, 33] and references

therein). The techniques and arguments to tackle this kind of prob-

lem are usually very long and technical.

As a summary of this section, we remark that, using the ex-

pressions of the averaged functions, one can estimate the size of

bifurcated limit cycles. In fact we know that if the averaged function

fj = 0 for j = 1, . . . ,k − 1 and fk , 0, and r̄ is a simple zero of fk ,
then by Theorem 2.2 there is a limit cycle r (θ , ε) of the differential
system (5) such that r (0, ε) = r̄ + O(ε). Then, going back through

the changes of variables we have for the differential system ( ÛX , ÛY )
the limit cycle (X (t , ε),Y (t , ε)) = (r̄ cosθ , r̄ sinθ ) + O(ε). Now due

to the scaling x = εX ,y = εY the limit cycles that we find for the

differential system (5) coming from our system (4), are in fact limit

cycles of the form (x(t , ε),y(t , ε)) = ε(r̄ cosθ , r̄ sinθ ) + O(ε2) for

system (4), which tends to the origin from the origin, i.e., are limit

cycles coming by a Hopf bifurcation, for more details on these kind

of bifurcations see [20] for instance.

3 MAIN RESULTS
Denote the exact upper bound for the number of positive simple

zeros of the i-th order averaged function fi (r ) associated to system

(4) by Hi (n1,n2) for i = 1, . . . ,k . Applying Theorem 2.2, we know

that the maximal number of small-amplitude limit cycles of (4) is

Hi (n1,n2) and this number can be reached. In this work, we attempt

to prove upper bounds on the number of zeros of the k-th order

averaged function. Our main theorem is the following:

Theorem 3.1. Assume that F0 = 0 in the normal form (5) associ-
ated to the system (4), then there exist a non-negative integer νi ≤ i−1

and a polynomial function ¯fi (r ) =
∑Ni
j=0

c jr
j with Ni ≤ in2, such

that rνi fi (r ) = ¯fi (r ) for i = 1, . . . ,k , where the coefficients c j ∈ Q[π ]
with degree no more than i in π .

A detailed proof of it can be found in Appendix A. This result

is the first work that deals with the bifurcation of limit cycles of

system (4) in the general class of perturbations (see [25, 26] for a few

results on some systems of special form). This theorem tells us that

the maximum number of small-amplitude limit cycles of (4), which

bifurcate from the center of (3) is always finite ( Hk (n1,n2) ≤ Nk ).

But, for a given system (4), how can we determine the exact value

of Ni for i = 1, . . . ,k? In this paper, we provide an algorithmic

approach to the solution (see Algorithm 3 in Section 4.2).

Applying Theorems 2.2 and 3.1, we obtain the Theorem 3.2

on fk (r ). We first introduce some notations based on Theorems

2.2 and 3.1 before we state this result. Let R∗ be the real polyno-
mial ring Q[ᾱ , ¯β,α , β]. Then for each

¯fi (r ) ∈ R∗[π ][r ], we define
coeffs( ¯fi ; r ,π ) = {c j1, j2 : j1 = 0, . . . ,Ni ; j2 = 0, . . . , i}, where

¯fi (r ) =
i∑

j2=0

Ni∑
j1=0

c j1, j2r
j1π j2 .

Then Σk = ∪k−1

i=1
coeffs(fi ; r ,π ) = 0 ⊆ R∗. Now taking the above

notations into account and applying Theorems 2.2 and 3.1, we

obtain the following theorem on fk (r ).



Theorem 3.2. Assume that F0 = 0 in the normal form (5) as-
sociated to the system (4). Then there exist non-negative integers
ν̃k ≤ k − 1, Ñk ≤ kn2 and a polynomial function ˜fk (r ) =

∑Nk
j=0

c̃ jr
j ,

such that fk (r ) in (6) has the form r ν̃k fk (r ) = ˜fk (r ) and the coeffi-
cients

c̃ j ∈ Q[π , ᾱ , ¯β,α , β]/Σk

with degree no more than k in π .

Proof. The conclusion follows directly from the conditions
¯f1 =

¯f2 = · · · = ¯fk−1
= 0. □

We remark that, the study of the number of zeros of fk (r ) is
currently not-algorithmic. Below we give our analysis on this.

Let N̄ = |ᾱ | + | ¯β | + |α | + |β | be the number of parameters in

system (4), and V (Σk ) ⊆ R
N̄

is the variety defined by Σk . For any
point p∗ ∈ V (Σk ), let ¯fk (r ;p∗) ∈ R[r ] be the real polynomial when

the parameter are instantiated by p∗. Finally let #(p∗) denote the
maximal number of zeros (counted with multiplicity) of

¯f (r ;p∗). It
follows that Hk (n1,n2) ≤ max{#(p∗ : p ∈ V (Σk ))}.

In order to study the number of zeros of function fk (r ), according
to our Theorem 3.1, it suffices to consider the number of zeros of a

polynomial function. Here we provide the Descartes theorem (see

[3]) to obtain the upper bound of the number of zeros for the

polynomial functions.

Lemma 3.3. (Descartes theorem). Consider the real polynomial
m(x) = as1

xs1 +as2
xs2 + · · ·+asmxsm with 0 = s1 < s2 < · · · < sm

and asj , 0 real constants for j ∈ {1, 2, . . . ,m}. When asjasj+1
< 0,

we say that asj and asj+1
have a variation of sign. If the number of

variations of signs ism∗, thenm(x) has at mostm∗ positive real roots.
Moreover, it is always possible to choose the coefficients ofm(x) in
such a way thatm(x) has exactlym − 1 positive real roots.

4 ALGORITHMS FOR THE k-TH ORDER
AVERAGING THEOREM

In this section wewill provide an algorithmic approach to revisit the

averaging method. According to the averaging method described

in Section 2, it is necessary to take the following steps to study the

bifurcation of limit cycles for system (4).

STEP 1. Write the perturbed system (4) in the normal form of

averaging (5) up to k-th order in ε .
STEP 2. (i) Compute the exact formula for the k-th order integral

function yk (θ , z) in (8). (ii) Derive the symbolic expression of the

k-th order averaged function fk (z) by (6).

STEP 3. Determine the exact upper bound for number of positive

simple zeros of fk (z).
In the following subsections we present algorithms to implement

the first two steps. We use “Maple-like” pseudo-code, based on

our Maple implementation. Using these algorithms we reduce the

problem of studying the number of limit cycles of system (4) to the

problem of detecting STEP 3.

4.1 Algorithm for STEP 1
In this subsection we will devise an efficient algorithm which can

be used to transform system (4) into the form (5). Our algorithm

can derive (5) at any order in ε .

Now refer to (4), making the change of variables x = ε · r ·C and

y = ε · r · S with C = cosθ and S = sinθ , we present the algorithm
Normalize below based on the above analysis.

Algorithm 1 Normalize(P̄ᾱ , Q̄ ¯β ,pα ,qβ ,k)

Input: a perturbed system (4) with a order k ≥ 1

Output: an expression for dr/dθ similar to (5) up to k-th order in ε
1: dX := normal(subs(x = εX , y = εY , P̄ᾱ + pα )/ε );
2: dY := normal(subs(x = εX , y = εY , Q̄ ¯β + qβ )/ε );

3: R0 := normal

(
subs

(
X = r ·C, Y = r · S, r ·(C ·dX+S ·dY )

C ·dY−S ·dX

))
;

4: T := taylor(R0, ε = 0, k + 1);

5: H := expand(convert (T , polynom));

6: if coeff(ε · H, ε ) = 0 then
7: for i from 1 to k do
8: fi := coeff(H, ε i );
9: Fi,1 := prem

(
numer(fi ), C2 + S2 − 1, C

)
;

10: Fi,2 := prem

(
denom(fi ), C2 + S2 − 1, C

)
;

11: Fi := normal(Fi,1/Fi,2);

12: dr/dθ := subs(C = cos θ, S = sin θ,
∑k
j=1

Fj ε j );
13: return dr/dθ ;

The if hypothesis in line 6 is to make sure that F0 = 0. In line 9

the function prem(a,b,x) is the pseudo-remainder of a with respect
to b in the variable x . The following lemma is obtained directly by

the property of the pseudo-remainder.

Lemma 4.1. The expressions Fi, j with j ∈ {1, 2} in the algorithm
Normalize have the following properties:

Fi, j = fi, j (r , S)C + дi, j (r , S),

where fi, j and дi, j are polynomials in the variables r and S .

4.2 Algorithms for STEP 2
This subsection is devoted to provide effective algorithms to com-

pute the formula and exact expression of the k-th order averaged

function.

According to (8), we should take the following substeps to com-

pute the k-th order averaged function of system (5):

Substep 1. Compute the exact formula for the k-th order integral
function yk (θ , z).

Substep 2. Output the symbolic expression for the k-th order

averaged function fk (r ) (not simplified by using f1 ≡ f2 ≡ · · · ≡

fk−1
≡ 0) for a given differential system (4).

We first recall the partial Bell polynomials which can be used to

implement the first substep. For ℓ andm positive integers, the Bell

polynomials:

Bℓ,m (x1, . . . ,xℓ−m+1
) =

∑
S̃ℓ,m

ℓ!

b1!b2! · · ·bℓ−m+1
!

ℓ−m+1∏
j=1

(
x j

j!

)bj
,

where S̃ℓ,m is the set of all (ℓ−m+1)-tuples of nonnegative integers

[b1,b2, . . . ,bℓ−m+1
] satisfying b1+2b2+ · · ·+(ℓ−m+1)bℓ−m+1

= ℓ,

and b1 + b2 + · · · + bℓ−m+1
=m.



Then the integral in equation (8) reads ([32], Theorem 2)

y1(θ , z) =

∫ θ

0

F1(s, z)ds,

yi (θ , z) = i!

∫ θ

0

[
Fi (s, z) +

i−1∑
ℓ=1

ℓ∑
m=1

1

ℓ!
∂mFi−ℓ(s, z)

· Bℓ,m (y1(s, z), . . . ,yℓ−m+1
(s, z))

]
ds .

(9)

The algorithm Averformula, presented below, is based on (9)

that can be used to derive the formula of the k-th order integral

function yk (θ , z) (Substep 1).

Algorithm 2 Averformula(k)
Input: a order k ≥ 1 of the normal form (5)

Output: a set of formulae Yk associated to the integral function

yk (θ , z)

1: SU := 0; TU := 0;

2: for ℓ from 1 to k − 1 do
3: form from 1 to ℓ do
4: SU := SU + 1

ℓ!
· Diff(Fk−ℓ(s, z), z$m) ·

IncompleteBellB(ℓ,m,y1(s, z), . . . ,yℓ−m+1
(s, z));

5: TU := TU + 1

ℓ!
· Diff(Fk−ℓ , r$m) ·

IncompleteBellB(ℓ,m,y1, . . . ,yℓ−m+1
);

6: Yk :=
{ ∫ θ

0
k ! ·

(
Fk (s, z)+SU

)
ds,

[ ∫ θ
0
k ! ·

(
Fk +TU

)
dθ,

∫
2π

0

(
Fk +

TU
)
dθ

]}
;

7: return Yk ;

For the generation of the Bell polynomials (lines 4 and 5) we use

the routine IncompleteBellB built-in Maple. We give the outputs Yk
of the algorithm for k = 1, 2 (see (32) in Appendix B). Note that the

formula of yk (θ , z) is the first element in the set Yk . The second ele-
ment inYk (where Fk without the dependence on (s, z)) can be used

to derive an exact expression of fk if we give a concrete differential

system (4) (then Fk can be assigned to values by the algorithm

Normalize), see next algorithmAverFun. We also remark that the

formula for the k-th order averaged function fk can be obtained

directly from yk using (6), so we omit the formula for fk in our

algorithmAverformula. We deduce explicitly the formulae ofyk ’s
up to k = 5 (see (33) in Appendix B); one can verify that the outputs

of our algorithm are consistent with the results given in [19, 29]. In

fact our algorithm can compute arbitrarily high order formulae of

yk ’s. In Section 4, we will study a cubic differential system (Collins
First Form) and a class of generalized Kukles systems to show the

feasibility of our algorithm.

In the last subsection, we provide an algorithm Normalize to
transform system (4) into the form of dr/dθ (normal form of av-

eraging). The algorithm AverFun, presented below, is based on

the algorithms Normalize and Averformula, which provides a

straightforward calculation method to derive the exact expression

of the k-th order averaged function for a given differential system

in the form (4) (Substep 2).

Algorithm 3 AverFun(P̄ᾱ , Q̄ ¯β ,pα ,qβ ,k)

Input: a perturbed system (4) with a order k ≥ 1

Output: an expression of the k-th order averaged function fk of dr/dθ
1: dr/dθ := Normalize(P̄ᾱ , Q̄ ¯β , pα , qβ , k );
2: for h from 1 to k do
3: Fh := coeff(dr/dθ, εh );
4: Yh := Averformula(h);
5: yh := value(op(1, op(2, Yh )));
6: fh := factor(value(op(2, op(2, Yh ))));
7: return fk ;

According to our Theorem 3.1, we know that the output of the

algorithmAverFun has the property fk ∈ Q[π ][r , r−1]. And the nu-

merator of the expression fk is a polynomial function with degree

Nk . In practice, the calculation of fk typically requires powerful

computer resources as the computational complexity grows expo-

nentially with order k . It turns out that we can greatly improve

the speed by updating the obtained dr/dθ by using the conditions

f1 ≡ f2 ≡ · · · ≡ fk−1
≡ 0.

We implemented all the algorithms presented in this section in

Maple. In the next section, we will apply our general algorithmic ap-

proach to analyze the bifurcation of limit cycles for several concrete

differential systems in order to show its feasibility.

5 EXPERIMENTS
In this section, we present the bifurcation of limit cycles for a cubic

polynomial differential system as an illustration of our approach

explained above. In addition, the bifurcation of limit cycles from

the centers of a class of generalized Kukles polynomial differential

systems of degree 6 is studied when it is perturbed inside the class

of all polynomial differential systems of the same degree, and as an

application of our method, we also report some results on quadratic

differential systems with isochronous centers. These experiments

show the feasibility of our approach.

5.1 Illustrative Example
We consider a cubic center of the following polynomial system

Ûx = −y + x2y, Ûy = x + xy2. (10)

This system is known as Collins First Form, see [26] for more details.

More concretely, we consider the perturbations of (10) in the

form of

Ûx = −y + x2y +
7∑

s=1

εsps (x ,y),

Ûy = x + xy2 +

7∑
s=1

εsqs (x ,y),

(11)

where

ps (x ,y) = αs,1x + αs,2y + αs,3x
2 + αs,4xy + αs,5y

2 + αs,6x
3

+ αs,7x
2y + αs,8xy

2 + αs,9y
3,

qs (x ,y) = βs,1x + βs,2y + βs,3x
2 + βs,4xy + βs,5y

2 + βs,6x
3

+ βs,7x
2y + βs,8xy

2 + βs,9y
3,

being αs, j and βs, j , for s = 1, . . . , 7 and j = 1, . . . , 9, real constants.



Next, we use our algorithms to study the maximum number of

limit cycles of (11) that bifurcate from the center of (10). Applying

our algorithm Normalize by taking k = 7 we obtain

dr

dθ
=

7∑
i=1

εiFi (θ , r ) + O(ε8). (12)

Here we give only the expression of F1(θ , r ), the explicit expressions
of Fi (θ , r ) for i = 2, . . . , 7 are quite large so we omit them.

F1(θ , r ) = r (α1,2 + β1,1)SC + r (−α1,1 + β1,2)S
2 + rα1,1

with C = cosθ and S = sinθ .
Using our algorithm AverFun in Section 4 and computing f1

we obtain f1(r ) = πr (α1,1 + β1,2). Clearly equation f1(r ) has no
positive zeros. Thus the first averaged function does not provide

any information about the limit cycles that bifurcate from the center

of (10) when we perturb it.

Computing f2 we obtain

f2(r ) =
πr

2

(
πα2

1,1 + 2πα1,1β1,2 + πβ
2

1,2 + α1,1α1,2 − α1,1β1,1

+ α1,2β1,2 − β1,1β1,2 + 2α2,1 + 2β2,2
)
.

According to our Theorem 3.1, we take
¯f2(r ) = f2(r )with degree

N2 = 1, and c1 is a polynomial in π with degree 2. Note that

f1(r ) = 0 means that β1,2 = −α1,1. Using this condition we can

simplify f2(r ) into the form f2(r ) = πr (α2,1 + β2,2). As for the first

averaged function, the second one also does not provide information

on the bifurcating limit cycles. From now on, for each k = 3, . . . , 7,

we will perform the calculation of the averaged function fk under

the hypothesis fj ≡ 0 for j = 1, . . . ,k − 1.

Doing β2,2 = −α2,1 and computing f3 we obtain

f3(r ) =
1

4

πr
(
A2r

2 +A0

)
,

where

A2 = 4α1,1 + 3α1,6 + α1,8 + β1,7 + 3β1,9, A0 = 4(α3,1 + β3,2).

Therefore f3(r ) can have at most one positive real root. From Theo-

rem 2.2 it follows that the 3-th order averaging provides the exis-

tence of at most one small-amplitude limit cycle of system (11) and

this number can be reached by Lemma 3.3, since Ai for i = 0, 2 are

independent constants (∂(A2,A0)/∂(β1,7, β3,2) = 4 , 0).

To consider the 4-th order averaging theorem we take β1,7 =

−A2 + β1,7 and β3,2 = −A0/4 + β3,2. Computing f4 we obtain

f4(r ) =
1

4

πr
(
B2r

2 + B0

)
,

where

B2 = 4α1,1α1,2 + 2α1,1α1,7 + 2α1,1β1,8 + α1,2α1,8

+ 3α1,2β1,9 + α1,3α1,4 − 2α1,3β1,3 + α1,4α1,5

+ 2α1,5β1,5 + α1,8β1,1 + 3β1,1β1,9 − β1,3β1,4

− β1,4β1,5 + 4α2,1 + 3α2,6 + α2,8 + β2,7 + 3β2,9,

B0 = 4(α4,1 + β4,2).

It is obvious that f4(r ) can have at most one positive real root.

From Theorem 2.2 it follows that the 4-th order averaging provides

the existence of at most one small-amplitude limit cycle of system

(11) and this number can be reached (B2 and B0 are independent

constants).

Letting β2,7 = −B2 + β2,7 and β4,2 = −B0/4 + β4,2 we obtain

f4(r ) = 0. Computing f5 we obtain

f5(r ) =
1

4

πr
(
C4r

4 +C2r
2 +C0

)
,

where

C4 = 2α1,1 + 2α1,6 + α1,8 + β1,9, C0 = 4(α5,1 + β5,2).

We do not explicitly display the expression C2 because it is very

long. It is not hard to check that C4, C2 and C0 are independent

constants. Therefore f5(r ) can have at most two positive real roots.

Then the 5-th order averaging provides the existence of at most

two small-amplitude limit cycle of system (11) and this number can

be reached.

To consider the 6-th order averaging theorem we let β1,9 =

−C4 + β1,9, β3,7 = −C2 + β3,7 and β5,2 = −C0/4 + β5,2. Computing

f6 we obtain

f6(r ) =
1

24

πr
(
D4r

4 + D2r
2 + D0

)
,

where

D4 = 12α1,1α1,7 − 6α1,1α1,9 − 12α1,1β1,1 − 18α1,1β1,6

− 12α1,2α1,6 + 7α1,3α1,4 − 18α1,3β1,3 − 20α1,3β1,5

+ 7α1,4α1,5 − 4α1,5β1,3 − 6α1,5β1,5 − 18α1,6α1,9

− 12α1,6β1,1 − 18α1,6β1,6 − 6α1,8α1,9 − 6α1,8β1,6

+ β1,3β1,4 + β1,4β1,5 + 12α2,1 + 12α2,6 + 6α2,8 + 6β2,9,

D0 = 24(α6,1 + β6,2).

Here we do not display the expression D2 explicitly because of its

size. Moreover D4, D2 and D0 are independent constants. In fact

only D4 presents the parameter α2,6, only D2 has the parameter

α2,2, and D0 is the only one with parameters α6,1 and β6,2. Hence

f6(r ) has at most two positive simple roots. Then the 6-th order

averaging provides the existence of at most two small-amplitude

limit cycle of system (11) and this number can be reached.

To consider the 7-th order averaging theorem we take β2,9 =

−D4/6 + β2,9, β4,7 = −D2/6 + β4,7 and β6,2 = −D0/24 + β6,2.

Computing f7 we obtain

f7(r ) = −
1

48

πr
(
E6r

6 + E4r
4 + E2r

2 + E0

)
,

where

E6 = −3(α1,1 + α1,6 + α1,8), E0 = −48(α7,1 + β7,2).

Again, we do not display the expressions E2 and E4 because they are

quite long. Moreover Ej for j = 0, 2, 4, 6 are independent constants.

Hence f7(r ) has at most three positive simple roots. Then the 7-

th order averaging provides the existence of at most three small-

amplitude limit cycle of system (11) and this number can be reached.

We remark that our averaged functions fj (r ) for j = 1, . . . , 5

are consistent with the forms in [26]. However, our averaged func-

tion f6(r ) looks much simpler than the form given in [26], this is

because we rigorously simplify the function f6(r ) under the condi-
tions f1 ≡ f2 ≡ · · · ≡ f5 ≡ 0. The averaged function f6(r ) in [26]

has an error because the authors do not simplify this expression in

a right way (in fact one should note that the isolated parameter β3,7

contains the parameter β1,9). As a consequence, the maximum num-

ber {3} of limit cycles of system (10) up to the 6-th order averaging



they obtained can not be reached. Thus, some calculations of the

averaged functions in [26] need to be reconsidered algorithmically,

using the algorithm and exact formula of the averaged function in

this paper.

Here we restate the result related to the Collins First Form as

follows.

Theorem 5.1. For |ε | > 0 sufficiently small the maximum number
of small-amplitude limit cycles of system (11) is 3 using the 7-th order
averaging method, and this number can be reached.

5.2 A Class of Generalized Kukles Differential
Systems

In this subsection we consider the perturbations

Ûx = −y +
6∑

s=1

6∑
j=0

j∑
i=0

εsas, j,ix
j−iyi ,

Ûy = x + ax5y + bx3y3 + cxy5 +

6∑
s=1

6∑
j=0

j∑
i=0

εsbs, j,ix
j−iyi

(13)

of system (13)ε=0
, where as, j,i and bs, j,i are real parameters, for

s = 1, . . . , 6, 0 ≤ i ≤ j ≤ 6, and a,b, c are real coefficients satisfying

a2 + b2 + c2 , 0. We note that the bifurcation of limit cycles of (13)

has been studied in [25] up to 6-th order averaging theorem ([25],

Section 7.3). Here restudy it by using our algorithmic approach to

illustrate its feasibility.

We remark that taking k = 6 our algorithm Normalize can not

pass the if hypothesis, this is because the unperturbed term (i.e.,

the constant term of H in the algorithm Normalize)

F0 =
r (a1,0,0C + b1,0,0S)

r − a1,0,0S + b1,0,0C

���
C=cos θ,S=sin θ

does not vanish. So we have to exclude the perturbed terms εa1,0,0

and εb1,0,0 in (13). However, the authors in [25] obtained a wrong

expression of F0 in the form

F0 =
ra1,0,0(C + S)

r + a1,0,0(C − S)

���
C=cos θ,S=sin θ

.

In fact one can easily check this mistake by manual calculation. So

the calculations of the averaged functions of system (13) in [25]

must be redone.

Now consider system (13), letting a1,0,0 = b1,0,0 = 0 and us-

ing our algorithm AverFun in Section 4 we obtain the averaged

functions up to 6-th order as follows. Since the calculations and

arguments are quite similar to those used in the previous subsection

we do not explicitly present the process here.

f1(r ) = πr (a1,1,0 + b1,1,1), f2(r ) = πr (a2,1,0 + b2,1,1),

f3(r ) =
1

4

πr (E2r
2 + E0), f4(r ) =

1

4

πr (G2r
2 +G0),

f5(r ) =
1

8

πr (H4r
4 + H2r

2 + H0),

f6(r ) = −
1

24

πr (I4r
4 + I2r

2 + I0).

(14)

The expressions of Ei ,Gi for i = 0, 2 and Hj , Ij for j = 0, 2, 4 are

quite long so we omit them for brevity.

In view of these expressions in (14), we verified that (Theorem

3 in [25]) the averaging theorem up to sixth order provides the

existence of at most two small-amplitude limit cycles of system

(13).

5.3 Quadratic Systems
In order to save space, we put the results in Appendix C.

6 DISCUSSION
In this paper we present a systematical approach to study the max-

imum number of limit cycles of differential system (4) for |ε | > 0

sufficiently small, which bifurcate from the centers of differential

systems in the form of (3). In general, we give three algorithms

to analyze the averaging method. Then with the aid of these al-

gorithms, we reduce the study of the number of limit cycles of

system (4) to the problem of estimating the number of simple zeros

of the obtained averaged functions. Theoretically, we show that the

maximum number of limit cycles of system (4) has no more than

kn2 (a rough bound) by using the k-th order averaging method. We

believe that the first averaged function fk which is not identically

zero is a polynomial in r with odd terms. However, we cannot prove

this, we leave this as a future research problem.

We remark that, though in the present paper, we focus our at-

tention on the study of bifurcation of limit cycles of the continuous

differential system (4), the developed algorithmic approach admits

a generalization to the case of studying the bifurcation of limit

cycles for discontinuous differential systems. It is of great interest

to employ our approach to analyze the bifurcation of limit cycles

for differential systems in many different fields (biology, chemistry,

economics, engineering, mathematics, physics, etc.). It will be ben-

eficial to generalize our approach to the case of higher dimension

differential systems by using the general form of the averaging

method. We leave this as the future research problems. Further-

more, how to simplify and optimize the steps of the computations

of the averaged functions is also worthy of further study.
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A APPENDIX: PROOF OF THEOREM 3.1
We first give some lemmas before we prove the Theorem 3.1. The

following lemma plays a key role in determining the numbers νi
and Ni .

Lemma A.1. If k ≥ 2 and p ∈ N, then for any polynomial дn (x)
of degree n, (

дn (x)

xk−1

)(p)
=

д̄n (x)

xk+p−1

,

where д̄n (x) is a polynomial of degree no more than n. Here д(p)

denotes the p-order derivative of a function д.

Proof. The lemma follows directly from the following equality(
xq

xk−1

)(p)
= (q − k + 1)(q − k) · · · (q − k + 2 − p)

xq

xk+p−1

, q ∈ N.

□

The lemma described below can be used to determine the ex-

pression form of the averaged function fi (r ) in Theorem 3.1.

Lemma A.2. Define the integral function

Mi, j,k =

∫ θ

0

si sin
j s cos

k sds, i, j,k ∈ N+. (15)

Then we have the following recursive formula forMi, j,k

(j + 1)Mi, j,k = θ
i

sin
j+1 θ cos

k−1 θ − iMi−1, j+1,k−1

+ (k − 1)Mi, j+2,k−2
.

(16)

Moreover, when k = 0, we have

j2Mi, j,0 = −jθ i sin
j−1 θ cosθ + iθ i−1

sin
j θ

+ j(j − 1)Mi, j−2,0 − i(i − 1)Mi−2, j,0.
(17)

Proof. Doing integration by parts for (15), we have

Mi, j,k =

∫ θ

0

si sin
j s cos

k−1 s(sin s)′ds

= θ i sin
j+1 θ cos

k−1 θ −

∫ θ

0

sin s
(
si sin

j s cos
k−1 s

) ′
ds

= θ i sin
j+1 θ cos

k−1 θ − iMi−1, j+1,k−1

− jMi, j,k + (k − 1)Mi, j+2,k−2
.

Then we find the recursive integral formula (16).

When k = 0, doing integration by parts forMi, j,0, we obtain

Mi, j,0 = −

∫ θ

0

si sin
j−1 s(cos s)′ds

= −θ i sin
j−1 θ cosθ + (j − 1)Mi, j−2,0

− (j − 1)Mi, j,0 + iMi−1, j−1,1.

(18)

On the other hand, by doing integration by parts forMi−1, j−1,1, in

a similar way we have

jMi−1, j−1,1 = θ
i−1

sin
j θ − (i − 1)Mi−2, j,0. (19)

Using equations (18) and (19), we obtain (17).

□

Proof of Theorem 3.1. Now refer to system (4), we define the

perturbed terms

p̃j (x ,y) =

n2∑
t=0

p
j
t (x ,y), q̃j (x ,y) =

n2∑
t=0

q
j
t (x ,y),

with p
j
t , q

j
t homogeneous polynomials of degree t . The change of

coordinates

x = εX , y = εY

carries system (4) into

ÛX = −Y +

n1∑
m=2

εm−1Pm (X ,Y ) +
k∑
j=1

n2∑
t=0

ε j+t−1p
j
t (X ,Y ),

ÛY = X +

n1∑
m=2

εm−1Qm (X ,Y ) +
k∑
j=1

n2∑
t=0

ε j+t−1q
j
t (X ,Y ).

(20)

In polar coordinates X = rC and Y = rS with C = cosθ , S = sinθ ,
system (20) has the form

Ûr =
X ÛX + Y ÛY

r

���
X=rC,Y=rS

, Ûθ =
X ÛY − Y ÛX

r2

���
X=rC,Y=rS

.

Then

dr

dθ
= r

X ÛX + Y ÛY

X ÛY − Y ÛX

���
X=rC,Y=rS

=
H1(r ,C, S, ε)

r + H2(r ,C, S, ε)
, (21)

where

H1(r ,C, S, ε) =

n1∑
m=2

εm−1rm+1[Pm (C, S)C +Qm (C, S)S]

+

k∑
j=1

n2∑
t=0

ε j+t−1r t+1[p
j
t (C, S)C + q

j
t (C, S)S],

H2(r ,C, S, ε) =

n1∑
m=2

εm−1rm [Qm (C, S)C − Pm (C, S)S]

+

k∑
j=1

n2∑
t=0

ε j+t−1r t [q
j
t (C, S)C − p

j
t (C, S)S].

Computing the first-order Taylor expansion of dr/dθ in ε we obtain

F0 =
r [p1

0
(C, S)C + q1

0
(C, S)S]

r + q1

0
(C, S)C − p1

0
(C, S)S

.

Since we assume that F0 = 0, we need to let p1

0
= q1

0
= 0. Then the

resulting expression of dr/dθ is of the form

dr

dθ
=

B1(r ,C, S)ε + · · · + Bn2+k−1
(r ,C, S)εn2+k−1

r +A1(r ,C, S)ε + · · · +An2+k−1
(r ,C, S)εn2+k−1

, (22)

where

A1(r ,C, S) = r
2[Q2(C, S)C − P2(C, S)S]

+

1∑
t=0

r t [q2−t
t (C, S)C − p2−t

t (C, S)S],

B1(r ,C, S) = r
3[P2(C, S)C +Q2(C, S)S]

+

1∑
t=0

r t+1[p2−t
t (C, S)C + q2−t

t (C, S)S]

and the expressions of Ai and Bi for i = 2, . . . ,n2 + k − 1 are sum-

mation of a kind of polynomial functions in the form r i1H̄i1 (C, S)
with i1 non-negative integer and H̄i1 polynomial function in the



variablesC and S . Moreover, by observing (21) we know that Bi for
i = 2, . . . ,k −1 is a polynomial in r of degree at most n2+1 without

constant term; and Ai is a polynomial in r of degree at most n2 in

the form:

Ai (r ,C, S) = Āi,0(C, S) + Āi,1(r ,C, S), i = 2, . . . ,k − 1, (23)

where Āi,1(r ,C, S) is a polynomial in r of degree at most n2 without

constant term, and

Āi,0(C, S) = q
i+1

0
(C, S)C − pi+1

0
(C, S)S, i = 2, . . . ,k − 1. (24)

We recall that, given any real value |η | < 1, the following expan-

sion holds:

1

1 + η
=

∑
h1≥0

(−1)h1ηh1 .

Thus, equation (22) can be written as

dr

dθ
=
©­«
n2+k−1∑
h2=1

Bh2

r
εh2

ª®¬
1 +

∑
h1≥1

(−1)h1
©­«
n2+k−1∑
h2=1

Ah2

r
εh2

ª®¬
h1


=
©­«

k∑
h2=1

Bh2

r
εh2

ª®¬ ×
[
1 −

©­«
k−1∑
h2=1

Āh2,0 + Āh2,1

r
εh2

ª®¬ + · · ·
+ (−1)k−1 ©­«

k−1∑
h2=1

Āh2,0 + Āh2,1

r
εh2

ª®¬
k−1 ]

+ εk+1R(ε,C, S),

=

k∑
i=1

εiFi (r ,C, S) + O(εk+1),

(25)

where

F1 =
B1

r
, F2 =

rB2 −A1B1

r2
,

F3 =
r2B3 − rA1B2 − rA2B1 +A

2

1
B1

r3

and the expressions of Fi for i = 4, . . . ,k are linear combination

of a kind of functions in the form rα1Aα2

j1
Bj2 with −i ≤ α1 ≤ −1,

1 ≤ j1,α2 ≤ i − 1, and 1 ≤ j2 ≤ i (here we have avoided the

dependence on (r ,C, S) to simplify the notation). Recalling the

property that Bi is a polynomial in r of degree at most n2 + 1

without constant term andAi is a polynomial in r of degree at most

n2 with constant term, we find that F1 is a polynomial in r of degree
at most n2 ≥ 2 and Fi is a rational function in r of the form

Fi = F̄i (r ,C, S)/r
i−1, i = 2, . . . ,k, (26)

where F̄i (r ,C, S) is a polynomial in r of degree at most in2.

In what follows, we first prove that there exist a non-negative

integer νi and a polynomial function
¯fi (r ) =

∑Ni
j=0

c jr
j
, such that

rνi fi (r ) = ¯fi (r ) for i = 1, . . . ,k , then we provide the bounds for

the numbers νi and Ni .

Let RSC = {rλ1
sin

λ2 θ cos
λ3 θ : λ1 ∈ Z, λ2, λ3 ∈ N} be a set of

functions. It is obvious that each Fi in (25) (or (26)) is a function

generated by linear combination of elements of RSC . Note that the
explicit expression of F1 is of the form

F1(r ,C, S) = r
2[P2(C, S)C +Q2(C, S)S]

+

1∑
t=0

r t [p2−t
t (C, S)C + q2−t

t (C, S)S].

Now refer to (8), it is easy to check that y1(θ , r ) is a function gener-

ated by linear combination of elements of the set of functions in

the form {θr , r j1 sin
j2 θ cos

j3 θ } with 0 ≤ j1 ≤ 2 and 0 ≤ j2, j3 ≤ 3.

Let R̄ = RSC ×Θ = {θλ0rλ1
sin

λ2 θ cos
λ3 θ } be a set of functions

with λ0 ∈ N+. We denote by Span(R̄) be the set of functions gen-
erated by linear combination of elements of R̄. Next, we will show
that the integral function yi (θ , r ) ∈ Span(R̄) for i = 2, . . . ,k .

First, it is critical to observe that, the resulting form of ∂LFi (θ , r )
is a function generated by linear combination of elements of RSC .
Since y1(θ , r ) contains θ , the function in the square bracket of (8)

is in Span(R̄). In order to prove yi (θ , r ) ∈ Span(R̄), we need to

consider the following integral equation:

Mi, j,k =

∫ θ

0

si sin
j s cos

k sds, i, j,k ∈ N+.

Second, we claim thatMi, j,k ∈ Span(R̄). It follows from Lemma A.2

that Mi, j,k ∈ Span(R̄) if and only if Mi−1, j+1,k−1
∈ Span(R̄) and

Mi, j+2,k−2
∈ Span(R̄).

Reuse the recursive formula (16) until the subscript i = 0 ork = 0.

In this way it suffices to consider M
0, j,k ∈ Span(R̄) and Mi, j,0 ∈

Span(R̄). It is easy to judge thatM
0, j,k ∈ Span(R̄), so we focus on

the proof ofMi, j,0 ∈ Span(R̄). By using Lemma A.2 and reusing the

recursive formula (17), we conclude that Mi, j,0 ∈ Span(R̄). Then
Mi, j,k ∈ Span(R̄). Thus the desired result yi (θ , r ) ∈ Span(R̄) holds.

Finally, letting θ = 2π in yi (θ , r ) (equation (6)) and taking into

accounting the following formulae

cos(2π ) = 1, sin(2π ) = 0,

we prove that there exist a non-negative integer νi and a poly-

nomial function
¯fi (r ) =

∑Ni
j=0

c jr
j
, such that rνi fi (r ) = ¯fi (r ) for

i = 1, . . . ,k .
Next we provide the bounds for the numbers µi and Ni .

Case i = 1, since F1 is a polynomial in r of degree 2 (at most n2),

we have by equation (8) that y1 is a polynomial in r of degree 2 (at
most n2).

We assume, by the induction hypothesis, that yi is a rational

function in r of the form

yi−1 = ȳi−1(r ,C, S)/r
i−2, i = 2, . . . ,k, (27)

where ȳi−1(r ,C, S) is a polynomial in r of degree at most (i − 1)n2.

In the expression ofyi given in (8), there only appear the previous
functions yj , for 1 ≤ j ≤ i − 1. Now by using equation (26) and

Lemma A.1, for a given integer ℓ with 1 ≤ ℓ ≤ i − 1, we have the



following summation function∑
Sℓ

∂LFi−ℓ(θ , r )
ℓ∏
j=1

yj (θ , r )
bj

=
∑
Sℓ

F̄i−ℓ

r i−ℓ−1+L
yb1

1
yb2

2
· · ·ybℓ

ℓ
,

=
∑
Sℓ

F̄i−ℓ

r i−ℓ−1+L
ȳb1

1

(
ȳ2

r

)b2

· · ·

(
ȳℓ

r ℓ−1

)bℓ
,

=
∑
Sℓ

F̄i−ℓ
r i−1

ȳb1

1
ȳb2

2
· · · ȳbℓ

ℓ
.

(28)

We have used the equalities L = b1 + b2 + · · · + bℓ and b1 + 2b2 +

· · · + ℓbℓ = ℓ to simplify (28). Combining equations (26) and (27),

we know that the numerator of the expression (28) is a polynomial

in r with degree at most

(i − ℓ)n2 + n2(b1 + 2b2 + · · · + ℓbℓ) = in2.

Thus yi is a rational function in r of the form

yi = ȳi (r ,C, S)/r
i−1, i = 1, . . . ,k . (29)

where ȳi (r ,C, S) is a polynomial in r of degree at most in2.

Herewith, we prove that there exist a non-negative integer νi ≤

i − 1 and a polynomial function
¯fi (r ) =

∑Ni
j=0

c jr
j
with Ni ≤ in2,

such that rνi fi (r ) = ¯fi (r ) for i = 1, . . . ,k .
Next we will show that the coefficients c j of ¯fi (r ) is a polynomial

in π of degree at most i . To do this, we just consider the dependence
on θ for brevity.

We define ∆Yi = {θ∆i sin
k1 θ cos

k2 θ : 0 ≤ ∆i ≤ i,k1,k2 ∈ N}
be a set of functions. We claim that the following property holds

yi (θ ) ∈ Span(∆Yi ), i = 1, . . . ,k . (30)

We begin to prove this by induction.

Case i = 1, we recall that y1(θ ) is a function generated by linear

combination of elements of the set of functions {θ , sin
j2 θ cos

j3 θ }
with 0 ≤ j2, j3 ≤ 3. It obvious that y1(2π ) is a polynomial in π of

degree at most 1.

Suppose that for
¯k ≤ i − 1, property (30) holds, then for

¯k = i ,
using the integral equation (8), for a given integer ℓ with 1 ≤ ℓ ≤

i − 1, we have∑
Sℓ

ℓ∏
j=1

yj (θ )
bj =

∑
Sℓ

y1(θ )
b1y2(θ )

b2 · · ·yℓ(θ )
bℓ . (31)

Note that by the induction hypothesis, we have yj (θ ) ∈ Span(∆Yj )
for 1 ≤ j ≤ ℓ ≤ i − 1. Then the degree of θ in (31) is at most

b1 + 2b2 + · · · + ℓbℓ = ℓ ≤ i − 1.

By using Lemma A.2 (the integral formulae (16) and (17)) and

noting also that

∫ θ
0
θ i−1dθ = θ i/i , we find that yi (θ ) ∈ Span(∆Yi ).

Finally, letting θ = 2π , we prove that yi (2π ) is a polynomial in π
of degree at most i . That is to say, the coefficients c j of ¯fi (r ) is a
polynomial in π of degree at most i .

Up to now, we finish the proof of Theorem 3.1.

B APPENDIX: FIFTH ORDER AVERAGING
FORMULAE

We present some formulas computed by Averformula (Algorithm

2).

Y1 =
{ ∫ θ

0

F1(s, z)ds,
[ ∫ θ

0

F1dθ ,

∫
2π

0

F1dθ
]}
,

Y2 =
{ ∫ θ

0

(
2F2(s, z) + 2

∂F1(s, z)

∂z

)
y1(s, z)ds,[ ∫ θ

0

2

(
F2 +

∂F1

∂r
y1

)
dθ ,

∫
2π

0

(
F2 +

∂F1

∂r
y1

)
dθ

]}
.

(32)

yk (θ , z) =

∫ θ

0

Fk (s, z)ds, for k = 1, . . . , 5, (33)

where

F1(s, z) = F1(s, z),

F2(s, z) = 2F2(s, z) + 2

∂F1(s, z)

∂z
y1(s, z),

F3(s, z) = 6F3(s, z) + 6

∂F2(s, z)

∂z
y1(s, z)

+ 3

∂F1(s, z)

∂z
y2(s, z) + 3

∂2F1(s, z)

∂z2
y1(s, z)

2,

F4(s, z) = 24F4(s, z) + 24

∂F3(s, z)

∂z
y1(s, z)

+ 12

∂F2(s, z)

∂z
y2(s, z) + 12

∂2F2(s, z)

∂z2
y1(s, z)

2

+ 4

∂F1(s, z)

∂z
y3(s, z) + 12

∂2F1(s, z)

∂z2
y1(s, z)y2(s, z)

+ 4

∂3F1(s, z)

∂z3
y1(s, z)

3,

F5(s, z) = 120F5(s, z) + 120

∂F4(s, z)

∂z
y1(s, z)

+ 60

∂F3(s, z)

∂z
y2(s, z) + 60

∂2F3(s, z)

∂z2
y1(s, z)

2

+ 20

∂F2(s, z)

∂z
y3(s, z) + 60

∂2F2(s, z)

∂z2
y1(s, z)y2(s, z)

+ 20

∂3F2(s, z)

∂z3
y1(s, z)

3 + 5

∂F1(s, z)

∂z
y4(s, z)

+ 15

∂2F1(s, z)

∂z2
y2(s, z)

2

+ 20

∂2F1(s, z)

∂z2
y1(s, z)y3(s, z)

+ 30

∂3F1(s, z)

∂z3
y1(s, z)

2y2(s, z)

+ 5

∂4F1(s, z)

∂z4
y1(s, z)

4.

C APPENDIX: QUADRATIC SYSTEMS
This appendix is an overflow from Subsection 5.3. We report some

results on quadratic differential systems with centers of the form

Ûx = −y + a20x
2 + a11xy + a02y

2,

Ûy = x + b20x
2 + b11xy + b02y

2.
(34)



C.1 Isochronous Quadratic Centers
We recall that the classification of such quadratic system having

an isochronous center at the origin is due to Loud [30]. He proved

that after an affine change of variables and a rescaling of time any

quadratic isochronous center can be written as one of the following

four systems.

S1 : Ûx = −y + x2 − y2, Ûy = x(1 + 2y),

S2 : Ûx = −y + x2, Ûy = x(1 + y),

S3 : Ûx = −y −
4

3

x2, Ûy = x(1 −
16

3

y),

S4 : Ûx = −y +
16

3

x2 −
4

3

y2, Ûy = x(1 +
8

3

y).

In the case of limit cycles bifurcating from the periodic orbits sur-

rounding such quadratic isochronous centers, Chicone and Jacobs

in [8] proved that, under all quadratic polynomial perturbations, at

most 1 limit cycle bifurcate from the periodic orbits of S1, and at

most 2 limit cycles bifurcate from the periodic orbits of S2, S3 and

S4. Iliev obtained in [17] that the cyclicity of the period annulus

surrounding the center S1 is also 2.

Here we focus on the study of limit cycles that bifurcate from

such quadratic isochronous centers, and the perturbation terms in

(4) are taken as follows:

pα (x ,y, ε) =
8∑

s=1

2∑
j=1

j∑
i=0

εscs,i, j−ix
iy j−i ,

qβ (x ,y, ε) =
8∑

s=1

2∑
j=1

j∑
i=0

εsds,i, j−ix
iy j−i .

Since the calculations and arguments are quite similar to those

used in the previous proofs, we just summarize our results in the

following Table 1.

Table 1: Number of limit cycles for quadratic isochronous
centers

Averaging order S1 S2 S3 S4

1,2 0 0 0 0

3,4 1 1 1 1

5 1 2 2 2

6 2 2 2 2

7 2 2 2 2

8 - - - -

We remark that the computation of the 8-th order averaged

functions would be too demanding (Maple was consuming too

much of the CPU during a calculation). Since we are providing lower

bounds for the maximum number of limit cycles that bifurcate from

the origin of such quadratic systems, the results could be improved

using higher orders of the averaging theorem. Thus, we have a

conjecture that some of the numbers 2 obtained in Table 1 may

could be increased to 3 as Bautin [1] proved that in a sufficiently

small neighborhood Ω of a quadratic center, all sufficiently small

quadratic perturbations of the given system have at most three

limit cycles in Ω, and that three arbitrarily small-amplitude limit

cycles can be produced.

C.2 Reversible System with Two Centers
Next, we study the following reversible quadratic system

Ûx = y + a1xy, Ûy = −x + x2 + a4y
2, (35)

with two centers (0, 0) and (1, 0), where a1 and a4 are real coeffi-

cients satisfying a1 < −1 ([42], Theorem 1). The authors in [42]

proved that 3 limit cycles can bifurcate from the center (0, 0) under

the case a4 = (a1 − 5)/3 based on the Melnikov function method by

adding perturbed terms p(x ,y, ε) = εa10x and q(x ,y, ε) = ε(b01y +
b11xy) (see Section 3 of [42] for more details). Here using the aver-

aging method we study system (35) by choosing a similar kind of

perturbed terms, and then we give some remarks on the relations

between these two methods.

First, introducing x = −x̄ , y = ȳ into (35) results in

Û̄x = −ȳ + a1x̄ȳ, Û̄y = x̄ + x̄2 + a4ȳ
2, (36)

which is similar to system (3), now has centers (0, 0) and (−1, 0).

We then consider the perturbations

Û̄x = −ȳ + a1x̄ȳ +
10∑
s=1

εscs,1,0x̄ ,

Û̄y = x̄ + x̄2 + a4ȳ
2 +

10∑
s=1

εs (ds,0,1ȳ + ds,1,1x̄ȳ)

(37)

of (36), where cs,i, j and ds,i, j are real parameters for s = 1, . . . , 10.

Computing the averaged functions under the case a4 + 1 , 0, we

obtain the expressions of fk ’s up to k = 5 as follows:

f1(r ) = πr (c1,1,0 + d1,0,1), f2(r ) = πr (c2,1,0 + d2,0,1),

f3(r ) =
πr

4

(
Ā2r

2 + Ā0

)
, f4(r ) =

πr

4

(
B̄2r

2 + B̄0

)
,

f5(r ) =
πr

24(a4 + 1)2

(
C̄4r

4 + C̄2r
2 + C̄0

)
,

and for k = 6, . . . , 10, we have

fk (r ) =
πr

24

(
D̄

4,kr
4 + D̄

2,kr
2 + D̄

0,k
)
, (38)

where

Ā2 = (a1 + 2a4)(a1 − a4 − 1)c1,1,0 − (a4 + 1)d1,1,1,

Ā0 = 4(c3,1,0 + d3,0,1),

B̄2 = (a1 + 2a4)(a1 − a4 − 1)c2,1,0 − (a4 + 1)d2,1,1,

B̄0 = 4(c4,1,0 + d4,0,1),

C̄4 = a1(a4 + 1)2(a1 − a4)(a1 + 2a4)(a1 − 3a4 − 5)c2,1,0,

C̄2 = −6a1(a1 + 2a4)(a1 − a4 − 1)(a1 + a4 − 1)c3

1,1,0

+ 6(a4 + 1)2(a1 + 2a4)(a1 − a4 − 1)c3,1,0

− 6(a4 + 1)3d3,1,1,

C̄0 = 24(a4 + 1)2(c5,1,0 + d5,0,1),

D̄
4,k = a1(a1 − a4)(a1 + 2a4)(a1 − 3a4 − 5)ck−4,1,0,

D̄
2,k = 6(a1 + 2a4)(a1 − a4 − 1)ck−2,1,0 − 6(a4 + 1)dk−2,1,1,

D̄
0,k = 24(ck,1,0 + dk,0,1).

In view of these expressions of the obtained averaged functions,

we find that the k-th (k = 5, . . . , 10) order averaging provides



the existence of at most two small-amplitude limit cycles of the

perturbed system (37) and this number can be reached under the

condition (a1 − a4)(a1 + 2a4)(a1 − 3a4 − 5) , 0. We conjecture

that the maximal number of small-amplitude limit cycles of the

perturbed system (37) is 2 up to the k-th order averaging for any

k ≥ 6. This problemmight be proved by using the recursive integral

equation (8).

Our result on the quadratic system (35) describes the different

mechanisms between the averaging method and the Melnikov func-

tion method when studying the number of limit cycles that can

appear in a Hopf bifurcation from centers. The number of limit

cycles obtained by the averaging method in some cases (under a

similar kind of perturbations) seems to be less than the number

obtained by the Melnikov function method. We want to say that in

the study of the limit cycles which bifurcate from a period annulus

surrounding the center, the equivalence between the averaging

method and the Melnikov function method at any order has been

proved in [4, 14].
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