
Tutorial:
Exact Numerical Computation

in Algebra and Geometry

Chee K. Yap

Courant Institute of Mathematical Sciences
New York University

and
Korea Institute of Advanced Study (KIAS)

Seoul, Korea

34th ISSAC, July 28–31, 2009

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 1 / 109

PART 3

Complexity Analysis of Adaptivity

“A rapacious monster lurks within every computer,
and it dines exclusively on accurate digits.”

— B.D. McCullough (2000)

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 82 / 109

Analysis of Adaptive Complexity

Coming Up Next

1 Analysis of Adaptive Complexity

2 Analysis of Descartes Method

3 Integral Bounds and Framework of Stopping Functions

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 83 / 109

Analysis of Adaptive Complexity

Towards Analysis of Adaptive Algorithms

Major Challenge in Theoretical Computer Science
◮ Analysis of discrete algorithms is highly developed
◮ What about continuous , adaptive algorithms?

Previous such analysis requires probabilistic assumptions.
◮ Basically in Linear Programming: [Smale, Borgwardt,

Teng-Spielman]

We focus on the recursion tree size
◮ Return to 1-D !

Adaptive algorithms may have some deep paths, but overall size
is only polynomial in depth.

◮ Previous (trivial) result – size is exponential in depth [Kearfott
(1987)]

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 84 / 109

Analysis of Adaptive Complexity

Towards Analysis of Adaptive Algorithms

Major Challenge in Theoretical Computer Science
◮ Analysis of discrete algorithms is highly developed
◮ What about continuous , adaptive algorithms?

Previous such analysis requires probabilistic assumptions.
◮ Basically in Linear Programming: [Smale, Borgwardt,

Teng-Spielman]

We focus on the recursion tree size
◮ Return to 1-D !

Adaptive algorithms may have some deep paths, but overall size
is only polynomial in depth.

◮ Previous (trivial) result – size is exponential in depth [Kearfott
(1987)]

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 84 / 109

Analysis of Adaptive Complexity

Towards Analysis of Adaptive Algorithms

Major Challenge in Theoretical Computer Science
◮ Analysis of discrete algorithms is highly developed
◮ What about continuous , adaptive algorithms?

Previous such analysis requires probabilistic assumptions.
◮ Basically in Linear Programming: [Smale, Borgwardt,

Teng-Spielman]

We focus on the recursion tree size
◮ Return to 1-D !

Adaptive algorithms may have some deep paths, but overall size
is only polynomial in depth.

◮ Previous (trivial) result – size is exponential in depth [Kearfott
(1987)]

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 84 / 109

Analysis of Adaptive Complexity

Towards Analysis of Adaptive Algorithms

Major Challenge in Theoretical Computer Science
◮ Analysis of discrete algorithms is highly developed
◮ What about continuous , adaptive algorithms?

Previous such analysis requires probabilistic assumptions.
◮ Basically in Linear Programming: [Smale, Borgwardt,

Teng-Spielman]

We focus on the recursion tree size
◮ Return to 1-D !

Adaptive algorithms may have some deep paths, but overall size
is only polynomial in depth.

◮ Previous (trivial) result – size is exponential in depth [Kearfott
(1987)]

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 84 / 109

Analysis of Adaptive Complexity

Towards Analysis of Adaptive Algorithms

Major Challenge in Theoretical Computer Science
◮ Analysis of discrete algorithms is highly developed
◮ What about continuous , adaptive algorithms?

Previous such analysis requires probabilistic assumptions.
◮ Basically in Linear Programming: [Smale, Borgwardt,

Teng-Spielman]

We focus on the recursion tree size
◮ Return to 1-D !

Adaptive algorithms may have some deep paths, but overall size
is only polynomial in depth.

◮ Previous (trivial) result – size is exponential in depth [Kearfott
(1987)]

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 84 / 109

Analysis of Adaptive Complexity

Towards Analysis of Adaptive Algorithms

Major Challenge in Theoretical Computer Science
◮ Analysis of discrete algorithms is highly developed
◮ What about continuous , adaptive algorithms?

Previous such analysis requires probabilistic assumptions.
◮ Basically in Linear Programming: [Smale, Borgwardt,

Teng-Spielman]

We focus on the recursion tree size
◮ Return to 1-D !

Adaptive algorithms may have some deep paths, but overall size
is only polynomial in depth.

◮ Previous (trivial) result – size is exponential in depth [Kearfott
(1987)]

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 84 / 109

Analysis of Adaptive Complexity

Towards Analysis of Adaptive Algorithms

Major Challenge in Theoretical Computer Science
◮ Analysis of discrete algorithms is highly developed
◮ What about continuous , adaptive algorithms?

Previous such analysis requires probabilistic assumptions.
◮ Basically in Linear Programming: [Smale, Borgwardt,

Teng-Spielman]

We focus on the recursion tree size
◮ Return to 1-D !

Adaptive algorithms may have some deep paths, but overall size
is only polynomial in depth.

◮ Previous (trivial) result – size is exponential in depth [Kearfott
(1987)]

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 84 / 109

Analysis of Adaptive Complexity

Towards Analysis of Adaptive Algorithms

Major Challenge in Theoretical Computer Science
◮ Analysis of discrete algorithms is highly developed
◮ What about continuous , adaptive algorithms?

Previous such analysis requires probabilistic assumptions.
◮ Basically in Linear Programming: [Smale, Borgwardt,

Teng-Spielman]

We focus on the recursion tree size
◮ Return to 1-D !

Adaptive algorithms may have some deep paths, but overall size
is only polynomial in depth.

◮ Previous (trivial) result – size is exponential in depth [Kearfott
(1987)]

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 84 / 109

Analysis of Adaptive Complexity

Towards Analysis of Adaptive Algorithms

Major Challenge in Theoretical Computer Science
◮ Analysis of discrete algorithms is highly developed
◮ What about continuous , adaptive algorithms?

Previous such analysis requires probabilistic assumptions.
◮ Basically in Linear Programming: [Smale, Borgwardt,

Teng-Spielman]

We focus on the recursion tree size
◮ Return to 1-D !

Adaptive algorithms may have some deep paths, but overall size
is only polynomial in depth.

◮ Previous (trivial) result – size is exponential in depth [Kearfott
(1987)]

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 84 / 109

Analysis of Adaptive Complexity

Towards Analysis of Adaptive Algorithms

Major Challenge in Theoretical Computer Science
◮ Analysis of discrete algorithms is highly developed
◮ What about continuous , adaptive algorithms?

Previous such analysis requires probabilistic assumptions.
◮ Basically in Linear Programming: [Smale, Borgwardt,

Teng-Spielman]

We focus on the recursion tree size
◮ Return to 1-D !

Adaptive algorithms may have some deep paths, but overall size
is only polynomial in depth.

◮ Previous (trivial) result – size is exponential in depth [Kearfott
(1987)]

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 84 / 109

Analysis of Adaptive Complexity

Towards Analysis of Adaptive Algorithms

Major Challenge in Theoretical Computer Science
◮ Analysis of discrete algorithms is highly developed
◮ What about continuous , adaptive algorithms?

Previous such analysis requires probabilistic assumptions.
◮ Basically in Linear Programming: [Smale, Borgwardt,

Teng-Spielman]

We focus on the recursion tree size
◮ Return to 1-D !

Adaptive algorithms may have some deep paths, but overall size
is only polynomial in depth.

◮ Previous (trivial) result – size is exponential in depth [Kearfott
(1987)]

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 84 / 109

Analysis of Adaptive Complexity

Analytic Approach to Root Isolation

Suppose you want to isolate real roots of f (x) in I = [a,b]

Midpoint m(I) := (a+b)/2, Width w(I) := b−a

Exclusion Predicate: C0(I) : |f (m)|> ∑i≥1
|f (i)(m)|

i!

(
w(I)

2

)i

Inclusion Predicate: C1(I) : |f ′(m)|> ∑i≥1
|f (i+1)(m)|

i!

(
w(I)

2

)i

Confirmation (Bolzano) Test: f (a)f (b) < 0

Simple analytic method for root isolation!

Simpler than algebraic subdivision methods:

STURM > DESCARTES > BOLZANO

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 85 / 109

Analysis of Adaptive Complexity

Analytic Approach to Root Isolation

Suppose you want to isolate real roots of f (x) in I = [a,b]

Midpoint m(I) := (a+b)/2, Width w(I) := b−a

Exclusion Predicate: C0(I) : |f (m)|> ∑i≥1
|f (i)(m)|

i!

(
w(I)

2

)i

Inclusion Predicate: C1(I) : |f ′(m)|> ∑i≥1
|f (i+1)(m)|

i!

(
w(I)

2

)i

Confirmation (Bolzano) Test: f (a)f (b) < 0

Simple analytic method for root isolation!

Simpler than algebraic subdivision methods:

STURM > DESCARTES > BOLZANO

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 85 / 109

Analysis of Adaptive Complexity

Analytic Approach to Root Isolation

Suppose you want to isolate real roots of f (x) in I = [a,b]

Midpoint m(I) := (a+b)/2, Width w(I) := b−a

Exclusion Predicate: C0(I) : |f (m)|> ∑i≥1
|f (i)(m)|

i!

(
w(I)

2

)i

Inclusion Predicate: C1(I) : |f ′(m)|> ∑i≥1
|f (i+1)(m)|

i!

(
w(I)

2

)i

Confirmation (Bolzano) Test: f (a)f (b) < 0

Simple analytic method for root isolation!

Simpler than algebraic subdivision methods:

STURM > DESCARTES > BOLZANO

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 85 / 109

Analysis of Adaptive Complexity

Analytic Approach to Root Isolation

Suppose you want to isolate real roots of f (x) in I = [a,b]

Midpoint m(I) := (a+b)/2, Width w(I) := b−a

Exclusion Predicate: C0(I) : |f (m)|> ∑i≥1
|f (i)(m)|

i!

(
w(I)

2

)i

Inclusion Predicate: C1(I) : |f ′(m)|> ∑i≥1
|f (i+1)(m)|

i!

(
w(I)

2

)i

Confirmation (Bolzano) Test: f (a)f (b) < 0

Simple analytic method for root isolation!

Simpler than algebraic subdivision methods:

STURM > DESCARTES > BOLZANO

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 85 / 109

Analysis of Adaptive Complexity

Analytic Approach to Root Isolation

Suppose you want to isolate real roots of f (x) in I = [a,b]

Midpoint m(I) := (a+b)/2, Width w(I) := b−a

Exclusion Predicate: C0(I) : |f (m)|> ∑i≥1
|f (i)(m)|

i!

(
w(I)

2

)i

Inclusion Predicate: C1(I) : |f ′(m)|> ∑i≥1
|f (i+1)(m)|

i!

(
w(I)

2

)i

Confirmation (Bolzano) Test: f (a)f (b) < 0

Simple analytic method for root isolation!

Simpler than algebraic subdivision methods:

STURM > DESCARTES > BOLZANO

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 85 / 109

Analysis of Adaptive Complexity

Analytic Approach to Root Isolation

Suppose you want to isolate real roots of f (x) in I = [a,b]

Midpoint m(I) := (a+b)/2, Width w(I) := b−a

Exclusion Predicate: C0(I) : |f (m)|> ∑i≥1
|f (i)(m)|

i!

(
w(I)

2

)i

Inclusion Predicate: C1(I) : |f ′(m)|> ∑i≥1
|f (i+1)(m)|

i!

(
w(I)

2

)i

Confirmation (Bolzano) Test: f (a)f (b) < 0

Simple analytic method for root isolation!

Simpler than algebraic subdivision methods:

STURM > DESCARTES > BOLZANO

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 85 / 109

Analysis of Adaptive Complexity

Analytic Approach to Root Isolation

Suppose you want to isolate real roots of f (x) in I = [a,b]

Midpoint m(I) := (a+b)/2, Width w(I) := b−a

Exclusion Predicate: C0(I) : |f (m)|> ∑i≥1
|f (i)(m)|

i!

(
w(I)

2

)i

Inclusion Predicate: C1(I) : |f ′(m)|> ∑i≥1
|f (i+1)(m)|

i!

(
w(I)

2

)i

Confirmation (Bolzano) Test: f (a)f (b) < 0

Simple analytic method for root isolation!

Simpler than algebraic subdivision methods:

STURM > DESCARTES > BOLZANO

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 85 / 109

Analysis of Adaptive Complexity

Analytic Approach to Root Isolation

Suppose you want to isolate real roots of f (x) in I = [a,b]

Midpoint m(I) := (a+b)/2, Width w(I) := b−a

Exclusion Predicate: C0(I) : |f (m)|> ∑i≥1
|f (i)(m)|

i!

(
w(I)

2

)i

Inclusion Predicate: C1(I) : |f ′(m)|> ∑i≥1
|f (i+1)(m)|

i!

(
w(I)

2

)i

Confirmation (Bolzano) Test: f (a)f (b) < 0

Simple analytic method for root isolation!

Simpler than algebraic subdivision methods:

STURM > DESCARTES > BOLZANO

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 85 / 109

Analysis of Adaptive Complexity

Analytic Approach to Root Isolation

Suppose you want to isolate real roots of f (x) in I = [a,b]

Midpoint m(I) := (a+b)/2, Width w(I) := b−a

Exclusion Predicate: C0(I) : |f (m)|> ∑i≥1
|f (i)(m)|

i!

(
w(I)

2

)i

Inclusion Predicate: C1(I) : |f ′(m)|> ∑i≥1
|f (i+1)(m)|

i!

(
w(I)

2

)i

Confirmation (Bolzano) Test: f (a)f (b) < 0

Simple analytic method for root isolation!

Simpler than algebraic subdivision methods:

STURM > DESCARTES > BOLZANO

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 85 / 109

Analysis of Adaptive Complexity

EVAL Algorithm

EVAL
INPUT: Function f and interval I0 = [a,b]

OUTPUT: Isolation intervals of roots of f in I0
1 Let Qin← {I0} be a queue
2 WHILE (Q 6= /0) ⊳ Subdivision Phase
3 I← Q.remove()
4 IF (C0(I) holds), discard I
5 ELIF (C1(I) holds), output I
6 ELSE
7 IF (f (m(I)) = 0), output [m(I),m(I)]
8 Split I into two and insert in Q
9 PROCESS output list ⊳ Consruction Phase

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 86 / 109

Analysis of Adaptive Complexity

EVAL Algorithm

EVAL
INPUT: Function f and interval I0 = [a,b]

OUTPUT: Isolation intervals of roots of f in I0
1 Let Qin← {I0} be a queue
2 WHILE (Q 6= /0) ⊳ Subdivision Phase
3 I← Q.remove()
4 IF (C0(I) holds), discard I
5 ELIF (C1(I) holds), output I
6 ELSE
7 IF (f (m(I)) = 0), output [m(I),m(I)]
8 Split I into two and insert in Q
9 PROCESS output list ⊳ Consruction Phase

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 86 / 109

Analysis of Adaptive Complexity

EVAL Algorithm

EVAL
INPUT: Function f and interval I0 = [a,b]

OUTPUT: Isolation intervals of roots of f in I0
1 Let Qin← {I0} be a queue
2 WHILE (Q 6= /0) ⊳ Subdivision Phase
3 I← Q.remove()
4 IF (C0(I) holds), discard I
5 ELIF (C1(I) holds), output I
6 ELSE
7 IF (f (m(I)) = 0), output [m(I),m(I)]
8 Split I into two and insert in Q
9 PROCESS output list ⊳ Consruction Phase

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 86 / 109

Analysis of Adaptive Complexity

EVAL Algorithm

EVAL
INPUT: Function f and interval I0 = [a,b]

OUTPUT: Isolation intervals of roots of f in I0
1 Let Qin← {I0} be a queue
2 WHILE (Q 6= /0) ⊳ Subdivision Phase
3 I← Q.remove()
4 IF (C0(I) holds), discard I
5 ELIF (C1(I) holds), output I
6 ELSE
7 IF (f (m(I)) = 0), output [m(I),m(I)]
8 Split I into two and insert in Q
9 PROCESS output list ⊳ Consruction Phase

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 86 / 109

Analysis of Adaptive Complexity

EVAL Algorithm

EVAL
INPUT: Function f and interval I0 = [a,b]

OUTPUT: Isolation intervals of roots of f in I0
1 Let Qin← {I0} be a queue
2 WHILE (Q 6= /0) ⊳ Subdivision Phase
3 I← Q.remove()
4 IF (C0(I) holds), discard I
5 ELIF (C1(I) holds), output I
6 ELSE
7 IF (f (m(I)) = 0), output [m(I),m(I)]
8 Split I into two and insert in Q
9 PROCESS output list ⊳ Consruction Phase

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 86 / 109

Analysis of Adaptive Complexity

EVAL Algorithm

EVAL
INPUT: Function f and interval I0 = [a,b]

OUTPUT: Isolation intervals of roots of f in I0
1 Let Qin← {I0} be a queue
2 WHILE (Q 6= /0) ⊳ Subdivision Phase
3 I← Q.remove()
4 IF (C0(I) holds), discard I
5 ELIF (C1(I) holds), output I
6 ELSE
7 IF (f (m(I)) = 0), output [m(I),m(I)]
8 Split I into two and insert in Q
9 PROCESS output list ⊳ Consruction Phase

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 86 / 109

Analysis of Adaptive Complexity

EVAL Algorithm

EVAL
INPUT: Function f and interval I0 = [a,b]

OUTPUT: Isolation intervals of roots of f in I0
1 Let Qin← {I0} be a queue
2 WHILE (Q 6= /0) ⊳ Subdivision Phase
3 I← Q.remove()
4 IF (C0(I) holds), discard I
5 ELIF (C1(I) holds), output I
6 ELSE
7 IF (f (m(I)) = 0), output [m(I),m(I)]
8 Split I into two and insert in Q
9 PROCESS output list ⊳ Consruction Phase

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 86 / 109

Analysis of Adaptive Complexity

EVAL Algorithm

EVAL
INPUT: Function f and interval I0 = [a,b]

OUTPUT: Isolation intervals of roots of f in I0
1 Let Qin← {I0} be a queue
2 WHILE (Q 6= /0) ⊳ Subdivision Phase
3 I← Q.remove()
4 IF (C0(I) holds), discard I
5 ELIF (C1(I) holds), output I
6 ELSE
7 IF (f (m(I)) = 0), output [m(I),m(I)]
8 Split I into two and insert in Q
9 PROCESS output list ⊳ Consruction Phase

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 86 / 109

Analysis of Adaptive Complexity

EVAL Algorithm

EVAL
INPUT: Function f and interval I0 = [a,b]

OUTPUT: Isolation intervals of roots of f in I0
1 Let Qin← {I0} be a queue
2 WHILE (Q 6= /0) ⊳ Subdivision Phase
3 I← Q.remove()
4 IF (C0(I) holds), discard I
5 ELIF (C1(I) holds), output I
6 ELSE
7 IF (f (m(I)) = 0), output [m(I),m(I)]
8 Split I into two and insert in Q
9 PROCESS output list ⊳ Consruction Phase

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 86 / 109

Analysis of Adaptive Complexity

EVAL Algorithm

EVAL
INPUT: Function f and interval I0 = [a,b]

OUTPUT: Isolation intervals of roots of f in I0
1 Let Qin← {I0} be a queue
2 WHILE (Q 6= /0) ⊳ Subdivision Phase
3 I← Q.remove()
4 IF (C0(I) holds), discard I
5 ELIF (C1(I) holds), output I
6 ELSE
7 IF (f (m(I)) = 0), output [m(I),m(I)]
8 Split I into two and insert in Q
9 PROCESS output list ⊳ Consruction Phase

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 86 / 109

Analysis of Adaptive Complexity

EVAL Algorithm

EVAL
INPUT: Function f and interval I0 = [a,b]

OUTPUT: Isolation intervals of roots of f in I0
1 Let Qin← {I0} be a queue
2 WHILE (Q 6= /0) ⊳ Subdivision Phase
3 I← Q.remove()
4 IF (C0(I) holds), discard I
5 ELIF (C1(I) holds), output I
6 ELSE
7 IF (f (m(I)) = 0), output [m(I),m(I)]
8 Split I into two and insert in Q
9 PROCESS output list ⊳ Consruction Phase

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 86 / 109

Analysis of Adaptive Complexity

EVAL Algorithm

EVAL
INPUT: Function f and interval I0 = [a,b]

OUTPUT: Isolation intervals of roots of f in I0
1 Let Qin← {I0} be a queue
2 WHILE (Q 6= /0) ⊳ Subdivision Phase
3 I← Q.remove()
4 IF (C0(I) holds), discard I
5 ELIF (C1(I) holds), output I
6 ELSE
7 IF (f (m(I)) = 0), output [m(I),m(I)]
8 Split I into two and insert in Q
9 PROCESS output list ⊳ Consruction Phase

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 86 / 109

Analysis of Adaptive Complexity

EVAL Algorithm

EVAL
INPUT: Function f and interval I0 = [a,b]

OUTPUT: Isolation intervals of roots of f in I0
1 Let Qin← {I0} be a queue
2 WHILE (Q 6= /0) ⊳ Subdivision Phase
3 I← Q.remove()
4 IF (C0(I) holds), discard I
5 ELIF (C1(I) holds), output I
6 ELSE
7 IF (f (m(I)) = 0), output [m(I),m(I)]
8 Split I into two and insert in Q
9 PROCESS output list ⊳ Consruction Phase

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 86 / 109

Analysis of Adaptive Complexity

Main Complexity Goal – Benchmark Problem

Benchmark Problem in Root Isolation
Problem: isolate ALL (real) roots of square-free f (X) ∈Z[X] of
degree ≤ d and height < 2L.

Highly classical problem:
◮ Bit complexity is Õ(d3L) [Schöhage 1982].

⋆ Improvement: Õ(d2L) arithmetic complexity [Pan]

◮ Sturm tree size is O(d(L+ logd)) [Davenport, 1985]
◮ Descartes tree size is Θ(d(L+ logd)) [Eigenwillig-Sharma-Y,

2006]

MAIN RESULT: Bolzano tree size is O(d2(L+ logd))
◮ Sketch in this lecture. See [Burr-Krahmer-Y-Sagraloff, 2008-9]

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 87 / 109

Analysis of Adaptive Complexity

Main Complexity Goal – Benchmark Problem

Benchmark Problem in Root Isolation
Problem: isolate ALL (real) roots of square-free f (X) ∈Z[X] of
degree ≤ d and height < 2L.

Highly classical problem:
◮ Bit complexity is Õ(d3L) [Schöhage 1982].

⋆ Improvement: Õ(d2L) arithmetic complexity [Pan]

◮ Sturm tree size is O(d(L+ logd)) [Davenport, 1985]
◮ Descartes tree size is Θ(d(L+ logd)) [Eigenwillig-Sharma-Y,

2006]

MAIN RESULT: Bolzano tree size is O(d2(L+ logd))
◮ Sketch in this lecture. See [Burr-Krahmer-Y-Sagraloff, 2008-9]

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 87 / 109

Analysis of Adaptive Complexity

Main Complexity Goal – Benchmark Problem

Benchmark Problem in Root Isolation
Problem: isolate ALL (real) roots of square-free f (X) ∈Z[X] of
degree ≤ d and height < 2L.

Highly classical problem:
◮ Bit complexity is Õ(d3L) [Schöhage 1982].

⋆ Improvement: Õ(d2L) arithmetic complexity [Pan]

◮ Sturm tree size is O(d(L+ logd)) [Davenport, 1985]
◮ Descartes tree size is Θ(d(L+ logd)) [Eigenwillig-Sharma-Y,

2006]

MAIN RESULT: Bolzano tree size is O(d2(L+ logd))
◮ Sketch in this lecture. See [Burr-Krahmer-Y-Sagraloff, 2008-9]

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 87 / 109

Analysis of Adaptive Complexity

Main Complexity Goal – Benchmark Problem

Benchmark Problem in Root Isolation
Problem: isolate ALL (real) roots of square-free f (X) ∈Z[X] of
degree ≤ d and height < 2L.

Highly classical problem:
◮ Bit complexity is Õ(d3L) [Schöhage 1982].

⋆ Improvement: Õ(d2L) arithmetic complexity [Pan]

◮ Sturm tree size is O(d(L+ logd)) [Davenport, 1985]
◮ Descartes tree size is Θ(d(L+ logd)) [Eigenwillig-Sharma-Y,

2006]

MAIN RESULT: Bolzano tree size is O(d2(L+ logd))
◮ Sketch in this lecture. See [Burr-Krahmer-Y-Sagraloff, 2008-9]

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 87 / 109

Analysis of Adaptive Complexity

Main Complexity Goal – Benchmark Problem

Benchmark Problem in Root Isolation
Problem: isolate ALL (real) roots of square-free f (X) ∈Z[X] of
degree ≤ d and height < 2L.

Highly classical problem:
◮ Bit complexity is Õ(d3L) [Schöhage 1982].

⋆ Improvement: Õ(d2L) arithmetic complexity [Pan]

◮ Sturm tree size is O(d(L+ logd)) [Davenport, 1985]
◮ Descartes tree size is Θ(d(L+ logd)) [Eigenwillig-Sharma-Y,

2006]

MAIN RESULT: Bolzano tree size is O(d2(L+ logd))
◮ Sketch in this lecture. See [Burr-Krahmer-Y-Sagraloff, 2008-9]

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 87 / 109

Analysis of Adaptive Complexity

Main Complexity Goal – Benchmark Problem

Benchmark Problem in Root Isolation
Problem: isolate ALL (real) roots of square-free f (X) ∈Z[X] of
degree ≤ d and height < 2L.

Highly classical problem:
◮ Bit complexity is Õ(d3L) [Schöhage 1982].

⋆ Improvement: Õ(d2L) arithmetic complexity [Pan]

◮ Sturm tree size is O(d(L+ logd)) [Davenport, 1985]
◮ Descartes tree size is Θ(d(L+ logd)) [Eigenwillig-Sharma-Y,

2006]

MAIN RESULT: Bolzano tree size is O(d2(L+ logd))
◮ Sketch in this lecture. See [Burr-Krahmer-Y-Sagraloff, 2008-9]

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 87 / 109

Analysis of Adaptive Complexity

Main Complexity Goal – Benchmark Problem

Benchmark Problem in Root Isolation
Problem: isolate ALL (real) roots of square-free f (X) ∈Z[X] of
degree ≤ d and height < 2L.

Highly classical problem:
◮ Bit complexity is Õ(d3L) [Schöhage 1982].

⋆ Improvement: Õ(d2L) arithmetic complexity [Pan]

◮ Sturm tree size is O(d(L+ logd)) [Davenport, 1985]
◮ Descartes tree size is Θ(d(L+ logd)) [Eigenwillig-Sharma-Y,

2006]

MAIN RESULT: Bolzano tree size is O(d2(L+ logd))
◮ Sketch in this lecture. See [Burr-Krahmer-Y-Sagraloff, 2008-9]

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 87 / 109

Analysis of Adaptive Complexity

Main Complexity Goal – Benchmark Problem

Benchmark Problem in Root Isolation
Problem: isolate ALL (real) roots of square-free f (X) ∈Z[X] of
degree ≤ d and height < 2L.

Highly classical problem:
◮ Bit complexity is Õ(d3L) [Schöhage 1982].

⋆ Improvement: Õ(d2L) arithmetic complexity [Pan]

◮ Sturm tree size is O(d(L+ logd)) [Davenport, 1985]
◮ Descartes tree size is Θ(d(L+ logd)) [Eigenwillig-Sharma-Y,

2006]

MAIN RESULT: Bolzano tree size is O(d2(L+ logd))
◮ Sketch in this lecture. See [Burr-Krahmer-Y-Sagraloff, 2008-9]

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 87 / 109

Analysis of Adaptive Complexity

Main Complexity Goal – Benchmark Problem

Benchmark Problem in Root Isolation
Problem: isolate ALL (real) roots of square-free f (X) ∈Z[X] of
degree ≤ d and height < 2L.

Highly classical problem:
◮ Bit complexity is Õ(d3L) [Schöhage 1982].

⋆ Improvement: Õ(d2L) arithmetic complexity [Pan]

◮ Sturm tree size is O(d(L+ logd)) [Davenport, 1985]
◮ Descartes tree size is Θ(d(L+ logd)) [Eigenwillig-Sharma-Y,

2006]

MAIN RESULT: Bolzano tree size is O(d2(L+ logd))
◮ Sketch in this lecture. See [Burr-Krahmer-Y-Sagraloff, 2008-9]

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 87 / 109

Analysis of Adaptive Complexity

Main Complexity Goal – Benchmark Problem

Benchmark Problem in Root Isolation
Problem: isolate ALL (real) roots of square-free f (X) ∈Z[X] of
degree ≤ d and height < 2L.

Highly classical problem:
◮ Bit complexity is Õ(d3L) [Schöhage 1982].

⋆ Improvement: Õ(d2L) arithmetic complexity [Pan]

◮ Sturm tree size is O(d(L+ logd)) [Davenport, 1985]
◮ Descartes tree size is Θ(d(L+ logd)) [Eigenwillig-Sharma-Y,

2006]

MAIN RESULT: Bolzano tree size is O(d2(L+ logd))
◮ Sketch in this lecture. See [Burr-Krahmer-Y-Sagraloff, 2008-9]

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 87 / 109

Analysis of Adaptive Complexity

Warm Up Technique: Algebraic Amortization

Idea of Amortization [Davenport (1985), Du/Sharma/Y. (2005)]

Let A(X) ∈Z[X] have degree n and L-bit coefficients.

Root separation bound: − log |α−β |= O(n(L+ logn))

Amortized bound: −∏(α,β)∈E |β −α|= O(n(L+ logn))

What are restrictions on set E?

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 88 / 109

Analysis of Adaptive Complexity

Warm Up Technique: Algebraic Amortization

Idea of Amortization [Davenport (1985), Du/Sharma/Y. (2005)]

Let A(X) ∈Z[X] have degree n and L-bit coefficients.

Root separation bound: − log |α−β |= O(n(L+ logn))

Amortized bound: −∏(α,β)∈E |β −α|= O(n(L+ logn))

What are restrictions on set E?

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 88 / 109

Analysis of Adaptive Complexity

Warm Up Technique: Algebraic Amortization

Idea of Amortization [Davenport (1985), Du/Sharma/Y. (2005)]

Let A(X) ∈Z[X] have degree n and L-bit coefficients.

Root separation bound: − log |α−β |= O(n(L+ logn))

Amortized bound: −∏(α,β)∈E |β −α|= O(n(L+ logn))

What are restrictions on set E?

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 88 / 109

Analysis of Adaptive Complexity

Warm Up Technique: Algebraic Amortization

Idea of Amortization [Davenport (1985), Du/Sharma/Y. (2005)]

Let A(X) ∈Z[X] have degree n and L-bit coefficients.

Root separation bound: − log |α−β |= O(n(L+ logn))

Amortized bound: −∏(α,β)∈E |β −α|= O(n(L+ logn))

What are restrictions on set E?

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 88 / 109

Analysis of Adaptive Complexity

Warm Up Technique: Algebraic Amortization

Idea of Amortization [Davenport (1985), Du/Sharma/Y. (2005)]

Let A(X) ∈Z[X] have degree n and L-bit coefficients.

Root separation bound: − log |α−β |= O(n(L+ logn))

Amortized bound: −∏(α,β)∈E |β −α|= O(n(L+ logn))

What are restrictions on set E?

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 88 / 109

Analysis of Adaptive Complexity

Warm Up Technique: Algebraic Amortization

Idea of Amortization [Davenport (1985), Du/Sharma/Y. (2005)]

Let A(X) ∈Z[X] have degree n and L-bit coefficients.

Root separation bound: − log |α−β |= O(n(L+ logn))

Amortized bound: −∏(α,β)∈E |β −α|= O(n(L+ logn))

What are restrictions on set E?

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 88 / 109

Analysis of Adaptive Complexity

The Davenport–Mahler Bound

Theorem ([Davenport (1985), Johnson (1991/98), Du/Sharma/Y. (2005)])

Consider a polynomial A(X) ∈ C[X] of degree n. Let G = (V ,E) be a
digraph whose node set V consists of the roots ϑ1, . . . ,ϑn of A(X). If

(i) (α,β) ∈ E =⇒ |α| ≤ |β |,
(ii) β ∈ V =⇒ indeg(β)≤ 1, and

(iii) G is acyclic,

then
∏

(α,β)∈E

|β −α| ≥
√
|discr(A)|

M(A)n−1 ·2−O(n logn),

where

discr(A) := a2n−2
n ∏

i>j

(ϑi −ϑj)
2 and M(A) := |an|∏

i

max{1, |ϑi |}.

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 89 / 109

Mini Summary

Adaptive analysis is important but virgin territory

Subdivision of Analytic Algorithms in 1-D is current challenge

Standard target is Benchmark Problem for root isolation

Warm-Up Exercise: Use Mahler-Davenport bound for Descartes
Method

Mini Summary

Adaptive analysis is important but virgin territory

Subdivision of Analytic Algorithms in 1-D is current challenge

Standard target is Benchmark Problem for root isolation

Warm-Up Exercise: Use Mahler-Davenport bound for Descartes
Method

Mini Summary

Adaptive analysis is important but virgin territory

Subdivision of Analytic Algorithms in 1-D is current challenge

Standard target is Benchmark Problem for root isolation

Warm-Up Exercise: Use Mahler-Davenport bound for Descartes
Method

Mini Summary

Adaptive analysis is important but virgin territory

Subdivision of Analytic Algorithms in 1-D is current challenge

Standard target is Benchmark Problem for root isolation

Warm-Up Exercise: Use Mahler-Davenport bound for Descartes
Method

Mini Summary

Adaptive analysis is important but virgin territory

Subdivision of Analytic Algorithms in 1-D is current challenge

Standard target is Benchmark Problem for root isolation

Warm-Up Exercise: Use Mahler-Davenport bound for Descartes
Method

Mini Summary

Adaptive analysis is important but virgin territory

Subdivision of Analytic Algorithms in 1-D is current challenge

Standard target is Benchmark Problem for root isolation

Warm-Up Exercise: Use Mahler-Davenport bound for Descartes
Method

Analysis of Descartes Method

Coming Up Next

1 Analysis of Adaptive Complexity

2 Analysis of Descartes Method

3 Integral Bounds and Framework of Stopping Functions

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 91 / 109

Analysis of Descartes Method

What is the Descartes Method?

Same framework as EVAL or Sturm
To isolate roots of square-free A(X) in interval I

Routine DescartesTest (A(X), I) gives an upper estimate on the
number of real roots in I.

If DescartesTest (A(X), I) ∈ {0,1} then estimate is exact.

We keep splitting intervals until we get an exact estimate.

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 92 / 109

Analysis of Descartes Method

What is the Descartes Method?

Same framework as EVAL or Sturm
To isolate roots of square-free A(X) in interval I

Routine DescartesTest (A(X), I) gives an upper estimate on the
number of real roots in I.

If DescartesTest (A(X), I) ∈ {0,1} then estimate is exact.

We keep splitting intervals until we get an exact estimate.

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 92 / 109

Analysis of Descartes Method

What is the Descartes Method?

Same framework as EVAL or Sturm
To isolate roots of square-free A(X) in interval I

Routine DescartesTest (A(X), I) gives an upper estimate on the
number of real roots in I.

If DescartesTest (A(X), I) ∈ {0,1} then estimate is exact.

We keep splitting intervals until we get an exact estimate.

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 92 / 109

Analysis of Descartes Method

What is the Descartes Method?

Same framework as EVAL or Sturm
To isolate roots of square-free A(X) in interval I

Routine DescartesTest (A(X), I) gives an upper estimate on the
number of real roots in I.

If DescartesTest (A(X), I) ∈ {0,1} then estimate is exact.

We keep splitting intervals until we get an exact estimate.

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 92 / 109

Analysis of Descartes Method

What is the Descartes Method?

Same framework as EVAL or Sturm
To isolate roots of square-free A(X) in interval I

Routine DescartesTest (A(X), I) gives an upper estimate on the
number of real roots in I.

If DescartesTest (A(X), I) ∈ {0,1} then estimate is exact.

We keep splitting intervals until we get an exact estimate.

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 92 / 109

Analysis of Descartes Method

What is the Descartes Method?

Same framework as EVAL or Sturm
To isolate roots of square-free A(X) in interval I

Routine DescartesTest (A(X), I) gives an upper estimate on the
number of real roots in I.

If DescartesTest (A(X), I) ∈ {0,1} then estimate is exact.

We keep splitting intervals until we get an exact estimate.

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 92 / 109

Analysis of Descartes Method

Analysis of Descartes Method

Two-circle Theorem
[Ostrowski (1950), Krandick/Mehlhorn (2006)]

If DescartesTest (A(X), [c,d])≥ 2, then the
two-circles figure in C around interval [c,d]
contains two roots α,β of A(X).

Corollary
Can choose α,β to be complex conjugate or adjacent real roots.
Moreover, |β −α|<

√
3(d−c); i.e., (d−c) > |β −α|/

√
3.

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 93 / 109

Analysis of Descartes Method

Analysis of Descartes Method

Two-circle Theorem
[Ostrowski (1950), Krandick/Mehlhorn (2006)]

If DescartesTest (A(X), [c,d])≥ 2, then the
two-circles figure in C around interval [c,d]
contains two roots α,β of A(X).

Corollary
Can choose α,β to be complex conjugate or adjacent real roots.
Moreover, |β −α|<

√
3(d−c); i.e., (d−c) > |β −α|/

√
3.

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 93 / 109

Analysis of Descartes Method

Analysis of Descartes Method

Two-circle Theorem
[Ostrowski (1950), Krandick/Mehlhorn (2006)]

If DescartesTest (A(X), [c,d])≥ 2, then the
two-circles figure in C around interval [c,d]
contains two roots α,β of A(X).

Corollary
Can choose α,β to be complex conjugate or adjacent real roots.
Moreover, |β −α|<

√
3(d−c); i.e., (d−c) > |β −α|/

√
3.

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 93 / 109

Analysis of Descartes Method

Analysis of Descartes Method

Two-circle Theorem
[Ostrowski (1950), Krandick/Mehlhorn (2006)]

If DescartesTest (A(X), [c,d])≥ 2, then the
two-circles figure in C around interval [c,d]
contains two roots α,β of A(X).

Corollary
Can choose α,β to be complex conjugate or adjacent real roots.
Moreover, |β −α|<

√
3(d−c); i.e., (d−c) > |β −α|/

√
3.

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 93 / 109

Analysis of Descartes Method

Analysis of Descartes Method

Two-circle Theorem
[Ostrowski (1950), Krandick/Mehlhorn (2006)]

If DescartesTest (A(X), [c,d])≥ 2, then the
two-circles figure in C around interval [c,d]
contains two roots α,β of A(X).

Corollary
Can choose α,β to be complex conjugate or adjacent real roots.
Moreover, |β −α|<

√
3(d−c); i.e., (d−c) > |β −α|/

√
3.

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 93 / 109

Analysis of Descartes Method

Analysis of Descartes Method

β

α Two-circle Theorem
[Ostrowski (1950), Krandick/Mehlhorn (2006)]

If DescartesTest (A(X), [c,d])≥ 2, then the
two-circles figure in C around interval [c,d]
contains two roots α,β of A(X).

Corollary
Can choose α,β to be complex conjugate or adjacent real roots.
Moreover, |β −α|<

√
3(d−c); i.e., (d−c) > |β −α|/

√
3.

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 93 / 109

Analysis of Descartes Method

Analysis of Descartes Method

βα

Two-circle Theorem
[Ostrowski (1950), Krandick/Mehlhorn (2006)]

If DescartesTest (A(X), [c,d])≥ 2, then the
two-circles figure in C around interval [c,d]
contains two roots α,β of A(X).

Corollary
Can choose α,β to be complex conjugate or adjacent real roots.
Moreover, |β −α|<

√
3(d−c); i.e., (d−c) > |β −α|/

√
3.

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 93 / 109

Analysis of Descartes Method

Analysis of Descartes Method

Two-circle Theorem
[Ostrowski (1950), Krandick/Mehlhorn (2006)]

If DescartesTest (A(X), [c,d])≥ 2, then the
two-circles figure in C around interval [c,d]
contains two roots α,β of A(X).

Corollary
Can choose α,β to be complex conjugate or adjacent real roots.
Moreover, |β −α|<

√
3(d−c); i.e., (d−c) > |β −α|/

√
3.

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 93 / 109

Analysis of Descartes Method

Tree Bound in terms of Roots (1)

J =3d

0I
A bound on path length

1 Consider any path in the recursion tree
from I0 to a parent J of two leaves.

2 At depth d , interval width is 2−d |I0|.
Hence depth of J is d = log |I0|/|J|.

3 The path consists of d +1 internal
nodes.

4 There is a pair of roots (αJ ,βJ)
such that |J|> |βJ−αJ |/

√
3; hence

d +1 < log |I0|− log |βJ−αJ |+2.

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 94 / 109

Analysis of Descartes Method

Tree Bound in terms of Roots (1)

J =3d

0I
A bound on path length

1 Consider any path in the recursion tree
from I0 to a parent J of two leaves.

2 At depth d , interval width is 2−d |I0|.
Hence depth of J is d = log |I0|/|J|.

3 The path consists of d +1 internal
nodes.

4 There is a pair of roots (αJ ,βJ)
such that |J|> |βJ−αJ |/

√
3; hence

d +1 < log |I0|− log |βJ−αJ |+2.

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 94 / 109

Analysis of Descartes Method

Tree Bound in terms of Roots (1)

J =3d

0I
A bound on path length

1 Consider any path in the recursion tree
from I0 to a parent J of two leaves.

2 At depth d , interval width is 2−d |I0|.
Hence depth of J is d = log |I0|/|J|.

3 The path consists of d +1 internal
nodes.

4 There is a pair of roots (αJ ,βJ)
such that |J|> |βJ−αJ |/

√
3; hence

d +1 < log |I0|− log |βJ−αJ |+2.

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 94 / 109

Analysis of Descartes Method

Tree Bound in terms of Roots (1)

J =3d

0I
A bound on path length

1 Consider any path in the recursion tree
from I0 to a parent J of two leaves.

2 At depth d , interval width is 2−d |I0|.
Hence depth of J is d = log |I0|/|J|.

3 The path consists of d +1 internal
nodes.

4 There is a pair of roots (αJ ,βJ)
such that |J|> |βJ−αJ |/

√
3; hence

d +1 < log |I0|− log |βJ−αJ |+2.

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 94 / 109

Analysis of Descartes Method

Tree Bound in terms of Roots (2)

J

0I

#(internal nodes on path) < log |I0|− log |βJ−αJ |+2
#(internal nodes in tree) < ∑J (log |I0|− log |βJ−αJ |+2)
#(all nodes in tree) < 1+2 ·∑J (log |I0|− log |βJ−αJ |+2)

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 95 / 109

Analysis of Descartes Method

Tree Bound in terms of Roots (2)

JJ

J

J

0I

#(internal nodes on path) < log |I0|− log |βJ−αJ |+2
#(internal nodes in tree) < ∑J (log |I0|− log |βJ−αJ |+2)
#(all nodes in tree) < 1+2 ·∑J (log |I0|− log |βJ−αJ |+2)

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 95 / 109

Analysis of Descartes Method

Tree Bound in terms of Roots (2)

JJ

J

J

0I

#(internal nodes on path) < log |I0|− log |βJ−αJ |+2
#(internal nodes in tree) < ∑J (log |I0|− log |βJ−αJ |+2)
#(all nodes in tree) < 1+2 ·∑J (log |I0|− log |βJ−αJ |+2)

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 95 / 109

Analysis of Descartes Method

Tree Bound in terms of Roots (2)

JJ

J

J

0I

#(internal nodes on path) < log |I0|− log |βJ−αJ |+2
#(internal nodes in tree) < ∑J (log |I0|− log |βJ−αJ |+2)
#(all nodes in tree) < 1+2 ·∑J (log |I0|− log |βJ−αJ |+2)

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 95 / 109

Proposition
The size of the recursion tree is bounded by

−2 log ∏
J

|βJ−αJ |+n log |I0|+2n +1

Analysis of Descartes Method

Tree Bound in terms of Roots (2)

JJ

J

J

0I

#(internal nodes on path) < log |I0|− log |βJ−αJ |+2
#(internal nodes in tree) < ∑J (log |I0|− log |βJ−αJ |+2)
#(all nodes in tree) < 1+2 ·∑J (log |I0|− log |βJ−αJ |+2)

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 95 / 109

Proposition
The size of the recursion tree is bounded by

−2 log ∏
J

|βJ−αJ |+n log |I0|+2n +1

Analysis of Descartes Method

Turning our Product into an Admissible Graph

We want to rewrite

∏
J

|βJ−αJ | as ∏
(α,β)∈E

|β −α|.

How often |βJ−αJ | appears?

adjacent real: ≤ 1

complex conjugate ≤ 2

We need two graphs. (Paper: just 1)

Conditions on G = (V ,E)

(i) (α,β) ∈ E =⇒ |α| ≤ |β |✓
(ii) β ∈ V =⇒ indeg(β)≤ 1 ✓
(iii) G is acyclic ✓

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 96 / 109

Analysis of Descartes Method

Turning our Product into an Admissible Graph

We want to rewrite

∏
J

|βJ−αJ | as ∏
(α,β)∈E

|β −α|.

How often |βJ−αJ | appears?

adjacent real: ≤ 1

complex conjugate ≤ 2

We need two graphs. (Paper: just 1)

Conditions on G = (V ,E)

(i) (α,β) ∈ E =⇒ |α| ≤ |β |✓
(ii) β ∈ V =⇒ indeg(β)≤ 1 ✓
(iii) G is acyclic ✓

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 96 / 109

Analysis of Descartes Method

Turning our Product into an Admissible Graph

We want to rewrite

∏
J

|βJ−αJ | as ∏
(α,β)∈E

|β −α|.

How often |βJ−αJ | appears?

adjacent real: ≤ 1

complex conjugate ≤ 2

We need two graphs. (Paper: just 1)

Conditions on G = (V ,E)

(i) (α,β) ∈ E =⇒ |α| ≤ |β |✓
(ii) β ∈ V =⇒ indeg(β)≤ 1 ✓
(iii) G is acyclic ✓

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 96 / 109

Analysis of Descartes Method

Turning our Product into an Admissible Graph

We want to rewrite

∏
J

|βJ−αJ | as ∏
(α,β)∈E

|β −α|.

How often |βJ−αJ | appears?

adjacent real: ≤ 1

complex conjugate ≤ 2

We need two graphs. (Paper: just 1)

Conditions on G = (V ,E)

(i) (α,β) ∈ E =⇒ |α| ≤ |β |✓
(ii) β ∈ V =⇒ indeg(β)≤ 1 ✓
(iii) G is acyclic ✓

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 96 / 109

Analysis of Descartes Method

Turning our Product into an Admissible Graph

We want to rewrite

∏
J

|βJ−αJ | as ∏
(α,β)∈E

|β −α|.

How often |βJ−αJ | appears?

adjacent real: ≤ 1

complex conjugate ≤ 2

We need two graphs. (Paper: just 1)

Conditions on G = (V ,E)

(i) (α,β) ∈ E =⇒ |α| ≤ |β |✓
(ii) β ∈ V =⇒ indeg(β)≤ 1 ✓
(iii) G is acyclic ✓

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 96 / 109

Analysis of Descartes Method

Turning our Product into an Admissible Graph

We want to rewrite

∏
J

|βJ−αJ | as ∏
(α,β)∈E

|β −α|.

How often |βJ−αJ | appears?

adjacent real: ≤ 1

complex conjugate ≤ 2

We need two graphs. (Paper: just 1)

Conditions on G = (V ,E)

(i) (α,β) ∈ E =⇒ |α| ≤ |β |✓
(ii) β ∈ V =⇒ indeg(β)≤ 1 ✓
(iii) G is acyclic ✓

0

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 96 / 109

Analysis of Descartes Method

Turning our Product into an Admissible Graph

We want to rewrite

∏
J

|βJ−αJ | as ∏
(α,β)∈E

|β −α|.

How often |βJ−αJ | appears?

adjacent real: ≤ 1

complex conjugate ≤ 2

We need two graphs. (Paper: just 1)

Conditions on G = (V ,E)

(i) (α,β) ∈ E =⇒ |α| ≤ |β |✓
(ii) β ∈ V =⇒ indeg(β)≤ 1 ✓
(iii) G is acyclic ✓

0

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 96 / 109

Analysis of Descartes Method

Turning our Product into an Admissible Graph

We want to rewrite

∏
J

|βJ−αJ | as ∏
(α,β)∈E

|β −α|.

How often |βJ−αJ | appears?

adjacent real: ≤ 1

complex conjugate ≤ 2

We need two graphs. (Paper: just 1)

Conditions on G = (V ,E)

(i) (α,β) ∈ E =⇒ |α| ≤ |β |✓
(ii) β ∈ V =⇒ indeg(β)≤ 1 ✓
(iii) G is acyclic ✓

0

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 96 / 109

Analysis of Descartes Method

Main Result on Descartes Analysis

Theorem (Eigenwillig/Sharma/Y. (2006))
On the Benchmark Problem, we obtain

|T |= O(n(L+ logn)).

For L≥ logn, this is optimal.

Argument of [Krandick/Mehlhorn, 2006]: |T |= O(n logn (L+ logn)).

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 97 / 109

Mini Summary

Almost Tight Bound on Descartes Method based on Algebraic
Amortization

Benchmark complexity of Sturm and Descartes are the same
◮ “theory caught up with practice”

What about EVAL?
◮ New ideas needed – one is Amortized Evaluation Bounds

Mini Summary

Almost Tight Bound on Descartes Method based on Algebraic
Amortization

Benchmark complexity of Sturm and Descartes are the same
◮ “theory caught up with practice”

What about EVAL?
◮ New ideas needed – one is Amortized Evaluation Bounds

Mini Summary

Almost Tight Bound on Descartes Method based on Algebraic
Amortization

Benchmark complexity of Sturm and Descartes are the same
◮ “theory caught up with practice”

What about EVAL?
◮ New ideas needed – one is Amortized Evaluation Bounds

Mini Summary

Almost Tight Bound on Descartes Method based on Algebraic
Amortization

Benchmark complexity of Sturm and Descartes are the same
◮ “theory caught up with practice”

What about EVAL?
◮ New ideas needed – one is Amortized Evaluation Bounds

Mini Summary

Almost Tight Bound on Descartes Method based on Algebraic
Amortization

Benchmark complexity of Sturm and Descartes are the same
◮ “theory caught up with practice”

What about EVAL?
◮ New ideas needed – one is Amortized Evaluation Bounds

Mini Summary

Almost Tight Bound on Descartes Method based on Algebraic
Amortization

Benchmark complexity of Sturm and Descartes are the same
◮ “theory caught up with practice”

What about EVAL?
◮ New ideas needed – one is Amortized Evaluation Bounds

Mini Summary

Almost Tight Bound on Descartes Method based on Algebraic
Amortization

Benchmark complexity of Sturm and Descartes are the same
◮ “theory caught up with practice”

What about EVAL?
◮ New ideas needed – one is Amortized Evaluation Bounds

Integral Bounds and Framework of Stopping Functions

Coming Up Next

1 Analysis of Adaptive Complexity

2 Analysis of Descartes Method

3 Integral Bounds and Framework of Stopping Functions

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 99 / 109

Integral Bounds and Framework of Stopping Functions

Subdivision Phase

Subdivision based on a Predicate C(I)
Initialize a queue Q←{I0}

1 WHILE (Q 6= /0)
2 I← Q.remove()
3 IF (C(I) holds), output I
4 ELSE
5 Split I and insert children into Q

Goal – Bound the size of recursion tree T (I0)

NOTE: C(I)≡ C0(I)∨C1(I) in EVAL

The leaves of T (I0) induces a partition P(I) of I0
Suffices to upper bound #P(I0)

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 100 / 109

Integral Bounds and Framework of Stopping Functions

Subdivision Phase

Subdivision based on a Predicate C(I)
Initialize a queue Q←{I0}

1 WHILE (Q 6= /0)
2 I← Q.remove()
3 IF (C(I) holds), output I
4 ELSE
5 Split I and insert children into Q

Goal – Bound the size of recursion tree T (I0)

NOTE: C(I)≡ C0(I)∨C1(I) in EVAL

The leaves of T (I0) induces a partition P(I) of I0
Suffices to upper bound #P(I0)

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 100 / 109

Integral Bounds and Framework of Stopping Functions

Subdivision Phase

Subdivision based on a Predicate C(I)
Initialize a queue Q←{I0}

1 WHILE (Q 6= /0)
2 I← Q.remove()
3 IF (C(I) holds), output I
4 ELSE
5 Split I and insert children into Q

Goal – Bound the size of recursion tree T (I0)

NOTE: C(I)≡ C0(I)∨C1(I) in EVAL

The leaves of T (I0) induces a partition P(I) of I0
Suffices to upper bound #P(I0)

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 100 / 109

Integral Bounds and Framework of Stopping Functions

Subdivision Phase

Subdivision based on a Predicate C(I)
Initialize a queue Q←{I0}

1 WHILE (Q 6= /0)
2 I← Q.remove()
3 IF (C(I) holds), output I
4 ELSE
5 Split I and insert children into Q

Goal – Bound the size of recursion tree T (I0)

NOTE: C(I)≡ C0(I)∨C1(I) in EVAL

The leaves of T (I0) induces a partition P(I) of I0
Suffices to upper bound #P(I0)

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 100 / 109

Integral Bounds and Framework of Stopping Functions

Subdivision Phase

Subdivision based on a Predicate C(I)
Initialize a queue Q←{I0}

1 WHILE (Q 6= /0)
2 I← Q.remove()
3 IF (C(I) holds), output I
4 ELSE
5 Split I and insert children into Q

Goal – Bound the size of recursion tree T (I0)

NOTE: C(I)≡ C0(I)∨C1(I) in EVAL

The leaves of T (I0) induces a partition P(I) of I0
Suffices to upper bound #P(I0)

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 100 / 109

Integral Bounds and Framework of Stopping Functions

Subdivision Phase

Subdivision based on a Predicate C(I)
Initialize a queue Q←{I0}

1 WHILE (Q 6= /0)
2 I← Q.remove()
3 IF (C(I) holds), output I
4 ELSE
5 Split I and insert children into Q

Goal – Bound the size of recursion tree T (I0)

NOTE: C(I)≡ C0(I)∨C1(I) in EVAL

The leaves of T (I0) induces a partition P(I) of I0
Suffices to upper bound #P(I0)

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 100 / 109

Integral Bounds and Framework of Stopping Functions

Subdivision Phase

Subdivision based on a Predicate C(I)
Initialize a queue Q←{I0}

1 WHILE (Q 6= /0)
2 I← Q.remove()
3 IF (C(I) holds), output I
4 ELSE
5 Split I and insert children into Q

Goal – Bound the size of recursion tree T (I0)

NOTE: C(I)≡ C0(I)∨C1(I) in EVAL

The leaves of T (I0) induces a partition P(I) of I0
Suffices to upper bound #P(I0)

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 100 / 109

Integral Bounds and Framework of Stopping Functions

Subdivision Phase

Subdivision based on a Predicate C(I)
Initialize a queue Q←{I0}

1 WHILE (Q 6= /0)
2 I← Q.remove()
3 IF (C(I) holds), output I
4 ELSE
5 Split I and insert children into Q

Goal – Bound the size of recursion tree T (I0)

NOTE: C(I)≡ C0(I)∨C1(I) in EVAL

The leaves of T (I0) induces a partition P(I) of I0
Suffices to upper bound #P(I0)

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 100 / 109

Integral Bounds and Framework of Stopping Functions

Subdivision Phase

Subdivision based on a Predicate C(I)
Initialize a queue Q←{I0}

1 WHILE (Q 6= /0)
2 I← Q.remove()
3 IF (C(I) holds), output I
4 ELSE
5 Split I and insert children into Q

Goal – Bound the size of recursion tree T (I0)

NOTE: C(I)≡ C0(I)∨C1(I) in EVAL

The leaves of T (I0) induces a partition P(I) of I0
Suffices to upper bound #P(I0)

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 100 / 109

Integral Bounds and Framework of Stopping Functions

Subdivision Phase

Subdivision based on a Predicate C(I)
Initialize a queue Q←{I0}

1 WHILE (Q 6= /0)
2 I← Q.remove()
3 IF (C(I) holds), output I
4 ELSE
5 Split I and insert children into Q

Goal – Bound the size of recursion tree T (I0)

NOTE: C(I)≡ C0(I)∨C1(I) in EVAL

The leaves of T (I0) induces a partition P(I) of I0
Suffices to upper bound #P(I0)

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 100 / 109

Integral Bounds and Framework of Stopping Functions

Subdivision Phase

Subdivision based on a Predicate C(I)
Initialize a queue Q←{I0}

1 WHILE (Q 6= /0)
2 I← Q.remove()
3 IF (C(I) holds), output I
4 ELSE
5 Split I and insert children into Q

Goal – Bound the size of recursion tree T (I0)

NOTE: C(I)≡ C0(I)∨C1(I) in EVAL

The leaves of T (I0) induces a partition P(I) of I0
Suffices to upper bound #P(I0)

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 100 / 109

Integral Bounds and Framework of Stopping Functions

Framework of Stopping Functions

Stopping Function for C(I) is F : R→R≥0

For all interval I:
If (∃b ∈ I)[w(I) < F(b)],

then C(I) holds.

How to use F? The Penultimate Property

Similar to Descartes proof

If J ∈ P(I0), its parent (“penultimate leaf”) has width 2w(J).

Conclude from definition of stopping function:
(∀c ∈ J) [2w(J) ≥ F(c)].

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 101 / 109

Integral Bounds and Framework of Stopping Functions

Framework of Stopping Functions

Stopping Function for C(I) is F : R→R≥0

For all interval I:
If (∃b ∈ I)[w(I) < F(b)],

then C(I) holds.

How to use F? The Penultimate Property

Similar to Descartes proof

If J ∈ P(I0), its parent (“penultimate leaf”) has width 2w(J).

Conclude from definition of stopping function:
(∀c ∈ J) [2w(J) ≥ F(c)].

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 101 / 109

Integral Bounds and Framework of Stopping Functions

Framework of Stopping Functions

Stopping Function for C(I) is F : R→R≥0

For all interval I:
If (∃b ∈ I)[w(I) < F(b)],

then C(I) holds.

How to use F? The Penultimate Property

Similar to Descartes proof

If J ∈ P(I0), its parent (“penultimate leaf”) has width 2w(J).

Conclude from definition of stopping function:
(∀c ∈ J) [2w(J) ≥ F(c)].

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 101 / 109

Integral Bounds and Framework of Stopping Functions

Framework of Stopping Functions

Stopping Function for C(I) is F : R→R≥0

For all interval I:
If (∃b ∈ I)[w(I) < F(b)],

then C(I) holds.

How to use F? The Penultimate Property

Similar to Descartes proof

If J ∈ P(I0), its parent (“penultimate leaf”) has width 2w(J).

Conclude from definition of stopping function:
(∀c ∈ J) [2w(J) ≥ F(c)].

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 101 / 109

Integral Bounds and Framework of Stopping Functions

Framework of Stopping Functions

Stopping Function for C(I) is F : R→R≥0

For all interval I:
If (∃b ∈ I)[w(I) < F(b)],

then C(I) holds.

How to use F? The Penultimate Property

Similar to Descartes proof

If J ∈ P(I0), its parent (“penultimate leaf”) has width 2w(J).

Conclude from definition of stopping function:
(∀c ∈ J) [2w(J) ≥ F(c)].

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 101 / 109

Integral Bounds and Framework of Stopping Functions

An Integral Bound

Theorem (Integral Bound
[Burr/Krahmer/Y.])

#P(I0)≤max

{
1,

∫

I0

2dx

F(x)

}

Proof.

1 If #P(I0) = 1, result is true.

2 Else pick any J ∈ P(I0): it has
the penultimate property.

3 Choosing c∗ ∈ J such that F(c∗)
is maximum

Pf (contd)

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 102 / 109

Integral Bounds and Framework of Stopping Functions

An Integral Bound

Theorem (Integral Bound
[Burr/Krahmer/Y.])

#P(I0)≤max

{
1,

∫

I0

2dx

F(x)

}

Proof.

1 If #P(I0) = 1, result is true.

2 Else pick any J ∈ P(I0): it has
the penultimate property.

3 Choosing c∗ ∈ J such that F(c∗)
is maximum

Pf (contd)

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 102 / 109

Integral Bounds and Framework of Stopping Functions

An Integral Bound

Theorem (Integral Bound
[Burr/Krahmer/Y.])

#P(I0)≤max

{
1,

∫

I0

2dx

F(x)

}

Proof.

1 If #P(I0) = 1, result is true.

2 Else pick any J ∈ P(I0): it has
the penultimate property.

3 Choosing c∗ ∈ J such that F(c∗)
is maximum

Pf (contd)

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 102 / 109

Integral Bounds and Framework of Stopping Functions

Remarks on Integral Bound

Too hard to directly bound the integral implied by C0(I)∨C1(I).
◮ So we devise stopping functions F(x) that can be analyzed.

Technique of bounding
∫

I φ(x)dx is Continuous Amortization
where φ(x) is charge function.

◮ In discrete “amortization arguments”, we bound ∑n
i=1 φ(i) where

φ(i) is “charge” for the ith operation.

Ruppert (1995) introduced a similar integral for triangulation.
◮ Unlike us, he does not evaluate his integral.

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 103 / 109

Integral Bounds and Framework of Stopping Functions

Remarks on Integral Bound

Too hard to directly bound the integral implied by C0(I)∨C1(I).
◮ So we devise stopping functions F(x) that can be analyzed.

Technique of bounding
∫

I φ(x)dx is Continuous Amortization
where φ(x) is charge function.

◮ In discrete “amortization arguments”, we bound ∑n
i=1 φ(i) where

φ(i) is “charge” for the ith operation.

Ruppert (1995) introduced a similar integral for triangulation.
◮ Unlike us, he does not evaluate his integral.

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 103 / 109

Integral Bounds and Framework of Stopping Functions

Remarks on Integral Bound

Too hard to directly bound the integral implied by C0(I)∨C1(I).
◮ So we devise stopping functions F(x) that can be analyzed.

Technique of bounding
∫

I φ(x)dx is Continuous Amortization
where φ(x) is charge function.

◮ In discrete “amortization arguments”, we bound ∑n
i=1 φ(i) where

φ(i) is “charge” for the ith operation.

Ruppert (1995) introduced a similar integral for triangulation.
◮ Unlike us, he does not evaluate his integral.

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 103 / 109

Integral Bounds and Framework of Stopping Functions

Remarks on Integral Bound

Too hard to directly bound the integral implied by C0(I)∨C1(I).
◮ So we devise stopping functions F(x) that can be analyzed.

Technique of bounding
∫

I φ(x)dx is Continuous Amortization
where φ(x) is charge function.

◮ In discrete “amortization arguments”, we bound ∑n
i=1 φ(i) where

φ(i) is “charge” for the ith operation.

Ruppert (1995) introduced a similar integral for triangulation.
◮ Unlike us, he does not evaluate his integral.

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 103 / 109

Integral Bounds and Framework of Stopping Functions

Remarks on Integral Bound

Too hard to directly bound the integral implied by C0(I)∨C1(I).
◮ So we devise stopping functions F(x) that can be analyzed.

Technique of bounding
∫

I φ(x)dx is Continuous Amortization
where φ(x) is charge function.

◮ In discrete “amortization arguments”, we bound ∑n
i=1 φ(i) where

φ(i) is “charge” for the ith operation.

Ruppert (1995) introduced a similar integral for triangulation.
◮ Unlike us, he does not evaluate his integral.

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 103 / 109

Integral Bounds and Framework of Stopping Functions

Remarks on Integral Bound

Too hard to directly bound the integral implied by C0(I)∨C1(I).
◮ So we devise stopping functions F(x) that can be analyzed.

Technique of bounding
∫

I φ(x)dx is Continuous Amortization
where φ(x) is charge function.

◮ In discrete “amortization arguments”, we bound ∑n
i=1 φ(i) where

φ(i) is “charge” for the ith operation.

Ruppert (1995) introduced a similar integral for triangulation.
◮ Unlike us, he does not evaluate his integral.

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 103 / 109

Integral Bounds and Framework of Stopping Functions

An Amortized Evaluation Bound
The Idea

Want lower bounds on |f (α)|
Multivariate version used in [Cheng/Gao/Y. ISSAC’2007]

Amortization: give lower bounds on ∏i∈J |f (αi)|.

Theorem

Let F ,H ∈Z[X] be relatively prime such that F = φφ̃ , H = ηη̃ where
φ , φ̃ ,η, η̃ ∈ C[X] have degrees m,m̃,n, ñ, respectively. If β1, . . . ,βn
are all the zeros of η(X), then

n

∏
i=1

|φ(βi)| ≥
1

lc(η)m ((m +1)‖φ‖)ñ M(η̃)m
(
(m̃ +1)‖φ̃‖

)n+ñ
M(H)m̃

.

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 104 / 109

Integral Bounds and Framework of Stopping Functions

An Amortized Evaluation Bound
The Idea

Want lower bounds on |f (α)|
Multivariate version used in [Cheng/Gao/Y. ISSAC’2007]

Amortization: give lower bounds on ∏i∈J |f (αi)|.

Theorem

Let F ,H ∈Z[X] be relatively prime such that F = φφ̃ , H = ηη̃ where
φ , φ̃ ,η, η̃ ∈ C[X] have degrees m,m̃,n, ñ, respectively. If β1, . . . ,βn
are all the zeros of η(X), then

n

∏
i=1

|φ(βi)| ≥
1

lc(η)m ((m +1)‖φ‖)ñ M(η̃)m
(
(m̃ +1)‖φ̃‖

)n+ñ
M(H)m̃

.

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 104 / 109

Integral Bounds and Framework of Stopping Functions

An Amortized Evaluation Bound
The Idea

Want lower bounds on |f (α)|
Multivariate version used in [Cheng/Gao/Y. ISSAC’2007]

Amortization: give lower bounds on ∏i∈J |f (αi)|.

Theorem

Let F ,H ∈Z[X] be relatively prime such that F = φφ̃ , H = ηη̃ where
φ , φ̃ ,η, η̃ ∈ C[X] have degrees m,m̃,n, ñ, respectively. If β1, . . . ,βn
are all the zeros of η(X), then

n

∏
i=1

|φ(βi)| ≥
1

lc(η)m ((m +1)‖φ‖)ñ M(η̃)m
(
(m̃ +1)‖φ̃‖

)n+ñ
M(H)m̃

.

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 104 / 109

Integral Bounds and Framework of Stopping Functions

An Amortized Evaluation Bound
The Idea

Want lower bounds on |f (α)|
Multivariate version used in [Cheng/Gao/Y. ISSAC’2007]

Amortization: give lower bounds on ∏i∈J |f (αi)|.

Theorem

Let F ,H ∈Z[X] be relatively prime such that F = φφ̃ , H = ηη̃ where
φ , φ̃ ,η, η̃ ∈ C[X] have degrees m,m̃,n, ñ, respectively. If β1, . . . ,βn
are all the zeros of η(X), then

n

∏
i=1

|φ(βi)| ≥
1

lc(η)m ((m +1)‖φ‖)ñ M(η̃)m
(
(m̃ +1)‖φ̃‖

)n+ñ
M(H)m̃

.

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 104 / 109

Integral Bounds and Framework of Stopping Functions

An Amortized Evaluation Bound
The Idea

Want lower bounds on |f (α)|
Multivariate version used in [Cheng/Gao/Y. ISSAC’2007]

Amortization: give lower bounds on ∏i∈J |f (αi)|.

Theorem

Let F ,H ∈Z[X] be relatively prime such that F = φφ̃ , H = ηη̃ where
φ , φ̃ ,η, η̃ ∈ C[X] have degrees m,m̃,n, ñ, respectively. If β1, . . . ,βn
are all the zeros of η(X), then

n

∏
i=1

|φ(βi)| ≥
1

lc(η)m ((m +1)‖φ‖)ñ M(η̃)m
(
(m̃ +1)‖φ̃‖

)n+ñ
M(H)m̃

.

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 104 / 109

Integral Bounds and Framework of Stopping Functions

Complex Roots: Lesson from Meshing Curves

How to isolate complex roots?
Previous subdivision methods:

◮ Pan-Weyl Algorithm (Turan Test)
◮ Root isolation on boundary of boxes (topological degree)

Hints from Curve Meshing (Snyder/PV/Cxy) – not good idea

New Result (with Sagraloff)
There is an exact analog CEVAL for complex roots that is simple and
easy to implement exactly.
It achieves the same bit complexity bound as in the real case.

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 105 / 109

Integral Bounds and Framework of Stopping Functions

Complex Roots: Lesson from Meshing Curves

How to isolate complex roots?
Previous subdivision methods:

◮ Pan-Weyl Algorithm (Turan Test)
◮ Root isolation on boundary of boxes (topological degree)

Hints from Curve Meshing (Snyder/PV/Cxy) – not good idea

New Result (with Sagraloff)
There is an exact analog CEVAL for complex roots that is simple and
easy to implement exactly.
It achieves the same bit complexity bound as in the real case.

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 105 / 109

Integral Bounds and Framework of Stopping Functions

Complex Roots: Lesson from Meshing Curves

How to isolate complex roots?
Previous subdivision methods:

◮ Pan-Weyl Algorithm (Turan Test)
◮ Root isolation on boundary of boxes (topological degree)

Hints from Curve Meshing (Snyder/PV/Cxy) – not good idea

New Result (with Sagraloff)
There is an exact analog CEVAL for complex roots that is simple and
easy to implement exactly.
It achieves the same bit complexity bound as in the real case.

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 105 / 109

Integral Bounds and Framework of Stopping Functions

Complex Roots: Lesson from Meshing Curves

How to isolate complex roots?
Previous subdivision methods:

◮ Pan-Weyl Algorithm (Turan Test)
◮ Root isolation on boundary of boxes (topological degree)

Hints from Curve Meshing (Snyder/PV/Cxy) – not good idea

New Result (with Sagraloff)
There is an exact analog CEVAL for complex roots that is simple and
easy to implement exactly.
It achieves the same bit complexity bound as in the real case.

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 105 / 109

Mini Summary

The Bolzano approach to Root Isolation is an Exact and Analytic
approach to root isolation

It seems to have complexity that matches Sturm and Descartes

It is much easier to implement than either

Summary of Lecture 3

Complexity Analysis of Adaptivity at infancy

Analysis Techniques we have seen so far:

◮ Continuous amortization via integral bounds
◮ Amortized root separation bounds
◮ Amortized evaluation bounds
◮ Cluster analysis

Major Open Problems
◮ How to characterize local complexity?
◮ How to extend to higher dimensions

Summary of Lecture 3

Complexity Analysis of Adaptivity at infancy

Analysis Techniques we have seen so far:

◮ Continuous amortization via integral bounds
◮ Amortized root separation bounds
◮ Amortized evaluation bounds
◮ Cluster analysis

Major Open Problems
◮ How to characterize local complexity?
◮ How to extend to higher dimensions

Summary of Lecture 3

Complexity Analysis of Adaptivity at infancy

Analysis Techniques we have seen so far:

◮ Continuous amortization via integral bounds
◮ Amortized root separation bounds
◮ Amortized evaluation bounds
◮ Cluster analysis

Major Open Problems
◮ How to characterize local complexity?
◮ How to extend to higher dimensions

Summary of Lecture 3

Complexity Analysis of Adaptivity at infancy

Analysis Techniques we have seen so far:

◮ Continuous amortization via integral bounds
◮ Amortized root separation bounds
◮ Amortized evaluation bounds
◮ Cluster analysis

Major Open Problems
◮ How to characterize local complexity?
◮ How to extend to higher dimensions

Summary of Lecture 3

Complexity Analysis of Adaptivity at infancy

Analysis Techniques we have seen so far:

◮ Continuous amortization via integral bounds
◮ Amortized root separation bounds
◮ Amortized evaluation bounds
◮ Cluster analysis

Major Open Problems
◮ How to characterize local complexity?
◮ How to extend to higher dimensions

Summary of Lecture 3

Complexity Analysis of Adaptivity at infancy

Analysis Techniques we have seen so far:

◮ Continuous amortization via integral bounds
◮ Amortized root separation bounds
◮ Amortized evaluation bounds
◮ Cluster analysis

Major Open Problems
◮ How to characterize local complexity?
◮ How to extend to higher dimensions

Summary of Lecture 3

Complexity Analysis of Adaptivity at infancy

Analysis Techniques we have seen so far:

◮ Continuous amortization via integral bounds
◮ Amortized root separation bounds
◮ Amortized evaluation bounds
◮ Cluster analysis

Major Open Problems
◮ How to characterize local complexity?
◮ How to extend to higher dimensions

Summary of Lecture 3

Complexity Analysis of Adaptivity at infancy

Analysis Techniques we have seen so far:

◮ Continuous amortization via integral bounds
◮ Amortized root separation bounds
◮ Amortized evaluation bounds
◮ Cluster analysis

Major Open Problems
◮ How to characterize local complexity?
◮ How to extend to higher dimensions

Summary of Lecture 3

Complexity Analysis of Adaptivity at infancy

Analysis Techniques we have seen so far:

◮ Continuous amortization via integral bounds
◮ Amortized root separation bounds
◮ Amortized evaluation bounds
◮ Cluster analysis

Major Open Problems
◮ How to characterize local complexity?
◮ How to extend to higher dimensions

Summary of Lecture 3

Complexity Analysis of Adaptivity at infancy

Analysis Techniques we have seen so far:

◮ Continuous amortization via integral bounds
◮ Amortized root separation bounds
◮ Amortized evaluation bounds
◮ Cluster analysis

Major Open Problems
◮ How to characterize local complexity?
◮ How to extend to higher dimensions

Summary of Lecture 3

Complexity Analysis of Adaptivity at infancy

Analysis Techniques we have seen so far:

◮ Continuous amortization via integral bounds
◮ Amortized root separation bounds
◮ Amortized evaluation bounds
◮ Cluster analysis

Major Open Problems
◮ How to characterize local complexity?
◮ How to extend to higher dimensions

Summary of Lecture 3

Complexity Analysis of Adaptivity at infancy

Analysis Techniques we have seen so far:

◮ Continuous amortization via integral bounds
◮ Amortized root separation bounds
◮ Amortized evaluation bounds
◮ Cluster analysis

Major Open Problems
◮ How to characterize local complexity?
◮ How to extend to higher dimensions

Summary of Tutorial

There are the MANY advantages of numerical/analytic
approaches to algebraic and geometric problems

These methods are practical, adaptive, easy to implement

The new ingredient we seek is a priori guarantees and exactness

Zero problems is the locus of our investigation

Exact Numerical Computation (ENC) is a suitable computational
model

The explicitization problems are central for ENC

Analysis of adaptive algorithms is wide open

Summary of Tutorial

There are the MANY advantages of numerical/analytic
approaches to algebraic and geometric problems

These methods are practical, adaptive, easy to implement

The new ingredient we seek is a priori guarantees and exactness

Zero problems is the locus of our investigation

Exact Numerical Computation (ENC) is a suitable computational
model

The explicitization problems are central for ENC

Analysis of adaptive algorithms is wide open

Summary of Tutorial

There are the MANY advantages of numerical/analytic
approaches to algebraic and geometric problems

These methods are practical, adaptive, easy to implement

The new ingredient we seek is a priori guarantees and exactness

Zero problems is the locus of our investigation

Exact Numerical Computation (ENC) is a suitable computational
model

The explicitization problems are central for ENC

Analysis of adaptive algorithms is wide open

Summary of Tutorial

There are the MANY advantages of numerical/analytic
approaches to algebraic and geometric problems

These methods are practical, adaptive, easy to implement

The new ingredient we seek is a priori guarantees and exactness

Zero problems is the locus of our investigation

Exact Numerical Computation (ENC) is a suitable computational
model

The explicitization problems are central for ENC

Analysis of adaptive algorithms is wide open

Summary of Tutorial

There are the MANY advantages of numerical/analytic
approaches to algebraic and geometric problems

These methods are practical, adaptive, easy to implement

The new ingredient we seek is a priori guarantees and exactness

Zero problems is the locus of our investigation

Exact Numerical Computation (ENC) is a suitable computational
model

The explicitization problems are central for ENC

Analysis of adaptive algorithms is wide open

Summary of Tutorial

There are the MANY advantages of numerical/analytic
approaches to algebraic and geometric problems

These methods are practical, adaptive, easy to implement

The new ingredient we seek is a priori guarantees and exactness

Zero problems is the locus of our investigation

Exact Numerical Computation (ENC) is a suitable computational
model

The explicitization problems are central for ENC

Analysis of adaptive algorithms is wide open

Summary of Tutorial

There are the MANY advantages of numerical/analytic
approaches to algebraic and geometric problems

These methods are practical, adaptive, easy to implement

The new ingredient we seek is a priori guarantees and exactness

Zero problems is the locus of our investigation

Exact Numerical Computation (ENC) is a suitable computational
model

The explicitization problems are central for ENC

Analysis of adaptive algorithms is wide open

Summary of Tutorial

There are the MANY advantages of numerical/analytic
approaches to algebraic and geometric problems

These methods are practical, adaptive, easy to implement

The new ingredient we seek is a priori guarantees and exactness

Zero problems is the locus of our investigation

Exact Numerical Computation (ENC) is a suitable computational
model

The explicitization problems are central for ENC

Analysis of adaptive algorithms is wide open

Summary of Tutorial

There are the MANY advantages of numerical/analytic
approaches to algebraic and geometric problems

These methods are practical, adaptive, easy to implement

The new ingredient we seek is a priori guarantees and exactness

Zero problems is the locus of our investigation

Exact Numerical Computation (ENC) is a suitable computational
model

The explicitization problems are central for ENC

Analysis of adaptive algorithms is wide open

	Adaptive Complexity Analysis
	Analysis of Adaptive Complexity
	Analysis of Descartes Method
	Integral Bounds and Framework of Stopping Functions

