Tutorial: Exact Numerical Computation in Algebra and Geometry

Chee K. Yap

Courant Institute of Mathematical Sciences New York University

and Korea Institute of Advanced Study (KIAS) Seoul, Korea

34th ISSAC, July 28-31, 2009

ヨトィヨト

Explicitization and Subdivision

"It can be of no practical use to know that π is irrational, but if we can know, it surely would be intolerable not to know."

— E.C. Titchmarsh

Tutorial: Exact Numerical Computation

ISSAC, July 2009 37 / 105

Coming Up Next

Introduction

- Review of Subdivision Algorithms
- 3 Cxy Algorithm
- 4 Extensions of Cxy
- 5 How to treat Boundary
- 6 How to treat Singularity

イロト イポト イヨト イヨト

Beyond the Universal Solution

Design algorithms directly incorporating the principles of EGC

- What do we need? What are its features?
 - It must be numerical in nature
 - It must be arbitrary precision
 - It must respect zero
 - It must be adaptive
 - actively control precision
 - exploit filters

A > < 3 > < 3

Beyond the Universal Solution

Design algorithms directly incorporating the principles of EGC

- What do we need? What are its features?
 - It must be numerical in nature
 - It must be arbitrary precision
 - It must respect zero
 - It must be adaptive
 - actively control precision
 - exploit filters

ISSAC, July 2009 39 / 105

Beyond the Universal Solution

Design algorithms directly incorporating the principles of EGC

- What do we need? What are its features?
 - It must be numerical in nature
 - It must be arbitrary precision
 - It must respect zero
 - It must be adaptive
 - actively control precision
 - exploit filters

伺下 イヨト イヨト

Beyond the Universal Solution

Design algorithms directly incorporating the principles of EGC

- What do we need? What are its features?
 - It must be numerical in nature
 - It must be arbitrary precision
 - It must respect zero
 - It must be adaptive
 - actively control precision
 - exploit filters

ISSAC, July 2009 39 / 105

伺 ト イ ヨ ト イ ヨ ト

Beyond the Universal Solution

Design algorithms directly incorporating the principles of EGC

What do we need? What are its features?

- It must be numerical in nature
- It must be arbitrary precision
- It must respect zero
- It must be adaptive
 - actively control precision
 - exploit filters

向下 イヨト イヨ

Beyond the Universal Solution

Design algorithms directly incorporating the principles of EGC

- What do we need? What are its features?
 - It must be numerical in nature
 - It must be arbitrary precision
 - It must respect zero
 - It must be adaptive
 - actively control precision
 - exploit filters

R > < E > < E

Beyond the Universal Solution

Design algorithms directly incorporating the principles of EGC

- What do we need? What are its features?
 - It must be numerical in nature
 - It must be arbitrary precision
 - It must respect zero
 - It must be adaptive
 - actively control precision
 - exploit filters

(4) (3) (4) (4) (4)

Beyond the Universal Solution

Design algorithms directly incorporating the principles of EGC

- What do we need? What are its features?
 - It must be numerical in nature
 - It must be arbitrary precision
 - It must respect zero
 - It must be adaptive
 - actively control precision
 - exploit filters

Beyond the Universal Solution

Design algorithms directly incorporating the principles of EGC

- What do we need? What are its features?
 - It must be numerical in nature
 - It must be arbitrary precision
 - It must respect zero
 - It must be adaptive
 - actively control precision
 - exploit filters

(4) (3) (4) (4) (4)

Computational Ring (\mathbb{D} , 0, 1, +, -, ×, ÷2)

- $\mathbb D$ is countable, dense subset of $\mathbb R$
- \mathbb{D} is a ring extension of \mathbb{Z}
- Efficient representation *ρ* : {0,1}* --→ D for implementing ring operations, and exact comparison.

Examples of ${\mathbb D}$

$$\mathbb{F} := \{m2^n : m, n \in \mathbb{Z}\} = \mathbb{Z}[\frac{1}{2}]$$

- Rationals: Q (avoid, if possible)
- Real Algebraic Numbers: A (AVOID!)

Computational Ring (\mathbb{D} , 0, 1, +, -, ×, ÷2)

- $\mathbb D$ is countable, dense subset of $\mathbb R$
- \mathbb{D} is a ring extension of \mathbb{Z}
- Efficient representation *ρ* : {0,1}* --→ D for implementing ring operations, and exact comparison.

Examples of ${\mathbb D}$

$$\mathbb{F} := \{ m2^n : m, n \in \mathbb{Z} \} = \mathbb{Z}[\frac{1}{2}]$$

- Rationals: Q (avoid, if possible)
- Real Algebraic Numbers: A (AVOID!)

Computational Ring (\mathbb{D} , 0, 1, +, -, ×, ÷2)

- \mathbb{D} is countable, dense subset of \mathbb{R}
- \mathbb{D} is a ring extension of \mathbb{Z}
- Efficient representation *p* : {0,1}* -→ D for implementing ring operations, and exact comparison.

Examples of ${\mathbb D}$

$$\mathbb{F} := \{ m2^n : m, n \in \mathbb{Z} \} = \mathbb{Z}[\frac{1}{2}]$$

- Rationals: Q (avoid, if possible)
- Real Algebraic Numbers: A (AVOID!)

Computational Ring (\mathbb{D} , 0, 1, +, -, ×, ÷2)

- $\mathbb D$ is countable, dense subset of $\mathbb R$
- \mathbb{D} is a ring extension of \mathbb{Z}
- Efficient representation *p* : {0,1}* -→ D for implementing ring operations, and exact comparison.

Examples of $\mathbb D$

$$\mathbb{F} := \{m2^n : m, n \in \mathbb{Z}\} = \mathbb{Z}[\frac{1}{2}]$$

- Rationals: Q (avoid, if possible)
- Real Algebraic Numbers: A (AVOID!)

Computational Ring (\mathbb{D} , 0, 1, +, -, ×, ÷2)

- $\mathbb D$ is countable, dense subset of $\mathbb R$
- \mathbb{D} is a ring extension of \mathbb{Z}
- Efficient representation *p* : {0,1}* -→ D for implementing ring operations, and exact comparison.

Examples of $\mathbb D$

$$\mathbb{F} := \{m2^n : m, n \in \mathbb{Z}\} = \mathbb{Z}[\frac{1}{2}]$$

- Rationals: Q (avoid, if possible)
- Real Algebraic Numbers: A (AVOID!)

Computational Ring (\mathbb{D} , 0, 1, +, -, ×, ÷2)

- $\mathbb D$ is countable, dense subset of $\mathbb R$
- \mathbb{D} is a ring extension of \mathbb{Z}
- Efficient representation *p* : {0,1}* --→ D for implementing ring operations, and exact comparison.

Examples of ${\mathbb D}$

$$\mathbb{F} := \{m2^n : m, n \in \mathbb{Z}\} = \mathbb{Z}[\frac{1}{2}]$$

- Rationals: Q (avoid, if possible)
- Real Algebraic Numbers: A (AVOID!)

Computational Ring (\mathbb{D} , 0, 1, +, -, ×, ÷2)

- $\mathbb D$ is countable, dense subset of $\mathbb R$
- \mathbb{D} is a ring extension of \mathbb{Z}
- Efficient representation *p* : {0,1}* --→ D for implementing ring operations, and exact comparison.

Examples of ${\mathbb D}$

$$\mathbb{F} := \{m2^n : m, n \in \mathbb{Z}\} = \mathbb{Z}[\frac{1}{2}]$$

- Rationals: Q (avoid, if possible)
- Real Algebraic Numbers: <u>A</u> (AVOID!)

Computational Ring (\mathbb{D} , 0, 1, +, -, ×, ÷2)

- $\mathbb D$ is countable, dense subset of $\mathbb R$
- \mathbb{D} is a ring extension of \mathbb{Z}
- Efficient representation *p* : {0,1}* --→ D for implementing ring operations, and exact comparison.

Examples of ${\mathbb D}$

$$\mathbb{F} := \{m2^n : m, n \in \mathbb{Z}\} = \mathbb{Z}[\frac{1}{2}]$$

- Rationals: Q (avoid, if possible)
- Real Algebraic Numbers: <u>A</u> (AVOID!)

Intervals

- D: set of dyadic intervals
- $\square \mathbb{D}^n$: set of *n*-boxes

Box Functions

Box function

3

イロト イヨト イヨト イヨト

Intervals

- ID: set of dyadic intervals
- $\square \mathbb{D}^n$: set of *n*-boxes

Box Functions

- Let $f : \mathbb{D}^m \to \mathbb{D}$.
- Box function $\Box f : \Box^m(D) \to \Box(D)$

3

回とくほとくほど

Intervals

- ID: set of dyadic intervals
- **□D**^{*n*}: set of *n*-boxes

Box Functions

- Let $f : \mathbb{D}^m \to \mathbb{D}$.
- Box function $\Box f : \Box^m(D) \to \Box(D)$

 $(2) Convergence: \lim_{n \to \infty} Df(B_i) = f(\lim_{n \to \infty} DB_i)$

3

回とくほとくほど

Intervals

- ID: set of dyadic intervals
- $\square \mathbb{D}^n$: set of *n*-boxes

Box Functions

- Let $f : \mathbb{D}^m \to \mathbb{D}$.
- Box function $\Box f : \Box^m(\mathbb{D}) \to \Box(\mathbb{D})$
 - (1) Inclusion: $f(B) \subseteq \Box f(B)$.
 - (2) Convergence: $\lim_{i\to\infty} \Box f(B_i) = f(\lim_{i\to\infty} \Box B_i)$.

イロト イポト イヨト イヨト 二日

Intervals

- ID: set of dyadic intervals
- **□D**^{*n*}: set of *n*-boxes

Box Functions

- Let $f : \mathbb{D}^m \to \mathbb{D}$.
- Box function $\Box f : \Box^m(\mathbb{D}) \to \Box(\mathbb{D})$
 - (1) Inclusion: $f(B) \subseteq \Box f(B)$,
 - (2) Convergence: $\lim_{i\to\infty} \Box f(B_i) = f(\lim_{i\to\infty} \Box B_i)$.

同 ト イヨ ト イヨ ト 三 ヨ

Intervals

- ID: set of dyadic intervals
- **□D**^{*n*}: set of *n*-boxes

Box Functions

- Let $f : \mathbb{D}^m \to \mathbb{D}$.
- Box function $\Box f : \Box^m(\mathbb{D}) \to \Box(\mathbb{D})$
 - (1) Inclusion: $f(B) \subseteq \Box f(B)$.

2) Convergence: $\lim_{i\to\infty} \Box f(B_i) = f(\lim_{i\to\infty} \Box B_i)$.

回 と く ヨ と く ヨ と 二 ヨ

Intervals

- ID: set of dyadic intervals
- $\square \mathbb{D}^n$: set of *n*-boxes

Box Functions

- Let $f : \mathbb{D}^m \to \mathbb{D}$.
- Box function $\Box f : \Box^m(\mathbb{D}) \to \Box(\mathbb{D})$
 - (1) Inclusion: $f(B) \subseteq \Box f(B)$.
 - (2) Convergence: $\lim_{i\to\infty} \Box f(B_i) = f(\lim_{i\to\infty} \Box B_i)$.

回 と く ヨ と く ヨ と 二 ヨ

Intervals

- ID: set of dyadic intervals
- $\square \mathbb{D}^n$: set of *n*-boxes

Box Functions

- Let $f : \mathbb{D}^m \to \mathbb{D}$.
- Box function $\Box f : \Box^m(\mathbb{D}) \to \Box(\mathbb{D})$
 - (1) Inclusion: $f(B) \subseteq \Box f(B)$.
 - (2) Convergence: $\lim_{i\to\infty} \Box f(B_i) = f(\lim_{i\to\infty} \Box B_i)$.

同 🖌 🖉 🖿 🖌 🖉 🕨 🖉 🖻

Intervals

- ID: set of dyadic intervals
- $\square \mathbb{D}^n$: set of *n*-boxes

Box Functions

- Let $f : \mathbb{D}^m \to \mathbb{D}$.
- Box function $\Box f : \Box^m(\mathbb{D}) \to \Box(\mathbb{D})$
 - (1) Inclusion: $f(B) \subseteq \Box f(B)$.
 - (2) Convergence: $\lim_{i\to\infty} \Box f(B_i) = f(\lim_{i\to\infty} \Box B_i)$.

同 🖌 🖉 🖿 🖌 🖉 🕨 🖉 🖻

From Implicit to Explicit Representation

- Mesh generation [Problem (IV)]
- Discrete Morse-Smale complex [Problem (V)]
- Arrangement of hypersurfaces
- Voronoi diagram of a collection of objects
- Cell complex approximation of algebraic variety
- Representation of Flow fields

From Implicit to Explicit Representation

- Mesh generation [Problem (IV)]
- Discrete Morse-Smale complex [Problem (V)]
- Arrangement of hypersurfaces
- Voronoi diagram of a collection of objects
- Cell complex approximation of algebraic variety
- Representation of Flow fields

- Why this class? Interface between Continuous and Discrete!
- ENC Algorithms is ideal for this class
- Interplay of Topological and Geometric requirements

From Implicit to Explicit Representation

- Mesh generation [Problem (IV)]
- Discrete Morse-Smale complex [Problem (V)]
- Arrangement of hypersurfaces
- Voronoi diagram of a collection of objects
- Cell complex approximation of algebraic variety
- Representation of Flow fields

- Why this class? Interface between Continuous and Discrete!
- ENC Algorithms is ideal for this class
- Interplay of Topological and Geometric requirements

From Implicit to Explicit Representation

- Mesh generation [Problem (IV)]
- Discrete Morse-Smale complex [Problem (V)]
- Arrangement of hypersurfaces
- Voronoi diagram of a collection of objects
- Cell complex approximation of algebraic variety
- Representation of Flow fields

- Why this class? Interface between Continuous and Discrete!
- ENC Algorithms is ideal for this class
- Interplay of Topological and Geometric requirements

From Implicit to Explicit Representation

- Mesh generation [Problem (IV)]
- Discrete Morse-Smale complex [Problem (V)]
- Arrangement of hypersurfaces
- Voronoi diagram of a collection of objects
- Cell complex approximation of algebraic variety
- Representation of Flow fields

- Why this class? Interface between Continuous and Discrete!
- ENC Algorithms is ideal for this class
- Interplay of Topological and Geometric requirements

From Implicit to Explicit Representation

- Mesh generation [Problem (IV)]
- Discrete Morse-Smale complex [Problem (V)]
- Arrangement of hypersurfaces
- Voronoi diagram of a collection of objects
- Cell complex approximation of algebraic variety
- Representation of Flow fields

- Why this class? Interface between Continuous and Discrete!
- ENC Algorithms is ideal for this class
- Interplay of Topological and Geometric requirements

From Implicit to Explicit Representation

- Mesh generation [Problem (IV)]
- Discrete Morse-Smale complex [Problem (V)]
- Arrangement of hypersurfaces
- Voronoi diagram of a collection of objects
- Cell complex approximation of algebraic variety
- Representation of Flow fields

- Why this class? Interface between Continuous and Discrete!
- ENC Algorithms is ideal for this class
- Interplay of Topological and Geometric requirements
From Implicit to Explicit Representation

- Mesh generation [Problem (IV)]
- Discrete Morse-Smale complex [Problem (V)]
- Arrangement of hypersurfaces
- Voronoi diagram of a collection of objects
- Cell complex approximation of algebraic variety
- Representation of Flow fields

From Parameter Space to Ambient Space

- Why this class? Interface between Continuous and Discrete!
- ENC Algorithms is ideal for this class
- Interplay of Topological and Geometric requirements
- Domain subdivision as the general algorithmic paradigm

Yap (NYU)

From Implicit to Explicit Representation

- Mesh generation [Problem (IV)]
- Discrete Morse-Smale complex [Problem (V)]
- Arrangement of hypersurfaces
- Voronoi diagram of a collection of objects
- Cell complex approximation of algebraic variety
- Representation of Flow fields

From Parameter Space to Ambient Space

- Why this class? Interface between Continuous and Discrete!
- ENC Algorithms is ideal for this class
- Interplay of Topological and Geometric requirements
- Domain subdivision as the general algorithmic paradigm

Yap (NYU)

From Implicit to Explicit Representation

- Mesh generation [Problem (IV)]
- Discrete Morse-Smale complex [Problem (V)]
- Arrangement of hypersurfaces
- Voronoi diagram of a collection of objects
- Cell complex approximation of algebraic variety
- Representation of Flow fields

From Parameter Space to Ambient Space

- Why this class? Interface between Continuous and Discrete!
- ENC Algorithms is ideal for this class
- Interplay of Topological and Geometric requirements
- Domain subdivision as the general algorithmic paradigm

Yap (NYU)

From Implicit to Explicit Representation

- Mesh generation [Problem (IV)]
- Discrete Morse-Smale complex [Problem (V)]
- Arrangement of hypersurfaces
- Voronoi diagram of a collection of objects
- Cell complex approximation of algebraic variety
- Representation of Flow fields

From Parameter Space to Ambient Space

- Why this class? Interface between Continuous and Discrete!
- ENC Algorithms is ideal for this class
- Interplay of Topological and Geometric requirements
- Domain subdivision as the general algorithmic paradigm

Yap (NYU)

From Implicit to Explicit Representation

- Mesh generation [Problem (IV)]
- Discrete Morse-Smale complex [Problem (V)]
- Arrangement of hypersurfaces
- Voronoi diagram of a collection of objects
- Cell complex approximation of algebraic variety
- Representation of Flow fields

From Parameter Space to Ambient Space

- Why this class? Interface between Continuous and Discrete!
- ENC Algorithms is ideal for this class
- Interplay of Topological and Geometric requirements
- Domain subdivision as the general algorithmic paradigm

Yap (NYU)

From Implicit to Explicit Representation

- Mesh generation [Problem (IV)]
- Discrete Morse-Smale complex [Problem (V)]
- Arrangement of hypersurfaces
- Voronoi diagram of a collection of objects
- Cell complex approximation of algebraic variety
- Representation of Flow fields

From Parameter Space to Ambient Space

- Why this class? Interface between Continuous and Discrete!
- ENC Algorithms is ideal for this class
- Interplay of Topological and Geometric requirements
- Domain subdivision as the general algorithmic paradigm

Yap (NYU)

1. Algebraic Approach

• Projection Based (Refinements of CAD)

E.g., [Mourrain and Tecourt (2005); Cheng, Gao, and Li (2005)]

Algebraic Subdivision Schemes

E.g., [Wolpert and Seidel (2005)]

Properties Exact; complete (usually); slow (in general); hard to implement

► 4 Ξ ►

1. Algebraic Approach

Projection Based (Refinements of CAD)

E.g., [Mourrain and Tecourt (2005); Cheng, Gao, and Li (2005)]

Algebraic Subdivision Schemes

E.g., [Wolpert and Seidel (2005)]

Properties Exact; complete (usually); slow (in general); hard to implement

1. Algebraic Approach

Projection Based (Refinements of CAD)

E.g., [Mourrain and Tecourt (2005); Cheng, Gao, and Li (2005)]

Algebraic Subdivision Schemes

E.g., [Wolpert and Seidel (2005)]

Properties Exact; complete (usually); slow (in general); hard to implement

1. Algebraic Approach

Projection Based (Refinements of CAD)

E.g., [Mourrain and Tecourt (2005); Cheng, Gao, and Li (2005)]

Algebraic Subdivision Schemes

E.g., [Wolpert and Seidel (2005)]

Properties Exact; complete (usually); slow (in general); hard to implement

1. Algebraic Approach

Projection Based (Refinements of CAD)

E.g., [Mourrain and Tecourt (2005); Cheng, Gao, and Li (2005)]

Algebraic Subdivision Schemes

E.g., [Wolpert and Seidel (2005)]

Properties Exact; complete (usually); slow (in general); hard to implement

2. Geometric Approach

• Sampling Approach (Ray Shooting)

E.g., [Boissonnat & Oudot (2005); Cheng, Dey, Ramos and Ray (2004)]

Morse theory

E.g., [Stander & Hart (1997); Boissonnat, Cohen-Steiner & Vegter (2004)]

 Properties Implementation gaps; requires "niceness conditions" (Morseness, non-singularity, etc)

2. Geometric Approach

Sampling Approach (Ray Shooting)

E.g., [Boissonnat & Oudot (2005); Cheng, Dey, Ramos and Ray (2004)]

Morse theory

E.g., [Stander & Hart (1997); Boissonnat, Cohen-Steiner & Vegter (2004)]

 Properties Implementation gaps; requires "niceness conditions" (Morseness, non-singularity, etc)

伺下 イヨト イヨト

2. Geometric Approach

Sampling Approach (Ray Shooting)

E.g., [Boissonnat & Oudot (2005); Cheng, Dey, Ramos and Ray (2004)]

Morse theory

E.g., [Stander & Hart (1997); Boissonnat, Cohen-Steiner & Vegter (2004)]

 Properties Implementation gaps; requires "niceness conditions" (Morseness, non-singularity, etc)

向下 イヨト イヨト

2. Geometric Approach

Sampling Approach (Ray Shooting)

E.g., [Boissonnat & Oudot (2005); Cheng, Dey, Ramos and Ray (2004)]

Morse theory

E.g., [Stander & Hart (1997); Boissonnat, Cohen-Steiner & Vegter (2004)]

 Properties Implementation gaps; requires "niceness conditions" (Morseness, non-singularity, etc)

2. Geometric Approach

Sampling Approach (Ray Shooting)

E.g., [Boissonnat & Oudot (2005); Cheng, Dey, Ramos and Ray (2004)]

Morse theory

E.g., [Stander & Hart (1997); Boissonnat, Cohen-Steiner & Vegter (2004)]

 Properties Implementation gaps; requires "niceness conditions" (Morseness, non-singularity, etc)

3. Numeric Approach

Curve Tracing Literature

[Ratschek & Rokne (2005)]

Subdivision Approach

[Marching Cube (1987); Snyder (1992); Plantinga & Vegter (2004)]

- Properties Practical; easy to implement; adaptive; incomplete (until recently)
- This is our focus

3. Numeric Approach

Curve Tracing Literature

[Ratschek & Rokne (2005)]

Subdivision Approach

[Marching Cube (1987); Snyder (1992); Plantinga & Vegter (2004)]

- Properties Practical; easy to implement; adaptive; incomplete (until recently)
- This is our focus

3. Numeric Approach

Curve Tracing Literature

[Ratschek & Rokne (2005)]

Subdivision Approach

[Marching Cube (1987); Snyder (1992); Plantinga & Vegter (2004)]

- Properties Practical; easy to implement; adaptive; incomplete (until recently)
- This is our focus

3. Numeric Approach

Curve Tracing Literature

[Ratschek & Rokne (2005)]

Subdivision Approach

[Marching Cube (1987); Snyder (1992); Plantinga & Vegter (2004)]

- Properties Practical; easy to implement; adaptive; incomplete (until recently)
- This is our focus

3. Numeric Approach

Curve Tracing Literature

[Ratschek & Rokne (2005)]

Subdivision Approach

[Marching Cube (1987); Snyder (1992); Plantinga & Vegter (2004)]

- Properties Practical; easy to implement; adaptive; incomplete (until recently)
- This is our focus

3. Numeric Approach

Curve Tracing Literature

[Ratschek & Rokne (2005)]

Subdivision Approach

[Marching Cube (1987); Snyder (1992); Plantinga & Vegter (2004)]

- Properties Practical; easy to implement; adaptive; incomplete (until recently)
- This is our focus

Two Criteria of Meshing

I. Topological Correctness

The approximation \tilde{S} is **isotopic** to the S.

- S₁ and S₂ are homeomorphic, but not isotopic
- Ambient space property!

A > < 3 > < 3

ISSAC, July 2009 46 / 105

(contd.) Two Criteria of Meshing

II. Geometrical Accuracy (ϵ -closeness)

For any given $\varepsilon > 0$, the Hausdorff distance d(S, S) should not exceed ε .

• Set $\varepsilon = \infty$ to focus on isotopy.

Want ENC algorithms for Explicitization Problems

- Focus on (purely) Numerical Subdivision methods
- Algorithms for Meshing Curves (and Surfaces)

What will be New? Numerical methods that are exact and can handle singularities

(日) (四) (분) (분) (분) 분

- Want ENC algorithms for Explicitization Problems
- Focus on (purely) Numerical Subdivision methods
- Algorithms for Meshing Curves (and Surfaces)
- What will be New? Numerical methods that are exact and can handle singularities

(日) (四) (분) (분) (분) (분)

- Want ENC algorithms for Explicitization Problems
- Focus on (purely) Numerical Subdivision methods
- Algorithms for Meshing Curves (and Surfaces)
- What will be New?
 Numerical methods that are exact and can handle singularities

(日) (四) (분) (분) (분) (분)

- Want ENC algorithms for Explicitization Problems
- Focus on (purely) Numerical Subdivision methods
- Algorithms for Meshing Curves (and Surfaces)
- What will be New?
 Numerical methods that are exact and can handle singularities

<ロ> (四) (四) (注) (注) (注) (注)

- Want ENC algorithms for Explicitization Problems
- Focus on (purely) Numerical Subdivision methods
- Algorithms for Meshing Curves (and Surfaces)
- What will be New?
 Numerical methods that are exact and can handle singularities

<ロ> (四) (四) (注) (注) (注) (注)

- Want ENC algorithms for Explicitization Problems
- Focus on (purely) Numerical Subdivision methods
- Algorithms for Meshing Curves (and Surfaces)
- What will be New?
 Numerical methods that are exact and can handle singularities

<ロ> (四) (四) (注) (注) (注) (注)

Coming Up Next

Introduction

3 Cxy Algorithm

4 Extensions of Cxy

- 5 How to treat Boundary
- 6 How to treat Singularity

Subdivision Algorithms

- Viewed as generalized binary search, organized as a quadtree.
- Here is a typical output:

Figure: Approximation of the curve $f(X, Y) = Y^2 - X^2 + X^3 + 0.02 = 0$

• INPUT: Curve $S = f^{-1}(0)$, box $B_0 \subseteq \mathbb{R}^2$, and $\varepsilon > 0$

• OUTPUT: Graph G = (V, E), representing an isotopic ε -approximation of $S \cap B_0$.

I Let
$$\mathsf{Q}_{in} \leftarrow \{B_0\}$$
 be a queue of boxes

SUBDIVISION PHASE:
$$Q_{out} \leftarrow SUBDIVIDE(Q_{in})$$

REFINEMENT PHASE:
$$Q_{ref} \leftarrow REFINE(Q_{out})$$

• CONSTRUCTION PHASE:
$$G \leftarrow CONSTRUCT(Q_{ref})$$

- INPUT: Curve $S = f^{-1}(0)$, box $B_0 \subseteq \mathbb{R}^2$, and $\varepsilon > 0$
- OUTPUT: Graph G = (V, E), representing an isotopic ε -approximation of $S \cap B_0$.
 - Let $Q_{in} \leftarrow \{B_0\}$ be a queue of boxes
 - **SUBDIVISION PHASE:** $Q_{out} \leftarrow SUBDIVIDE(Q_{in})$
 - **3 REFINEMENT PHASE:** $Q_{ref} \leftarrow REFINE(Q_{out})$
 - **CONSTRUCTION PHASE:** $G \leftarrow CONSTRUCT(Q_{ref})$

- INPUT: Curve $S = f^{-1}(0)$, box $B_0 \subseteq \mathbb{R}^2$, and $\varepsilon > 0$
- OUTPUT: Graph G = (V, E), representing an isotopic ε -approximation of $S \cap B_0$.
 - Let $Q_{in} \leftarrow \{B_0\}$ be a queue of boxes
 - **SUBDIVISION PHASE:** $Q_{out} \leftarrow SUBDIVIDE(Q_{in})$
 - **REFINEMENT PHASE:** $Q_{ref} \leftarrow REFINE(Q_{out})$
 - **CONSTRUCTION PHASE:** $G \leftarrow CONSTRUCT(Q_{ref})$

伺 ト イ ヨ ト イ ヨ ト ニ ヨ

- INPUT: Curve $S = f^{-1}(0)$, box $B_0 \subseteq \mathbb{R}^2$, and $\varepsilon > 0$
- OUTPUT: Graph G = (V, E), representing an isotopic ε -approximation of $S \cap B_0$.
 - Let $Q_{in} \leftarrow \{B_0\}$ be a queue of boxes
 - SUBDIVISION PHASE: $Q_{out} \leftarrow SUBDIVIDE(Q_{in})$
 - **REFINEMENT PHASE:** $Q_{ref} \leftarrow REFINE(Q_{out})$
 - **CONSTRUCTION PHASE:** $G \leftarrow CONSTRUCT(Q_{ref})$
- INPUT: Curve $S = f^{-1}(0)$, box $B_0 \subseteq \mathbb{R}^2$, and $\varepsilon > 0$
- OUTPUT: Graph G = (V, E), representing an isotopic ε -approximation of $S \cap B_0$.
 - Let $Q_{in} \leftarrow \{B_0\}$ be a queue of boxes
 - SUBDIVISION PHASE: $Q_{out} \leftarrow SUBDIVIDE(Q_{in})$
 - **8 REFINEMENT PHASE:** $Q_{ref} \leftarrow REFINE(Q_{out})$
 - **CONSTRUCTION PHASE:** $G \leftarrow CONSTRUCT(Q_{ref})$

- INPUT: Curve $S = f^{-1}(0)$, box $B_0 \subseteq \mathbb{R}^2$, and $\varepsilon > 0$
- OUTPUT: Graph G = (V, E), representing an isotopic ε -approximation of $S \cap B_0$.
 - Let $Q_{in} \leftarrow \{B_0\}$ be a queue of boxes
 - SUBDIVISION PHASE: $Q_{out} \leftarrow SUBDIVIDE(Q_{in})$
 - **Solution REFINEMENT PHASE:** $Q_{ref} \leftarrow REFINE(Q_{out})$
 - **CONSTRUCTION PHASE:** $G \leftarrow CONSTRUCT(Q_{ref})$

- INPUT: Curve $S = f^{-1}(0)$, box $B_0 \subseteq \mathbb{R}^2$, and $\varepsilon > 0$
- OUTPUT: Graph G = (V, E), representing an isotopic ε -approximation of $S \cap B_0$.
 - Let $Q_{in} \leftarrow \{B_0\}$ be a queue of boxes
 - SUBDIVISION PHASE: $Q_{out} \leftarrow SUBDIVIDE(Q_{in})$
 - **Solution REFINEMENT PHASE:** $Q_{ref} \leftarrow REFINE(Q_{out})$
 - **CONSTRUCTION PHASE:** $G \leftarrow CONSTRUCT(Q_{ref})$

- INPUT: Curve $S = f^{-1}(0)$, box $B_0 \subseteq \mathbb{R}^2$, and $\varepsilon > 0$
- OUTPUT: Graph G = (V, E), representing an isotopic ε -approximation of $S \cap B_0$.
 - Let $Q_{in} \leftarrow \{B_0\}$ be a queue of boxes
 - SUBDIVISION PHASE: $Q_{out} \leftarrow SUBDIVIDE(Q_{in})$
 - **Solution REFINEMENT PHASE:** $Q_{ref} \leftarrow REFINE(Q_{out})$
 - **CONSTRUCTION PHASE:** $G \leftarrow CONSTRUCT(Q_{ref})$

E.g., Marching Cube

Subdivision Phase

Subdivide until size of each box $\leq \varepsilon$.

Construction Phase

(1) Evaluate sign of f at grid points, (2) insert vertices, and (3) connect them in each box:

A 3 >

Parametrizability and Normal Variation

- (a) Parametrizable in X-direction
- (b) Non-parametrizable in X- or Y-direction
- (c) Small normal variation
- (d) Big normal variation

ISSAC, July 2009 53 / 105

Three Conditions (Predicates)

-	C 0	$0 \notin \Box f(B)$	Exclusion
•	Сху	$0 \notin \Box f_x(B)$ or $0 \notin \Box f_y(B)$	
	C1	$0 \notin \Box f_x(B)^2 + \Box f_y(B)^2$	

Implementation: e.g., $f(x, y) = x^2 - 2xy + 3y$

3

イロト イヨト イヨト イヨト

Three Conditions (Predicates)

	C0	$0 \notin \Box f(B)$	Exclusion
•	Сху	$0 \notin \Box f_x(B)$ or $0 \notin \Box f_y(B)$	Parametrizability
	C1	$0 \notin \Box f_x(B)^2 + \Box f_y(B)^2$	Small Normal Variation

Interval Arithmetic (Box):

Interval Taylor (Disc):

Three Conditions (Predicates)

_	C 0	$0 \notin \Box f(B)$	Exclusion
٩	Сху	$0 \notin \Box f_x(B)$ or $0 \notin \Box f_y(B)$	Parametrizability
	C1	$0 \notin \Box f_x(B)^2 + \Box f_y(B)^2$	Small Normal Variation

Implementation: e.g., $f(x, y) = x^2 - 2xy + 3y$

Interval Arithmetic (Box):

Interval Taylor (Disc):

Three Conditions (Predicates)

_	C 0	$0 \notin \Box f(B)$	Exclusion
٩	Сху	$0 \notin \Box f_x(B)$ or $0 \notin \Box f_y(B)$	Parametrizability
	C1	$0 \notin \Box f_x(B)^2 + \Box f_y(B)^2$	Small Normal Variation

Implementation: e.g., $f(x, y) = x^2 - 2xy + 3y$

Interval Arithmetic (Box):

Interval Taylor (Disc):

Three Conditions (Predicates)

-	C 0	0 ∉ □ <i>f</i> (<i>B</i>)	Exclusion
•	Сху	$0 \notin \Box f_x(B)$ or $0 \notin \Box f_y(B)$	Parametrizability
_	C1	$0\notin \Box f_{x}(B)^{2}+\Box f_{y}(B)^{2}$	Small Normal Variation

Implementation: e.g., $f(x, y) = x^2 - 2xy + 3y$

Interval Arithmetic (Box):

Interval Taylor (Disc):

Three Conditions (Predicates)

_	C 0	0 ∉ □ <i>f</i> (<i>B</i>)	Exclusion
•	Сху	$0 \notin \Box f_x(B)$ or $0 \notin \Box f_y(B)$	Parametrizability
_	C1	$0 \notin \Box f_x(B)^2 + \Box f_y(B)^2$	Small Normal Variation

Implementation: e.g.,
$$f(x, y) = x^2 - 2xy + 3y$$

Interval Arithmetic (Box):

 $\Box f(I,J) = I^2 - 2IJ + 3J$

Interval Taylor (Disc):

 $f(x, y, r) = [f(x, y) \pm r(|2(x - y)| + |-2x + 3| + 3r^2)]$

ISSAC, July 2009 54 / 105

3

Three Conditions (Predicates)

_	C 0	$0 \notin \Box f(B)$	Exclusion
•	Сху	$0 \notin \Box f_x(B)$ or $0 \notin \Box f_y(B)$	Parametrizability
_	C1	$0\notin \Box f_x(B)^2 + \Box f_y(B)^2$	Small Normal Variation

Implementation: e.g.,
$$f(x, y) = x^2 - 2xy + 3y$$

- Interval Arithmetic (Box):
 - $\square f(I,J) = I^2 2IJ + 3J$

Interval Taylor (Disc):

3

イロト イヨト イヨト イヨト

Three Conditions (Predicates)

_	C 0	$0 \notin \Box f(B)$	Exclusion
•	Сху	$0 \notin \Box f_x(B)$ or $0 \notin \Box f_y(B)$	Parametrizability
_	C1	$0 \notin \Box f_x(B)^2 + \Box f_y(B)^2$	Small Normal Variation

Implementation: e.g., $f(x, y) = x^2 - 2xy + 3y$

- Interval Arithmetic (Box):
 - $\Box f(I,J) = I^2 2IJ + 3J$
- Interval Taylor (Disc):

 $\Box f(x,y,r) = [f(x,y) \pm r(|2(x-y)| + |-2x+3| + 3r^2)]$

Three Conditions (Predicates)

_	C 0	0 ∉ □ <i>f</i> (<i>B</i>)	Exclusion
•	Сху	$0 \notin \Box f_x(B)$ or $0 \notin \Box f_y(B)$	Parametrizability
_	C1	$0 \notin \Box f_x(B)^2 + \Box f_y(B)^2$	Small Normal Variation

Implementation: e.g.,
$$f(x, y) = x^2 - 2xy + 3y$$

Interval Arithmetic (Box):

 $\Box f(I,J) = I^2 - 2IJ + 3J$

Interval Taylor (Disc):

 $\Box f(x, y, r) = [f(x, y) \pm r(|2(x - y)| + |-2x + 3| + 3r^2)]$

<ロト <回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Three Conditions (Predicates)

_	C 0	0 ∉ □ <i>f</i> (<i>B</i>)	Exclusion
•	Сху	$0 \notin \Box f_x(B)$ or $0 \notin \Box f_y(B)$	Parametrizability
_	C1	$0 \notin \Box f_x(B)^2 + \Box f_y(B)^2$	Small Normal Variation

Implementation: e.g.,
$$f(x, y) = x^2 - 2xy + 3y$$

Interval Arithmetic (Box):

 $\Box f(I,J) = I^2 - 2IJ + 3J$

Interval Taylor (Disc):

 $\Box f(x, y, r) = [f(x, y) \pm r(|2(x - y)| + |-2x + 3| + 3r^2)]$

<ロト <回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Three Conditions (Predicates)

_	C0	$0 \notin \Box f(B)$	Exclusion
•	Сху	$0 \notin \Box f_x(B)$ or $0 \notin \Box f_y(B)$	Parametrizability
_	C1	$0\notin \Box f_x(B)^2 + \Box f_y(B)^2$	Small Normal Variation

Implementation: e.g.,
$$f(x, y) = x^2 - 2xy + 3y$$

Interval Arithmetic (Box):

 $\Box f(I,J) = I^2 - 2IJ + 3J$

Interval Taylor (Disc):

 $\Box f(x, y, r) = [f(x, y) \pm r(|2(x - y)| + |-2x + 3| + 3r^2)]$

<ロト <回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Snyder's Algorithm

Subdivision Phase

For each box **B**:

- $C_0(B) \Rightarrow$ discard
- $\neg C_{xy}(B) \Rightarrow$ subdivide B

Construction Phase

- Determine intersections on boundary
- Connect the intersections
- (Non-trivial, unbounded complexity)

Boundary Analysis is not good (may not even terminate).

Snyder's Algorithm

Subdivision Phase

For each box **B**:

- $C_0(B) \Rightarrow$ discard
- $\neg C_{xy}(B) \Rightarrow$ subdivide B

Construction Phase

- Determine intersections on boundary
- Connect the intersections
- (Non-trivial, unbounded complexity)

Boundary Analysis is not good (may not even terminate).

向下 イヨト イヨト

Idea of Plantinga and Vegter

Introduce a strong predicate C1 predicate

 Allow local NON-isotopy Local incursion and excursions

Locally, graph is not isotopic

 Simple box geometry (simpler than Snyder, less simple than Marching Cube)

Yap (NYU)

Tutorial: Exact Numerical Computation

Plantinga and Vegter's Algorithm

Exploit the global isotopy

- Subdivision Phase: For each box B:
 - $C_0(B) \Rightarrow \text{discard}$
 - $\neg C_1(B) \Rightarrow$ subdivide B

Refinement Phase: Balance!

回 と く ヨ と く ヨ と … ヨ

(contd.) Plantinga and Vegter's Algorithm

Global, not local, isotopy

Construction Phase:

Figure: Extended Rules

Local isotopy is NOT good !

Coming Up Next

Introduction

3 Cxy Algorithm

- 4 Extensions of Cxy
- How to treat Boundary

6 How to treat Singularity

伺下 イヨト イヨト

Idea of Cxy Algorithm

Replace C1 by Cxy

- $C_1(B)$ implies $C_{xy}(B)$
- This would produce fewer boxes.

Exploit local non-isotopy

- Local isotopy is an artifact!
- This also avoid boundary analysis.

• E • • E •

Obstructions to Cxy Idea

Replace C1 by Cxy

- Just run PV Algorithm but using C_{xy} instead:
- What can go wrong?

イロト イヨト イヨト

Cxy Algorithm

- Subdivision and Refinement Phases: As before
- Construction Phase:

Figure: Resolution of Ambiguity,

What has Cxy Algorithm done?

Exploit Parametrizability (like Snyder)

(日) (四) (王) (王) (王)

Rejected local isotopy (like PV)

• Up Next: More improvements

What has Cxy Algorithm done?

Exploit Parametrizability (like Snyder)

<ロ> (四) (四) (注) (注) (注) (注)

Rejected local isotopy (like PV)

• Up Next: More improvements

- What has Cxy Algorithm done?
 - Exploit Parametrizability (like Snyder)

<ロ> (四) (四) (三) (三) (三) (三)

Rejected local isotopy (like PV)

Up Next: More improvements

- What has Cxy Algorithm done?
 - Exploit Parametrizability (like Snyder)

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ ―臣 _ のへ⊙

- Rejected local isotopy (like PV)
- Up Next: More improvements

- What has Cxy Algorithm done?
 - Exploit Parametrizability (like Snyder)

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ ―臣 _ のへ⊙

- Rejected local isotopy (like PV)
- Up Next: More improvements

- What has Cxy Algorithm done?
 - Exploit Parametrizability (like Snyder)

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ ―臣 _ のへ⊙

- Rejected local isotopy (like PV)
- Up Next: More improvements

Coming Up Next

Introduction

- 2 Review of Subdivision Algorithms
- 3 Cxy Algorithm
- 4 Extensions of Cxy
- 5 How to treat Boundary

How to treat Singularity

Idea of Rectangular Cxy Algorithm

ISSAC, July 2009 65 / 105

Partial Splits for Rectangles

Splits

3

Rectangular Cxy Algorithm

What is needed

• Aspect Ratio Bound: r > 1 arbitrary but fixed.

• Splitting Procedure: do full-split if none of these hold

 L_0 : $C_0(B), C_{xy}(B)$ Terminate L_{out} : $C_0(B_{12}), C_0(B_{34}), C_0(B_{14}), C_0(B_{23})$ Half-split L_{in} : $C_{xy}(B_{12}), C_{xy}(B_{34}), C_{xy}(B_{14}), C_{xy}(B_{23})$ Half-split

 Axis-dependent balancing: each node has a X-depth and Y-depth.
What is needed

- Aspect Ratio Bound: r > 1 arbitrary but fixed.
- Splitting Procedure: do full-split if none of these hold

<i>L</i> ₀ :	$C_0(B), C_{xy}(B)$	Terminate

 Axis-dependent balancing: each node has a X-depth and Y-depth.

What is needed

- Aspect Ratio Bound: r > 1 arbitrary but fixed.
- Splitting Procedure: do full-split if none of these hold

<i>L</i> ₀ :	$C_0(B), C_{xy}(B)$	Terminate
L _{out} :	$C_0(B_{12}), C_0(B_{34}), C_0(B_{14}), C_0(B_{23})$	Half-split
L _{in} :	$C_{xy}(B_{12}), C_{xy}(B_{34}), C_{xy}(B_{14}), C_{xy}(B_{23})$	Half-split

 Axis-dependent balancing: each node has a X-depth and Y-depth.

What is needed

- Aspect Ratio Bound: r > 1 arbitrary but fixed.
- Splitting Procedure: do full-split if none of these hold

<i>L</i> ₀ :	$C_0(B), C_{xy}(B)$	Terminate
L _{out} :	$C_0(B_{12}), C_0(B_{34}), C_0(B_{14}), C_0(B_{23})$	Half-split
L _{in} :	$C_{xy}(B_{12}), C_{xy}(B_{34}), C_{xy}(B_{14}), C_{xy}(B_{23})$	Half-split

 Axis-dependent balancing: each node has a X-depth and Y-depth.

What is needed

- Aspect Ratio Bound: r > 1 arbitrary but fixed.
- Splitting Procedure: do full-split if none of these hold

<i>L</i> ₀ :	$C_0(B), C_{xy}(B)$	Terminate
L _{out} :	$C_0(B_{12}), C_0(B_{34}), C_0(B_{14}), C_0(B_{23})$	Half-split
L _{in} :	$C_{xy}(B_{12}), C_{xy}(B_{34}), C_{xy}(B_{14}), C_{xy}(B_{23})$	Half-split

 Axis-dependent balancing: each node has a X-depth and Y-depth.

What is needed

- Aspect Ratio Bound: r > 1 arbitrary but fixed.
- Splitting Procedure: do full-split if none of these hold

<i>L</i> ₀ :	$C_0(B), C_{xy}(B)$	Terminate
L _{out} :	$C_0(B_{12}), C_0(B_{34}), C_0(B_{14}), C_0(B_{23})$	Half-split
L _{in} :	$C_{xy}(B_{12}), C_{xy}(B_{34}), C_{xy}(B_{14}), C_{xy}(B_{23})$	Half-split

• Axis-dependent balancing: each node has a X-depth and Y-depth.

What is needed

- Aspect Ratio Bound: r > 1 arbitrary but fixed.
- Splitting Procedure: do full-split if none of these hold

<i>L</i> ₀ :	$C_0(B), C_{xy}(B)$	Terminate
L _{out} :	$C_0(B_{12}), C_0(B_{34}), C_0(B_{14}), C_0(B_{23})$	Half-split
L _{in} :	$C_{xy}(B_{12}), C_{xy}(B_{34}), C_{xy}(B_{14}), C_{xy}(B_{23})$	Half-split

• Axis-dependent balancing: each node has a X-depth and Y-depth.

What is needed

- Aspect Ratio Bound: r > 1 arbitrary but fixed.
- Splitting Procedure: do full-split if none of these hold

<i>L</i> ₀ :	$C_0(B), C_{xy}(B)$	Terminate
L _{out} :	$C_0(B_{12}), C_0(B_{34}), C_0(B_{14}), C_0(B_{23})$	Half-split
L _{in} :	$C_{xy}(B_{12}), C_{xy}(B_{34}), C_{xy}(B_{14}), C_{xy}(B_{23})$	Half-split

• Axis-dependent balancing: each node has a X-depth and Y-depth.

Ensuring Geometric Accuracy

Buffer Property of C1 predicate

Aspect Ratio < 2:</p>

Half-circle argument

• Generalize $C_1(B)$ to $C_1^*(B)$. for any box B

Comparisons

- Compare Rect Cxy to PV (note: Snyder has degeneracy).
 - ► Curve X(XY 1) = 0, box B_s := [(-s, -s), (s, s)], Aspect ratio bound r = 5: (JSO=Java stack overflow)

#Boxes/Time(ms)	s = 15	s = 60	s = 100
PV	5686/157	JSO	JSO
Cxy	2878/125	45790/2750	JSO
Rect	258/32	3847/766	11196/7781

- Increasing r can increase the performance of Rect Cxy.
 - $r = 80, s = 100 \Rightarrow Boxes / Time(ms) = 751 / 78$

Comparisons (2)

• Compare to Snyder's Algorithm.

- Curve X(XY 1) = 0, box
 - $B_n := [(-14 \times 10^n, -14 \times 10^n), (15 \times 10^n, 15 \times 10^n)].$ Maximum aspect ratio r = 257.

#Boxes/Time(ms)	n = -1	n = 0	n = 1
Snyder	10/15	1306/125	JSO
Cxy	13/0	1510/62	JSO
Rect	6/0	13/0	256/47

イロト イヨト イヨト イヨト

Comparisons (2)

• Compare to Snyder's Algorithm.

- Curve X(XY 1) = 0, box
 - $B_n := [(-14 \times 10^n, -14 \times 10^n), (15 \times 10^n, 15 \times 10^n)].$ Maximum aspect ratio r = 257.

#Boxes/Time(ms)	n = -1	n = 0	n = 1
Snyder	10/15	1306/125	JSO
Cxy	13/0	1510/62	JSO
Rect	6/0	13/0	256/47

イロト イヨト イヨト イヨト

```
Comparisons (2)
```

• Compare to Snyder's Algorithm.

• Curve X(XY - 1) = 0, box

 $B_n := [(-14 \times 10^n, -14 \times 10^n), (15 \times 10^n, 15 \times 10^n)].$ Maximum aspect ratio r = 257.

#Boxes/Time(ms)	n = -1	n = 0	n = 1
Snyder	10/15	1306/125	JSO
Cxy	13/0	1510/62	JSO
Rect	6/0	13/0	256/47

ISSAC, July 2009 70 / 105

Summary of Experimental Results

- Cxy combines the advantages of Snyder & PV Algorithms.
- Can be significantly faster than PV & Snyder's algorithm.
- Rectangular Cxy Algorithm can be significantly faster than Balanced Cxy algorithm.

Coming Up Next

Introduction

- Review of Subdivision Algorithms
- 3 Cxy Algorithm
- 4 Extensions of Cxy
- 5 How to treat Boundary

6 How to treat Singularity

E

- 4 回 ト 4 回 ト 4 回 ト

• An Obvious Way and a Better Way

- **Exact Way** : Recursively solve the problem on ∂B_0
- Better Way : Exploit isotopy

• Price for Better Way: Weaker Correctness Statement For some $B_0 \subseteq B_0^+ \subseteq B_0 \oplus B(\varepsilon)$, *G* is isotopic to $S \cap B_0^+$.

- APPLICATIONS:
 - Singularity (below)

Input region (3, to have "any" geometry, even holes, provided it i contains no singularities.

An Obvious Way and a Better Way

- Exact Way : Recursively solve the problem on ∂B_0
- Better Way : Exploit isotopy

• Price for Better Way: Weaker Correctness Statement For some $B_0 \subseteq B_0^+ \subseteq B_0 \oplus B(\varepsilon)$, *G* is isotopic to $S \cap B_0^+$.

- APPLICATIONS:
 - Singularity (below)

Input region \mathcal{B}_{0} to have "any" geometry, even holes, provided it contains no singularities.

An Obvious Way and a Better Way

- **Exact Way**: Recursively solve the problem on ∂B_0
- Better Way : Exploit isotopy

• Price for Better Way: Weaker Correctness Statement For some $B_0 \subseteq B_0^+ \subseteq B_0 \oplus B(\varepsilon)$, *G* is isotopic to $S \cap B_0^+$.

• APPLICATIONS:

Singularity (below)

Input region B₀ to have "any" geometry, even holes, provided it i contains no singularities.

An Obvious Way and a Better Way

- **Exact Way**: Recursively solve the problem on ∂B_0
- Better Way : Exploit isotopy

• Price for Better Way: Weaker Correctness Statement For some $B_0 \subseteq B_0^+ \subseteq B_0 \oplus B(\varepsilon)$, *G* is isotopic to $S \cap B_0^+$.

• APPLICATIONS:

Singularity (below)

Input region B₀ to have "any" geometry, even holes, provided it i contains no singularities.

An Obvious Way and a Better Way

- **Exact Way**: Recursively solve the problem on ∂B_0
- Better Way : Exploit isotopy

• Price for Better Way: Weaker Correctness Statement For some $B_0 \subseteq B_0^+ \subseteq B_0 \oplus B(\varepsilon)$, *G* is isotopic to $S \cap B_0^+$.

- APPLICATIONS:
 - Singularity (below)
 - Input region B₀ to have "any" geometry, even holes, provided it contains no singularities.

An Obvious Way and a Better Way

- **Exact Way**: Recursively solve the problem on ∂B_0
- Better Way : Exploit isotopy
- Price for Better Way: Weaker Correctness Statement
 For some B₀ ⊆ B₀⁺ ⊆ B₀ ⊕ B(ε),
 G is isotopic to S ∩ B₀⁺.
- APPLICATIONS:
 - Singularity (below)
 - Input region B₀ to have "any" geometry, even holes, provided it contains no singularities.

向下 イヨト イヨト

An Obvious Way and a Better Way

- Exact Way : Recursively solve the problem on ∂B_0
- Better Way : Exploit isotopy
- Price for Better Way: Weaker Correctness Statement For some $B_0 \subseteq B_0^+ \subseteq B_0 \oplus B(\varepsilon)$, *G* is isotopic to $S \cap B_0^+$.
- APPLICATIONS:
 - Singularity (below)
 - Input region B₀ to have "any" geometry, even holes, provided it contains no singularities.

ISSAC, July 2009 73 / 105

ヨット イヨット イヨッ

An Obvious Way and a Better Way

- Exact Way : Recursively solve the problem on ∂B_0
- Better Way : Exploit isotopy
- Price for Better Way: Weaker Correctness Statement
 For some B₀ ⊆ B₀⁺ ⊆ B₀ ⊕ B(ε),
 G is isotopic to S ∩ B₀⁺.
- APPLICATIONS:
 - Singularity (below)
 - Input region B₀ to have "any" geometry, even holes, provided it contains no singularities.

An Obvious Way and a Better Way

- Exact Way : Recursively solve the problem on ∂B_0
- Better Way : Exploit isotopy
- Price for Better Way: Weaker Correctness Statement
 For some B₀ ⊆ B₀⁺ ⊆ B₀ ⊕ B(ε),
 G is isotopic to S ∩ B₀⁺.
- APPLICATIONS:
 - Singularity (below)
 - Input region B₀ to have "any" geometry, even holes, provided it contains no singularities.

An Obvious Way and a Better Way

- Exact Way : Recursively solve the problem on ∂B_0
- Better Way : Exploit isotopy
- Price for Better Way: Weaker Correctness Statement
 For some B₀ ⊆ B₀⁺ ⊆ B₀ ⊕ B(ε),
 G is isotopic to S ∩ B₀⁺.
- APPLICATIONS:
 - Singularity (below)
 - Input region B₀ to have "any" geometry, even holes, provided it contains no singularities.

Coming Up Next

Introduction

- 2 Review of Subdivision Algorithms
- 3 Cxy Algorithm
- 4 Extensions of Cxy
- 5 How to treat Boundary

Э

伺下 イヨト イヨト

• Square-free part of $f(X_1, ..., X_n) \in \mathbb{Z}[X_1, ..., X_n]$: $\frac{f}{\text{GCD}(f, \partial_1 f, ..., \partial_n f)} = \frac{f}{\text{GCD}(f, \nabla(f))}$

- For *n* = 1: square-free implies no singularities
- Generally:

Singular set $sing(f) := Zero(f, \nabla(f))$ has co-dimension ≥ 2 .

• For Curves:

we now assume $f(X, Y) \in \mathbb{Z}[X, Y]$ has isolated singularities.

- Square-free part of $f(X_1, ..., X_n) \in \mathbb{Z}[X_1, ..., X_n]$: $\frac{f}{\text{GCD}(f, \partial_1 f, ..., \partial_n f)} = \frac{f}{\text{GCD}(f, \nabla(f))}$
- For n = 1: square-free implies no singularities
- Generally:

Singular set $sing(f) := Zero(f, \nabla(f))$ has co-dimension ≥ 2 .

• For Curves:

we now assume $f(X, Y) \in \mathbb{Z}[X, Y]$ has isolated singularities.

- Square-free part of $f(X_1, ..., X_n) \in \mathbb{Z}[X_1, ..., X_n]$: $\frac{f}{\text{GCD}(f, \partial_1 f, ..., \partial_n f)} = \frac{f}{\text{GCD}(f, \nabla(f))}$
- For n = 1: square-free implies no singularities
- Generally:

Singular set $sing(f) := Zero(f, \nabla(f))$ has co-dimension ≥ 2 .

• For Curves:

we now assume $f(X, Y) \in \mathbb{Z}[X, Y]$ has isolated singularities.

伺下 イヨト イヨト

- Square-free part of $f(X_1, ..., X_n) \in \mathbb{Z}[X_1, ..., X_n]$: $\frac{f}{\text{GCD}(f, \partial_1 f, ..., \partial_n f)} = \frac{f}{\text{GCD}(f, \nabla(f))}$
- For n = 1: square-free implies no singularities
- Generally:

Singular set $sing(f) := Zero(f, \nabla(f))$ has co-dimension ≥ 2 .

• For Curves:

we now assume $f(X, Y) \in \mathbb{Z}[X, Y]$ has isolated singularities.

- Square-free part of $f(X_1, ..., X_n) \in \mathbb{Z}[X_1, ..., X_n]$: $\frac{f}{\text{GCD}(f, \partial_1 f, ..., \partial_n f)} = \frac{f}{\text{GCD}(f, \nabla(f))}$
- For n = 1: square-free implies no singularities
- Generally:

Singular set $sing(f) := Zero(f, \nabla(f))$ has co-dimension ≥ 2 .

• For Curves:

we now assume $f(X, Y) \in \mathbb{Z}[X, Y]$ has isolated singularities.

- Square-free part of $f(X_1, ..., X_n) \in \mathbb{Z}[X_1, ..., X_n]$: $\frac{f}{\text{GCD}(f, \partial_1 f, ..., \partial_n f)} = \frac{f}{\text{GCD}(f, \nabla(f))}$
- For n = 1: square-free implies no singularities
- Generally:

Singular set $sing(f) := Zero(f, \nabla(f))$ has co-dimension ≥ 2 .

• For Curves:

we now assume $f(X, Y) \in \mathbb{Z}[X, Y]$ has isolated singularities.

Some Zero Bounds

Evaluation Bound Lemma

If f(X, Y) has degree d and height L then

 $-\log EV(f) = O(d^2(L+d\log d))$ where $EV(f) := \min\{|f(\alpha)| : \nabla(\alpha) = 0, f(\alpha) \neq 0\}$

$$\delta_4 \geq (6^2 e^7)^{-30D} (4^4 \cdot 5 \cdot 2^L)^{-5D^4}$$

Some Zero Bounds

Evaluation Bound Lemma

If f(X, Y) has degree d and height L then

$$-\log EV(f) = O(d^2(L + d\log d))$$

where $EV(f) := \min\{|f(\alpha)| : \nabla(\alpha) = 0, f(\alpha) \neq 0\}$

Singularity Separation Bound [Y. (2006)]

Any two singularities of f = 0 are separated by

 $\delta_3 \geq (16^{d+2}256^L81^{2d}d^5)^{-d}$

Closest Approach Bound

The "locally closest" approach of a curve f = 0 to its own singularities is

$$\delta_4 \geq (6^2 e^7)^{-30D} (4^4 \cdot 5 \cdot 2^L)^{-5D^4}$$

where $D = \max{\{2, \deg f\}}$

Some Zero Bounds

Evaluation Bound Lemma

If f(X, Y) has degree d and height L then

$$-\log EV(f) = O(d^2(L + d\log d))$$

where $EV(f) := \min\{|f(\alpha)| : \nabla(\alpha) = 0, f(\alpha) \neq 0\}$

Singularity Separation Bound [Y. (2006)]

Any two singularities of f = 0 are separated by

 $\delta_3 \ge (16^{d+2}256^L 81^{2d} d^5)^{-d}$

Closest Approach Bound

The "locally closest" approach of a curve f = 0 to its own singularities is

$$\delta_4 \geq (6^2 e^7)^{-30D} (4^4 \cdot 5 \cdot 2^L)^{-5D^4}$$

where $D = \max\{2, \deg f\}$

Isolating Singularities

```
Mountain Pass Theorem

Consider F := f^2 + f_X^2 + f_Y^2.

Any 2 singularities in B_0 are connected by paths \gamma : [0,1] \to \mathbb{R}^2

satisfying

min \gamma(F([0,1])) \ge \varepsilon_0

where

\varepsilon_0 := \min \{ EV(f), \min F(\partial B_0) \}
```

Can provide a subdivision algorithm using F, ε_0 to isolate regions containing singularities.

白 ト イヨ ト イヨト

Isolating Singularities

```
Mountain Pass Theorem

Consider F := f^2 + f_X^2 + f_Y^2.

Any 2 singularities in B_0 are connected by paths \gamma : [0,1] \to \mathbb{R}^2

satisfying

min \gamma(F([0,1])) \ge \varepsilon_0

where

\varepsilon_0 := \min \{ EV(f), \min F(\partial B_0) \}
```

Can provide a subdivision algorithm using F, ε_0 to isolate regions containing singularities.

(日) ・ モト ・ モト ・ ヨ
Isolating Singularities

```
Mountain Pass Theorem

Consider F := f^2 + f_X^2 + f_Y^2.

Any 2 singularities in B_0 are connected by paths \gamma : [0,1] \to \mathbb{R}^2

satisfying

\min \gamma(F([0,1])) \ge \varepsilon_0

where

\varepsilon_0 := \min \{ EV(f), \min F(\partial B_0) \}
```

Can provide a subdivision algorithm using F, ε_0 to isolate regions containing singularities.

(4回) (日) (日) (日) (日)

Degree of Singularites

- Degree of singularity := number of half-branches
- Use two concentric boxes B₂ ⊆ B₁: inner box has singularity, outer radius less than δ₃, δ₄

 We have seen how to combine Snyder and PV, and make several practical improvements

- Future Work: Extend 3D (and beyond?)
- Improve efficiency of refinement
- Improve efficiency of singularity
 - Singular case is (ourrently) not fast

 We have seen how to combine Snyder and PV, and make several practical improvements

- Future Work: Extend 3D (and beyond?)
- Improve efficiency of refinement
- Improve efficiency of singularity
 - Singular case is (currently) not fast.

 We have seen how to combine Snyder and PV, and make several practical improvements

- Future Work: Extend 3D (and beyond?)
- Improve efficiency of refinement
- Improve efficiency of singularity
 - Singular case is (currently) not fast

 We have seen how to combine Snyder and PV, and make several practical improvements

- Future Work: Extend 3D (and beyond?)
- Improve efficiency of refinement
- Improve efficiency of singularity
 - Nonsingular case is fast
 - Singular case is (currently) not fast

 We have seen how to combine Snyder and PV, and make several practical improvements

- Future Work: Extend 3D (and beyond?)
- Improve efficiency of refinement
- Improve efficiency of singularity
 - Nonsingular case is fast
 - Singular case is (currently) not fast

 We have seen how to combine Snyder and PV, and make several practical improvements

- Future Work: Extend 3D (and beyond?)
- Improve efficiency of refinement
- Improve efficiency of singularity
 - Nonsingular case is fast
 - Singular case is (currently) not fast

 We have seen how to combine Snyder and PV, and make several practical improvements

- Future Work: Extend 3D (and beyond?)
- Improve efficiency of refinement
- Improve efficiency of singularity
 - Nonsingular case is fast
 - Singular case is (currently) not fast

 We have seen how to combine Snyder and PV, and make several practical improvements

- Future Work: Extend 3D (and beyond?)
- Improve efficiency of refinement
- Improve efficiency of singularity
 - Nonsingular case is fast
 - Singular case is (currently) not fast

 We have seen how to combine Snyder and PV, and make several practical improvements

- Future Work: Extend 3D (and beyond?)
- Improve efficiency of refinement
- Improve efficiency of singularity
 - Nonsingular case is fast
 - Singular case is (currently) not fast

- Problems at the interface of continuous and discrete: Explicitization Problems
- ENC Algorithms for them are novel
- Numerical Treatment of Singularity and Degeneracy
 - Possible in theory, but severe practical challenge

- Problems at the interface of continuous and discrete: Explicitization Problems
- ENC Algorithms for them are novel
- Numerical Treatment of Singularity and Degeneracy
 - Possible in theory, but severe practical challenge

- Problems at the interface of continuous and discrete: Explicitization Problems
- ENC Algorithms for them are novel
- Numerical Treatment of Singularity and Degeneracy
 - Possible in theory, but severe practical challenge

- Problems at the interface of continuous and discrete: Explicitization Problems
- ENC Algorithms for them are novel
- Numerical Treatment of Singularity and Degeneracy
 - Possible in theory, but severe practical challenge

- Problems at the interface of continuous and discrete: Explicitization Problems
- ENC Algorithms for them are novel
- Numerical Treatment of Singularity and Degeneracy
 - Possible in theory, but severe practical challenge

- Problems at the interface of continuous and discrete: Explicitization Problems
- ENC Algorithms for them are novel
- Numerical Treatment of Singularity and Degeneracy
 - Possible in theory, but severe practical challenge