
Tutorial:
Exact Numerical Computation

in Algebra and Geometry

Chee K. Yap

Courant Institute of Mathematical Sciences
New York University

and
Korea Institute of Advanced Study (KIAS)

Seoul, Korea

34th ISSAC, July 28–31, 2009

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 1 / 105

PART 2

Explicitization and Subdivision

“It can be of no practical use to know that π is irrational, but if we can
know, it surely would be intolerable not to know.”

— E.C. Titchmarsh

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 37 / 105

Introduction

Coming Up Next

1 Introduction

2 Review of Subdivision Algorithms

3 Cxy Algorithm

4 Extensions of Cxy

5 How to treat Boundary

6 How to treat Singularity

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 38 / 105

Introduction

Towards Exact Numerical Computation (ENC)

Beyond the Universal Solution

Design algorithms directly incorporating the principles of EGC

What do we need? What are its features?
◮ It must be numerical in nature
◮ It must be arbitrary precision
◮ It must respect zero
◮ It must be adaptive

⋆ actively control precision
⋆ exploit filters

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 39 / 105

Introduction

Towards Exact Numerical Computation (ENC)

Beyond the Universal Solution

Design algorithms directly incorporating the principles of EGC

What do we need? What are its features?
◮ It must be numerical in nature
◮ It must be arbitrary precision
◮ It must respect zero
◮ It must be adaptive

⋆ actively control precision
⋆ exploit filters

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 39 / 105

Introduction

Towards Exact Numerical Computation (ENC)

Beyond the Universal Solution

Design algorithms directly incorporating the principles of EGC

What do we need? What are its features?
◮ It must be numerical in nature
◮ It must be arbitrary precision
◮ It must respect zero
◮ It must be adaptive

⋆ actively control precision
⋆ exploit filters

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 39 / 105

Introduction

Towards Exact Numerical Computation (ENC)

Beyond the Universal Solution

Design algorithms directly incorporating the principles of EGC

What do we need? What are its features?
◮ It must be numerical in nature
◮ It must be arbitrary precision
◮ It must respect zero
◮ It must be adaptive

⋆ actively control precision
⋆ exploit filters

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 39 / 105

Introduction

Towards Exact Numerical Computation (ENC)

Beyond the Universal Solution

Design algorithms directly incorporating the principles of EGC

What do we need? What are its features?
◮ It must be numerical in nature
◮ It must be arbitrary precision
◮ It must respect zero
◮ It must be adaptive

⋆ actively control precision
⋆ exploit filters

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 39 / 105

Introduction

Towards Exact Numerical Computation (ENC)

Beyond the Universal Solution

Design algorithms directly incorporating the principles of EGC

What do we need? What are its features?
◮ It must be numerical in nature
◮ It must be arbitrary precision
◮ It must respect zero
◮ It must be adaptive

⋆ actively control precision
⋆ exploit filters

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 39 / 105

Introduction

Towards Exact Numerical Computation (ENC)

Beyond the Universal Solution

Design algorithms directly incorporating the principles of EGC

What do we need? What are its features?
◮ It must be numerical in nature
◮ It must be arbitrary precision
◮ It must respect zero
◮ It must be adaptive

⋆ actively control precision
⋆ exploit filters

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 39 / 105

Introduction

Towards Exact Numerical Computation (ENC)

Beyond the Universal Solution

Design algorithms directly incorporating the principles of EGC

What do we need? What are its features?
◮ It must be numerical in nature
◮ It must be arbitrary precision
◮ It must respect zero
◮ It must be adaptive

⋆ actively control precision
⋆ exploit filters

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 39 / 105

Introduction

Towards Exact Numerical Computation (ENC)

Beyond the Universal Solution

Design algorithms directly incorporating the principles of EGC

What do we need? What are its features?
◮ It must be numerical in nature
◮ It must be arbitrary precision
◮ It must respect zero
◮ It must be adaptive

⋆ actively control precision
⋆ exploit filters

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 39 / 105

Introduction

Computational Ring Approach
Computational Ring (D,0,1,+,−,×,÷2)

D is countable, dense subset of R

D is a ring extension of Z

Efficient representation ρ : {0,1}∗ ≻D for implementing ring
operations, and exact comparison.

Examples of D

BigFloats or dyadic numbers:

F := {m2n : m,n ∈Z}= Z[
1

2
]

Rationals: Q (avoid, if possible)

Real Algebraic Numbers: A (AVOID!)

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 40 / 105

Introduction

Computational Ring Approach
Computational Ring (D,0,1,+,−,×,÷2)

D is countable, dense subset of R

D is a ring extension of Z

Efficient representation ρ : {0,1}∗ ≻D for implementing ring
operations, and exact comparison.

Examples of D

BigFloats or dyadic numbers:

F := {m2n : m,n ∈Z}= Z[
1

2
]

Rationals: Q (avoid, if possible)

Real Algebraic Numbers: A (AVOID!)

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 40 / 105

Introduction

Computational Ring Approach
Computational Ring (D,0,1,+,−,×,÷2)

D is countable, dense subset of R

D is a ring extension of Z

Efficient representation ρ : {0,1}∗ ≻D for implementing ring
operations, and exact comparison.

Examples of D

BigFloats or dyadic numbers:

F := {m2n : m,n ∈Z}= Z[
1

2
]

Rationals: Q (avoid, if possible)

Real Algebraic Numbers: A (AVOID!)

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 40 / 105

Introduction

Computational Ring Approach
Computational Ring (D,0,1,+,−,×,÷2)

D is countable, dense subset of R

D is a ring extension of Z

Efficient representation ρ : {0,1}∗ ≻D for implementing ring
operations, and exact comparison.

Examples of D

BigFloats or dyadic numbers:

F := {m2n : m,n ∈Z}= Z[
1

2
]

Rationals: Q (avoid, if possible)

Real Algebraic Numbers: A (AVOID!)

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 40 / 105

Introduction

Computational Ring Approach
Computational Ring (D,0,1,+,−,×,÷2)

D is countable, dense subset of R

D is a ring extension of Z

Efficient representation ρ : {0,1}∗ ≻D for implementing ring
operations, and exact comparison.

Examples of D

BigFloats or dyadic numbers:

F := {m2n : m,n ∈Z}= Z[
1

2
]

Rationals: Q (avoid, if possible)

Real Algebraic Numbers: A (AVOID!)

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 40 / 105

Introduction

Computational Ring Approach
Computational Ring (D,0,1,+,−,×,÷2)

D is countable, dense subset of R

D is a ring extension of Z

Efficient representation ρ : {0,1}∗ ≻D for implementing ring
operations, and exact comparison.

Examples of D

BigFloats or dyadic numbers:

F := {m2n : m,n ∈Z}= Z[
1

2
]

Rationals: Q (avoid, if possible)

Real Algebraic Numbers: A (AVOID!)

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 40 / 105

Introduction

Computational Ring Approach
Computational Ring (D,0,1,+,−,×,÷2)

D is countable, dense subset of R

D is a ring extension of Z

Efficient representation ρ : {0,1}∗ ≻D for implementing ring
operations, and exact comparison.

Examples of D

BigFloats or dyadic numbers:

F := {m2n : m,n ∈Z}= Z[
1

2
]

Rationals: Q (avoid, if possible)

Real Algebraic Numbers: A (AVOID!)

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 40 / 105

Introduction

Computational Ring Approach
Computational Ring (D,0,1,+,−,×,÷2)

D is countable, dense subset of R

D is a ring extension of Z

Efficient representation ρ : {0,1}∗ ≻D for implementing ring
operations, and exact comparison.

Examples of D

BigFloats or dyadic numbers:

F := {m2n : m,n ∈Z}= Z[
1

2
]

Rationals: Q (avoid, if possible)

Real Algebraic Numbers: A (AVOID!)

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 40 / 105

Introduction

What else is needed in ENC Algorithms?

Intervals
D: set of dyadic intervals

Dn: set of n-boxes

Box Functions
Let f : Dm→D.

Box function f : m(D)→ (D)
◮ (1) Inclusion: f (B)⊆ f (B).
◮ (2) Convergence: limi→∞ f (Bi) = f (limi→∞ Bi).

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 41 / 105

Introduction

What else is needed in ENC Algorithms?

Intervals
D: set of dyadic intervals

Dn: set of n-boxes

Box Functions
Let f : Dm→D.

Box function f : m(D)→ (D)
◮ (1) Inclusion: f (B)⊆ f (B).
◮ (2) Convergence: limi→∞ f (Bi) = f (limi→∞ Bi).

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 41 / 105

Introduction

What else is needed in ENC Algorithms?

Intervals
D: set of dyadic intervals

Dn: set of n-boxes

Box Functions
Let f : Dm→D.

Box function f : m(D)→ (D)
◮ (1) Inclusion: f (B)⊆ f (B).
◮ (2) Convergence: limi→∞ f (Bi) = f (limi→∞ Bi).

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 41 / 105

Introduction

What else is needed in ENC Algorithms?

Intervals
D: set of dyadic intervals

Dn: set of n-boxes

Box Functions
Let f : Dm→D.

Box function f : m(D)→ (D)
◮ (1) Inclusion: f (B)⊆ f (B).
◮ (2) Convergence: limi→∞ f (Bi) = f (limi→∞ Bi).

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 41 / 105

Introduction

What else is needed in ENC Algorithms?

Intervals
D: set of dyadic intervals

Dn: set of n-boxes

Box Functions
Let f : Dm→D.

Box function f : m(D)→ (D)
◮ (1) Inclusion: f (B)⊆ f (B).
◮ (2) Convergence: limi→∞ f (Bi) = f (limi→∞ Bi).

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 41 / 105

Introduction

What else is needed in ENC Algorithms?

Intervals
D: set of dyadic intervals

Dn: set of n-boxes

Box Functions
Let f : Dm→D.

Box function f : m(D)→ (D)
◮ (1) Inclusion: f (B)⊆ f (B).
◮ (2) Convergence: limi→∞ f (Bi) = f (limi→∞ Bi).

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 41 / 105

Introduction

What else is needed in ENC Algorithms?

Intervals
D: set of dyadic intervals

Dn: set of n-boxes

Box Functions
Let f : Dm→D.

Box function f : m(D)→ (D)
◮ (1) Inclusion: f (B)⊆ f (B).
◮ (2) Convergence: limi→∞ f (Bi) = f (limi→∞ Bi).

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 41 / 105

Introduction

What else is needed in ENC Algorithms?

Intervals
D: set of dyadic intervals

Dn: set of n-boxes

Box Functions
Let f : Dm→D.

Box function f : m(D)→ (D)
◮ (1) Inclusion: f (B)⊆ f (B).
◮ (2) Convergence: limi→∞ f (Bi) = f (limi→∞ Bi).

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 41 / 105

Introduction

What else is needed in ENC Algorithms?

Intervals
D: set of dyadic intervals

Dn: set of n-boxes

Box Functions
Let f : Dm→D.

Box function f : m(D)→ (D)
◮ (1) Inclusion: f (B)⊆ f (B).
◮ (2) Convergence: limi→∞ f (Bi) = f (limi→∞ Bi).

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 41 / 105

Introduction

Our Target: Explicitization Problems
From Implicit to Explicit Representation

Mesh generation [Problem (IV)]

Discrete Morse-Smale complex [Problem (V)]

Arrangement of hypersurfaces

Voronoi diagram of a collection of objects

Cell complex approximation of algebraic variety

Representation of Flow fields

From Parameter Space to Ambient Space
Why this class? Interface between Continuous and Discrete!

ENC Algorithms is ideal for this class

Interplay of Topological and Geometric requirements

Domain subdivision as the general algorithmic paradigm
Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 42 / 105

Introduction

Our Target: Explicitization Problems
From Implicit to Explicit Representation

Mesh generation [Problem (IV)]

Discrete Morse-Smale complex [Problem (V)]

Arrangement of hypersurfaces

Voronoi diagram of a collection of objects

Cell complex approximation of algebraic variety

Representation of Flow fields

From Parameter Space to Ambient Space
Why this class? Interface between Continuous and Discrete!

ENC Algorithms is ideal for this class

Interplay of Topological and Geometric requirements

Domain subdivision as the general algorithmic paradigm
Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 42 / 105

Introduction

Our Target: Explicitization Problems
From Implicit to Explicit Representation

Mesh generation [Problem (IV)]

Discrete Morse-Smale complex [Problem (V)]

Arrangement of hypersurfaces

Voronoi diagram of a collection of objects

Cell complex approximation of algebraic variety

Representation of Flow fields

From Parameter Space to Ambient Space
Why this class? Interface between Continuous and Discrete!

ENC Algorithms is ideal for this class

Interplay of Topological and Geometric requirements

Domain subdivision as the general algorithmic paradigm
Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 42 / 105

Introduction

Our Target: Explicitization Problems
From Implicit to Explicit Representation

Mesh generation [Problem (IV)]

Discrete Morse-Smale complex [Problem (V)]

Arrangement of hypersurfaces

Voronoi diagram of a collection of objects

Cell complex approximation of algebraic variety

Representation of Flow fields

From Parameter Space to Ambient Space
Why this class? Interface between Continuous and Discrete!

ENC Algorithms is ideal for this class

Interplay of Topological and Geometric requirements

Domain subdivision as the general algorithmic paradigm
Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 42 / 105

Introduction

Our Target: Explicitization Problems
From Implicit to Explicit Representation

Mesh generation [Problem (IV)]

Discrete Morse-Smale complex [Problem (V)]

Arrangement of hypersurfaces

Voronoi diagram of a collection of objects

Cell complex approximation of algebraic variety

Representation of Flow fields

From Parameter Space to Ambient Space
Why this class? Interface between Continuous and Discrete!

ENC Algorithms is ideal for this class

Interplay of Topological and Geometric requirements

Domain subdivision as the general algorithmic paradigm
Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 42 / 105

Introduction

Our Target: Explicitization Problems
From Implicit to Explicit Representation

Mesh generation [Problem (IV)]

Discrete Morse-Smale complex [Problem (V)]

Arrangement of hypersurfaces

Voronoi diagram of a collection of objects

Cell complex approximation of algebraic variety

Representation of Flow fields

From Parameter Space to Ambient Space
Why this class? Interface between Continuous and Discrete!

ENC Algorithms is ideal for this class

Interplay of Topological and Geometric requirements

Domain subdivision as the general algorithmic paradigm
Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 42 / 105

Introduction

Our Target: Explicitization Problems
From Implicit to Explicit Representation

Mesh generation [Problem (IV)]

Discrete Morse-Smale complex [Problem (V)]

Arrangement of hypersurfaces

Voronoi diagram of a collection of objects

Cell complex approximation of algebraic variety

Representation of Flow fields

From Parameter Space to Ambient Space
Why this class? Interface between Continuous and Discrete!

ENC Algorithms is ideal for this class

Interplay of Topological and Geometric requirements

Domain subdivision as the general algorithmic paradigm
Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 42 / 105

Introduction

Our Target: Explicitization Problems
From Implicit to Explicit Representation

Mesh generation [Problem (IV)]

Discrete Morse-Smale complex [Problem (V)]

Arrangement of hypersurfaces

Voronoi diagram of a collection of objects

Cell complex approximation of algebraic variety

Representation of Flow fields

From Parameter Space to Ambient Space
Why this class? Interface between Continuous and Discrete!

ENC Algorithms is ideal for this class

Interplay of Topological and Geometric requirements

Domain subdivision as the general algorithmic paradigm
Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 42 / 105

Introduction

Our Target: Explicitization Problems
From Implicit to Explicit Representation

Mesh generation [Problem (IV)]

Discrete Morse-Smale complex [Problem (V)]

Arrangement of hypersurfaces

Voronoi diagram of a collection of objects

Cell complex approximation of algebraic variety

Representation of Flow fields

From Parameter Space to Ambient Space
Why this class? Interface between Continuous and Discrete!

ENC Algorithms is ideal for this class

Interplay of Topological and Geometric requirements

Domain subdivision as the general algorithmic paradigm
Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 42 / 105

Introduction

Our Target: Explicitization Problems
From Implicit to Explicit Representation

Mesh generation [Problem (IV)]

Discrete Morse-Smale complex [Problem (V)]

Arrangement of hypersurfaces

Voronoi diagram of a collection of objects

Cell complex approximation of algebraic variety

Representation of Flow fields

From Parameter Space to Ambient Space
Why this class? Interface between Continuous and Discrete!

ENC Algorithms is ideal for this class

Interplay of Topological and Geometric requirements

Domain subdivision as the general algorithmic paradigm
Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 42 / 105

Introduction

Our Target: Explicitization Problems
From Implicit to Explicit Representation

Mesh generation [Problem (IV)]

Discrete Morse-Smale complex [Problem (V)]

Arrangement of hypersurfaces

Voronoi diagram of a collection of objects

Cell complex approximation of algebraic variety

Representation of Flow fields

From Parameter Space to Ambient Space
Why this class? Interface between Continuous and Discrete!

ENC Algorithms is ideal for this class

Interplay of Topological and Geometric requirements

Domain subdivision as the general algorithmic paradigm
Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 42 / 105

Introduction

Our Target: Explicitization Problems
From Implicit to Explicit Representation

Mesh generation [Problem (IV)]

Discrete Morse-Smale complex [Problem (V)]

Arrangement of hypersurfaces

Voronoi diagram of a collection of objects

Cell complex approximation of algebraic variety

Representation of Flow fields

From Parameter Space to Ambient Space
Why this class? Interface between Continuous and Discrete!

ENC Algorithms is ideal for this class

Interplay of Topological and Geometric requirements

Domain subdivision as the general algorithmic paradigm
Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 42 / 105

Introduction

Our Target: Explicitization Problems
From Implicit to Explicit Representation

Mesh generation [Problem (IV)]

Discrete Morse-Smale complex [Problem (V)]

Arrangement of hypersurfaces

Voronoi diagram of a collection of objects

Cell complex approximation of algebraic variety

Representation of Flow fields

From Parameter Space to Ambient Space
Why this class? Interface between Continuous and Discrete!

ENC Algorithms is ideal for this class

Interplay of Topological and Geometric requirements

Domain subdivision as the general algorithmic paradigm
Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 42 / 105

Introduction

Three Approaches to Meshing, I:

1. Algebraic Approach

Projection Based (Refinements of CAD)
E.g., [Mourrain and Tecourt (2005); Cheng, Gao, and Li (2005)]

Algebraic Subdivision Schemes
E.g., [Wolpert and Seidel (2005)]

Properties Exact; complete (usually); slow (in general); hard to

implement

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 43 / 105

Introduction

Three Approaches to Meshing, I:

1. Algebraic Approach

Projection Based (Refinements of CAD)
E.g., [Mourrain and Tecourt (2005); Cheng, Gao, and Li (2005)]

Algebraic Subdivision Schemes
E.g., [Wolpert and Seidel (2005)]

Properties Exact; complete (usually); slow (in general); hard to

implement

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 43 / 105

Introduction

Three Approaches to Meshing, I:

1. Algebraic Approach

Projection Based (Refinements of CAD)
E.g., [Mourrain and Tecourt (2005); Cheng, Gao, and Li (2005)]

Algebraic Subdivision Schemes
E.g., [Wolpert and Seidel (2005)]

Properties Exact; complete (usually); slow (in general); hard to

implement

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 43 / 105

Introduction

Three Approaches to Meshing, I:

1. Algebraic Approach

Projection Based (Refinements of CAD)
E.g., [Mourrain and Tecourt (2005); Cheng, Gao, and Li (2005)]

Algebraic Subdivision Schemes
E.g., [Wolpert and Seidel (2005)]

Properties Exact; complete (usually); slow (in general); hard to

implement

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 43 / 105

Introduction

Three Approaches to Meshing, I:

1. Algebraic Approach

Projection Based (Refinements of CAD)
E.g., [Mourrain and Tecourt (2005); Cheng, Gao, and Li (2005)]

Algebraic Subdivision Schemes
E.g., [Wolpert and Seidel (2005)]

Properties Exact; complete (usually); slow (in general); hard to

implement

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 43 / 105

Introduction

Three Approaches to Meshing, II:

2. Geometric Approach

Sampling Approach (Ray Shooting)
E.g., [Boissonnat & Oudot (2005); Cheng, Dey, Ramos and Ray (2004)]

Morse theory
E.g., [Stander & Hart (1997); Boissonnat, Cohen-Steiner & Vegter (2004)]

Properties Implementation gaps; requires “niceness conditions”

(Morseness, non-singularity, etc)

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 44 / 105

Introduction

Three Approaches to Meshing, II:

2. Geometric Approach

Sampling Approach (Ray Shooting)
E.g., [Boissonnat & Oudot (2005); Cheng, Dey, Ramos and Ray (2004)]

Morse theory
E.g., [Stander & Hart (1997); Boissonnat, Cohen-Steiner & Vegter (2004)]

Properties Implementation gaps; requires “niceness conditions”

(Morseness, non-singularity, etc)

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 44 / 105

Introduction

Three Approaches to Meshing, II:

2. Geometric Approach

Sampling Approach (Ray Shooting)
E.g., [Boissonnat & Oudot (2005); Cheng, Dey, Ramos and Ray (2004)]

Morse theory
E.g., [Stander & Hart (1997); Boissonnat, Cohen-Steiner & Vegter (2004)]

Properties Implementation gaps; requires “niceness conditions”

(Morseness, non-singularity, etc)

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 44 / 105

Introduction

Three Approaches to Meshing, II:

2. Geometric Approach

Sampling Approach (Ray Shooting)
E.g., [Boissonnat & Oudot (2005); Cheng, Dey, Ramos and Ray (2004)]

Morse theory
E.g., [Stander & Hart (1997); Boissonnat, Cohen-Steiner & Vegter (2004)]

Properties Implementation gaps; requires “niceness conditions”

(Morseness, non-singularity, etc)

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 44 / 105

Introduction

Three Approaches to Meshing, II:

2. Geometric Approach

Sampling Approach (Ray Shooting)
E.g., [Boissonnat & Oudot (2005); Cheng, Dey, Ramos and Ray (2004)]

Morse theory
E.g., [Stander & Hart (1997); Boissonnat, Cohen-Steiner & Vegter (2004)]

Properties Implementation gaps; requires “niceness conditions”

(Morseness, non-singularity, etc)

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 44 / 105

Introduction

Three Approaches to Meshing, III:

3. Numeric Approach

Curve Tracing Literature
[Ratschek & Rokne (2005)]

Subdivision Approach
[Marching Cube (1987); Snyder (1992); Plantinga & Vegter (2004)]

Properties Practical; easy to implement; adaptive; incomplete (until

recently)

This is our focus

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 45 / 105

Introduction

Three Approaches to Meshing, III:

3. Numeric Approach

Curve Tracing Literature
[Ratschek & Rokne (2005)]

Subdivision Approach
[Marching Cube (1987); Snyder (1992); Plantinga & Vegter (2004)]

Properties Practical; easy to implement; adaptive; incomplete (until

recently)

This is our focus

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 45 / 105

Introduction

Three Approaches to Meshing, III:

3. Numeric Approach

Curve Tracing Literature
[Ratschek & Rokne (2005)]

Subdivision Approach
[Marching Cube (1987); Snyder (1992); Plantinga & Vegter (2004)]

Properties Practical; easy to implement; adaptive; incomplete (until

recently)

This is our focus

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 45 / 105

Introduction

Three Approaches to Meshing, III:

3. Numeric Approach

Curve Tracing Literature
[Ratschek & Rokne (2005)]

Subdivision Approach
[Marching Cube (1987); Snyder (1992); Plantinga & Vegter (2004)]

Properties Practical; easy to implement; adaptive; incomplete (until

recently)

This is our focus

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 45 / 105

Introduction

Three Approaches to Meshing, III:

3. Numeric Approach

Curve Tracing Literature
[Ratschek & Rokne (2005)]

Subdivision Approach
[Marching Cube (1987); Snyder (1992); Plantinga & Vegter (2004)]

Properties Practical; easy to implement; adaptive; incomplete (until

recently)

This is our focus

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 45 / 105

Introduction

Three Approaches to Meshing, III:

3. Numeric Approach

Curve Tracing Literature
[Ratschek & Rokne (2005)]

Subdivision Approach
[Marching Cube (1987); Snyder (1992); Plantinga & Vegter (2004)]

Properties Practical; easy to implement; adaptive; incomplete (until

recently)

This is our focus

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 45 / 105

Introduction

Two Criteria of Meshing

I. Topological Correctness

The approximation S̃ is isotopic to the S.

S1 S2 S1 and S2 are
homeomorphic , but not
isotopic

Ambient space property!

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 46 / 105

Introduction

(contd.) Two Criteria of Meshing

II. Geometrical Accuracy (ε-closeness)

For any given ε > 0, the Hausdorff distance d(S, S̃) should not
exceed ε .

Set ε = ∞ to focus on isotopy.

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 47 / 105

Mini Summary

Want ENC algorithms for Explicitization Problems

Focus on (purely) Numerical Subdivision methods

Algorithms for Meshing Curves (and Surfaces)

What will be New?
Numerical methods that are exact and can handle singularities

Mini Summary

Want ENC algorithms for Explicitization Problems

Focus on (purely) Numerical Subdivision methods

Algorithms for Meshing Curves (and Surfaces)

What will be New?
Numerical methods that are exact and can handle singularities

Mini Summary

Want ENC algorithms for Explicitization Problems

Focus on (purely) Numerical Subdivision methods

Algorithms for Meshing Curves (and Surfaces)

What will be New?
Numerical methods that are exact and can handle singularities

Mini Summary

Want ENC algorithms for Explicitization Problems

Focus on (purely) Numerical Subdivision methods

Algorithms for Meshing Curves (and Surfaces)

What will be New?
Numerical methods that are exact and can handle singularities

Mini Summary

Want ENC algorithms for Explicitization Problems

Focus on (purely) Numerical Subdivision methods

Algorithms for Meshing Curves (and Surfaces)

What will be New?
Numerical methods that are exact and can handle singularities

Mini Summary

Want ENC algorithms for Explicitization Problems

Focus on (purely) Numerical Subdivision methods

Algorithms for Meshing Curves (and Surfaces)

What will be New?
Numerical methods that are exact and can handle singularities

Review of Subdivision Algorithms

Coming Up Next

1 Introduction

2 Review of Subdivision Algorithms

3 Cxy Algorithm

4 Extensions of Cxy

5 How to treat Boundary

6 How to treat Singularity

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 49 / 105

Review of Subdivision Algorithms

Subdivision Algorithms

Viewed as generalized binary search, organized as a quadtree.

Here is a typical output:

Figure: Approximation of the curve f (X ,Y) = Y 2−X2 +X3 +0.02 = 0

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 50 / 105

Review of Subdivision Algorithms

The Generic Subdivision Algorithm

INPUT: Curve S = f−1(0), box B0 ⊆R2, and ε > 0

OUTPUT: Graph G = (V ,E),
representing an isotopic ε-approximation of S∩B0.

1 Let Qin← {B0} be a queue of boxes
2 SUBDIVISION PHASE: Qout ← SUBDIVIDE(Qin)
3 REFINEMENT PHASE: Qref ← REFINE(Qout)
4 CONSTRUCTION PHASE: G← CONSTRUCT (Qref)

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 51 / 105

Review of Subdivision Algorithms

The Generic Subdivision Algorithm

INPUT: Curve S = f−1(0), box B0 ⊆R2, and ε > 0

OUTPUT: Graph G = (V ,E),
representing an isotopic ε-approximation of S∩B0.

1 Let Qin← {B0} be a queue of boxes
2 SUBDIVISION PHASE: Qout ← SUBDIVIDE(Qin)
3 REFINEMENT PHASE: Qref ← REFINE(Qout)
4 CONSTRUCTION PHASE: G← CONSTRUCT (Qref)

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 51 / 105

Review of Subdivision Algorithms

The Generic Subdivision Algorithm

INPUT: Curve S = f−1(0), box B0 ⊆R2, and ε > 0

OUTPUT: Graph G = (V ,E),
representing an isotopic ε-approximation of S∩B0.

1 Let Qin← {B0} be a queue of boxes
2 SUBDIVISION PHASE: Qout ← SUBDIVIDE(Qin)
3 REFINEMENT PHASE: Qref ← REFINE(Qout)
4 CONSTRUCTION PHASE: G← CONSTRUCT (Qref)

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 51 / 105

Review of Subdivision Algorithms

The Generic Subdivision Algorithm

INPUT: Curve S = f−1(0), box B0 ⊆R2, and ε > 0

OUTPUT: Graph G = (V ,E),
representing an isotopic ε-approximation of S∩B0.

1 Let Qin← {B0} be a queue of boxes
2 SUBDIVISION PHASE: Qout ← SUBDIVIDE(Qin)
3 REFINEMENT PHASE: Qref ← REFINE(Qout)
4 CONSTRUCTION PHASE: G← CONSTRUCT (Qref)

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 51 / 105

Review of Subdivision Algorithms

The Generic Subdivision Algorithm

INPUT: Curve S = f−1(0), box B0 ⊆R2, and ε > 0

OUTPUT: Graph G = (V ,E),
representing an isotopic ε-approximation of S∩B0.

1 Let Qin← {B0} be a queue of boxes
2 SUBDIVISION PHASE: Qout ← SUBDIVIDE(Qin)
3 REFINEMENT PHASE: Qref ← REFINE(Qout)
4 CONSTRUCTION PHASE: G← CONSTRUCT (Qref)

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 51 / 105

Review of Subdivision Algorithms

The Generic Subdivision Algorithm

INPUT: Curve S = f−1(0), box B0 ⊆R2, and ε > 0

OUTPUT: Graph G = (V ,E),
representing an isotopic ε-approximation of S∩B0.

1 Let Qin← {B0} be a queue of boxes
2 SUBDIVISION PHASE: Qout ← SUBDIVIDE(Qin)
3 REFINEMENT PHASE: Qref ← REFINE(Qout)
4 CONSTRUCTION PHASE: G← CONSTRUCT (Qref)

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 51 / 105

Review of Subdivision Algorithms

The Generic Subdivision Algorithm

INPUT: Curve S = f−1(0), box B0 ⊆R2, and ε > 0

OUTPUT: Graph G = (V ,E),
representing an isotopic ε-approximation of S∩B0.

1 Let Qin← {B0} be a queue of boxes
2 SUBDIVISION PHASE: Qout ← SUBDIVIDE(Qin)
3 REFINEMENT PHASE: Qref ← REFINE(Qout)
4 CONSTRUCTION PHASE: G← CONSTRUCT (Qref)

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 51 / 105

Review of Subdivision Algorithms

The Generic Subdivision Algorithm

INPUT: Curve S = f−1(0), box B0 ⊆R2, and ε > 0

OUTPUT: Graph G = (V ,E),
representing an isotopic ε-approximation of S∩B0.

1 Let Qin← {B0} be a queue of boxes
2 SUBDIVISION PHASE: Qout ← SUBDIVIDE(Qin)
3 REFINEMENT PHASE: Qref ← REFINE(Qout)
4 CONSTRUCTION PHASE: G← CONSTRUCT (Qref)

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 51 / 105

Review of Subdivision Algorithms

E.g., Marching Cube

Subdivision Phase
Subdivide until size of each box ≤ ε .

Construction Phase
(1) Evaluate sign of f at grid points, (2) insert vertices, and (3) connect
them in each box:

+

+

−

−

(b)

+

+

−

−

(d)

+

+−

−

(c)

+

+

(a)

+

−

Cannot guarantee the topological correctness

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 52 / 105

Review of Subdivision Algorithms

Parametrizability and Normal Variation

Parametrizable in X -direction

(d)(c)(b)(a)

(a) Parametrizable in X -direction

(b) Non-parametrizable in X - or Y -direction

(c) Small normal variation

(d) Big normal variation

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 53 / 105

Review of Subdivision Algorithms

Box Predicates

Three Conditions (Predicates)

C0 0 /∈ f (B) Exclusion

Cxy 0 /∈ fx(B) or 0 /∈ fy (B) Parametrizability

C1 0 /∈ fx(B)2 + fy(B)2 Small Normal Variation

Implementation: e.g., f (x,y) = x2−2xy +3y
Interval Arithmetic (Box):

◮ f (I,J) = I2−2IJ +3J

Interval Taylor (Disc):
◮ f (x ,y , r) = [f (x ,y)± r(|2(x − y)|+ |−2x +3|+3r2)]

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 54 / 105

Review of Subdivision Algorithms

Box Predicates

Three Conditions (Predicates)

C0 0 /∈ f (B) Exclusion

Cxy 0 /∈ fx(B) or 0 /∈ fy (B) Parametrizability

C1 0 /∈ fx(B)2 + fy(B)2 Small Normal Variation

Implementation: e.g., f (x,y) = x2−2xy +3y
Interval Arithmetic (Box):

◮ f (I,J) = I2−2IJ +3J

Interval Taylor (Disc):
◮ f (x ,y , r) = [f (x ,y)± r(|2(x − y)|+ |−2x +3|+3r2)]

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 54 / 105

Review of Subdivision Algorithms

Box Predicates

Three Conditions (Predicates)

C0 0 /∈ f (B) Exclusion

Cxy 0 /∈ fx(B) or 0 /∈ fy (B) Parametrizability

C1 0 /∈ fx(B)2 + fy(B)2 Small Normal Variation

Implementation: e.g., f (x,y) = x2−2xy +3y
Interval Arithmetic (Box):

◮ f (I,J) = I2−2IJ +3J

Interval Taylor (Disc):
◮ f (x ,y , r) = [f (x ,y)± r(|2(x − y)|+ |−2x +3|+3r2)]

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 54 / 105

Review of Subdivision Algorithms

Box Predicates

Three Conditions (Predicates)

C0 0 /∈ f (B) Exclusion

Cxy 0 /∈ fx(B) or 0 /∈ fy (B) Parametrizability

C1 0 /∈ fx(B)2 + fy(B)2 Small Normal Variation

Implementation: e.g., f (x,y) = x2−2xy +3y
Interval Arithmetic (Box):

◮ f (I,J) = I2−2IJ +3J

Interval Taylor (Disc):
◮ f (x ,y , r) = [f (x ,y)± r(|2(x − y)|+ |−2x +3|+3r2)]

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 54 / 105

Review of Subdivision Algorithms

Box Predicates

Three Conditions (Predicates)

C0 0 /∈ f (B) Exclusion

Cxy 0 /∈ fx(B) or 0 /∈ fy (B) Parametrizability

C1 0 /∈ fx(B)2 + fy(B)2 Small Normal Variation

Implementation: e.g., f (x,y) = x2−2xy +3y
Interval Arithmetic (Box):

◮ f (I,J) = I2−2IJ +3J

Interval Taylor (Disc):
◮ f (x ,y , r) = [f (x ,y)± r(|2(x − y)|+ |−2x +3|+3r2)]

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 54 / 105

Review of Subdivision Algorithms

Box Predicates

Three Conditions (Predicates)

C0 0 /∈ f (B) Exclusion

Cxy 0 /∈ fx(B) or 0 /∈ fy (B) Parametrizability

C1 0 /∈ fx(B)2 + fy(B)2 Small Normal Variation

Implementation: e.g., f (x,y) = x2−2xy +3y
Interval Arithmetic (Box):

◮ f (I,J) = I2−2IJ +3J

Interval Taylor (Disc):
◮ f (x ,y , r) = [f (x ,y)± r(|2(x − y)|+ |−2x +3|+3r2)]

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 54 / 105

Review of Subdivision Algorithms

Box Predicates

Three Conditions (Predicates)

C0 0 /∈ f (B) Exclusion

Cxy 0 /∈ fx(B) or 0 /∈ fy (B) Parametrizability

C1 0 /∈ fx(B)2 + fy(B)2 Small Normal Variation

Implementation: e.g., f (x,y) = x2−2xy +3y
Interval Arithmetic (Box):

◮ f (I,J) = I2−2IJ +3J

Interval Taylor (Disc):
◮ f (x ,y , r) = [f (x ,y)± r(|2(x − y)|+ |−2x +3|+3r2)]

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 54 / 105

Review of Subdivision Algorithms

Box Predicates

Three Conditions (Predicates)

C0 0 /∈ f (B) Exclusion

Cxy 0 /∈ fx(B) or 0 /∈ fy (B) Parametrizability

C1 0 /∈ fx(B)2 + fy(B)2 Small Normal Variation

Implementation: e.g., f (x,y) = x2−2xy +3y
Interval Arithmetic (Box):

◮ f (I,J) = I2−2IJ +3J

Interval Taylor (Disc):
◮ f (x ,y , r) = [f (x ,y)± r(|2(x − y)|+ |−2x +3|+3r2)]

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 54 / 105

Review of Subdivision Algorithms

Box Predicates

Three Conditions (Predicates)

C0 0 /∈ f (B) Exclusion

Cxy 0 /∈ fx(B) or 0 /∈ fy (B) Parametrizability

C1 0 /∈ fx(B)2 + fy(B)2 Small Normal Variation

Implementation: e.g., f (x,y) = x2−2xy +3y
Interval Arithmetic (Box):

◮ f (I,J) = I2−2IJ +3J

Interval Taylor (Disc):
◮ f (x ,y , r) = [f (x ,y)± r(|2(x − y)|+ |−2x +3|+3r2)]

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 54 / 105

Review of Subdivision Algorithms

Box Predicates

Three Conditions (Predicates)

C0 0 /∈ f (B) Exclusion

Cxy 0 /∈ fx(B) or 0 /∈ fy (B) Parametrizability

C1 0 /∈ fx(B)2 + fy(B)2 Small Normal Variation

Implementation: e.g., f (x,y) = x2−2xy +3y
Interval Arithmetic (Box):

◮ f (I,J) = I2−2IJ +3J

Interval Taylor (Disc):
◮ f (x ,y , r) = [f (x ,y)± r(|2(x − y)|+ |−2x +3|+3r2)]

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 54 / 105

Review of Subdivision Algorithms

Box Predicates

Three Conditions (Predicates)

C0 0 /∈ f (B) Exclusion

Cxy 0 /∈ fx(B) or 0 /∈ fy (B) Parametrizability

C1 0 /∈ fx(B)2 + fy(B)2 Small Normal Variation

Implementation: e.g., f (x,y) = x2−2xy +3y
Interval Arithmetic (Box):

◮ f (I,J) = I2−2IJ +3J

Interval Taylor (Disc):
◮ f (x ,y , r) = [f (x ,y)± r(|2(x − y)|+ |−2x +3|+3r2)]

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 54 / 105

Review of Subdivision Algorithms

Snyder’s Algorithm

Subdivision Phase
For each box B:

C0(B)⇒ discard

¬Cxy(B)⇒ subdivide B

Construction Phase
Determine intersections on boundary

Connect the intersections

(Non-trivial, unbounded complexity)

Boundary Analysis is not good (may not even terminate).

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 55 / 105

Review of Subdivision Algorithms

Snyder’s Algorithm

Subdivision Phase
For each box B:

C0(B)⇒ discard

¬Cxy(B)⇒ subdivide B

Construction Phase
Determine intersections on boundary

Connect the intersections

(Non-trivial, unbounded complexity)

Boundary Analysis is not good (may not even terminate).

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 55 / 105

Review of Subdivision Algorithms

Idea of Plantinga and Vegter
Introduce a strong predicate C1 predicate

Allow local NON-isotopy
Local incursion and excursions

B

B′

B

B′

◮ Locally, graph is not isotopic

Simple box geometry
(simpler than Snyder, less simple than Marching Cube)

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 56 / 105

Review of Subdivision Algorithms

Plantinga and Vegter’s Algorithm

Exploit the global isotopy

Subdivision Phase: For each box B:
◮ C0(B)⇒ discard
◮ ¬C1(B)⇒ subdivide B

Refinement Phase: Balance!

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 57 / 105

Review of Subdivision Algorithms

(contd.) Plantinga and Vegter’s Algorithm

Global, not local, isotopy

Construction Phase:

(b)

+

+

+

+

−

+

+

−

+

+

−

+

−

(e)

++

+ −

−

−+

(f)(d)

+−

(c)

+

(a)

+

− +

+

−

−

+

Figure: Extended Rules

Local isotopy is NOT good !

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 58 / 105

Cxy Algorithm

Coming Up Next

1 Introduction

2 Review of Subdivision Algorithms

3 Cxy Algorithm

4 Extensions of Cxy

5 How to treat Boundary

6 How to treat Singularity

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 59 / 105

Cxy Algorithm

Idea of Cxy Algorithm

Replace C1 by Cxy
C1(B) implies Cxy(B)

This would produce fewer boxes.

Exploit local non-isotopy
Local isotopy is an artifact!

This also avoid boundary analysis.

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 60 / 105

Cxy Algorithm

Obstructions to Cxy Idea

Replace C1 by Cxy
Just run PV Algorithm but using Cxy instead:

What can go wrong?

x

y

(b)

(a)

positive corner

vertex
B2B1

negative corner

KEY:

B′2 B′1

(−5,−1)

(5,1)

Figure: Elongated hyperbola

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 61 / 105

Cxy Algorithm

Cxy Algorithm
Subdivision and Refinement Phases: As before
Construction Phase:

(full-split)

− +

+

(a)

+/−

+

+

+ +

(c’)

+ +

+

+ − +

+ +

(c”)

+ +
−

+

−

+

+ − +

+ −
(b’)

+ +

+

+ − +

+ −

+ +

(b)

+

+ − +

+ +

(c)

+ +

−

+

−

+

+ − +

Figure: Resolution of Ambiguity

Nontrivial proof of correctness
Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 62 / 105

Mini Summary

What has Cxy Algorithm done?
◮ Exploit Parametrizability (like Snyder)
◮ Rejected local isotopy (like PV)

Up Next: More improvements

Mini Summary

What has Cxy Algorithm done?
◮ Exploit Parametrizability (like Snyder)
◮ Rejected local isotopy (like PV)

Up Next: More improvements

Mini Summary

What has Cxy Algorithm done?
◮ Exploit Parametrizability (like Snyder)
◮ Rejected local isotopy (like PV)

Up Next: More improvements

Mini Summary

What has Cxy Algorithm done?
◮ Exploit Parametrizability (like Snyder)
◮ Rejected local isotopy (like PV)

Up Next: More improvements

Mini Summary

What has Cxy Algorithm done?
◮ Exploit Parametrizability (like Snyder)
◮ Rejected local isotopy (like PV)

Up Next: More improvements

Mini Summary

What has Cxy Algorithm done?
◮ Exploit Parametrizability (like Snyder)
◮ Rejected local isotopy (like PV)

Up Next: More improvements

Extensions of Cxy

Coming Up Next

1 Introduction

2 Review of Subdivision Algorithms

3 Cxy Algorithm

4 Extensions of Cxy

5 How to treat Boundary

6 How to treat Singularity

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 64 / 105

Extensions of Cxy

Idea of Rectangular Cxy Algorithm

Exploit Anisotropy

(b) PV (c) Snyder

(d) Balanced Cxy (e) Rectangular Cxy

(a) Original Curve

“Heel Curve”
X2Y 2−X +Y −1 = 0 in
box
B = [(−2,−10),(10,2)]

Comparing PV, Snyder,
Cxy, Rect Cxy

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 65 / 105

Extensions of Cxy

Partial Splits for Rectangles

Splits

Full-splits:
B→ (B1,B2,B3,B4)

1

3

B14

4

B12

B342

B23

Horizontal
Half-split:

B→ (B12,B34)

Vertical Half-split:

B→ (B14,B23)

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 66 / 105

Extensions of Cxy

Rectangular Cxy Algorithm

What is needed
Aspect Ratio Bound: r > 1 arbitrary but fixed.

Splitting Procedure: do full-split if none of these hold

L0 : C0(B),Cxy (B) Terminate
Lout : C0(B12),C0(B34),C0(B14),C0(B23) Half-split
Lin : Cxy (B12),Cxy (B34),Cxy (B14),Cxy (B23) Half-split

Axis-dependent balancing: each node has a X -depth and
Y -depth.

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 67 / 105

Extensions of Cxy

Rectangular Cxy Algorithm

What is needed
Aspect Ratio Bound: r > 1 arbitrary but fixed.

Splitting Procedure: do full-split if none of these hold

L0 : C0(B),Cxy (B) Terminate
Lout : C0(B12),C0(B34),C0(B14),C0(B23) Half-split
Lin : Cxy (B12),Cxy (B34),Cxy (B14),Cxy (B23) Half-split

Axis-dependent balancing: each node has a X -depth and
Y -depth.

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 67 / 105

Extensions of Cxy

Rectangular Cxy Algorithm

What is needed
Aspect Ratio Bound: r > 1 arbitrary but fixed.

Splitting Procedure: do full-split if none of these hold

L0 : C0(B),Cxy (B) Terminate
Lout : C0(B12),C0(B34),C0(B14),C0(B23) Half-split
Lin : Cxy (B12),Cxy (B34),Cxy (B14),Cxy (B23) Half-split

Axis-dependent balancing: each node has a X -depth and
Y -depth.

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 67 / 105

Extensions of Cxy

Rectangular Cxy Algorithm

What is needed
Aspect Ratio Bound: r > 1 arbitrary but fixed.

Splitting Procedure: do full-split if none of these hold

L0 : C0(B),Cxy (B) Terminate
Lout : C0(B12),C0(B34),C0(B14),C0(B23) Half-split
Lin : Cxy (B12),Cxy (B34),Cxy (B14),Cxy (B23) Half-split

Axis-dependent balancing: each node has a X -depth and
Y -depth.

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 67 / 105

Extensions of Cxy

Rectangular Cxy Algorithm

What is needed
Aspect Ratio Bound: r > 1 arbitrary but fixed.

Splitting Procedure: do full-split if none of these hold

L0 : C0(B),Cxy (B) Terminate
Lout : C0(B12),C0(B34),C0(B14),C0(B23) Half-split
Lin : Cxy (B12),Cxy (B34),Cxy (B14),Cxy (B23) Half-split

Axis-dependent balancing: each node has a X -depth and
Y -depth.

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 67 / 105

Extensions of Cxy

Rectangular Cxy Algorithm

What is needed
Aspect Ratio Bound: r > 1 arbitrary but fixed.

Splitting Procedure: do full-split if none of these hold

L0 : C0(B),Cxy (B) Terminate
Lout : C0(B12),C0(B34),C0(B14),C0(B23) Half-split
Lin : Cxy (B12),Cxy (B34),Cxy (B14),Cxy (B23) Half-split

Axis-dependent balancing: each node has a X -depth and
Y -depth.

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 67 / 105

Extensions of Cxy

Rectangular Cxy Algorithm

What is needed
Aspect Ratio Bound: r > 1 arbitrary but fixed.

Splitting Procedure: do full-split if none of these hold

L0 : C0(B),Cxy (B) Terminate
Lout : C0(B12),C0(B34),C0(B14),C0(B23) Half-split
Lin : Cxy (B12),Cxy (B34),Cxy (B14),Cxy (B23) Half-split

Axis-dependent balancing: each node has a X -depth and
Y -depth.

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 67 / 105

Extensions of Cxy

Rectangular Cxy Algorithm

What is needed
Aspect Ratio Bound: r > 1 arbitrary but fixed.

Splitting Procedure: do full-split if none of these hold

L0 : C0(B),Cxy (B) Terminate
Lout : C0(B12),C0(B34),C0(B14),C0(B23) Half-split
Lin : Cxy (B12),Cxy (B34),Cxy (B14),Cxy (B23) Half-split

Axis-dependent balancing: each node has a X -depth and
Y -depth.

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 67 / 105

Extensions of Cxy

Ensuring Geometric Accuracy

Buffer Property of C1 predicate
Aspect Ratio ≤ 2:

a b w

S

v
a′

b′

q

u

p

B

e

Half-circle argument

Generalize C1(B) to C∗1(B). for any box B

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 68 / 105

Extensions of Cxy

Comparisons

Compare Rect Cxy to PV (note: Snyder has degeneracy).
◮ Curve X(XY −1) = 0, box Bs := [(−s,−s),(s,s)], Aspect ratio

bound r = 5: (JSO=Java stack overflow)

Increasing r can increase the performance of Rect Cxy.
◮ r = 80,s = 100⇒ Boxes/Time(ms) = 751/78

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 69 / 105

Extensions of Cxy

Comparisons (2)

Compare to Snyder’s Algorithm.
◮ Curve X(XY −1) = 0, box

Bn := [(−14×10n,−14×10n),(15×10n,15×10n)]. Maximum
aspect ratio r = 257.

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 70 / 105

Extensions of Cxy

Comparisons (2)

Compare to Snyder’s Algorithm.
◮ Curve X(XY −1) = 0, box

Bn := [(−14×10n,−14×10n),(15×10n,15×10n)]. Maximum
aspect ratio r = 257.

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 70 / 105

Extensions of Cxy

Comparisons (2)

Compare to Snyder’s Algorithm.
◮ Curve X(XY −1) = 0, box

Bn := [(−14×10n,−14×10n),(15×10n,15×10n)]. Maximum
aspect ratio r = 257.

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 70 / 105

Extensions of Cxy

Summary of Experimental Results

Cxy combines the advantages of Snyder & PV Algorithms.

Can be significantly faster than PV & Snyder’s algorithm.

Rectangular Cxy Algorithm can be significantly faster than
Balanced Cxy algorithm.

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 71 / 105

How to treat Boundary

Coming Up Next

1 Introduction

2 Review of Subdivision Algorithms

3 Cxy Algorithm

4 Extensions of Cxy

5 How to treat Boundary

6 How to treat Singularity

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 72 / 105

How to treat Boundary

Boundary (Summary)

An Obvious Way and a Better Way
◮ Exact Way : Recursively solve the problem on ∂B0

◮ Better Way : Exploit isotopy

Price for Better Way: Weaker Correctness Statement
For some B0 ⊆ B+

0 ⊆ B0⊕B(ε),
G is isotopic to S∩B+

0 .

APPLICATIONS:
◮ Singularity (below)
◮ Input region B0 to have “any” geometry, even holes, provided it

contains no singularities.

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 73 / 105

How to treat Boundary

Boundary (Summary)

An Obvious Way and a Better Way
◮ Exact Way : Recursively solve the problem on ∂B0

◮ Better Way : Exploit isotopy

Price for Better Way: Weaker Correctness Statement
For some B0 ⊆ B+

0 ⊆ B0⊕B(ε),
G is isotopic to S∩B+

0 .

APPLICATIONS:
◮ Singularity (below)
◮ Input region B0 to have “any” geometry, even holes, provided it

contains no singularities.

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 73 / 105

How to treat Boundary

Boundary (Summary)

An Obvious Way and a Better Way
◮ Exact Way : Recursively solve the problem on ∂B0

◮ Better Way : Exploit isotopy

Price for Better Way: Weaker Correctness Statement
For some B0 ⊆ B+

0 ⊆ B0⊕B(ε),
G is isotopic to S∩B+

0 .

APPLICATIONS:
◮ Singularity (below)
◮ Input region B0 to have “any” geometry, even holes, provided it

contains no singularities.

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 73 / 105

How to treat Boundary

Boundary (Summary)

An Obvious Way and a Better Way
◮ Exact Way : Recursively solve the problem on ∂B0

◮ Better Way : Exploit isotopy

Price for Better Way: Weaker Correctness Statement
For some B0 ⊆ B+

0 ⊆ B0⊕B(ε),
G is isotopic to S∩B+

0 .

APPLICATIONS:
◮ Singularity (below)
◮ Input region B0 to have “any” geometry, even holes, provided it

contains no singularities.

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 73 / 105

How to treat Boundary

Boundary (Summary)

An Obvious Way and a Better Way
◮ Exact Way : Recursively solve the problem on ∂B0

◮ Better Way : Exploit isotopy

Price for Better Way: Weaker Correctness Statement
For some B0 ⊆ B+

0 ⊆ B0⊕B(ε),
G is isotopic to S∩B+

0 .

APPLICATIONS:
◮ Singularity (below)
◮ Input region B0 to have “any” geometry, even holes, provided it

contains no singularities.

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 73 / 105

How to treat Boundary

Boundary (Summary)

An Obvious Way and a Better Way
◮ Exact Way : Recursively solve the problem on ∂B0

◮ Better Way : Exploit isotopy

Price for Better Way: Weaker Correctness Statement
For some B0 ⊆ B+

0 ⊆ B0⊕B(ε),
G is isotopic to S∩B+

0 .

APPLICATIONS:
◮ Singularity (below)
◮ Input region B0 to have “any” geometry, even holes, provided it

contains no singularities.

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 73 / 105

How to treat Boundary

Boundary (Summary)

An Obvious Way and a Better Way
◮ Exact Way : Recursively solve the problem on ∂B0

◮ Better Way : Exploit isotopy

Price for Better Way: Weaker Correctness Statement
For some B0 ⊆ B+

0 ⊆ B0⊕B(ε),
G is isotopic to S∩B+

0 .

APPLICATIONS:
◮ Singularity (below)
◮ Input region B0 to have “any” geometry, even holes, provided it

contains no singularities.

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 73 / 105

How to treat Boundary

Boundary (Summary)

An Obvious Way and a Better Way
◮ Exact Way : Recursively solve the problem on ∂B0

◮ Better Way : Exploit isotopy

Price for Better Way: Weaker Correctness Statement
For some B0 ⊆ B+

0 ⊆ B0⊕B(ε),
G is isotopic to S∩B+

0 .

APPLICATIONS:
◮ Singularity (below)
◮ Input region B0 to have “any” geometry, even holes, provided it

contains no singularities.

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 73 / 105

How to treat Boundary

Boundary (Summary)

An Obvious Way and a Better Way
◮ Exact Way : Recursively solve the problem on ∂B0

◮ Better Way : Exploit isotopy

Price for Better Way: Weaker Correctness Statement
For some B0 ⊆ B+

0 ⊆ B0⊕B(ε),
G is isotopic to S∩B+

0 .

APPLICATIONS:
◮ Singularity (below)
◮ Input region B0 to have “any” geometry, even holes, provided it

contains no singularities.

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 73 / 105

How to treat Boundary

Boundary (Summary)

An Obvious Way and a Better Way
◮ Exact Way : Recursively solve the problem on ∂B0

◮ Better Way : Exploit isotopy

Price for Better Way: Weaker Correctness Statement
For some B0 ⊆ B+

0 ⊆ B0⊕B(ε),
G is isotopic to S∩B+

0 .

APPLICATIONS:
◮ Singularity (below)
◮ Input region B0 to have “any” geometry, even holes, provided it

contains no singularities.

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 73 / 105

How to treat Singularity

Coming Up Next

1 Introduction

2 Review of Subdivision Algorithms

3 Cxy Algorithm

4 Extensions of Cxy

5 How to treat Boundary

6 How to treat Singularity

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 74 / 105

How to treat Singularity

Singularity : Algebraic Preliminary

Square-free part of f (X1, . . . ,Xn) ∈ Z[X1, . . . ,Xn]:
f

GCD(f ,∂1f ,...,∂nf)
= f

GCD(f ,∇(f))

For n = 1: square-free implies no singularities

Generally:
Singular set sing(f) := Zero(f ,∇(f)) has co-dimension ≥ 2.

For Curves:
we now assume f (X ,Y) ∈Z[X ,Y] has isolated singularities.

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 75 / 105

How to treat Singularity

Singularity : Algebraic Preliminary

Square-free part of f (X1, . . . ,Xn) ∈ Z[X1, . . . ,Xn]:
f

GCD(f ,∂1f ,...,∂nf)
= f

GCD(f ,∇(f))

For n = 1: square-free implies no singularities

Generally:
Singular set sing(f) := Zero(f ,∇(f)) has co-dimension ≥ 2.

For Curves:
we now assume f (X ,Y) ∈Z[X ,Y] has isolated singularities.

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 75 / 105

How to treat Singularity

Singularity : Algebraic Preliminary

Square-free part of f (X1, . . . ,Xn) ∈ Z[X1, . . . ,Xn]:
f

GCD(f ,∂1f ,...,∂nf)
= f

GCD(f ,∇(f))

For n = 1: square-free implies no singularities

Generally:
Singular set sing(f) := Zero(f ,∇(f)) has co-dimension ≥ 2.

For Curves:
we now assume f (X ,Y) ∈Z[X ,Y] has isolated singularities.

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 75 / 105

How to treat Singularity

Singularity : Algebraic Preliminary

Square-free part of f (X1, . . . ,Xn) ∈ Z[X1, . . . ,Xn]:
f

GCD(f ,∂1f ,...,∂nf)
= f

GCD(f ,∇(f))

For n = 1: square-free implies no singularities

Generally:
Singular set sing(f) := Zero(f ,∇(f)) has co-dimension ≥ 2.

For Curves:
we now assume f (X ,Y) ∈Z[X ,Y] has isolated singularities.

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 75 / 105

How to treat Singularity

Singularity : Algebraic Preliminary

Square-free part of f (X1, . . . ,Xn) ∈ Z[X1, . . . ,Xn]:
f

GCD(f ,∂1f ,...,∂nf)
= f

GCD(f ,∇(f))

For n = 1: square-free implies no singularities

Generally:
Singular set sing(f) := Zero(f ,∇(f)) has co-dimension ≥ 2.

For Curves:
we now assume f (X ,Y) ∈Z[X ,Y] has isolated singularities.

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 75 / 105

How to treat Singularity

Singularity : Algebraic Preliminary

Square-free part of f (X1, . . . ,Xn) ∈ Z[X1, . . . ,Xn]:
f

GCD(f ,∂1f ,...,∂nf)
= f

GCD(f ,∇(f))

For n = 1: square-free implies no singularities

Generally:
Singular set sing(f) := Zero(f ,∇(f)) has co-dimension ≥ 2.

For Curves:
we now assume f (X ,Y) ∈Z[X ,Y] has isolated singularities.

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 75 / 105

How to treat Singularity

Some Zero Bounds
Evaluation Bound Lemma
If f (X ,Y) has degree d and height L then

− logEV (f) = O(d2(L+d logd))

where EV (f) := min{|f (α)| : ∇(α) = 0, f (α) 6= 0}

Singularity Separation Bound [Y. (2006)]

Any two singularities of f = 0 are separated by

δ3 ≥ (16d+2256L812dd5)−d

Closest Approach Bound
The “locally closest” approach of a curve f = 0 to its own singularities is

δ4 ≥ (62e7)−30D(44 ·5 ·2L)−5D4

where D = max{2,deg f}

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 76 / 105

How to treat Singularity

Some Zero Bounds
Evaluation Bound Lemma
If f (X ,Y) has degree d and height L then

− logEV (f) = O(d2(L+d logd))

where EV (f) := min{|f (α)| : ∇(α) = 0, f (α) 6= 0}

Singularity Separation Bound [Y. (2006)]

Any two singularities of f = 0 are separated by

δ3 ≥ (16d+2256L812dd5)−d

Closest Approach Bound
The “locally closest” approach of a curve f = 0 to its own singularities is

δ4 ≥ (62e7)−30D(44 ·5 ·2L)−5D4

where D = max{2,deg f}

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 76 / 105

How to treat Singularity

Some Zero Bounds
Evaluation Bound Lemma
If f (X ,Y) has degree d and height L then

− logEV (f) = O(d2(L+d logd))

where EV (f) := min{|f (α)| : ∇(α) = 0, f (α) 6= 0}

Singularity Separation Bound [Y. (2006)]

Any two singularities of f = 0 are separated by

δ3 ≥ (16d+2256L812dd5)−d

Closest Approach Bound
The “locally closest” approach of a curve f = 0 to its own singularities is

δ4 ≥ (62e7)−30D(44 ·5 ·2L)−5D4

where D = max{2,deg f}

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 76 / 105

How to treat Singularity

Isolating Singularities

Mountain Pass Theorem
Consider F := f 2 + f 2

X + f 2
Y .

Any 2 singularities in B0 are connected by paths γ : [0,1]→R
2

satisfying
minγ(F([0,1])) ≥ ε0

where

ε0 := min{EV (f),min F(∂B0)}

Can provide a subdivision algorithm using F ,ε0 to isolate regions
containing singularities.

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 77 / 105

How to treat Singularity

Isolating Singularities

Mountain Pass Theorem
Consider F := f 2 + f 2

X + f 2
Y .

Any 2 singularities in B0 are connected by paths γ : [0,1]→R
2

satisfying
minγ(F([0,1])) ≥ ε0

where

ε0 := min{EV (f),min F(∂B0)}

Can provide a subdivision algorithm using F ,ε0 to isolate regions
containing singularities.

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 77 / 105

How to treat Singularity

Isolating Singularities

Mountain Pass Theorem
Consider F := f 2 + f 2

X + f 2
Y .

Any 2 singularities in B0 are connected by paths γ : [0,1]→R
2

satisfying
minγ(F([0,1])) ≥ ε0

where

ε0 := min{EV (f),min F(∂B0)}

Can provide a subdivision algorithm using F ,ε0 to isolate regions
containing singularities.

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 77 / 105

How to treat Singularity

Degree of Singularites

Degree of singularity := number of half-branches

Use two concentric boxes B2 ⊆ B1:
inner box has singularity, outer radius less than δ3,δ4

p

(3)

(1)

(2)

(2)

(1)

B1

B2

(b)(a)

(a) Singularity p with
3 types of components

(b) Concentric boxes
(B1,B2)

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 78 / 105

Mini Summary

We have seen how to combine Snyder and PV, and make several
practical improvements

Future Work: Extend 3D (and beyond?)

Improve efficiency of refinement

Improve efficiency of singularity
◮ Nonsingular case is fast
◮ Singular case is (currently) not fast

Mini Summary

We have seen how to combine Snyder and PV, and make several
practical improvements

Future Work: Extend 3D (and beyond?)

Improve efficiency of refinement

Improve efficiency of singularity
◮ Nonsingular case is fast
◮ Singular case is (currently) not fast

Mini Summary

We have seen how to combine Snyder and PV, and make several
practical improvements

Future Work: Extend 3D (and beyond?)

Improve efficiency of refinement

Improve efficiency of singularity
◮ Nonsingular case is fast
◮ Singular case is (currently) not fast

Mini Summary

We have seen how to combine Snyder and PV, and make several
practical improvements

Future Work: Extend 3D (and beyond?)

Improve efficiency of refinement

Improve efficiency of singularity
◮ Nonsingular case is fast
◮ Singular case is (currently) not fast

Mini Summary

We have seen how to combine Snyder and PV, and make several
practical improvements

Future Work: Extend 3D (and beyond?)

Improve efficiency of refinement

Improve efficiency of singularity
◮ Nonsingular case is fast
◮ Singular case is (currently) not fast

Mini Summary

We have seen how to combine Snyder and PV, and make several
practical improvements

Future Work: Extend 3D (and beyond?)

Improve efficiency of refinement

Improve efficiency of singularity
◮ Nonsingular case is fast
◮ Singular case is (currently) not fast

Mini Summary

We have seen how to combine Snyder and PV, and make several
practical improvements

Future Work: Extend 3D (and beyond?)

Improve efficiency of refinement

Improve efficiency of singularity
◮ Nonsingular case is fast
◮ Singular case is (currently) not fast

Mini Summary

We have seen how to combine Snyder and PV, and make several
practical improvements

Future Work: Extend 3D (and beyond?)

Improve efficiency of refinement

Improve efficiency of singularity
◮ Nonsingular case is fast
◮ Singular case is (currently) not fast

Mini Summary

We have seen how to combine Snyder and PV, and make several
practical improvements

Future Work: Extend 3D (and beyond?)

Improve efficiency of refinement

Improve efficiency of singularity
◮ Nonsingular case is fast
◮ Singular case is (currently) not fast

Summary of Lecture 2

Problems at the interface of continuous and discrete:
Explicitization Problems

ENC Algorithms for them are novel

Numerical Treatment of Singularity and Degeneracy
◮ Possible in theory, but severe practical challenge

Summary of Lecture 2

Problems at the interface of continuous and discrete:
Explicitization Problems

ENC Algorithms for them are novel

Numerical Treatment of Singularity and Degeneracy
◮ Possible in theory, but severe practical challenge

Summary of Lecture 2

Problems at the interface of continuous and discrete:
Explicitization Problems

ENC Algorithms for them are novel

Numerical Treatment of Singularity and Degeneracy
◮ Possible in theory, but severe practical challenge

Summary of Lecture 2

Problems at the interface of continuous and discrete:
Explicitization Problems

ENC Algorithms for them are novel

Numerical Treatment of Singularity and Degeneracy
◮ Possible in theory, but severe practical challenge

Summary of Lecture 2

Problems at the interface of continuous and discrete:
Explicitization Problems

ENC Algorithms for them are novel

Numerical Treatment of Singularity and Degeneracy
◮ Possible in theory, but severe practical challenge

Summary of Lecture 2

Problems at the interface of continuous and discrete:
Explicitization Problems

ENC Algorithms for them are novel

Numerical Treatment of Singularity and Degeneracy
◮ Possible in theory, but severe practical challenge

	Explicitization
	Introduction
	Review of Subdivision Algorithms
	Cxy Algorithm
	Extensions of Cxy
	How to treat Boundary
	How to treat Singularity

