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PART 1

Exact Numeric Computation and
the Zero Problem

“The history of the zero recognition problem is somewhat confused by
the fact that many people do not recognize it as a problem at all.”

— DANIEL RICHARDSON (1996)

“Algebra is generous, she often gives more than is asked of her.”

— JEAN LE ROND D’ALEMBERT (1717-83)
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Introduction: What is Geometry?

Coming Up Next

1 Introduction: What is Geometric Computation?

2 Five Examples of Geometric Computation

3 Exact Numeric Computation – A Synthesis

4 Exact Geometric Computation

5 Constructive Zero Bounds

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 5 / 115



Introduction: What is Geometry?

Introduction to Geometric Computation

PUZZLE 1:
Is Geometry discrete or continuous?

PUZZLE 2:
How come numbers do not arise in Computational Geometry?
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Introduction: What is Geometry?

What is Computational Geometry?

Geometric Objects

Prototype: Points, Lines, Circles (Euclidean Geometry)

Arrangement of hyperplanes and hypersurfaces

Zero sets and their Singularities

Semi-algebraic sets

Non-algebraic sets

Geometric complexes

Geometric Problems

Constructing geometric objects

Searching in geometric complexes or structures
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Introduction: What is Geometry?

Dual Descriptions of Geometry

Where do Geometric Objects Live?

As Points in Parametric Space P
◮ E.g., for lines given by L(a,b,c) := aX +bY + c = 0,

the space is P :=
{
(a,b,c) : a2 +b2 > 0

}
⊆R

3.

As Loci in Ambient Space A
◮ E.g., Locus of the Line(1,−2,0) is

the set
{
(x ,y) ∈R

2 : x −2y = 0
}
⊆A = R

2.

More involved example:
Cell Complexes (in the sense of algebraic topology)
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Introduction: What is Geometry?

Computation: Geometric vs. Algebraic

Where is the Computation?

Algebraic Computation: in parameter space P
◮ E.g., Gröbner bases
◮ Polynomial manipulation, Expensive (double exponential time)

Geometric Computation: in ambient space A
◮ E.g., Finding Zeros of Polynomials in R

n

◮ Numerical, Combinatorial, Adaptive (single exponential time)
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◮ E.g., Gröbner bases
◮ Polynomial manipulation, Expensive (double exponential time)

Geometric Computation: in ambient space A
◮ E.g., Finding Zeros of Polynomials in R

n

◮ Numerical, Combinatorial, Adaptive (single exponential time)

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 9 / 115



Introduction: What is Geometry?

Computation: Geometric vs. Algebraic

Where is the Computation?

Algebraic Computation: in parameter space P
◮ E.g., Gröbner bases
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(Contd.) Computation: Geometric vs. Algebraic

Answer to PUZZLE 1: “BOTH”
Geometry is discrete (in P) (algebraic computation)

Geometry is continuous (in A) (analytic computation)

Actions in the Ambient Space

Geometric Relationships on different Object types arise in A
◮ E.g., Point is ON/LEFT/RIGHT of a Line

Analytic properties of Objects comes from their loci

◮ E.g., Proximity, Approximations, Isotopy, etc
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Mini Summary

Geometry is discrete (algebraic view)

Geometry is continuous (analytic view)

Up Next : What do Computational Geometers think?
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Five Examples of Geometric Computation
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(I) Convex Hulls

(II) Euclidean Shortest Path
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(IV) Mesh Generation
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Five Examples of Geometric Computation

(I) Convex Hulls

Convex Hull of Points in R
n

n = 1: finding max and min
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Five Examples of Geometric Computation

(I) Convex Hulls

Convex Hull of Points in R
n

n = 1: finding max and min

n = 2,3: find a convex polygon or polytope

8

2
3

4

5

6

7

1
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Five Examples of Geometric Computation

(II) Euclidean Shortest Path (ESP)

Shortest Path amidst Polygonal Obstacles
Shortest path from p to q avoiding A,B,C
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ESP, contd.

Reduction to Dijkstra’s Algorithm

Combinatorial complexity: O(n2 logn) (negligible)

Sum of Square-roots Problem: Is ∑m
i=1 ai

√
bi = 0?

Not known to be polynomial-time!

Algebraic Approach: Repeated Squaring Method (Nontrivial for
Inequalites!)

◮ Ω(2m) (slow, unless you are lucky! (Illustrate))

Numerical Approach: Zero Bound Method
◮ O(log(1/|e|)) (fast, unless you are unlucky! (Illustrate))

Luck deals differently for the two approaches
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Disc Obstacles, contd.

Reduction to Dijkstra’s Algorithm (Again?)

Combinatorial complexity: O(n2 logn) (negligible, exercise)

Path length = γ +α
where γ is algebraic , but α is transcendental

Not even clear that we can compute this!

◮ Why? Numerical Halting Problem

Analogue of the Turing Halting Problem

◮ Also semi-decidable

Reference: my 2006 paper with E.Chang, S.W.Choi, D.Kwon,
H.Park.
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Five Examples of Geometric Computation

Addition/Subtraction of Arc Lengths

Simple Case: Unit Discs
Let A = [C,p,q,n] and A′ = [C′,p′,q′,n′] encode two arc lengths.
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Five Examples of Geometric Computation

Decidability [Chang/Choi/Kwon/Park/Y. (2005)]

Theorem (Unit Disc)
Shortest Path for unit disc obstacles is computable.

Theorem (Commensurable Radii)
Shortest Path for commensurable radii discs is computable.

No complexity Bounds!
Appeal to Baker’s Linear Form in Logarithms: |α0 +∑n

i=1 αi logβi | > B

Theorem (Commensurable Radii Complexity)
Shortest Paths for rational discs is in single-exponential time.

Rare positive result from Transcendental Number Theory

First transcendental geometric problem shown computable
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Five Examples of Geometric Computation

(IV) Mesh Generation
Meshing of Surfaces

Surface S = f−1(0) where f : Rn →R (n = 1,2,3)

Wants a triangulated surface S̃ that is isotopic to S

“Tangled Cube” “Chair”

Case n = 1 is root isolation !

Return to meshing in Lecture 2

Applications

Visualization, Graphics, Simulation, Modeling: prerequisite
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Five Examples of Geometric Computation

(V) Discrete Morse Theory

Edelsbrunner, Harer, Zomorodian (2003)

Methodology: discrete analogues of continuous concepts

◮ Differential geometry, Ricci flows, etc

Morse-Smale Complex of a surface S = f−1(0):

◮ Critical Points (max/min/saddle)

◮ Integral Lines

◮ OPEN: How to connect saddle to its
maximas

Exactness Bottleneck: this “Continuous-to-Discrete” transformation
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Coming Up Next

1 Introduction: What is Geometric Computation?

2 Five Examples of Geometric Computation

3 Exact Numeric Computation – A Synthesis

4 Exact Geometric Computation

5 Constructive Zero Bounds
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Two Worlds of Computing

(EX) Discrete, Combinatorial, Exact .

◮ Theoretical Computer Science, Computer Algebra

(AP) Continuous, Numerical, Approximate.
◮ Computational Science & Engineering (CS&E) or Physics
◮ Problems too hard in exact framework (e.g., 3D Ising Model)
◮ Even when exact solution is possible,...

The 2 Worlds meet in Geometry
◮ Solving Linear Systems (Gaussian vs. Gauss-Seidel)

◮ Linear Programming (Simplex vs. Interior-Point)

◮ Solving Numerical PDE (Symbolic vs. Numeric)
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Again, What is Geometry?

Geometry is always about zeros

Problem (I): Is a Point on a Hyperplane?

Problems (II),(III): Are two path lengths are equal?

Problems (IV),(V): Continuous-to-discrete transformations,
defined by zero sets

These zero decisions are captured by geometric predicates

View developed by CG’ers in robust geometric computation
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Four Computational Models for Geometry

How to compute in a Continuum (Rn)?

(EX) Algebraic Computational Model
(e.g., Real RAM, Blum-Shub-Smale model)

◮ PROBLEM: Zero is trivial

(EX’) Abstract Operational Models
(e.g., CG, Traub, Orientation, Ray shooting, Giftwrap)

◮ PROBLEM: Zero is hidden

(AP) Analytic Computational Model (e.g., Ko, Weihrauch)

◮ PROBLEM: Zero is undecidable

(AP’) Numerical Analysis Model (e.g., x ⊕ y = (x + y)(1+ ε))

◮ PROBLEM: Zero is abolished
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Other Issues

You cannot avoid the Zero Problem
(EX) How do you implement R?

(EX’) We may abstract away too much
◮ cf. Problems (II) and (III)

(AP) Only continuous functions are computable
◮ Geometry is a discontinuous phenomenon

(AP’) Approximate geometry maybe harder than exact geometry
◮ Exercise: Program a geometric algorithm w/o equality test
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Duality in Numbers

Physics Analogy:

◮

Discrete Continuous

Light particle wave
R field metric space
Numbers algebraic analytic

α =
√

15−
√

224 ≈ 0.0223
√

15−
√

224 is exact, but 0.0223 is more useful!
◮ WHY? Want the locus of α in the continuum
◮ JOKE: a physicist and an engineer were in a hot-air balloon...

How to capture this Duality?
◮ For exact computation, need algebraic representation.
◮ For analytic properties, need an approximation process
◮ What about deciding zero? (Algebraic or Numeric)
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Up Next : A General Solution
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EGC

Coming Up Next

1 Introduction: What is Geometric Computation?

2 Five Examples of Geometric Computation

3 Exact Numeric Computation – A Synthesis

4 Exact Geometric Computation

5 Constructive Zero Bounds
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EGC

The Universal Solution (EGC)

Key Principle of Exact Geometric Computation (EGC)
Algorithm = Sequence of Steps

Steps = Construction x := y +2; or Tests if x = 0 goto L

Geometric relations determined by Tests (Zero or Sign)

THUS: if Tests are error free , the Geometry is exact

Numerical robustness follows! Take-home message
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EGC

Implementing the Universal Solution (Core
Library)
Any programmer can access this capability

#define Core Level 3

#include ”CORE.h”

.... Standard C++ Program ....

Numerical Accuracy API

Level 1: Machine Accuracy (int, long, float, double)

Level 2: Arbitrary Accuracy (BigInt, BigRat, BigFloat)

Level 3: Guaranteed Accuracy (Expr)

Program should compile at every Accuracy Level
◮ Promotion/Demotion Rules: e.g., double→BigFloat→Expr
Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 33 / 115
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EGC

What is Achieved?

Features
Removed numerical non-robustness from geometry (!)

Algorithm-independent solution to non-robustness

Standard (Euclidean) geometry (why important?)

Exactness in geometry ( can use approximate numbers !)

Implemented in LEDA , CGAL , Core Library

Other Implications
A new approach to do algebraic number computation

In Euclidean Shortest Path, we need the signs of expressions like
∑100

i=1 ai
√

bi .
Standard algebraic approach is doomed
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Zero Bounds

Coming Up Next

1 Introduction: What is Geometric Computation?

2 Five Examples of Geometric Computation

3 Exact Numeric Computation – A Synthesis

4 Exact Geometric Computation

5 Constructive Zero Bounds
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Zero Bounds

Adaptive Zero Determination

Core of Core Library
MUST not use algebraic method!

Numerical method based on Zero Bounds

Let Ω = {+,−,×, . . .}∪Z be a class of operators

◮ ZERO(Ω) is the corresponding zero problem

A Zero Bound for Ω is a function B : Expr(Ω) →R≥0 such that
e ∈ Expr(Ω) is non-zero implies

|e| > B(e)

How to use zero bounds? Combine with approximation.

Zero Bound is the bottleneck only in case of zero.
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Zero Bounds

Some Constructive Bounds

Degree-Measure Bounds [Mignotte (1982)], [Sekigawa (1997)]

Degree-Height, Degree-Length [Yap-Dubé (1994)]

BFMS Bound [Burnikel et al (1989)]

Eigenvalue Bounds [Scheinerman (2000)]

Conjugate Bounds [Li-Yap (2001)]

BFMSS Bound [Burnikel et al (2001)]
◮ One of the best bounds

k-ary Method [Pion-Yap (2002)]
◮ Idea: division is bad. k-ary numbers are good
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Zero Bounds

An Example

Consider the e =
√

x +
√

y −
√

x + y +2
√

xy .

Assume x = a/b and y = c/d where a,b,c,d are L-bit integers.

Then Li-Yap Bound is 28L+60 bits, BFMSS is 96L+30 and
Degree-Measure is 80L+56.

L 50 100 500 5000
BFMS 0.637 9.12 101.9 202.9

Measure 0.063 0.07 1.93 15.26
BFMSS 0.073 0.61 1.95 15.41
Li-Yap 0.013 0.07 1.88 1.89
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Nature of Geometric Computation:
◮ Discrete as well as Continuous
◮ Algebraic as well as Analytic

It is possible to provide a fairly general solution (ENC) that
combines the dual nature of numbers

Up Next : Directly design ENC algorithms
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