Tutorial: Exact Numerical Computation in Algebra and Geometry

Chee K. Yap

Courant Institute of Mathematical Sciences New York University

and Korea Institute of Advanced Study (KIAS) Seoul, Korea

34th ISSAC, July 28-31, 2009

ヨトィヨト

Exact Numeric Computation and the Zero Problem

"The history of the zero recognition problem is somewhat confused by the fact that many people do not recognize it as a problem at all."

- DANIEL RICHARDSON (1996)

"Algebra is generous, she often gives more than is asked of her."

– Jean Le Rond D'Alembert (1717-83)

Yap (NYU)

Tutorial: Exact Numerical Computation

ISSAC, July 2009 4 / 115

Coming Up Next

Introduction: What is Geometric Computation?

2) Five Examples of Geometric Computation

3 Exact Numeric Computation – A Synthesis

4 Exact Geometric Computation

• • = • • = •

• PUZZLE 1:

Is Geometry discrete or continuous?

• PUZZLE 2:

• PUZZLE 1:

Is Geometry discrete or continuous?

• PUZZLE 2:

• PUZZLE 1:

Is Geometry discrete or continuous?

• PUZZLE 2:

• PUZZLE 1:

Is Geometry discrete or continuous?

• PUZZLE 2:

Geometric Objects

- Prototype: Points, Lines, Circles (Euclidean Geometry)
- Arrangement of hyperplanes and hypersurfaces
- Zero sets and their Singularities
- Semi-algebraic sets
- Non-algebraic sets
- Geometric complexes

Geometric Problems

- Constructing geometric objects
- Searching in geometric complexes or structures

イロト イヨト イヨト

Geometric Objects

- Prototype: Points, Lines, Circles (Euclidean Geometry)
- Arrangement of hyperplanes and hypersurfaces
- Zero sets and their Singularities
- Semi-algebraic sets
- Non-algebraic sets
- Geometric complexes

Geometric Problems

- Constructing geometric objects
- Searching in geometric complexes or structures

イロト イヨト イヨト

Geometric Objects

- Prototype: Points, Lines, Circles (Euclidean Geometry)
- Arrangement of hyperplanes and hypersurfaces
- Zero sets and their Singularities
- Semi-algebraic sets
- Non-algebraic sets
- Geometric complexes

Geometric Problems

- Constructing geometric objects
- Searching in geometric complexes or structures

イロト イヨト イヨト

Geometric Objects

- Prototype: Points, Lines, Circles (Euclidean Geometry)
- Arrangement of hyperplanes and hypersurfaces
- Zero sets and their Singularities
- Semi-algebraic sets
- Non-algebraic sets
- Geometric complexes

Geometric Problems

- Constructing geometric objects
- Searching in geometric complexes or structures

Geometric Objects

- Prototype: Points, Lines, Circles (Euclidean Geometry)
- Arrangement of hyperplanes and hypersurfaces
- Zero sets and their Singularities
- Semi-algebraic sets
- Non-algebraic sets
- Geometric complexes

Geometric Problems

- Constructing geometric objects
- Searching in geometric complexes or structures

Geometric Objects

- Prototype: Points, Lines, Circles (Euclidean Geometry)
- Arrangement of hyperplanes and hypersurfaces
- Zero sets and their Singularities
- Semi-algebraic sets
- Non-algebraic sets
- Geometric complexes

Geometric Problems

- Constructing geometric objects
- Searching in geometric complexes or structures

Geometric Objects

- Prototype: Points, Lines, Circles (Euclidean Geometry)
- Arrangement of hyperplanes and hypersurfaces
- Zero sets and their Singularities
- Semi-algebraic sets
- Non-algebraic sets
- Geometric complexes

Geometric Problems

- Constructing geometric objects
- Searching in geometric complexes or structures

Geometric Objects

- Prototype: Points, Lines, Circles (Euclidean Geometry)
- Arrangement of hyperplanes and hypersurfaces
- Zero sets and their Singularities
- Semi-algebraic sets
- Non-algebraic sets
- Geometric complexes

Geometric Problems

- Constructing geometric objects
- Searching in geometric complexes or structures

Geometric Objects

- Prototype: Points, Lines, Circles (Euclidean Geometry)
- Arrangement of hyperplanes and hypersurfaces
- Zero sets and their Singularities
- Semi-algebraic sets
- Non-algebraic sets
- Geometric complexes

Geometric Problems

- Constructing geometric objects
- Searching in geometric complexes or structures

Geometric Objects

- Prototype: Points, Lines, Circles (Euclidean Geometry)
- Arrangement of hyperplanes and hypersurfaces
- Zero sets and their Singularities
- Semi-algebraic sets
- Non-algebraic sets
- Geometric complexes

Geometric Problems

- Constructing geometric objects
- Searching in geometric complexes or structures

Geometric Objects

- Prototype: Points, Lines, Circles (Euclidean Geometry)
- Arrangement of hyperplanes and hypersurfaces
- Zero sets and their Singularities
- Semi-algebraic sets
- Non-algebraic sets
- Geometric complexes

Geometric Problems

- Constructing geometric objects
- Searching in geometric complexes or structures

Where do Geometric Objects Live?

• As Points in Parametric Space \mathcal{P}

E.g., for lines given by L(a, b, c) := aX + bY + c = 0, the space is $\mathcal{P} := \{(a, b, c) : a^2 + b^2 > 0\} \subseteq \mathbb{R}^3$.

• As Loci in Ambient Space A

E.g., Locus of the Line(1, -2, 0) is the set $\{(x, y) \in \mathbb{R}^2 : x - 2y = 0\} \subseteq \mathcal{A} = \mathbb{R}^2$.

More involved example:
 Cell Complexes (in the sense of algebra

Cell Complexes (in the sense of algebraic topology)

同下 イヨト イヨ

Where do Geometric Objects Live?

As Points in Parametric Space P

E.g., for lines given by L(a, b, c) := aX + bY + c = 0, the space is $\mathcal{P} := \{(a, b, c) : a^2 + b^2 > 0\} \subseteq \mathbb{R}^3$.

• As Loci in Ambient Space \mathcal{A}

E.g., Locus of the Line(1, -2, 0) is the set $\{(x, y) \in \mathbb{R}^2 : x - 2y = 0\} \subseteq \mathcal{A} = \mathbb{R}^2$.

More involved example:

Cell Complexes (in the sense of algebraic topology)

伺 ト イ ヨ ト イ ヨ ト

Where do Geometric Objects Live?

As Points in Parametric Space P

E.g., for lines given by L(a, b, c) := aX + bY + c = 0, the space is $\mathcal{P} := \{(a, b, c) : a^2 + b^2 > 0\} \subseteq \mathbb{R}^3$.

• As Loci in Ambient Space A

E.g., Locus of the Line(1, -2, 0) is the set $\{(x, y) \in \mathbb{R}^2 : x - 2y = 0\} \subseteq \mathcal{A} = \mathbb{R}^2$.

More involved example:

Cell Complexes (in the sense of algebraic topology)

日本・モン・モン

Where do Geometric Objects Live?

- As Points in Parametric Space P
 - E.g., for lines given by L(a, b, c) := aX + bY + c = 0, the space is $\mathcal{P} := \{(a, b, c) : a^2 + b^2 > 0\} \subseteq \mathbb{R}^3$.
- As Loci in Ambient Space A
 - E.g., Locus of the Line(1, -2, 0) is the set $\{(x, y) \in \mathbb{R}^2 : x - 2y = 0\} \subseteq \mathcal{A} = \mathbb{R}^2$.

More involved example:
 Cell Complexes (in the sense of algebraic topology)

回とくほとくほど

Where do Geometric Objects Live?

- As Points in Parametric Space P
 - E.g., for lines given by L(a, b, c) := aX + bY + c = 0, the space is $\mathcal{P} := \{(a, b, c) : a^2 + b^2 > 0\} \subseteq \mathbb{R}^3$.
- As Loci in Ambient Space A
 - E.g., Locus of the Line(1, -2, 0) is the set $\{(x, y) \in \mathbb{R}^2 : x - 2y = 0\} \subseteq \mathcal{A} = \mathbb{R}^2$.

More involved example:
 Cell Complexes (in the sense of algebraic topology)

Where do Geometric Objects Live?

As Points in Parametric Space P

E.g., for lines given by L(a, b, c) := aX + bY + c = 0, the space is $\mathcal{P} := \{(a, b, c) : a^2 + b^2 > 0\} \subseteq \mathbb{R}^3$.

As Loci in Ambient Space A

E.g., Locus of the Line(1, -2, 0) is the set $\{(x, y) \in \mathbb{R}^2 : x - 2y = 0\} \subseteq \mathcal{A} = \mathbb{R}^2$.

More involved example:
 Cell Complexes (in the sense of algebraic topology)

Where do Geometric Objects Live?

As Points in Parametric Space P

E.g., for lines given by L(a, b, c) := aX + bY + c = 0, the space is $\mathcal{P} := \{(a, b, c) : a^2 + b^2 > 0\} \subseteq \mathbb{R}^3$.

As Loci in Ambient Space A

E.g., Locus of the Line(1, -2, 0) is the set $\{(x, y) \in \mathbb{R}^2 : x - 2y = 0\} \subseteq \mathcal{A} = \mathbb{R}^2$.

More involved example:
 Cell Complexes (in the sense of algebraic topology)

Where is the Computation?

- Algebraic Computation: in parameter space \mathcal{P}
 - E.g., Gröbner bases
 - Polynomial manipulation, Expensive (double exponential time)
- Geometric Computation: in ambient space A
 - E.g., Finding Zeros of Polynomials in \mathbb{R}^n
 - Numerical, Combinatorial, Adaptive (single exponential time)

Where is the Computation?

- Algebraic Computation: in parameter space \mathcal{P}
 - E.g., Gröbner bases
 - Polynomial manipulation, Expensive (double exponential time)
- Geometric Computation: in ambient space A
 - E.g., Finding Zeros of Polynomials in \mathbb{R}^n
 - Numerical, Combinatorial, Adaptive (single exponential time)

• • • • • • •

Where is the Computation?

- Algebraic Computation: in parameter space \mathcal{P}
 - E.g., Gröbner bases
 - Polynomial manipulation, Expensive (double exponential time)
- Geometric Computation: in ambient space A
 - E.g., Finding Zeros of Polynomials in \mathbb{R}^n
 - Numerical, Combinatorial, Adaptive (single exponential time)

Where is the Computation?

- Algebraic Computation: in parameter space \mathcal{P}
 - E.g., Gröbner bases
 - Polynomial manipulation, Expensive (double exponential time)
- Geometric Computation: in ambient space A
 - E.g., Finding Zeros of Polynomials in \mathbb{R}^n
 - Numerical, Combinatorial, Adaptive (single exponential time)

向下 イヨト イヨト

Where is the Computation?

- Algebraic Computation: in parameter space \mathcal{P}
 - E.g., Gröbner bases
 - Polynomial manipulation, Expensive (double exponential time)
- Geometric Computation: in ambient space A
 - E.g., Finding Zeros of Polynomials in \mathbb{R}^n
 - Numerical, Combinatorial, Adaptive (single exponential time)

• • = • • = •

Where is the Computation?

- Algebraic Computation: in parameter space \mathcal{P}
 - E.g., Gröbner bases
 - Polynomial manipulation, Expensive (double exponential time)
- Geometric Computation: in ambient space A
 - E.g., Finding Zeros of Polynomials in \mathbb{R}^n
 - Numerical, Combinatorial, Adaptive (single exponential time)

• • = • • = •

Answer to PUZZLE 1: "BOTH"

- Geometry is discrete (in \mathcal{P}) (algebraic computation)
- Geometry is continuous (in A) (analytic computation)

Actions in the Ambient Space

Geometric Relationships on different Object types arise in A
 E.g., Point is ON/LEFT/RIGHT of a Line

・ロト ・四ト ・ヨト ・ヨト

• Analytic properties of Objects comes from their loci

Answer to PUZZLE 1: "BOTH"

- Geometry is discrete (in \mathcal{P}) (algebraic computation)
- Geometry is continuous (in \mathcal{A}) (analytic computation)

Actions in the Ambient Space

Geometric Relationships on different Object types arise in A
 E.g., Point is ON/LEFT/RIGHT of a Line

・ロト ・四ト ・ヨト ・ヨト

• Analytic properties of Objects comes from their loci

Answer to PUZZLE 1: "BOTH"

- Geometry is discrete (in \mathcal{P}) (algebraic computation)
- Geometry is continuous (in A) (analytic computation)

Actions in the Ambient Space

Geometric Relationships on different Object types arise in A
 E.g., Point is ON/LEFT/RIGHT of a Line

• Analytic properties of Objects comes from their loci

Answer to PUZZLE 1: "BOTH"

- Geometry is discrete (in \mathcal{P}) (algebraic computation)
- Geometry is continuous (in A) (analytic computation)

Actions in the Ambient Space

Geometric Relationships on different Object types arise in A
 E.g., Point is ON/LEFT/RIGHT of a Line

• Analytic properties of Objects comes from their loci

Answer to PUZZLE 1: "BOTH"

- Geometry is discrete (in \mathcal{P}) (algebraic computation)
- Geometry is continuous (in A) (analytic computation)

Actions in the Ambient Space

Geometric Relationships on different Object types arise in A
 E.g., Point is ON/LEFT/RIGHT of a Line

• Analytic properties of Objects comes from their loci

(Contd.) Computation: Geometric vs. Algebraic

Answer to PUZZLE 1: "BOTH"

- Geometry is discrete (in \mathcal{P}) (algebraic computation)
- Geometry is continuous (in A) (analytic computation)

Actions in the Ambient Space

Geometric Relationships on different Object types arise in A
 E.g., Point is ON/LEFT/RIGHT of a Line

- Analytic properties of Objects comes from their loci
 - E.g., Proximity, Approximations, Isotopy, etc

(Contd.) Computation: Geometric vs. Algebraic

Answer to PUZZLE 1: "BOTH"

- Geometry is discrete (in \mathcal{P}) (algebraic computation)
- Geometry is continuous (in A) (analytic computation)

Actions in the Ambient Space

Geometric Relationships on different Object types arise in A
 E.g., Point is ON/LEFT/RIGHT of a Line

- Analytic properties of Objects comes from their loci
 - E.g., Proximity, Approximations, Isotopy, etc

(Contd.) Computation: Geometric vs. Algebraic

Answer to PUZZLE 1: "BOTH"

- Geometry is discrete (in \mathcal{P}) (algebraic computation)
- Geometry is continuous (in A) (analytic computation)

Actions in the Ambient Space

Geometric Relationships on different Object types arise in A
 E.g., Point is ON/LEFT/RIGHT of a Line

- Analytic properties of Objects comes from their loci
 - E.g., Proximity, Approximations, Isotopy, etc

Geometry is discrete (algebraic view)

- Geometry is continuous (analytic view)
- Up Next : What do Computational Geometers think?

(日) (四) (분) (분) (분) (분)

- Geometry is discrete (algebraic view)
- Geometry is continuous (analytic view)
- Up Next : What do Computational Geometers think?

<ロ> (四) (四) (注) (注) (注) (注)

- Geometry is discrete (algebraic view)
- Geometry is continuous (analytic view)
- Up Next: What do Computational Geometers think?

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ ―臣 _ のへ⊙

- Geometry is discrete (algebraic view)
- Geometry is continuous (analytic view)
- Up Next: What do Computational Geometers think?

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ ―臣 _ のへ⊙

- Geometry is discrete (algebraic view)
- Geometry is continuous (analytic view)
- Up Next: What do Computational Geometers think?

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ ―臣 _ のへ⊙

Coming Up Next

Introduction: What is Geometric Computation?

2 Five Examples of Geometric Computation

3 Exact Numeric Computation – A Synthesis

4 Exact Geometric Computation

Constructive Zero Bounds

• E > < E</p>

(I) Convex Hulls

- (II) Euclidean Shortest Path
- (III) Disc Avoiding Shortest Path
- (IV) Mesh Generation
- (V) Discrete Morse Theory

- (I) Convex Hulls
- (II) Euclidean Shortest Path
- (III) Disc Avoiding Shortest Path
- (IV) Mesh Generation
- (V) Discrete Morse Theory

- (I) Convex Hulls
- (II) Euclidean Shortest Path
- (III) Disc Avoiding Shortest Path
- (IV) Mesh Generation
- (V) Discrete Morse Theory

- (I) Convex Hulls
- (II) Euclidean Shortest Path
- (III) Disc Avoiding Shortest Path
- (IV) Mesh Generation
- (V) Discrete Morse Theory

- (I) Convex Hulls
- (II) Euclidean Shortest Path
- (III) Disc Avoiding Shortest Path
- (IV) Mesh Generation
- (V) Discrete Morse Theory

< ∃⇒

- (I) Convex Hulls
- (II) Euclidean Shortest Path
- (III) Disc Avoiding Shortest Path
- (IV) Mesh Generation
- (V) Discrete Morse Theory

< ∃⇒

- (I) Convex Hulls
- (II) Euclidean Shortest Path
- (III) Disc Avoiding Shortest Path
- (IV) Mesh Generation
- (V) Discrete Morse Theory

< ∃⇒

Convex Hull of Points in \mathbb{R}^n

• n = 1: finding max and min

回とくほとくほど

Convex Hull of Points in \mathbb{R}^n

- n = 1: finding max and min
- n = 2, 3: find a convex polygon or polytope

(4) E (4) E (4)

Convex Hull of Points in \mathbb{R}^n

- *n* = 1: finding max and min
- n = 2, 3: find a convex polygon or polytope

- E > - E >

Convex Hull of Points in \mathbb{R}^n

- n = 1: finding max and min
- n = 2, 3: find a convex polygon or polytope

Convex Hull of Points in \mathbb{R}^n

- n = 1: finding max and min
- n = 2, 3: find a convex polygon or polytope

Can be reduced to a single predicate $Orientation(P_0, P_1, ..., P_n)$

• • = • • =

Convex Hull of Points in \mathbb{R}^n

- n = 1: finding max and min
- n = 2, 3: find a convex polygon or polytope

Can be reduced to a single predicate $Orientation(P_0, P_1, ..., P_n)$

Main issue is combinatorial in nature

ISSAC, July 2009 14 / 115

Convex Hull of Points in \mathbb{R}^n

- n = 1: finding max and min
- n = 2, 3: find a convex polygon or polytope

Can be reduced to a single predicate $Orientation(P_0, P_1, ..., P_n)$

Main issue is combinatorial in nature

ISSAC, July 2009 14 / 115

Convex Hull of Points in \mathbb{R}^n

- n = 1: finding max and min
- n = 2, 3: find a convex polygon or polytope

Can be reduced to a single predicate $Orientation(P_0, P_1, ..., P_n)$

Main issue is combinatorial in nature

ISSAC, July 2009 14 / 115

Shortest Path amidst Polygonal Obstacles

Shortest path from p to q avoiding A, B, C

Shortest Path amidst Polygonal Obstacles

• Shortest path from p to q avoiding A, B, C

Shortest Path amidst Polygonal Obstacles

Shortest path from p to q avoiding A, B, C

A B K A B K

Shortest Path amidst Polygonal Obstacles

Shortest path from p to q avoiding A, B, C

A B K A B K

Shortest Path amidst Polygonal Obstacles

Shortest path from p to q avoiding A, B, C

(E)

Shortest Path amidst Polygonal Obstacles

Shortest path from p to q avoiding A, B, C

Shortest Path amidst Polygonal Obstacles

Shortest path from p to q avoiding A, B, C

Shortest Path amidst Polygonal Obstacles

Shortest path from p to q avoiding A, B, C

Shortest Path amidst Polygonal Obstacles

• Shortest path from *p* to *q* avoiding *A*, *B*, *C*

Shortest Path amidst Polygonal Obstacles

• Shortest path from *p* to *q* avoiding *A*, *B*, *C*

Shortest Path amidst Polygonal Obstacles

Shortest path from p to q avoiding A, B, C

Segment length is a square-root

Shortest Path amidst Polygonal Obstacles

Shortest path from p to q avoiding A, B, C

Segment length is a square-root

(II) Euclidean Shortest Path (ESP)

Shortest Path amidst Polygonal Obstacles

Shortest path from p to q avoiding A, B, C

Segment length is a square-root

Reduction to Dijkstra's Algorithm

- Combinatorial complexity: $O(n^2 \log n)$ (negligible)
- Sum of Square-roots Problem: Is $\sum_{i=1}^{m} a_i \sqrt{b_i} = 0$?

(日) (四) (三) (三)

- Not known to be polynomial-time!
- Algebraic Approach: Repeated Squaring Method (Nontrivial for
- Numerical Approach: Zero Bound Method

Reduction to Dijkstra's Algorithm

- Combinatorial complexity: $O(n^2 \log n)$ (negligible)
- Sum of Square-roots Problem:

Is
$$\sum_{i=1}^m a_i \sqrt{b_i} = 0$$
?

(日) (四) (三) (三)

- Not known to be polynomial-time!
- Algebraic Approach: Repeated Squaring Method (Nontrivial for Inequalites!)
 - $\sim \Omega(2^m)$ (slow, unless you are lucky! (Illustrate))
- Numerical Approach: Zero Bound Method
 - O(log(1/|e|)) (fast, unless you are unlucky! (Illustrate))
- Luck deals differently for the two approaches

Reduction to Dijkstra's Algorithm

- Combinatorial complexity: $O(n^2 \log n)$ (negligible)
- Sum of Square-roots Problem:

Is
$$\sum_{i=1}^m a_i \sqrt{b_i} = 0$$
?

- Not known to be polynomial-time!
- Algebraic Approach: Repeated Squaring Method (Nontrivial for Inequalites!)
 - $\Omega(2^m)$ (slow, unless you are lucky! (Illustrate))
- Numerical Approach: Zero Bound Method
 - O(log(1/|e|)) (fast, unless you are unlucky! (Illustrate))
- Luck deals differently for the two approaches

Reduction to Dijkstra's Algorithm

- Combinatorial complexity: $O(n^2 \log n)$ (negligible)
- Sum of Square-roots Problem:

Is
$$\sum_{i=1}^m a_i \sqrt{b_i} = 0$$
?

- Not known to be polynomial-time!
- Algebraic Approach: Repeated Squaring Method (Nontrivial for Inequalites!)
 - $\Omega(2^m)$ (slow, unless you are lucky! (Illustrate))
- Numerical Approach: Zero Bound Method
 - O(log(1/|e|)) (fast, unless you are unlucky! (Illustrate))
- Luck deals differently for the two approaches

Reduction to Dijkstra's Algorithm

- Combinatorial complexity: $O(n^2 \log n)$ (negligible)
- Sum of Square-roots Problem:

Is
$$\sum_{i=1}^m a_i \sqrt{b_i} = 0$$
?

- Not known to be polynomial-time!
- Algebraic Approach: Repeated Squaring Method (Nontrivial for Inequalites!)
 - $\Omega(2^m)$ (slow, unless you are lucky! (Illustrate))
- Numerical Approach: Zero Bound Method
 - O(log(1/|e|)) (fast, unless you are unlucky! (Illustrate))
- Luck deals differently for the two approaches

Reduction to Dijkstra's Algorithm

- Combinatorial complexity: $O(n^2 \log n)$ (negligible)
- Sum of Square-roots Problem:

Is
$$\sum_{i=1}^m a_i \sqrt{b_i} = 0$$
?

<ロ> (四) (四) (三) (三) (三)

- Not known to be polynomial-time!
- Algebraic Approach: Repeated Squaring Method (Nontrivial for Inequalites!)
 - $\Omega(2^m)$ (slow, unless you are lucky! (Illustrate))
- Numerical Approach: Zero Bound Method

 $O(\log(1/|e|))$ (fast, unless you are unlucky! (Illustrate))

Luck deals differently for the two approaches

Reduction to Dijkstra's Algorithm

- Combinatorial complexity: $O(n^2 \log n)$ (negligible)
- Sum of Square-roots Problem:

Is
$$\sum_{i=1}^m a_i \sqrt{b_i} = 0$$
?

- Not known to be polynomial-time!
- Algebraic Approach: Repeated Squaring Method (Nontrivial for Inequalites!)
 - $\Omega(2^m)$ (slow, unless you are lucky! (Illustrate))
- Numerical Approach: Zero Bound Method
 - $O(\log(1/|e|))$ (fast, unless you are unlucky! (Illustrate))

Luck deals differently for the two approaches

Reduction to Dijkstra's Algorithm

- Combinatorial complexity: $O(n^2 \log n)$ (negligible)
- Sum of Square-roots Problem:

Is
$$\sum_{i=1}^m a_i \sqrt{b_i} = 0$$
?

- Not known to be polynomial-time!
- Algebraic Approach: Repeated Squaring Method (Nontrivial for Inequalites!)
 - $\Omega(2^m)$ (slow, unless you are lucky! (Illustrate))
- Numerical Approach: Zero Bound Method

 $O(\log(1/|e|))$ (fast, unless you are unlucky! (Illustrate))

• Luck deals differently for the two approaches

Shortest Path amidst Discs

Shortest path from p to q avoiding discs A, B

Yap (NYU)

• • = • • = •

Shortest Path amidst Discs

Shortest path from p to q avoiding discs A, B

• • = • • = •

Shortest Path amidst Discs

Shortest path from p to q avoiding discs A, B

- E > - E >

Shortest Path amidst Discs

Shortest path from p to q avoiding discs A, B

Shortest Path amidst Discs

Shortest path from p to q avoiding discs A, B

* 3 * * 3

Shortest Path amidst Discs

Shortest path from p to q avoiding discs A, B

Segment length is a square-root of an algebraic number

- - E > - E

Shortest Path amidst Discs

Shortest path from p to q avoiding discs A, B

Segment length is a square-root of an algebraic number

Arc lengh is $r\theta$

Shortest Path amidst Discs

Shortest path from p to q avoiding discs A, B

Segment length is a square-root of an algebraic number

Arc lengh is $r\theta$

Shortest Path amidst Discs

Shortest path from p to q avoiding discs A, B

Segment length is a square-root of an algebraic number

Arc lengh is $r\theta$

Shortest Path amidst Discs

Shortest path from p to q avoiding discs A, B

Segment length is a square-root of an algebraic number

Arc lengh is $r\theta$

Reduction to Dijkstra's Algorithm (Again?)

- Combinatorial complexity: O(n² log n) (negligible, exercise)
- Path length = $\gamma + \alpha$ where γ is algebraic, but α is transcendental
- Not even clear that we can compute this!

Why? Numerical Halting Problem

• Analogue of the Turing Halting Problem

Also semi-decidable

 Reference: my 2006 paper with E.Chang, S.W.Choi, D.Kwon, H.Park.

(日) (四) (三) (三)

Reduction to Dijkstra's Algorithm (Again?)

- Combinatorial complexity: O(n² log n) (negligible, exercise)
- Path length = $\gamma + \alpha$ where γ is algebraic, but α is transcendental
- Not even clear that we can compute this!

Nhy? Numerical Halting Problem

• Analogue of the Turing Halting Problem

Also semi-decidable

 Reference: my 2006 paper with E.Chang, S.W.Choi, D.Kwon, H.Park.

イロト イヨト イヨト イヨト

Reduction to Dijkstra's Algorithm (Again?)

- Combinatorial complexity: O(n² log n) (negligible, exercise)
- Path length = $\gamma + \alpha$ where γ is algebraic, but α is transcendental
- Not even clear that we can compute this!

/hy? Numerical Halting Problem

• Analogue of the Turing Halting Problem

Also semi-decidable

 Reference: my 2006 paper with E.Chang, S.W.Choi, D.Kwon, H.Park.

<ロ> (四) (四) (注) (注) (注) (注)

Reduction to Dijkstra's Algorithm (Again?)

- Combinatorial complexity: O(n² log n) (negligible, exercise)
- Path length = $\gamma + \alpha$ where γ is algebraic, but α is transcendental
- Not even clear that we can compute this!

Why? Numerical Halting Problem

• Analogue of the Turing Halting Problem

Also semi-decidable

• Reference: my 2006 paper with E.Chang, S.W.Choi, D.Kwon, H.Park.

Reduction to Dijkstra's Algorithm (Again?)

- Combinatorial complexity: O(n² log n) (negligible, exercise)
- Path length = $\gamma + \alpha$ where γ is algebraic, but α is transcendental
- Not even clear that we can compute this!
 - Why? Numerical Halting Problem
- Analogue of the Turing Halting Problem

Also semi-decidable

 Reference: my 2006 paper with E.Chang, S.W.Choi, D.Kwon, H.Park.

Reduction to Dijkstra's Algorithm (Again?)

- Combinatorial complexity: O(n² log n) (negligible, exercise)
- Path length = $\gamma + \alpha$ where γ is algebraic, but α is transcendental
- Not even clear that we can compute this!
 - Why? Numerical Halting Problem
- Analogue of the Turing Halting Problem
 - Also semi-decidable
- Reference: my 2006 paper with E.Chang, S.W.Choi, D.Kwon, H.Park.

Reduction to Dijkstra's Algorithm (Again?)

- Combinatorial complexity: O(n² log n) (negligible, exercise)
- Path length = $\gamma + \alpha$ where γ is algebraic, but α is transcendental
- Not even clear that we can compute this!
 - Why? Numerical Halting Problem
- Analogue of the Turing Halting Problem
 - Also semi-decidable
- Reference: my 2006 paper with E.Chang, S.W.Choi, D.Kwon, H.Park.

Reduction to Dijkstra's Algorithm (Again?)

- Combinatorial complexity: O(n² log n) (negligible, exercise)
- Path length = $\gamma + \alpha$ where γ is algebraic, but α is transcendental
- Not even clear that we can compute this!
 - Why? Numerical Halting Problem
- Analogue of the Turing Halting Problem
 - Also semi-decidable
- Reference: my 2006 paper with E.Chang, S.W.Choi, D.Kwon, H.Park.

Reduction to Dijkstra's Algorithm (Again?)

- Combinatorial complexity: O(n² log n) (negligible, exercise)
- Path length = $\gamma + \alpha$ where γ is algebraic, but α is transcendental
- Not even clear that we can compute this!
 - Why? Numerical Halting Problem
- Analogue of the Turing Halting Problem
 - Also semi-decidable
- Reference: my 2006 paper with E.Chang, S.W.Choi, D.Kwon, H.Park.

A B K A B K

Simple Case: Unit Discs Let A = [C, p, q, n] and A' = [C', p', q', n'] encode two arc lengths.

Yap (NYU)

ISSAC, July 2009 19 / 115

Yap (NYU)

ISSAC, July 2009 19 / 115

Simple Case: Unit Discs Let A = [C, p, q, n] and A' = [C', p', q', n'] encode two arc lengths.

Yap (NYU)

ISSAC, July 2009 19 / 115

Yap (NYU)

ISSAC, July 2009 19 / 115

• □ ▶ • □ ▶ • □ ▶ •

ISSAC, July 2009 19 / 115

• □ ▶ • □ ▶ • □ ▶ •

• • • • • • • • • • • • • •

ISSAC, July 2009 19 / 115

• □ ▶ • □ ▶ • □ ▶

Addition/Subtraction of Arc Lengths

ISSAC, July 2009 19 / 115

• □ ▶ • □ ▶ • □ ▶

Addition/Subtraction of Arc Lengths

ISSAC, July 2009 19 / 115

• □ ▶ • □ ▶ • □ ▶

Theorem (Unit Disc)

Shortest Path for unit disc obstacles is computable.

Theorem (Commensurable Radii)

Shortest Path for commensurable radii discs is computable.

No complexity Bounds!

Appeal to Baker's Linear Form in Logarithms: $|\alpha_0 + \sum_{i=1}^n \alpha_i \log \beta_i| > B$

Theorem (Commensurable Radii Complexity)

- Rare positive result from Transcendental Number Theory
- First transcendental geometric problem shown computable

Theorem (Unit Disc)

Shortest Path for unit disc obstacles is computable.

Theorem (Commensurable Radii)

Shortest Path for commensurable radii discs is computable.

No complexity Bounds!

Appeal to Baker's Linear Form in Logarithms: $|\alpha_0 + \sum_{i=1}^n \alpha_i \log \beta_i| > B$

Theorem (Commensurable Radii Complexity)

- Rare positive result from Transcendental Number Theory
- First transcendental geometric problem shown computable

Theorem (Unit Disc)

Shortest Path for unit disc obstacles is computable.

Theorem (Commensurable Radii)

Shortest Path for commensurable radii discs is computable.

No complexity Bounds!

Appeal to Baker's Linear Form in Logarithms: $|\alpha_0 + \sum_{i=1}^n \alpha_i \log \beta_i| > B$

Theorem (Commensurable Radii Complexity)

- Rare positive result from Transcendental Number Theory
- First transcendental geometric problem shown computable

Theorem (Unit Disc)

Shortest Path for unit disc obstacles is computable.

Theorem (Commensurable Radii)

Shortest Path for commensurable radii discs is computable.

No complexity Bounds!

Appeal to Baker's Linear Form in Logarithms: $|\alpha_0 + \sum_{i=1}^n \alpha_i \log \beta_i| > B$

Theorem (Commensurable Radii Complexity)

- Rare positive result from Transcendental Number Theory
- First transcendental geometric problem shown computable

Theorem (Unit Disc)

Shortest Path for unit disc obstacles is computable.

Theorem (Commensurable Radii)

Shortest Path for commensurable radii discs is computable.

No complexity Bounds!

Appeal to Baker's Linear Form in Logarithms: $|\alpha_0 + \sum_{i=1}^n \alpha_i \log \beta_i| > B$

Theorem (Commensurable Radii Complexity)

- Rare positive result from Transcendental Number Theory
- First transcendental geometric problem shown computable

Meshing of Surfaces

- Surface $S = f^{-1}(0)$ where $f : \mathbb{R}^n \to \mathbb{R}$ (n = 1, 2, 3)
- Wants a triangulated surface S that is isotopic to S

- Case *n* = 1 is root isolation !
- Return to meshing in Lecture 2

Applications

Visualization, Graphics, Simulation, Modeling:

Yap (NYU)

Tutorial: Exact Numerical Computation

Meshing of Surfaces

- Surface $S = f^{-1}(0)$ where $f : \mathbb{R}^n \to \mathbb{R}$ (n = 1, 2, 3)
- Wants a triangulated surface S that is isotopic to S

Tangled Cube'

• Case *n* = 1 is root isolation !

• Return to meshing in Lecture 2

Applications

Visualization, Graphics, Simulation, Modeling: prerequisite

Yap (NYU)

Tutorial: Exact Numerical Computation

Meshing of Surfaces

- Surface $S = f^{-1}(0)$ where $f : \mathbb{R}^n \to \mathbb{R}$ (n = 1, 2, 3)
- Wants a triangulated surface S that is isotopic to S

"Tangled Cube"

"Chair"

- Case *n* = 1 is root isolation !
- Return to meshing in Lecture 2

Applications

Visualization, Graphics, Simulation, Modeling: prerequisite

Yap (NYU)

Tutorial: Exact Numerical Computation

Meshing of Surfaces

- Surface $S = f^{-1}(0)$ where $f : \mathbb{R}^n \to \mathbb{R}$ (n = 1, 2, 3)
- Wants a triangulated surface S that is isotopic to S

"Tangled Cube"

"Chair"

- Case *n* = 1 is root isolation !
- Return to meshing in Lecture 2

Applications

Visualization, Graphics, Simulation, Modeling: prerequisite

Yap (NYU)

Tutorial: Exact Numerical Computation

Meshing of Surfaces

- Surface $S = f^{-1}(0)$ where $f : \mathbb{R}^n \to \mathbb{R}$ (n = 1, 2, 3)
- Wants a triangulated surface S that is isotopic to S

"Tangled Cube"

• Case n = 1 is root isolation !

- Return to meshing in Lecture 2

Applications

Visualization, Graphics, Simulation, Modeling: prerequisite

Yap (NYU)

Tutorial: Exact Numerical Computation

Meshing of Surfaces

- Surface $S = f^{-1}(0)$ where $f : \mathbb{R}^n \to \mathbb{R}$ (n = 1, 2, 3)
- Wants a triangulated surface S that is isotopic to S

"Tangled Cube"

"Chair"

- Case *n* = 1 is root isolation !
- Return to meshing in Lecture 2

Applications

Visualization, Graphics, Simulation, Modeling: prerequisite

Yap (NYU)

Tutorial: Exact Numerical Computation

Meshing of Surfaces

- Surface $S = f^{-1}(0)$ where $f : \mathbb{R}^n \to \mathbb{R}$ (n = 1, 2, 3)
- Wants a triangulated surface S that is isotopic to S

"Tangled Cube"

"Chair"

- Case *n* = 1 is root isolation !
- Return to meshing in Lecture 2

Applications

Visualization, Graphics, Simulation, Modeling: prerequisite

Yap (NYU)

Tutorial: Exact Numerical Computation

Meshing of Surfaces

- Surface $S = f^{-1}(0)$ where $f : \mathbb{R}^n \to \mathbb{R}$ (n = 1, 2, 3)
- Wants a triangulated surface S that is isotopic to S

"Tangled Cube"

"Chair"

- Case *n* = 1 is root isolation !
- Return to meshing in Lecture 2

Applications

Visualization, Graphics, Simulation, Modeling: prerequisite

Meshing of Surfaces

- Surface $S = f^{-1}(0)$ where $f : \mathbb{R}^n \to \mathbb{R}$ (n = 1, 2, 3)
- Wants a triangulated surface S that is isotopic to S

"Tangled Cube"

"Chair"

- Case *n* = 1 is root isolation !
- Return to meshing in Lecture 2

Applications Visualization, Graphics, Simulation, Modeling: prerequisite Yap (NYU) Tutorial: Exact Numerical Computation ISSAC. July 2009 21 / 115

Meshing of Surfaces

- Surface $S = f^{-1}(0)$ where $f : \mathbb{R}^n \to \mathbb{R}$ (n = 1, 2, 3)
- Wants a triangulated surface S that is isotopic to S

"Tangled Cube"

"Chair"

- Case n = 1 is root isolation !
- Return to meshing in Lecture 2

Applications

Visualization, Graphics, Simulation, Modeling: prerequisite

Yap (NYU)

Tutorial: Exact Numerical Computation

Edelsbrunner, Harer, Zomorodian (2003)

- Methodology: discrete analogues of continuous concepts
 - Differential geometry, Ricci flows, etc

• Morse-Smale Complex of a surface $S = f^{-1}(0)$:

Exactness Bottleneck: this "Continuous-to-Discrete" transformation

Edelsbrunner, Harer, Zomorodian (2003)

- Methodology: discrete analogues of continuous concepts
 - Differential geometry, Ricci flows, etc

• Exactness Bottleneck: this "Continuous-to-Discrete" transformation

3

• □ • • □ • • □ • • □ • • □ •

Edelsbrunner, Harer, Zomorodian (2003)

- Methodology: discrete analogues of continuous concepts
 - Differential geometry, Ricci flows, etc

• Morse-Smale Complex of a surface $S = f^{-1}(0)$:

• Exactness Bottleneck: this "Continuous-to-Discrete" transformation

3

Edelsbrunner, Harer, Zomorodian (2003)

- Methodology: discrete analogues of continuous concepts
 - Differential geometry, Ricci flows, etc

• Morse-Smale Complex of a surface $S = f^{-1}(0)$:

Exactness Bottleneck: this "Continuous-to-Discrete" transformation

Edelsbrunner, Harer, Zomorodian (2003)

- Methodology: discrete analogues of continuous concepts
 - Differential geometry, Ricci flows, etc

• Morse-Smale Complex of a surface $S = f^{-1}(0)$:

- Integral Lines
- OPEN: How to connect saddle to its maximas

• Exactness Bottleneck: this "Continuous-to-Discrete" transformation

Edelsbrunner, Harer, Zomorodian (2003)

- Methodology: discrete analogues of continuous concepts
 - Differential geometry, Ricci flows, etc

• Morse-Smale Complex of a surface $S = f^{-1}(0)$:

- Critical Points (max/min/saddle)
- Integral Lines
- OPEN: How to connect saddle to its maximas

Exactness Bottleneck: this "Continuous-to-Discrete" transformation

Edelsbrunner, Harer, Zomorodian (2003)

- Methodology: discrete analogues of continuous concepts
 - Differential geometry, Ricci flows, etc
- Morse-Smale Complex of a surface $S = f^{-1}(0)$:

- Critical Points (max/min/saddle)
- Integral Lines
- OPEN: How to connect saddle to its maximas

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• Exactness Bottleneck: this "Continuous-to-Discrete" transformation

Edelsbrunner, Harer, Zomorodian (2003)

- Methodology: discrete analogues of continuous concepts
 - Differential geometry, Ricci flows, etc

• Morse-Smale Complex of a surface $S = f^{-1}(0)$:

- Critical Points (max/min/saddle)
- Integral Lines
 - OPEN: How to connect saddle to its maximas

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• Exactness Bottleneck: this "Continuous-to-Discrete" transformation

Edelsbrunner, Harer, Zomorodian (2003)

- Methodology: discrete analogues of continuous concepts
 - Differential geometry, Ricci flows, etc

• Morse-Smale Complex of a surface $S = f^{-1}(0)$:

- Critical Points (max/min/saddle)
- Integral Lines
- OPEN: How to connect saddle to its maximas

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Exactness Bottleneck: this "Continuous-to-Discrete" transformation

Edelsbrunner, Harer, Zomorodian (2003)

- Methodology: discrete analogues of continuous concepts
 - Differential geometry, Ricci flows, etc

• Morse-Smale Complex of a surface $S = f^{-1}(0)$:

- Critical Points (max/min/saddle)
- Integral Lines
- OPEN: How to connect saddle to its maximas

イロト イヨト イヨト

• Exactness Bottleneck: this "Continuous-to-Discrete" transformation

Edelsbrunner, Harer, Zomorodian (2003)

- Methodology: discrete analogues of continuous concepts
 - Differential geometry, Ricci flows, etc

• Morse-Smale Complex of a surface $S = f^{-1}(0)$:

- Critical Points (max/min/saddle)
- Integral Lines
- OPEN: How to connect saddle to its maximas

イロト イヨト イヨト

• Exactness Bottleneck: this "Continuous-to-Discrete" transformation

Edelsbrunner, Harer, Zomorodian (2003)

- Methodology: discrete analogues of continuous concepts
 - Differential geometry, Ricci flows, etc

• Morse-Smale Complex of a surface $S = f^{-1}(0)$:

- Critical Points (max/min/saddle)
- Integral Lines
- OPEN: How to connect saddle to its maximas

イロト イヨト イヨト

• Exactness Bottleneck: this "Continuous-to-Discrete" transformation

- We saw 5 Geometric Problems:
 I=classic, II=hard, III=very hard, IV=current, V=open
- Up Next: Let us examine their underlying computational models...

<ロ> (四) (四) (三) (三) (三) (三)

- We saw 5 Geometric Problems:
 I=classic, II=hard, III=very hard, IV=current, V=open
- Up Next: Let us examine their underlying computational models...

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ ―臣 _ のへ⊙

- We saw 5 Geometric Problems:
 I=classic, II=hard, III=very hard, IV=current, V=open
- Up Next: Let us examine their underlying computational models...

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ ―臣 _ のへ⊙

- We saw 5 Geometric Problems:
 I=classic, II=hard, III=very hard, IV=current, V=open
- Up Next: Let us examine their underlying computational models...

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ ―臣 _ のへ⊙

Coming Up Next

Introduction: What is Geometric Computation?

ENC

2 Five Examples of Geometric Computation

Exact Numeric Computation – A Synthesis

4) Exact Geometric Computation

5 Constructive Zero Bounds

イヨト イヨト

Two Worlds of Computing

• (EX) Discrete, Combinatorial, *Exact*.

- Theoretical Computer Science, Computer Algebra
- (AP) Continuous, Numerical, Approximate.
 - Computational Science & Engineering (CS&E) or Physics
 - Problems too hard in exact framework (e.g., 3D Ising Model)
 - Even when exact solution is possible,...

• The 2 Worlds meet in Geometry

- Solving Linear Systems (Gaussian vs. Gauss-Seidel)
- Linear Programming (Simplex vs. Interior-Point)
- Solving Numerical PDE (Symbolic vs. Numeric)

ISSAC, July 2009 25 / 115

ENC

Two Worlds of Computing

• (EX) Discrete, Combinatorial, *Exact*.

Theoretical Computer Science, Computer Algebra

ENC

- (AP) Continuous, Numerical, *Approximate*.
 - Computational Science & Engineering (CS&E) or Physics
 - Problems too hard in exact framework (e.g., 3D Ising Model)
 - Even when exact solution is possible,...

• The 2 Worlds meet in Geometry

- Solving Linear Systems (Gaussian vs. Gauss-Seidel)
- Linear Programming (Simplex vs. Interior-Point)
- Solving Numerical PDE (Symbolic vs. Numeric)

- (EX) Discrete, Combinatorial, *Exact*.
 - Theoretical Computer Science, Computer Algebra

ENC

- (AP) Continuous, Numerical, Approximate.
 - Computational Science & Engineering (CS&E) or Physics
 - Problems too hard in exact framework (e.g., 3D Ising Model)
 - Even when exact solution is possible,...
- The 2 Worlds meet in Geometry
 - Solving Linear Systems (Gaussian vs. Gauss-Seidel)
 - Linear Programming (Simplex vs. Interior-Point)
 - Solving Numerical PDE (Symbolic vs. Numeric)

- (EX) Discrete, Combinatorial, *Exact*.
 - Theoretical Computer Science, Computer Algebra

ENC

- (AP) Continuous, Numerical, Approximate.
 - Computational Science & Engineering (CS&E) or Physics
 - Problems too hard in exact framework (e.g., 3D Ising Model)
 - Even when exact solution is possible,...
- The 2 Worlds meet in Geometry
 - Solving Linear Systems (Gaussian vs. Gauss-Seidel)
 - Linear Programming (Simplex vs. Interior-Point)
 - Solving Numerical PDE (Symbolic vs. Numeric)

- (EX) Discrete, Combinatorial, *Exact*.
 - Theoretical Computer Science, Computer Algebra

ENC

- (AP) Continuous, Numerical, Approximate.
 - Computational Science & Engineering (CS&E) or Physics
 - Problems too hard in exact framework (e.g., 3D Ising Model)
 - Even when exact solution is possible,...
- The 2 Worlds meet in Geometry
 - Solving Linear Systems (Gaussian vs. Gauss-Seidel)
 - Linear Programming (Simplex vs. Interior-Point)
 - Solving Numerical PDE (Symbolic vs. Numeric)

• (EX) Discrete, Combinatorial, *Exact*.

Theoretical Computer Science, Computer Algebra

ENC

- (AP) Continuous, Numerical, Approximate.
 - Computational Science & Engineering (CS&E) or Physics
 - Problems too hard in exact framework (e.g., 3D Ising Model)
 - Even when exact solution is possible,...
- The 2 Worlds meet in Geometry
 - Solving Linear Systems (Gaussian vs. Gauss-Seidel)
 - Linear Programming (Simplex vs. Interior-Point)
 - Solving Numerical PDE (Symbolic vs. Numeric)

• (EX) Discrete, Combinatorial, *Exact*.

Theoretical Computer Science, Computer Algebra

ENC

- (AP) Continuous, Numerical, Approximate.
 - Computational Science & Engineering (CS&E) or Physics
 - Problems too hard in exact framework (e.g., 3D Ising Model)
 - Even when exact solution is possible,...
- The 2 Worlds meet in Geometry
 - Solving Linear Systems (Gaussian vs. Gauss-Seidel)
 - Linear Programming (Simplex vs. Interior-Point)
 - Solving Numerical PDE (Symbolic vs. Numeric)

- (EX) Discrete, Combinatorial, *Exact*.
 - Theoretical Computer Science, Computer Algebra

ENC

- (AP) Continuous, Numerical, Approximate.
 - Computational Science & Engineering (CS&E) or Physics
 - Problems too hard in exact framework (e.g., 3D Ising Model)
 - Even when exact solution is possible,...
- The 2 Worlds meet in Geometry
 - Solving Linear Systems (Gaussian vs. Gauss-Seidel)
 - Linear Programming (Simplex vs. Interior-Point)
 - Solving Numerical PDE (Symbolic vs. Numeric)

- (EX) Discrete, Combinatorial, *Exact*.
 - Theoretical Computer Science, Computer Algebra

ENC

- (AP) Continuous, Numerical, Approximate.
 - Computational Science & Engineering (CS&E) or Physics
 - Problems too hard in exact framework (e.g., 3D Ising Model)
 - Even when exact solution is possible,...
- The 2 Worlds meet in Geometry
 - Solving Linear Systems (Gaussian vs. Gauss-Seidel)
 - Linear Programming (Simplex vs. Interior-Point)
 - Solving Numerical PDE (Symbolic vs. Numeric)

• (EX) Discrete, Combinatorial, *Exact*.

Theoretical Computer Science, Computer Algebra

- (AP) Continuous, Numerical, Approximate.
 - Computational Science & Engineering (CS&E) or Physics
 - Problems too hard in exact framework (e.g., 3D Ising Model)
 - Even when exact solution is possible,...
- The 2 Worlds meet in Geometry
 - Solving Linear Systems (Gaussian vs. Gauss-Seidel)
 - Linear Programming (Simplex vs. Interior-Point)
 - Solving Numerical PDE (Symbolic vs. Numeric)

• (EX) Discrete, Combinatorial, *Exact*.

Theoretical Computer Science, Computer Algebra

- (AP) Continuous, Numerical, Approximate.
 - Computational Science & Engineering (CS&E) or Physics
 - Problems too hard in exact framework (e.g., 3D Ising Model)
 - Even when exact solution is possible,...
- The 2 Worlds meet in Geometry
 - Solving Linear Systems (Gaussian vs. Gauss-Seidel)
 - Linear Programming (Simplex vs. Interior-Point)
 - Solving Numerical PDE (Symbolic vs. Numeric)

• (EX) Discrete, Combinatorial, *Exact*.

Theoretical Computer Science, Computer Algebra

- (AP) Continuous, Numerical, Approximate.
 - Computational Science & Engineering (CS&E) or Physics
 - Problems too hard in exact framework (e.g., 3D Ising Model)
 - Even when exact solution is possible,...
- The 2 Worlds meet in Geometry
 - Solving Linear Systems (Gaussian vs. Gauss-Seidel)
 - Linear Programming (Simplex vs. Interior-Point)
 - Solving Numerical PDE (Symbolic vs. Numeric)

Geometry is always about zeros

- Problem (I): Is a Point on a Hyperplane?
- Problems (II),(III): Are two path lengths are equal?
- Problems (IV),(V): Continuous-to-discrete transformations, defined by zero sets
- These zero decisions are captured by geometric predicates
- View developed by CG'ers in robust geometric computation

Geometry is always about zeros

- Problem (I): Is a Point on a Hyperplane?
- Problems (II),(III): Are two path lengths are equal?
- Problems (IV),(V): Continuous-to-discrete transformations, defined by zero sets
- These zero decisions are captured by geometric predicates
- View developed by CG'ers in robust geometric computation

Geometry is always about zeros

- Problem (I): Is a Point on a Hyperplane?
- Problems (II),(III): Are two path lengths are equal?
- Problems (IV),(V): Continuous-to-discrete transformations, defined by zero sets
- These zero decisions are captured by geometric predicates
- View developed by CG'ers in robust geometric computation

Geometry is always about zeros

- Problem (I): Is a Point on a Hyperplane?
- Problems (II),(III): Are two path lengths are equal?
- Problems (IV),(V): Continuous-to-discrete transformations, defined by zero sets
- These zero decisions are captured by geometric predicates
- View developed by CG'ers in robust geometric computation

Geometry is always about zeros

- Problem (I): Is a Point on a Hyperplane?
- Problems (II),(III): Are two path lengths are equal?
- Problems (IV),(V): Continuous-to-discrete transformations, defined by zero sets
- These zero decisions are captured by geometric predicates
- View developed by CG'ers in robust geometric computation

Geometry is always about zeros

- Problem (I): Is a Point on a Hyperplane?
- Problems (II),(III): Are two path lengths are equal?
- Problems (IV),(V): Continuous-to-discrete transformations, defined by zero sets
- These zero decisions are captured by geometric predicates
- View developed by CG'ers in robust geometric computation

Geometry is always about zeros

- Problem (I): Is a Point on a Hyperplane?
- Problems (II),(III): Are two path lengths are equal?
- Problems (IV),(V): Continuous-to-discrete transformations, defined by zero sets
- These zero decisions are captured by geometric predicates
- View developed by CG'ers in robust geometric computation

ENC

Four Computational Models for Geometry

How to compute in a Continuum (\mathbb{R}^n) ?

• (EX) Algebraic Computational Model (e.g., Real RAM, Blum-Shub-Smale model)

PROBLEM: Zero is trivial

(EX') Abstract Operational Models

 (e.g., CG, Traub, Orientation, Ray shooting, Giftwrap)

 PROBLEM: Zero is hidden

- (AP) Analytic Computational Model (e.g., Ko, Weihrauch)
 PROBLEM: Zero is undecidable
- (AP') Numerical Analysis Model (e.g., $x \oplus y = (x+y)(1+\varepsilon)$)

ENC

Four Computational Models for Geometry

How to compute in a Continuum (\mathbb{R}^n) ?

- (EX) Algebraic Computational Model (e.g., Real RAM, Blum-Shub-Smale model)
 - PROBLEM: Zero is trivial
- (EX') Abstract Operational Models (e.g., CG, Traub, Orientation, Ray shooting, Gifty

PROBLEM: Zero is hidden

• (AP) Analytic Computational Model (e.g., Ko, Weihrauch)

PROBLEM: Zero is undecidable

• (AP') Numerical Analysis Model (e.g., $x \oplus y = (x+y)(1+\varepsilon)$)

ENC

Four Computational Models for Geometry

How to compute in a Continuum (\mathbb{R}^n) ?

- (EX) Algebraic Computational Model (e.g., Real RAM, Blum-Shub-Smale model)
 - PROBLEM: Zero is trivial
- (EX') Abstract Operational Models
 - (e.g., CG, Traub, Orientation, Ray shooting, Giftwrap)

PROBLEM: Zero is hidden

• (AP) Analytic Computational Model (e.g., Ko, Weihrauch)

ROBLEM: Zero is undecidable

• (AP') Numerical Analysis Model (e.g., $x \oplus y = (x+y)(1+\varepsilon)$)

ENC

How to compute in a Continuum (\mathbb{R}^n) ?

- (EX) Algebraic Computational Model (e.g., Real RAM, Blum-Shub-Smale model)
 - PROBLEM: Zero is trivial
- (EX') Abstract Operational Models
 - (e.g., CG, Traub, Orientation, Ray shooting, Giftwrap)
 - PROBLEM: Zero is hidden
- (AP) Analytic Computational Model (e.g., Ko, Weihrauch)

PROBLEM: Zero is undecidable

• (AP') Numerical Analysis Model (e.g., $x \oplus y = (x+y)(1+\varepsilon)$)

How to compute in a Continuum (\mathbb{R}^n) ?

 (EX) Algebraic Computational Model (e.g., Real RAM, Blum-Shub-Smale model)

PROBLEM: Zero is trivial

- (EX') Abstract Operational Models
 - (e.g., CG, Traub, Orientation, Ray shooting, Giftwrap)

PROBLEM: Zero is hidden

• (AP) Analytic Computational Model (e.g., Ko, Weihrauch)

PROBLEM: Zero is undecidable

• (AP') Numerical Analysis Model (e.g., $x \oplus y = (x+y)(1+\varepsilon)$)

ENC

How to compute in a Continuum (\mathbb{R}^n) ?

 (EX) Algebraic Computational Model (e.g., Real RAM, Blum-Shub-Smale model)

PROBLEM: Zero is trivial

- (EX') Abstract Operational Models
 - (e.g., CG, Traub, Orientation, Ray shooting, Giftwrap)

PROBLEM: Zero is hidden

• (AP) Analytic Computational Model (e.g., Ko, Weihrauch)

PROBLEM: Zero is undecidable

• (AP') Numerical Analysis Model (e.g., $x \oplus y = (x+y)(1+\varepsilon)$)

How to compute in a Continuum (\mathbb{R}^n) ?

 (EX) Algebraic Computational Model (e.g., Real RAM, Blum-Shub-Smale model)

PROBLEM: Zero is trivial

- (EX') Abstract Operational Models
 - (e.g., CG, Traub, Orientation, Ray shooting, Giftwrap)

PROBLEM: Zero is hidden

• (AP) Analytic Computational Model (e.g., Ko, Weihrauch)

PROBLEM: Zero is undecidable

• (AP') Numerical Analysis Model (e.g., $x \oplus y = (x + y)(1 + \varepsilon)$)

ENC

How to compute in a Continuum (\mathbb{R}^n) ?

 (EX) Algebraic Computational Model (e.g., Real RAM, Blum-Shub-Smale model)

PROBLEM: Zero is trivial

- (EX') Abstract Operational Models
 - (e.g., CG, Traub, Orientation, Ray shooting, Giftwrap)

PROBLEM: Zero is hidden

• (AP) Analytic Computational Model (e.g., Ko, Weihrauch)

PROBLEM: Zero is undecidable

• (AP') Numerical Analysis Model (e.g., $x \oplus y = (x+y)(1+\varepsilon)$)

How to compute in a Continuum (\mathbb{R}^n) ?

 (EX) Algebraic Computational Model (e.g., Real RAM, Blum-Shub-Smale model)

PROBLEM: Zero is trivial

- (EX') Abstract Operational Models
 - (e.g., CG, Traub, Orientation, Ray shooting, Giftwrap)

PROBLEM: Zero is hidden

• (AP) Analytic Computational Model (e.g., Ko, Weihrauch)

PROBLEM: Zero is undecidable

• (AP') Numerical Analysis Model (e.g., $x \oplus y = (x+y)(1+\varepsilon)$)

How to compute in a Continuum (\mathbb{R}^n) ?

 (EX) Algebraic Computational Model (e.g., Real RAM, Blum-Shub-Smale model)

PROBLEM: Zero is trivial

- (EX') Abstract Operational Models
 - (e.g., CG, Traub, Orientation, Ray shooting, Giftwrap)

PROBLEM: Zero is hidden

• (AP) Analytic Computational Model (e.g., Ko, Weihrauch)

PROBLEM: Zero is undecidable

• (AP') Numerical Analysis Model (e.g., $x \oplus y = (x+y)(1+\varepsilon)$)

You cannot avoid the Zero Problem

- (EX) How do you implement R?
- (EX') We may abstract away too much
- (AP) Only continuous functions are computable Geometry is a discontinuous phenomenon
- (AP') Approximate geometry maybe harder than exact geometry
 Exercise: Program a geometric algorithm w/o equality test

You cannot avoid the Zero Problem

- (EX) How do you implement R?
- (EX') We may abstract away too much
 - cf. Problems (II) and (III)
- (AP) Only continuous functions are computable Geometry is a discontinuous phenomenon
- (AP') Approximate geometry maybe harder than exact geometry
 Exercise: Program a geometric algorithm w/o equality test

You cannot avoid the Zero Problem

- (EX) How do you implement R?
- (EX') We may abstract away too much
 - cf. Problems (II) and (III)
- (AP) Only continuous functions are computable Geometry is a discontinuous phenomenon
- (AP') Approximate geometry maybe harder than exact geometry
 Exercise: Program a geometric algorithm w/o equality test

You cannot avoid the Zero Problem

- (EX) How do you implement R?
- (EX') We may abstract away too much
 - cf. Problems (II) and (III)
- (AP) Only continuous functions are computable

Geometry is a discontinuous phenomenon

ENC

(AP') Approximate geometry maybe harder than exact geometry
 Exercise: Program a geometric algorithm w/o equality test

You cannot avoid the Zero Problem

- (EX) How do you implement R?
- (EX') We may abstract away too much
 - cf. Problems (II) and (III)
- (AP) Only continuous functions are computable
 - Geometry is a discontinuous phenomenon
- (AP') Approximate geometry maybe harder than exact geometry
 Exercise: Program a geometric algorithm w/o equality test

You cannot avoid the Zero Problem

- (EX) How do you implement R?
- (EX') We may abstract away too much
 - cf. Problems (II) and (III)
- (AP) Only continuous functions are computable
 - Geometry is a discontinuous phenomenon
- (AP') Approximate geometry maybe harder than exact geometry Exercise: Program a geometric algorithm w/o equality test

You cannot avoid the Zero Problem

- (EX) How do you implement R?
- (EX') We may abstract away too much
 - cf. Problems (II) and (III)
- (AP) Only continuous functions are computable
 - Geometry is a discontinuous phenomenon
- (AP') Approximate geometry maybe harder than exact geometry

ENC

Exercise: Program a geometric algorithm w/o equality test

You cannot avoid the Zero Problem

- (EX) How do you implement R?
- (EX') We may abstract away too much
 - cf. Problems (II) and (III)
- (AP) Only continuous functions are computable
 - Geometry is a discontinuous phenomenon
- (AP') Approximate geometry maybe harder than exact geometry

ENC

Exercise: Program a geometric algorithm w/o equality test

You cannot avoid the Zero Problem

- (EX) How do you implement R?
- (EX') We may abstract away too much
 - cf. Problems (II) and (III)
- (AP) Only continuous functions are computable
 - Geometry is a discontinuous phenomenon
- (AP') Approximate geometry maybe harder than exact geometry

ENC

Exercise: Program a geometric algorithm w/o equality test

ENC

Duality in Numbers

• Physics Analogy:

• $\sqrt{15} - \sqrt{224}$ is exact, but 0.0223 is more useful!

WHY? Want the locus of a in the continuum

JOKE: a physicist and an engineer were in a hot-air balloon

How to capture this Duality?

For exact computation, need algebraic representation.

For analytic properties, need an approximation processed

What about deciding zero? (Algebraic or Numeric)

æ

Physics Analogy:

		Discrete	Continuous
•			
	\mathbb{R}		
	α	$=\sqrt{15-\sqrt{224}}$	pprox 0.0223

ENC

• $\sqrt{15} - \sqrt{224}$ is exact, but 0.0223 is more useful WHY? Want the locus of α in the continuum

How to capture this Duality?

For exact computation, need algebraic representation.

For analytic properties, need an approximation processed

What about deciding zero? (Algebraic or Numeric)

æ

ENC

Duality in Numbers

• Physics Analogy:

		Discrete	Continuous
	Light	particle	wave
•	\mathbb{R}	field	metric space
	Numbers	algebraic	analytic
	α	$=\sqrt{15-\sqrt{224}}$	pprox 0.0223

 $\sqrt{15} - \sqrt{224}$ is exact, but 0.0223 is more useful! We 27 Want the locus of α in the continuum JOKE: a physicist and an exploser were in a hot-all

How to capture this Duality?

For exact computation, need algebraic representation.

For analytic properties, need an approximation processor

What about deciding zero? (Algebraic or Numeric)

æ

• Physics Analogy:

	Discrete	Continuous
Light	particle	wave
\mathbb{R}	field	metric space
Numbers	algebraic	analytic
α	$=\sqrt{15-\sqrt{224}}$	pprox 0.0223

ENC

• $\sqrt{15 - \sqrt{224}}$ is exact, but 0.0223 is more useful! WHY? Want the locus of ∞ in the continuum JOKE: a physicist and an engineer were in a hot-air

How to capture this Duality?

For exact computation, need algebraic representation.

Eor analytic properties, need an approximation processed

What about deciding zero? (Algebraic or Numeric)

æ

• Physics Analogy:

	Discrete	Continuous
Light	particle	wave
\mathbb{R}	field	metric space
Numbers	algebraic	analytic
α	$=\sqrt{15-\sqrt{224}}$	pprox 0.0223

- $\sqrt{15} \sqrt{224}$ is exact, but 0.0223 is more useful! WHY? Want the locus of or in the continuum JOKE: a physicist and an engineer were in a hot-air
- How to capture this Duality?
 - For exact computation, need algebraic representation.
 - For analytic properties, need an approximation processed
 - What about deciding zero? (Algebraic or Numeric)

æ

• Physics Analogy:

	Discrete	Continuous
Light	particle	wave
\mathbb{R}	field	metric space
Numbers	algebraic	analytic
α	$=\sqrt{15-\sqrt{224}}$	pprox 0.0223

- √15 √224 is exact, but 0.0223 is more useful!
 WHY? Want the locus of c in the continuum
 JOKE: a physicist and an engineer were in a hot-air b
- How to capture this Duality?
 - For exact computation, need algebraic representation.
 - For analytic properties, need an approximation processed
 - What about deciding zero? (Algebraic or Numeric)

æ

• Physics Analogy:

	Discrete	Continuous
Light	particle	wave
\mathbb{R}	field	metric space
Numbers	algebraic	analytic
α	$=\sqrt{15-\sqrt{224}}$	pprox 0.0223

- ▶ $\sqrt{15} \sqrt{224}$ is exact, but 0.0223 is more useful! WEN? Want the locus of α in the continuum JOKE: a physicist and an engineer were in a hot-air b
- How to capture this Duality?

For exact computation, need algebraic representation.

For analytic properties, need an approximation processor

What about deciding zero? (Algebraic or Numeric)

æ

• Physics Analogy:

	Discrete	Continuous
Light	particle	wave
\mathbb{R}	field	metric space
Numbers	algebraic	analytic
α	$=\sqrt{15-\sqrt{224}}$	\approx 0.0223

ENC

• $\sqrt{15 - \sqrt{224}}$ is exact, but 0.0223 is more useful!

- WHY? Want the locus of α in the continuum
- JOKE: a physicist and an engineer were in a hot-air balloon...
- How to capture this Duality?
 - For exact computation, need algebraic representation.
 - For analytic properties, need an approximation process
 - What about deciding zero? (Algebraic or Numeric)

• Physics Analogy:

	Discrete	Continuous
Light	particle	wave
\mathbb{R}	field	metric space
Numbers	algebraic	analytic
α	$=\sqrt{15-\sqrt{224}}$	\approx 0.0223

• $\sqrt{15 - \sqrt{224}}$ is exact, but 0.0223 is more useful!

- WHY? Want the locus of α in the continuum
- JOKE: a physicist and an engineer were in a hot-air balloon...
- How to capture this Duality?
 - For exact computation, need algebraic representation.
 - For analytic properties, need an approximation process
 - What about deciding zero? (Algebraic or Numeric)

• Physics Analogy:

	Discrete	Continuous
Light	particle	wave
\mathbb{R}	field	metric space
Numbers	algebraic	analytic
α	$=\sqrt{15-\sqrt{224}}$	\approx 0.0223

- WHY? Want the locus of α in the continuum
- JOKE: a physicist and an engineer were in a hot-air balloon...
- How to capture this Duality?
 - For exact computation, need algebraic representation.
 - For analytic properties, need an approximation process
 - What about deciding zero? (Algebraic or Numeric)

• Physics Analogy:

	Discrete	Continuous
Light	particle	wave
\mathbb{R}	field	metric space
Numbers	algebraic	analytic
α	$=\sqrt{15-\sqrt{224}}$	\approx 0.0223

- WHY? Want the locus of α in the continuum
- JOKE: a physicist and an engineer were in a hot-air balloon...
- How to capture this Duality?
 - ► For exact computation, need algebraic representation.
 - For analytic properties, need an approximation process
 - What about deciding zero? (Algebraic or Numeric)

• Physics Analogy:

	Discrete	Continuous
Light	particle	wave
\mathbb{R}	field	metric space
Numbers	algebraic	analytic
α	$=\sqrt{15-\sqrt{224}}$	\approx 0.0223

- WHY? Want the locus of α in the continuum
- JOKE: a physicist and an engineer were in a hot-air balloon...
- How to capture this Duality?
 - For exact computation, need algebraic representation.
 - For analytic properties, need an approximation process
 - What about deciding zero? (Algebraic or Numeric)

• Physics Analogy:

	Discrete	Continuous
Light	particle	wave
\mathbb{R}	field	metric space
Numbers	algebraic	analytic
α	$=\sqrt{15-\sqrt{224}}$	\approx 0.0223

- WHY? Want the locus of α in the continuum
- JOKE: a physicist and an engineer were in a hot-air balloon...
- How to capture this Duality?
 - For exact computation, need algebraic representation.
 - For analytic properties, need an approximation process
 - What about deciding zero? (Algebraic or Numeric)

• Physics Analogy:

	Discrete	Continuous
Light	particle	wave
\mathbb{R}	field	metric space
Numbers	algebraic	analytic
α	$=\sqrt{15-\sqrt{224}}$	\approx 0.0223

- WHY? Want the locus of α in the continuum
- JOKE: a physicist and an engineer were in a hot-air balloon...
- How to capture this Duality?
 - ► For exact computation, need algebraic representation.
 - For analytic properties, need an approximation process
 - What about deciding zero? (Algebraic or Numeric)

Geometry is decided by Zeros

- Zero is a special number
- Numbers have a dual nature: need dual representation

(日) (四) (분) (분) (분) 분

- Geometry is decided by Zeros
- Zero is a special number
- Numbers have a dual nature: need dual representation

(日) (四) (분) (분) (분) (분)

- Geometry is decided by Zeros
- Zero is a special number
- Numbers have a dual nature: need dual representation

<ロ> (四) (四) (注) (注) (注) (注)

- Geometry is decided by Zeros
- Zero is a special number
- Numbers have a dual nature: need dual representation

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ ―臣 _ のへ⊙

- Geometry is decided by Zeros
- Zero is a special number
- Numbers have a dual nature: need dual representation

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ ―臣 _ のへ⊙

- Geometry is decided by Zeros
- Zero is a special number
- Numbers have a dual nature: need dual representation

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ ―臣 _ のへ⊙

Coming Up Next

Introduction: What is Geometric Computation?

2 Five Examples of Geometric Computation

3) Exact Numeric Computation – A Synthesis

4 Exact Geometric Computation

5 Constructive Zero Bounds

()) < ()) < ()) </p>

- Algorithm = Sequence of Steps
- Steps = Construction x := y + 2; or Tests if x = 0 goto L
- Geometric relations determined by Tests (Zero or Sign)
- THUS: if Tests are error free, the Geometry is exact
- Numerical robustness follows! Take-home message

- Algorithm = Sequence of Steps
- Steps = Construction x := y + 2; or Tests if x = 0 goto L
- Geometric relations determined by Tests (Zero or Sign)
- THUS: if Tests are error free, the Geometry is exact
- Numerical robustness follows! Take-home message

- Algorithm = Sequence of Steps
- Steps = Construction x := y + 2; or Tests if x = 0 goto L
- Geometric relations determined by Tests (Zero or Sign)
- THUS: if Tests are error free , the Geometry is exact
- Numerical robustness follows! Take-home message

Key Principle of Exact Geometric Computation (EGC)

- Algorithm = Sequence of Steps
- Steps = Construction x := y + 2; or Tests if x = 0 goto L
- Geometric relations determined by Tests (Zero or Sign)
- THUS: if Tests are error free , the Geometry is exact

• Numerical robustness follows! Take-home message

ISSAC, July 2009 32 / 115

- Algorithm = Sequence of Steps
- Steps = Construction x := y + 2; or Tests if x = 0 goto L
- Geometric relations determined by Tests (Zero or Sign)
- THUS: if Tests are error free, the Geometry is exact
- Numerical robustness follows! Take-home message

- Algorithm = Sequence of Steps
- Steps = Construction x := y + 2; or Tests if x = 0 goto L
- Geometric relations determined by Tests (Zero or Sign)
- THUS: if Tests are error free, the Geometry is exact
- Numerical robustness follows! Take-home message

- Algorithm = Sequence of Steps
- Steps = Construction x := y + 2; or Tests if x = 0 goto L
- Geometric relations determined by Tests (Zero or Sign)
- THUS: if Tests are error free, the Geometry is exact
- Numerical robustness follows! Take-home message

EGC

Implementing the Universal Solution (Core Library)

Any programmer can access this capability

#define Core_Level 3

#include "CORE.h"

.... Standard C++ Program

Numerical Accuracy API

- Level 1: Machine Accuracy (int, long, float, double)
- Level 2: Arbitrary Accuracy (BigInt, BigRat, BigFloat)
- Level 3: Guaranteed Accuracy (Expr)
- Program should compile at every Accuracy Level

EGC

Implementing the Universal Solution (Core Library)

Any programmer can access this capability

#define Core_Level 3

#include "CORE.h"

.... Standard C++ Program

Numerical Accuracy API

• Level 1: Machine Accuracy (int, long, float, double)

- Level 2: Arbitrary Accuracy (BigInt, BigRat, BigFloat)
- Level 3: Guaranteed Accuracy (Expr)
- Program should compile at every Accuracy Level

Any programmer can access this capability

#define Core_Level 3

#include "CORE.h"

.... Standard C++ Program

Numerical Accuracy API

- Level 1: Machine Accuracy (int, long, float, double)
- Level 2: Arbitrary Accuracy (BigInt, BigRat, BigFloat)
- Level 3: Guaranteed Accuracy (Expr)
- Program should compile at every Accuracy Level

Any programmer can access this capability

#define Core_Level 3

#include "CORE.h"

.... Standard C++ Program

Numerical Accuracy API

- Level 1: Machine Accuracy (int, long, float, double)
- Level 2: Arbitrary Accuracy (BigInt, BigRat, BigFloat)
- Level 3: Guaranteed Accuracy (Expr)
- Program should compile at every Accuracy Level

Any programmer can access this capability

#define Core_Level 3

#include "CORE.h"

.... Standard C++ Program

Numerical Accuracy API

- Level 1: Machine Accuracy (int, long, float, double)
- Level 2: Arbitrary Accuracy (BigInt, BigRat, BigFloat)
- Level 3: Guaranteed Accuracy (Expr)
- Program should compile at every Accuracy Level

Yap (NYU)

Any programmer can access this capability

#define Core_Level 3

#include "CORE.h"

.... Standard C++ Program

Numerical Accuracy API

- Level 1: Machine Accuracy (int, long, float, double)
- Level 2: Arbitrary Accuracy (BigInt, BigRat, BigFloat)
- Level 3: Guaranteed Accuracy (Expr)

Program should compile at every Accuracy Level

Promotion/Demotion Rules: e.g., double—BigFloat—Expr
Yap (NYU)
 Tutorial: Exact Numerical Computation
 ISSAC, July 2009

33 / 115

Any programmer can access this capability

#define Core_Level 3

#include "CORE.h"

.... Standard C++ Program

Numerical Accuracy API

- Level 1: Machine Accuracy (int, long, float, double)
- Level 2: Arbitrary Accuracy (BigInt, BigRat, BigFloat)
- Level 3: Guaranteed Accuracy (Expr)
- Program should compile at every Accuracy Level

Promotion/Demotion Rules: e.g., double→BigFloat→Expr

Yap (NYU)

Tutorial: Exact Numerical Computation

ISSAC, July 2009 33 / 115

Any programmer can access this capability

#define Core_Level 3

#include "CORE.h"

.... Standard C++ Program

Numerical Accuracy API

- Level 1: Machine Accuracy (int, long, float, double)
- Level 2: Arbitrary Accuracy (BigInt, BigRat, BigFloat)
- Level 3: Guaranteed Accuracy (Expr)
- Program should compile at every Accuracy Level

Promotion/Demotion Rules: e.g., double→BigFloat→Expr

Yap (NYU)

Tutorial: Exact Numerical Computation

ISSAC, July 2009 33 / 115

What is Achieved?

Features

• Removed numerical non-robustness from geometry (!)

- Algorithm-independent solution to non-robustness
- Standard (Euclidean) geometry (why important?)
- Exactness in geometry (can use approximate numbers !)
- Implemented in LEDA, CGAL, Core Library

Other Implications

A new approach to do algebraic number computation

• In Euclidean Shortest Path, we need the signs of expressions like $\sum_{i=1}^{100} a_i \sqrt{b_i}$.

What is Achieved?

Features

- Removed numerical non-robustness from geometry (!)
- Algorithm-independent solution to non-robustness
- Standard (Euclidean) geometry (why important?)
- Exactness in geometry (can use approximate numbers !)
- Implemented in LEDA, CGAL, Core Library

Other Implications

A new approach to do algebraic number computation

• In Euclidean Shortest Path, we need the signs of expressions like $\sum_{i=1}^{100} a_i \sqrt{b_i}$.

What is Achieved?

Features

- Removed numerical non-robustness from geometry (!)
- Algorithm-independent solution to non-robustness
- Standard (Euclidean) geometry (why important?)
- Exactness in geometry (can use approximate numbers !)
- Implemented in LEDA, CGAL, Core Library

Other Implications

A new approach to do algebraic number computation

• In Euclidean Shortest Path, we need the signs of expressions like $\sum_{i=1}^{100} a_i \sqrt{b_i}$.

What is Achieved?

Features

- Removed numerical non-robustness from geometry (!)
- Algorithm-independent solution to non-robustness
- Standard (Euclidean) geometry (why important?)
- Exactness in geometry (can use approximate numbers !)
- Implemented in LEDA, CGAL, Core Library

Other Implications

A new approach to do algebraic number computation

• In Euclidean Shortest Path, we need the signs of expressions like $\sum_{i=1}^{100} a_i \sqrt{b_i}$.

Standard algebraic approach is doomed

ISSAC, July 2009 34 / 115

What is Achieved?

Features

- Removed numerical non-robustness from geometry (!)
- Algorithm-independent solution to non-robustness
- Standard (Euclidean) geometry (why important?)
- Exactness in geometry (can use approximate numbers!)
- Implemented in LEDA, CGAL, Core Library

Other Implications

A new approach to do algebraic number computation

• In Euclidean Shortest Path, we need the signs of expressions like $\sum_{i=1}^{100} a_i \sqrt{b_i}$.

Standard algebraic approach is doomed

ISSAC, July 2009 34 / 115

What is Achieved?

Features

- Removed numerical non-robustness from geometry (!)
- Algorithm-independent solution to non-robustness
- Standard (Euclidean) geometry (why important?)
- Exactness in geometry (can use approximate numbers!)
- Implemented in LEDA, CGAL, Core Library

Other Implications

• A new approach to do algebraic number computation

• In Euclidean Shortest Path, we need the signs of expressions like $\sum_{i=1}^{100} a_i \sqrt{b_i}$.

What is Achieved?

Features

- Removed numerical non-robustness from geometry (!)
- Algorithm-independent solution to non-robustness
- Standard (Euclidean) geometry (why important?)
- Exactness in geometry (can use approximate numbers!)
- Implemented in LEDA, CGAL, Core Library

Other Implications

- A new approach to do algebraic number computation
- In Euclidean Shortest Path, we need the signs of expressions like $\sum_{i=1}^{100} a_i \sqrt{b_i}$.

Standard algebraic approach is doomed

ISSAC, July 2009 34 / 115

EGO

What is Achieved?

Features

- Removed numerical non-robustness from geometry (!)
- Algorithm-independent solution to non-robustness
- Standard (Euclidean) geometry (why important?)
- Exactness in geometry (can use approximate numbers!)
- Implemented in LEDA, CGAL, Core Library

Other Implications

- A new approach to do algebraic number computation
- In Euclidean Shortest Path, we need the signs of expressions like $\sum_{i=1}^{100} a_i \sqrt{b_i}$.

EGO

What is Achieved?

Features

- Removed numerical non-robustness from geometry (!)
- Algorithm-independent solution to non-robustness
- Standard (Euclidean) geometry (why important?)
- Exactness in geometry (can use approximate numbers!)
- Implemented in LEDA, CGAL, Core Library

Other Implications

- A new approach to do algebraic number computation
- In Euclidean Shortest Path, we need the signs of expressions like $\sum_{i=1}^{100} a_i \sqrt{b_i}$.

Coming Up Next

Introduction: What is Geometric Computation?

2 Five Examples of Geometric Computation

3 Exact Numeric Computation – A Synthesis

4 Exact Geometric Computation

A B K A B K

Core of Core Library

- MUST not use algebraic method!
- Numerical method based on Zero Bounds
- Let $\Omega = \{+, -, \times, \ldots\} \cup \mathbb{Z}$ be a class of operators

 $\mathit{ZERO}(\Omega)$ is the corresponding zero problem

 A Zero Bound for Ω is a function B : Expr(Ω) → ℝ_{≥0} such that e ∈ Expr(Ω) is non-zero implies

|e| > B(e)

- How to use zero bounds? Combine with approximation.
- Zero Bound is the bottleneck only in case of zero.

3

イロト イヨト イヨト イヨト

Core of Core Library

- MUST not use algebraic method!
- Numerical method based on Zero Bounds
- Let Ω = {+, -, ×, ...} ∪ Z be a class of operators
 ZERO(Ω) is the corresponding zero problem
- A Zero Bound for Ω is a function B : Expr(Ω) → ℝ_{≥0} such that e ∈ Expr(Ω) is non-zero implies

|e| > B(e)

- How to use zero bounds? Combine with approximation.
- Zero Bound is the bottleneck only in case of zero.

Э

イロト イポト イヨト イヨト

Core of Core Library

- MUST not use algebraic method!
- Numerical method based on Zero Bounds
- Let $\Omega = \{+, -, \times, \ldots\} \cup \mathbb{Z}$ be a class of operators

 ${\sf ZERO}(\Omega)$ is the corresponding zero problem

 A Zero Bound for Ω is a function B : Expr(Ω) → ℝ_{≥0} such that e ∈ Expr(Ω) is non-zero implies

|e| > B(e)

- How to use zero bounds? Combine with approximation.
- Zero Bound is the bottleneck only in case of zero.

3

イロト イポト イヨト イヨト

Core of Core Library

- MUST not use algebraic method!
- Numerical method based on Zero Bounds
- Let $\Omega = \{+, -, \times, \ldots\} \cup \mathbb{Z}$ be a class of operators
 - $ZERO(\Omega)$ is the corresponding zero problem
- A Zero Bound for Ω is a function B : Expr(Ω) → ℝ_{≥0} such that e ∈ Expr(Ω) is non-zero implies

|e| > B(e)

- How to use zero bounds? Combine with approximation.
- Zero Bound is the bottleneck only in case of zero.

3

Core of Core Library

- MUST not use algebraic method!
- Numerical method based on Zero Bounds
- Let $\Omega = \{+, -, \times, \ldots\} \cup \mathbb{Z}$ be a class of operators

 $ZERO(\Omega)$ is the corresponding zero problem

 A Zero Bound for Ω is a function B : Expr(Ω) → ℝ_{≥0} such that e ∈ Expr(Ω) is non-zero implies

$|\mathbf{e}| > B(\mathbf{e})$

• How to use zero bounds? Combine with approximation.

• Zero Bound is the bottleneck only in case of zero.

3

Core of Core Library

- MUST not use algebraic method!
- Numerical method based on Zero Bounds
- Let $\Omega = \{+, -, \times, \ldots\} \cup \mathbb{Z}$ be a class of operators

 $ZERO(\Omega)$ is the corresponding zero problem

 A Zero Bound for Ω is a function B : Expr(Ω) → ℝ_{≥0} such that e ∈ Expr(Ω) is non-zero implies

• How to use zero bounds? Combine with approximation.

• Zero Bound is the bottleneck only in case of zero.

Э

Core of Core Library

- MUST not use algebraic method!
- Numerical method based on Zero Bounds
- Let $\Omega = \{+, -, \times, \ldots\} \cup \mathbb{Z}$ be a class of operators

 $ZERO(\Omega)$ is the corresponding zero problem

 A Zero Bound for Ω is a function B : Expr(Ω) → ℝ_{≥0} such that e ∈ Expr(Ω) is non-zero implies

- How to use zero bounds? Combine with approximation.
- Zero Bound is the bottleneck only in case of zero.

ISSAC, July 2009 36 / 115

Э

・ロト ・回ト ・ヨト

Some Constructive Bounds

- Degree-Measure Bounds [Mignotte (1982)], [Sekigawa (1997)]
- Degree-Height, Degree-Length [Yap-Dubé (1994)]
- BFMS Bound [Burnikel et al (1989)]
- Eigenvalue Bounds [Scheinerman (2000)]
- Conjugate Bounds [Li-Yap (2001)]
- BFMSS Bound [Burnikel et al (2001)]
 - One of the best bounds
- k-ary Method [Pion-Yap (2002)]
 - Idea: division is bad. k-ary numbers are good

→ ∃ >

• Consider the $e = \sqrt{x} + \sqrt{y} - \sqrt{x + y + 2\sqrt{xy}}$.

• Assume x = a/b and y = c/d where a, b, c, d are *L*-bit integers.

• Then Li-Yap Bound is 28L + 60 bits, BFMSS is 96L + 30 and Degree-Measure is 80L + 56.

	L	50	100	500	5000
	BFMS	0.637	9.12	101.9	202.9
•	Measure	0.063	0.07	1.93	15.26
	BFMSS	0.073	0.61	1.95	15.41
	Li-Yap	0.013	0.07	1.88	1.89

• Consider the $e = \sqrt{x} + \sqrt{y} - \sqrt{x + y + 2\sqrt{xy}}$.

• Assume x = a/b and y = c/d where a, b, c, d are *L*-bit integers.

• Then Li-Yap Bound is 28L + 60 bits, BFMSS is 96L + 30 and Degree-Measure is 80L + 56.

	L	50	100	500	5000
	BFMS	0.637	9.12	101.9	202.9
•	Measure	0.063	0.07	1.93	15.26
	BFMSS	0.073	0.61	1.95	15.41
	Li-Yap	0.013	0.07	1.88	1.89

- Consider the $e = \sqrt{x} + \sqrt{y} \sqrt{x + y + 2\sqrt{xy}}$.
- Assume x = a/b and y = c/d where a, b, c, d are *L*-bit integers.
- Then Li-Yap Bound is 28L + 60 bits, BFMSS is 96L + 30 and Degree-Measure is 80L + 56.

	L	50	100	500	5000
	BFMS	0.637	9.12	101.9	202.9
•	Measure	0.063	0.07	1.93	15.26
	BFMSS	0.073	0.61	1.95	15.41
	Li-Yap	0.013	0.07	1.88	1.89

- Consider the $e = \sqrt{x} + \sqrt{y} \sqrt{x + y + 2\sqrt{xy}}$.
- Assume x = a/b and y = c/d where a, b, c, d are *L*-bit integers.
- Then Li-Yap Bound is 28L + 60 bits, BFMSS is 96L + 30 and Degree-Measure is 80L + 56.

	L	50	100	500	5000
	BFMS	0.637	9.12	101.9	202.9
•	Measure	0.063	0.07	1.93	15.26
	BFMSS	0.073	0.61	1.95	15.41
	Li-Yap	0.013	0.07	1.88	1.89

• Consider the $e = \sqrt{x} + \sqrt{y} - \sqrt{x + y + 2\sqrt{xy}}$.

• Assume x = a/b and y = c/d where a, b, c, d are *L*-bit integers.

• Then Li-Yap Bound is 28L + 60 bits, BFMSS is 96L + 30 and Degree-Measure is 80L + 56.

	L	50	100	500	5000
	BFMS	0.637	9.12	101.9	202.9
٩	Measure	0.063	0.07	1.93	15.26
	BFMSS	0.073	0.61	1.95	15.41
	Li-Yap	0.013	0.07	1.88	1.89

• Consider the $e = \sqrt{x} + \sqrt{y} - \sqrt{x + y + 2\sqrt{xy}}$.

• Assume x = a/b and y = c/d where a, b, c, d are *L*-bit integers.

• Then Li-Yap Bound is 28L + 60 bits, BFMSS is 96L + 30 and Degree-Measure is 80L + 56.

	L	50	100	500	5000
	BFMS	0.637	9.12	101.9	202.9
٩	Measure	0.063	0.07	1.93	15.26
	BFMSS	0.073	0.61	1.95	15.41
	Li-Yap	0.013	0.07	1.88	1.89

 There is a "Universal Solution" for synthesizing the Algebraic and the Geometric viewpoints

- E

- Slogan: Algebraic computation without Algebra
 (Use approximations & zero bounds)
- PUZZLE 3: What was the answer to PUZZLE 2?

 There is a "Universal Solution" for synthesizing the Algebraic and the Geometric viewpoints

<ロ> (四) (四) (三) (三) (三)

- Slogan: Algebraic computation without Algebra (Use approximations & zero bounds)
- PUZZLE 3: What was the answer to PUZZLE 2?

 There is a "Universal Solution" for synthesizing the Algebraic and the Geometric viewpoints

<ロ> (四) (四) (注) (注) (注) (注)

- Slogan: Algebraic computation without Algebra (Use approximations & zero bounds)
- PUZZLE 3: What was the answer to PUZZLE 2?

 There is a "Universal Solution" for synthesizing the Algebraic and the Geometric viewpoints

<ロ> (四) (四) (注) (注) (注) (注)

- Slogan: Algebraic computation without Algebra (Use approximations & zero bounds)
- PUZZLE 3: What was the answer to PUZZLE 2?

 There is a "Universal Solution" for synthesizing the Algebraic and the Geometric viewpoints

<ロ> (四) (四) (注) (注) (注) (注)

- Slogan: Algebraic computation without Algebra (Use approximations & zero bounds)
- PUZZLE 3: What was the answer to PUZZLE 2?

• Nature of Geometric Computation:

- Discrete as well as Continuous
- Algebraic as well as Analytic
- It is possible to provide a fairly general solution (ENC) that combines the dual nature of numbers

(日) (四) (三) (三) (三)

æ,

Nature of Geometric Computation:

- Discrete as well as Continuous
- Algebraic as well as Analytic
- It is possible to provide a fairly general solution (ENC) that combines the dual nature of numbers

- E

Nature of Geometric Computation:

- Discrete as well as Continuous
- Algebraic as well as Analytic
- It is possible to provide a fairly general solution (ENC) that combines the dual nature of numbers

(日) (四) (분) (분) (분) 분

- Nature of Geometric Computation:
 - Discrete as well as Continuous
 - Algebraic as well as Analytic
- It is possible to provide a fairly general solution (ENC) that combines the dual nature of numbers

(日) (四) (분) (분) (분) 분

- Nature of Geometric Computation:
 - Discrete as well as Continuous
 - Algebraic as well as Analytic
- It is possible to provide a fairly general solution (ENC) that combines the dual nature of numbers

(日) (四) (분) (분) (분) 분

- Nature of Geometric Computation:
 - Discrete as well as Continuous
 - Algebraic as well as Analytic
- It is possible to provide a fairly general solution (ENC) that combines the dual nature of numbers

(日) (四) (분) (분) (분) (분)

- Nature of Geometric Computation:
 - Discrete as well as Continuous
 - Algebraic as well as Analytic
- It is possible to provide a fairly general solution (ENC) that combines the dual nature of numbers

(日) (四) (분) (분) (분) (분)