
Tutorial:
Exact Numerical Computation

in Algebra and Geometry

Chee K. Yap

Courant Institute of Mathematical Sciences
New York University

and
Korea Institute of Advanced Study (KIAS)

Seoul, Korea

34th ISSAC, July 28–31, 2009

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 1 / 113

Tutorial: Exact Numerical Computation in Algebra
and Geometry

Many problems in Computational Science & Engineering (CS&E) are
defined on the continuum. Standard algorithms for these problems are
numerical and approximate. Their computational techniques include
iteration, subdivision, and approximation. Such techniques are rarely
seen in exact or algebraic algorithms. In this tutorial, we discuss a mode
of computation called Exact Numerical Computation (ENC) that
achieves exactness through numerical approximation. Through ENC,
we naturally incorporate iteration, subdivision and approximation into
our design of algorithms for computer algebra and computational
geometry. Such algorithms are both novel and practical. This tutorial on
ENC is divided into three equal parts:
(a) ENC and Zero Problems
(b) Explicitization and Subdivision Algorithms
(c) Complexity Analysis of Adaptivity

Overview of Tutorial

Background is algebraic and geometric computation

Motivation: much of computing world (CS&E) is continuous

But Theoretical Computer Science has gone completely discrete

The discrete view alone is inadequate for CS&E.

What role for exact computation in the continuum?

Geometric insights holds the key

Exact Numerical Computation (ENC) is a proposed synthesis

Lecture in 3 parts
◮ (a) ENC and Zero Problems
◮ (b) Explicitization and Subdivision Algorithms
◮ (c) Complexity Analysis of Adaptivity

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 3 / 113

Overview of Tutorial

Background is algebraic and geometric computation

Motivation: much of computing world (CS&E) is continuous

But Theoretical Computer Science has gone completely discrete

The discrete view alone is inadequate for CS&E.

What role for exact computation in the continuum?

Geometric insights holds the key

Exact Numerical Computation (ENC) is a proposed synthesis

Lecture in 3 parts
◮ (a) ENC and Zero Problems
◮ (b) Explicitization and Subdivision Algorithms
◮ (c) Complexity Analysis of Adaptivity

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 3 / 113

Overview of Tutorial

Background is algebraic and geometric computation

Motivation: much of computing world (CS&E) is continuous

But Theoretical Computer Science has gone completely discrete

The discrete view alone is inadequate for CS&E.

What role for exact computation in the continuum?

Geometric insights holds the key

Exact Numerical Computation (ENC) is a proposed synthesis

Lecture in 3 parts
◮ (a) ENC and Zero Problems
◮ (b) Explicitization and Subdivision Algorithms
◮ (c) Complexity Analysis of Adaptivity

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 3 / 113

Overview of Tutorial

Background is algebraic and geometric computation

Motivation: much of computing world (CS&E) is continuous

But Theoretical Computer Science has gone completely discrete

The discrete view alone is inadequate for CS&E.

What role for exact computation in the continuum?

Geometric insights holds the key

Exact Numerical Computation (ENC) is a proposed synthesis

Lecture in 3 parts
◮ (a) ENC and Zero Problems
◮ (b) Explicitization and Subdivision Algorithms
◮ (c) Complexity Analysis of Adaptivity

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 3 / 113

Overview of Tutorial

Background is algebraic and geometric computation

Motivation: much of computing world (CS&E) is continuous

But Theoretical Computer Science has gone completely discrete

The discrete view alone is inadequate for CS&E.

What role for exact computation in the continuum?

Geometric insights holds the key

Exact Numerical Computation (ENC) is a proposed synthesis

Lecture in 3 parts
◮ (a) ENC and Zero Problems
◮ (b) Explicitization and Subdivision Algorithms
◮ (c) Complexity Analysis of Adaptivity

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 3 / 113

Overview of Tutorial

Background is algebraic and geometric computation

Motivation: much of computing world (CS&E) is continuous

But Theoretical Computer Science has gone completely discrete

The discrete view alone is inadequate for CS&E.

What role for exact computation in the continuum?

Geometric insights holds the key

Exact Numerical Computation (ENC) is a proposed synthesis

Lecture in 3 parts
◮ (a) ENC and Zero Problems
◮ (b) Explicitization and Subdivision Algorithms
◮ (c) Complexity Analysis of Adaptivity

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 3 / 113

Overview of Tutorial

Background is algebraic and geometric computation

Motivation: much of computing world (CS&E) is continuous

But Theoretical Computer Science has gone completely discrete

The discrete view alone is inadequate for CS&E.

What role for exact computation in the continuum?

Geometric insights holds the key

Exact Numerical Computation (ENC) is a proposed synthesis

Lecture in 3 parts
◮ (a) ENC and Zero Problems
◮ (b) Explicitization and Subdivision Algorithms
◮ (c) Complexity Analysis of Adaptivity

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 3 / 113

Overview of Tutorial

Background is algebraic and geometric computation

Motivation: much of computing world (CS&E) is continuous

But Theoretical Computer Science has gone completely discrete

The discrete view alone is inadequate for CS&E.

What role for exact computation in the continuum?

Geometric insights holds the key

Exact Numerical Computation (ENC) is a proposed synthesis

Lecture in 3 parts
◮ (a) ENC and Zero Problems
◮ (b) Explicitization and Subdivision Algorithms
◮ (c) Complexity Analysis of Adaptivity

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 3 / 113

Overview of Tutorial

Background is algebraic and geometric computation

Motivation: much of computing world (CS&E) is continuous

But Theoretical Computer Science has gone completely discrete

The discrete view alone is inadequate for CS&E.

What role for exact computation in the continuum?

Geometric insights holds the key

Exact Numerical Computation (ENC) is a proposed synthesis

Lecture in 3 parts
◮ (a) ENC and Zero Problems
◮ (b) Explicitization and Subdivision Algorithms
◮ (c) Complexity Analysis of Adaptivity

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 3 / 113

Overview of Tutorial

Background is algebraic and geometric computation

Motivation: much of computing world (CS&E) is continuous

But Theoretical Computer Science has gone completely discrete

The discrete view alone is inadequate for CS&E.

What role for exact computation in the continuum?

Geometric insights holds the key

Exact Numerical Computation (ENC) is a proposed synthesis

Lecture in 3 parts
◮ (a) ENC and Zero Problems
◮ (b) Explicitization and Subdivision Algorithms
◮ (c) Complexity Analysis of Adaptivity

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 3 / 113

Overview of Tutorial

Background is algebraic and geometric computation

Motivation: much of computing world (CS&E) is continuous

But Theoretical Computer Science has gone completely discrete

The discrete view alone is inadequate for CS&E.

What role for exact computation in the continuum?

Geometric insights holds the key

Exact Numerical Computation (ENC) is a proposed synthesis

Lecture in 3 parts
◮ (a) ENC and Zero Problems
◮ (b) Explicitization and Subdivision Algorithms
◮ (c) Complexity Analysis of Adaptivity

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 3 / 113

PART 1

Exact Numeric Computation and
the Zero Problem

“The history of the zero recognition problem is somewhat confused by
the fact that many people do not recognize it as a problem at all.”

— DANIEL RICHARDSON (1996)

“Algebra is generous, she often gives more than is asked of her.”

— JEAN LE ROND D’ALEMBERT (1717-83)
Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 4 / 113

Introduction: What is Geometry?

Coming Up Next

1 Introduction: What is Geometric Computation?

2 Five Examples of Geometric Computation

3 Exact Numeric Computation – A Synthesis

4 Exact Geometric Computation

5 Constructive Zero Bounds

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 5 / 113

Introduction: What is Geometry?

Introduction to Geometric Computation

PUZZLE 1:
Is Geometry discrete or continuous?

PUZZLE 2:
How come numbers do not arise in Computational Geometry?

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 6 / 113

Introduction: What is Geometry?

Introduction to Geometric Computation

PUZZLE 1:
Is Geometry discrete or continuous?

PUZZLE 2:
How come numbers do not arise in Computational Geometry?

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 6 / 113

Introduction: What is Geometry?

Introduction to Geometric Computation

PUZZLE 1:
Is Geometry discrete or continuous?

PUZZLE 2:
How come numbers do not arise in Computational Geometry?

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 6 / 113

Introduction: What is Geometry?

Introduction to Geometric Computation

PUZZLE 1:
Is Geometry discrete or continuous?

PUZZLE 2:
How come numbers do not arise in Computational Geometry?

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 6 / 113

Introduction: What is Geometry?

What is Computational Geometry?

Geometric Objects

Prototype: Points, Lines, Circles (Euclidean Geometry)

Arrangement of hyperplanes and hypersurfaces

Zero sets and their Singularities

Semi-algebraic sets

Non-algebraic sets

Geometric complexes

Geometric Problems

Constructing geometric objects

Searching in geometric complexes or structures

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 7 / 113

Introduction: What is Geometry?

What is Computational Geometry?

Geometric Objects

Prototype: Points, Lines, Circles (Euclidean Geometry)

Arrangement of hyperplanes and hypersurfaces

Zero sets and their Singularities

Semi-algebraic sets

Non-algebraic sets

Geometric complexes

Geometric Problems

Constructing geometric objects

Searching in geometric complexes or structures

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 7 / 113

Introduction: What is Geometry?

What is Computational Geometry?

Geometric Objects

Prototype: Points, Lines, Circles (Euclidean Geometry)

Arrangement of hyperplanes and hypersurfaces

Zero sets and their Singularities

Semi-algebraic sets

Non-algebraic sets

Geometric complexes

Geometric Problems

Constructing geometric objects

Searching in geometric complexes or structures

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 7 / 113

Introduction: What is Geometry?

What is Computational Geometry?

Geometric Objects

Prototype: Points, Lines, Circles (Euclidean Geometry)

Arrangement of hyperplanes and hypersurfaces

Zero sets and their Singularities

Semi-algebraic sets

Non-algebraic sets

Geometric complexes

Geometric Problems

Constructing geometric objects

Searching in geometric complexes or structures

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 7 / 113

Introduction: What is Geometry?

What is Computational Geometry?

Geometric Objects

Prototype: Points, Lines, Circles (Euclidean Geometry)

Arrangement of hyperplanes and hypersurfaces

Zero sets and their Singularities

Semi-algebraic sets

Non-algebraic sets

Geometric complexes

Geometric Problems

Constructing geometric objects

Searching in geometric complexes or structures

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 7 / 113

Introduction: What is Geometry?

What is Computational Geometry?

Geometric Objects

Prototype: Points, Lines, Circles (Euclidean Geometry)

Arrangement of hyperplanes and hypersurfaces

Zero sets and their Singularities

Semi-algebraic sets

Non-algebraic sets

Geometric complexes

Geometric Problems

Constructing geometric objects

Searching in geometric complexes or structures

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 7 / 113

Introduction: What is Geometry?

What is Computational Geometry?

Geometric Objects

Prototype: Points, Lines, Circles (Euclidean Geometry)

Arrangement of hyperplanes and hypersurfaces

Zero sets and their Singularities

Semi-algebraic sets

Non-algebraic sets

Geometric complexes

Geometric Problems

Constructing geometric objects

Searching in geometric complexes or structures

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 7 / 113

Introduction: What is Geometry?

What is Computational Geometry?

Geometric Objects

Prototype: Points, Lines, Circles (Euclidean Geometry)

Arrangement of hyperplanes and hypersurfaces

Zero sets and their Singularities

Semi-algebraic sets

Non-algebraic sets

Geometric complexes

Geometric Problems

Constructing geometric objects

Searching in geometric complexes or structures

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 7 / 113

Introduction: What is Geometry?

What is Computational Geometry?

Geometric Objects

Prototype: Points, Lines, Circles (Euclidean Geometry)

Arrangement of hyperplanes and hypersurfaces

Zero sets and their Singularities

Semi-algebraic sets

Non-algebraic sets

Geometric complexes

Geometric Problems

Constructing geometric objects

Searching in geometric complexes or structures

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 7 / 113

Introduction: What is Geometry?

What is Computational Geometry?

Geometric Objects

Prototype: Points, Lines, Circles (Euclidean Geometry)

Arrangement of hyperplanes and hypersurfaces

Zero sets and their Singularities

Semi-algebraic sets

Non-algebraic sets

Geometric complexes

Geometric Problems

Constructing geometric objects

Searching in geometric complexes or structures

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 7 / 113

Introduction: What is Geometry?

What is Computational Geometry?

Geometric Objects

Prototype: Points, Lines, Circles (Euclidean Geometry)

Arrangement of hyperplanes and hypersurfaces

Zero sets and their Singularities

Semi-algebraic sets

Non-algebraic sets

Geometric complexes

Geometric Problems

Constructing geometric objects

Searching in geometric complexes or structures

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 7 / 113

Introduction: What is Geometry?

Dual Descriptions of Geometry

Where do Geometric Objects Live?

As Points in Parametric Space P
◮ E.g., for lines given by L(a,b,c) := aX +bY + c = 0,

the space is P :=
{
(a,b,c) : a2 +b2 > 0

}
⊆R

3.

As Loci in Ambient Space A
◮ E.g., Locus of the Line(1,−2,0) is

the set
{
(x ,y) ∈R

2 : x−2y = 0
}
⊆A= R

2.

More involved example:
Cell Complexes (in the sense of algebraic topology)

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 8 / 113

Introduction: What is Geometry?

Dual Descriptions of Geometry

Where do Geometric Objects Live?

As Points in Parametric Space P
◮ E.g., for lines given by L(a,b,c) := aX +bY + c = 0,

the space is P :=
{
(a,b,c) : a2 +b2 > 0

}
⊆R

3.

As Loci in Ambient Space A
◮ E.g., Locus of the Line(1,−2,0) is

the set
{
(x ,y) ∈R

2 : x−2y = 0
}
⊆A= R

2.

More involved example:
Cell Complexes (in the sense of algebraic topology)

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 8 / 113

Introduction: What is Geometry?

Dual Descriptions of Geometry

Where do Geometric Objects Live?

As Points in Parametric Space P
◮ E.g., for lines given by L(a,b,c) := aX +bY + c = 0,

the space is P :=
{
(a,b,c) : a2 +b2 > 0

}
⊆R

3.

As Loci in Ambient Space A
◮ E.g., Locus of the Line(1,−2,0) is

the set
{
(x ,y) ∈R

2 : x−2y = 0
}
⊆A= R

2.

More involved example:
Cell Complexes (in the sense of algebraic topology)

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 8 / 113

Introduction: What is Geometry?

Dual Descriptions of Geometry

Where do Geometric Objects Live?

As Points in Parametric Space P
◮ E.g., for lines given by L(a,b,c) := aX +bY + c = 0,

the space is P :=
{
(a,b,c) : a2 +b2 > 0

}
⊆R

3.

As Loci in Ambient Space A
◮ E.g., Locus of the Line(1,−2,0) is

the set
{
(x ,y) ∈R

2 : x−2y = 0
}
⊆A= R

2.

More involved example:
Cell Complexes (in the sense of algebraic topology)

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 8 / 113

Introduction: What is Geometry?

Dual Descriptions of Geometry

Where do Geometric Objects Live?

As Points in Parametric Space P
◮ E.g., for lines given by L(a,b,c) := aX +bY + c = 0,

the space is P :=
{
(a,b,c) : a2 +b2 > 0

}
⊆R

3.

As Loci in Ambient Space A
◮ E.g., Locus of the Line(1,−2,0) is

the set
{
(x ,y) ∈R

2 : x−2y = 0
}
⊆A= R

2.

More involved example:
Cell Complexes (in the sense of algebraic topology)

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 8 / 113

Introduction: What is Geometry?

Dual Descriptions of Geometry

Where do Geometric Objects Live?

As Points in Parametric Space P
◮ E.g., for lines given by L(a,b,c) := aX +bY + c = 0,

the space is P :=
{
(a,b,c) : a2 +b2 > 0

}
⊆R

3.

As Loci in Ambient Space A
◮ E.g., Locus of the Line(1,−2,0) is

the set
{
(x ,y) ∈R

2 : x−2y = 0
}
⊆A= R

2.

More involved example:
Cell Complexes (in the sense of algebraic topology)

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 8 / 113

Introduction: What is Geometry?

Dual Descriptions of Geometry

Where do Geometric Objects Live?

As Points in Parametric Space P
◮ E.g., for lines given by L(a,b,c) := aX +bY + c = 0,

the space is P :=
{
(a,b,c) : a2 +b2 > 0

}
⊆R

3.

As Loci in Ambient Space A
◮ E.g., Locus of the Line(1,−2,0) is

the set
{
(x ,y) ∈R

2 : x−2y = 0
}
⊆A= R

2.

More involved example:
Cell Complexes (in the sense of algebraic topology)

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 8 / 113

Introduction: What is Geometry?

Computation: Geometric vs. Algebraic

Where is the Computation?

Algebraic Computation: in parameter space P
◮ E.g., Gröbner bases
◮ Polynomial manipulation, Expensive (double exponential time)

Geometric Computation: in ambient space A
◮ E.g., Finding Zeros of Polynomials in R

n

◮ Numerical, Combinatorial, Adaptive (single exponential time)

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 9 / 113

Introduction: What is Geometry?

Computation: Geometric vs. Algebraic

Where is the Computation?

Algebraic Computation: in parameter space P
◮ E.g., Gröbner bases
◮ Polynomial manipulation, Expensive (double exponential time)

Geometric Computation: in ambient space A
◮ E.g., Finding Zeros of Polynomials in R

n

◮ Numerical, Combinatorial, Adaptive (single exponential time)

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 9 / 113

Introduction: What is Geometry?

Computation: Geometric vs. Algebraic

Where is the Computation?

Algebraic Computation: in parameter space P
◮ E.g., Gröbner bases
◮ Polynomial manipulation, Expensive (double exponential time)

Geometric Computation: in ambient space A
◮ E.g., Finding Zeros of Polynomials in R

n

◮ Numerical, Combinatorial, Adaptive (single exponential time)

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 9 / 113

Introduction: What is Geometry?

Computation: Geometric vs. Algebraic

Where is the Computation?

Algebraic Computation: in parameter space P
◮ E.g., Gröbner bases
◮ Polynomial manipulation, Expensive (double exponential time)

Geometric Computation: in ambient space A
◮ E.g., Finding Zeros of Polynomials in R

n

◮ Numerical, Combinatorial, Adaptive (single exponential time)

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 9 / 113

Introduction: What is Geometry?

Computation: Geometric vs. Algebraic

Where is the Computation?

Algebraic Computation: in parameter space P
◮ E.g., Gröbner bases
◮ Polynomial manipulation, Expensive (double exponential time)

Geometric Computation: in ambient space A
◮ E.g., Finding Zeros of Polynomials in R

n

◮ Numerical, Combinatorial, Adaptive (single exponential time)

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 9 / 113

Introduction: What is Geometry?

Computation: Geometric vs. Algebraic

Where is the Computation?

Algebraic Computation: in parameter space P
◮ E.g., Gröbner bases
◮ Polynomial manipulation, Expensive (double exponential time)

Geometric Computation: in ambient space A
◮ E.g., Finding Zeros of Polynomials in R

n

◮ Numerical, Combinatorial, Adaptive (single exponential time)

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 9 / 113

(Contd.) Computation: Geometric vs. Algebraic

Answer to PUZZLE 1: “BOTH”
Geometry is discrete (in P) (algebraic computation)

Geometry is continuous (in A) (analytic computation)

Actions in the Ambient Space

Geometric Relationships on different Object types arise in A
◮ E.g., Point is ON/LEFT/RIGHT of a Line

Analytic properties of Objects comes from their loci

◮ E.g., Proximity, Approximations, Isotopy, etc

(Contd.) Computation: Geometric vs. Algebraic

Answer to PUZZLE 1: “BOTH”
Geometry is discrete (in P) (algebraic computation)

Geometry is continuous (in A) (analytic computation)

Actions in the Ambient Space

Geometric Relationships on different Object types arise in A
◮ E.g., Point is ON/LEFT/RIGHT of a Line

Analytic properties of Objects comes from their loci

◮ E.g., Proximity, Approximations, Isotopy, etc

(Contd.) Computation: Geometric vs. Algebraic

Answer to PUZZLE 1: “BOTH”
Geometry is discrete (in P) (algebraic computation)

Geometry is continuous (in A) (analytic computation)

Actions in the Ambient Space

Geometric Relationships on different Object types arise in A
◮ E.g., Point is ON/LEFT/RIGHT of a Line

Analytic properties of Objects comes from their loci

◮ E.g., Proximity, Approximations, Isotopy, etc

(Contd.) Computation: Geometric vs. Algebraic

Answer to PUZZLE 1: “BOTH”
Geometry is discrete (in P) (algebraic computation)

Geometry is continuous (in A) (analytic computation)

Actions in the Ambient Space

Geometric Relationships on different Object types arise in A
◮ E.g., Point is ON/LEFT/RIGHT of a Line

Analytic properties of Objects comes from their loci

◮ E.g., Proximity, Approximations, Isotopy, etc

(Contd.) Computation: Geometric vs. Algebraic

Answer to PUZZLE 1: “BOTH”
Geometry is discrete (in P) (algebraic computation)

Geometry is continuous (in A) (analytic computation)

Actions in the Ambient Space

Geometric Relationships on different Object types arise in A
◮ E.g., Point is ON/LEFT/RIGHT of a Line

Analytic properties of Objects comes from their loci

◮ E.g., Proximity, Approximations, Isotopy, etc

(Contd.) Computation: Geometric vs. Algebraic

Answer to PUZZLE 1: “BOTH”
Geometry is discrete (in P) (algebraic computation)

Geometry is continuous (in A) (analytic computation)

Actions in the Ambient Space

Geometric Relationships on different Object types arise in A
◮ E.g., Point is ON/LEFT/RIGHT of a Line

Analytic properties of Objects comes from their loci

◮ E.g., Proximity, Approximations, Isotopy, etc

(Contd.) Computation: Geometric vs. Algebraic

Answer to PUZZLE 1: “BOTH”
Geometry is discrete (in P) (algebraic computation)

Geometry is continuous (in A) (analytic computation)

Actions in the Ambient Space

Geometric Relationships on different Object types arise in A
◮ E.g., Point is ON/LEFT/RIGHT of a Line

Analytic properties of Objects comes from their loci

◮ E.g., Proximity, Approximations, Isotopy, etc

(Contd.) Computation: Geometric vs. Algebraic

Answer to PUZZLE 1: “BOTH”
Geometry is discrete (in P) (algebraic computation)

Geometry is continuous (in A) (analytic computation)

Actions in the Ambient Space

Geometric Relationships on different Object types arise in A
◮ E.g., Point is ON/LEFT/RIGHT of a Line

Analytic properties of Objects comes from their loci

◮ E.g., Proximity, Approximations, Isotopy, etc

Mini Summary

Geometry is discrete (algebraic view)

Geometry is continuous (analytic view)

Up Next : What do Computational Geometers think?

Mini Summary

Geometry is discrete (algebraic view)

Geometry is continuous (analytic view)

Up Next : What do Computational Geometers think?

Mini Summary

Geometry is discrete (algebraic view)

Geometry is continuous (analytic view)

Up Next : What do Computational Geometers think?

Mini Summary

Geometry is discrete (algebraic view)

Geometry is continuous (analytic view)

Up Next : What do Computational Geometers think?

Mini Summary

Geometry is discrete (algebraic view)

Geometry is continuous (analytic view)

Up Next : What do Computational Geometers think?

Five Examples of Geometric Computation

Coming Up Next

1 Introduction: What is Geometric Computation?

2 Five Examples of Geometric Computation

3 Exact Numeric Computation – A Synthesis

4 Exact Geometric Computation

5 Constructive Zero Bounds

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 12 / 113

Five Examples of Geometric Computation

Five Examples of Geometric Computation

(I) Convex Hulls

(II) Euclidean Shortest Path

(III) Disc Avoiding Shortest Path

(IV) Mesh Generation

(V) Discrete Morse Theory

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 13 / 113

Five Examples of Geometric Computation

Five Examples of Geometric Computation

(I) Convex Hulls

(II) Euclidean Shortest Path

(III) Disc Avoiding Shortest Path

(IV) Mesh Generation

(V) Discrete Morse Theory

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 13 / 113

Five Examples of Geometric Computation

Five Examples of Geometric Computation

(I) Convex Hulls

(II) Euclidean Shortest Path

(III) Disc Avoiding Shortest Path

(IV) Mesh Generation

(V) Discrete Morse Theory

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 13 / 113

Five Examples of Geometric Computation

Five Examples of Geometric Computation

(I) Convex Hulls

(II) Euclidean Shortest Path

(III) Disc Avoiding Shortest Path

(IV) Mesh Generation

(V) Discrete Morse Theory

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 13 / 113

Five Examples of Geometric Computation

Five Examples of Geometric Computation

(I) Convex Hulls

(II) Euclidean Shortest Path

(III) Disc Avoiding Shortest Path

(IV) Mesh Generation

(V) Discrete Morse Theory

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 13 / 113

Five Examples of Geometric Computation

Five Examples of Geometric Computation

(I) Convex Hulls

(II) Euclidean Shortest Path

(III) Disc Avoiding Shortest Path

(IV) Mesh Generation

(V) Discrete Morse Theory

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 13 / 113

Five Examples of Geometric Computation

Five Examples of Geometric Computation

(I) Convex Hulls

(II) Euclidean Shortest Path

(III) Disc Avoiding Shortest Path

(IV) Mesh Generation

(V) Discrete Morse Theory

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 13 / 113

Five Examples of Geometric Computation

(I) Convex Hulls

Convex Hull of Points in Rn

n = 1: finding max and min

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 14 / 113

Five Examples of Geometric Computation

(I) Convex Hulls

Convex Hull of Points in Rn

n = 1: finding max and min

n = 2,3: find a convex polygon or polytope

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 14 / 113

Five Examples of Geometric Computation

(I) Convex Hulls

Convex Hull of Points in Rn

n = 1: finding max and min

n = 2,3: find a convex polygon or polytope

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 14 / 113

Five Examples of Geometric Computation

(I) Convex Hulls

Convex Hull of Points in Rn

n = 1: finding max and min

n = 2,3: find a convex polygon or polytope

8

2
3

4

5

6

7

1

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 14 / 113

Five Examples of Geometric Computation

(I) Convex Hulls

Convex Hull of Points in Rn

n = 1: finding max and min

n = 2,3: find a convex polygon or polytope

8

2
3

4

5

6

7

1 Can be reduced to a single predicate
Orientation(P0,P1, . . . ,Pn)

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 14 / 113

Five Examples of Geometric Computation

(I) Convex Hulls

Convex Hull of Points in Rn

n = 1: finding max and min

n = 2,3: find a convex polygon or polytope

8

2
3

4

5

6

7

1 Can be reduced to a single predicate
Orientation(P0,P1, . . . ,Pn)

Main issue is combinatorial in nature

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 14 / 113

Five Examples of Geometric Computation

(I) Convex Hulls

Convex Hull of Points in Rn

n = 1: finding max and min

n = 2,3: find a convex polygon or polytope

8

2
3

4

5

6

7

1 Can be reduced to a single predicate
Orientation(P0,P1, . . . ,Pn)

Main issue is combinatorial in nature

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 14 / 113

Five Examples of Geometric Computation

(I) Convex Hulls

Convex Hull of Points in Rn

n = 1: finding max and min

n = 2,3: find a convex polygon or polytope

8

2
3

4

5

6

7

1 Can be reduced to a single predicate
Orientation(P0,P1, . . . ,Pn)

Main issue is combinatorial in nature

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 14 / 113

Five Examples of Geometric Computation

(II) Euclidean Shortest Path (ESP)

Shortest Path amidst Polygonal Obstacles
Shortest path from p to q avoiding A,B,C

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 15 / 113

Five Examples of Geometric Computation

(II) Euclidean Shortest Path (ESP)

Shortest Path amidst Polygonal Obstacles
Shortest path from p to q avoiding A,B,C

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 15 / 113

Five Examples of Geometric Computation

(II) Euclidean Shortest Path (ESP)

Shortest Path amidst Polygonal Obstacles
Shortest path from p to q avoiding A,B,C

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 15 / 113

Five Examples of Geometric Computation

(II) Euclidean Shortest Path (ESP)

Shortest Path amidst Polygonal Obstacles
Shortest path from p to q avoiding A,B,C

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 15 / 113

Five Examples of Geometric Computation

(II) Euclidean Shortest Path (ESP)

Shortest Path amidst Polygonal Obstacles
Shortest path from p to q avoiding A,B,C

p

q

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 15 / 113

Five Examples of Geometric Computation

(II) Euclidean Shortest Path (ESP)

Shortest Path amidst Polygonal Obstacles
Shortest path from p to q avoiding A,B,C

p

q

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 15 / 113

Five Examples of Geometric Computation

(II) Euclidean Shortest Path (ESP)

Shortest Path amidst Polygonal Obstacles
Shortest path from p to q avoiding A,B,C

p

q

C

B

A

B

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 15 / 113

Five Examples of Geometric Computation

(II) Euclidean Shortest Path (ESP)

Shortest Path amidst Polygonal Obstacles
Shortest path from p to q avoiding A,B,C

p

q

C

B

A

B

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 15 / 113

Five Examples of Geometric Computation

(II) Euclidean Shortest Path (ESP)

Shortest Path amidst Polygonal Obstacles
Shortest path from p to q avoiding A,B,C

p

q

C

B

A

B

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 15 / 113

Five Examples of Geometric Computation

(II) Euclidean Shortest Path (ESP)

Shortest Path amidst Polygonal Obstacles
Shortest path from p to q avoiding A,B,C

p

q

C

B

A

B

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 15 / 113

Five Examples of Geometric Computation

(II) Euclidean Shortest Path (ESP)

Shortest Path amidst Polygonal Obstacles
Shortest path from p to q avoiding A,B,C

p

q

C

B

A

B

Segment length is a
square-root

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 15 / 113

Five Examples of Geometric Computation

(II) Euclidean Shortest Path (ESP)

Shortest Path amidst Polygonal Obstacles
Shortest path from p to q avoiding A,B,C

p

q

C

B

A

B

Segment length is a
square-root

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 15 / 113

Five Examples of Geometric Computation

(II) Euclidean Shortest Path (ESP)

Shortest Path amidst Polygonal Obstacles
Shortest path from p to q avoiding A,B,C

p

q

C

B

A

B

Segment length is a
square-root

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 15 / 113

ESP, contd.

Reduction to Dijkstra’s Algorithm

Combinatorial complexity: O(n2 logn) (negligible)

Sum of Square-roots Problem: Is ∑m
i=1 ai

√
bi = 0?

Not known to be polynomial-time!

Algebraic Approach: Repeated Squaring Method (Nontrivial for
Inequalites!)

◮ Ω(2m) (slow, unless you are lucky! (Illustrate))

Numerical Approach: Zero Bound Method
◮ O(log(1/|e|)) (fast, unless you are unlucky! (Illustrate))

Luck deals differently for the two approaches

ESP, contd.

Reduction to Dijkstra’s Algorithm

Combinatorial complexity: O(n2 logn) (negligible)

Sum of Square-roots Problem: Is ∑m
i=1 ai

√
bi = 0?

Not known to be polynomial-time!

Algebraic Approach: Repeated Squaring Method (Nontrivial for
Inequalites!)

◮ Ω(2m) (slow, unless you are lucky! (Illustrate))

Numerical Approach: Zero Bound Method
◮ O(log(1/|e|)) (fast, unless you are unlucky! (Illustrate))

Luck deals differently for the two approaches

ESP, contd.

Reduction to Dijkstra’s Algorithm

Combinatorial complexity: O(n2 logn) (negligible)

Sum of Square-roots Problem: Is ∑m
i=1 ai

√
bi = 0?

Not known to be polynomial-time!

Algebraic Approach: Repeated Squaring Method (Nontrivial for
Inequalites!)

◮ Ω(2m) (slow, unless you are lucky! (Illustrate))

Numerical Approach: Zero Bound Method
◮ O(log(1/|e|)) (fast, unless you are unlucky! (Illustrate))

Luck deals differently for the two approaches

ESP, contd.

Reduction to Dijkstra’s Algorithm

Combinatorial complexity: O(n2 logn) (negligible)

Sum of Square-roots Problem: Is ∑m
i=1 ai

√
bi = 0?

Not known to be polynomial-time!

Algebraic Approach: Repeated Squaring Method (Nontrivial for
Inequalites!)

◮ Ω(2m) (slow, unless you are lucky! (Illustrate))

Numerical Approach: Zero Bound Method
◮ O(log(1/|e|)) (fast, unless you are unlucky! (Illustrate))

Luck deals differently for the two approaches

ESP, contd.

Reduction to Dijkstra’s Algorithm

Combinatorial complexity: O(n2 logn) (negligible)

Sum of Square-roots Problem: Is ∑m
i=1 ai

√
bi = 0?

Not known to be polynomial-time!

Algebraic Approach: Repeated Squaring Method (Nontrivial for
Inequalites!)

◮ Ω(2m) (slow, unless you are lucky! (Illustrate))

Numerical Approach: Zero Bound Method
◮ O(log(1/|e|)) (fast, unless you are unlucky! (Illustrate))

Luck deals differently for the two approaches

ESP, contd.

Reduction to Dijkstra’s Algorithm

Combinatorial complexity: O(n2 logn) (negligible)

Sum of Square-roots Problem: Is ∑m
i=1 ai

√
bi = 0?

Not known to be polynomial-time!

Algebraic Approach: Repeated Squaring Method (Nontrivial for
Inequalites!)

◮ Ω(2m) (slow, unless you are lucky! (Illustrate))

Numerical Approach: Zero Bound Method
◮ O(log(1/|e|)) (fast, unless you are unlucky! (Illustrate))

Luck deals differently for the two approaches

ESP, contd.

Reduction to Dijkstra’s Algorithm

Combinatorial complexity: O(n2 logn) (negligible)

Sum of Square-roots Problem: Is ∑m
i=1 ai

√
bi = 0?

Not known to be polynomial-time!

Algebraic Approach: Repeated Squaring Method (Nontrivial for
Inequalites!)

◮ Ω(2m) (slow, unless you are lucky! (Illustrate))

Numerical Approach: Zero Bound Method
◮ O(log(1/|e|)) (fast, unless you are unlucky! (Illustrate))

Luck deals differently for the two approaches

ESP, contd.

Reduction to Dijkstra’s Algorithm

Combinatorial complexity: O(n2 logn) (negligible)

Sum of Square-roots Problem: Is ∑m
i=1 ai

√
bi = 0?

Not known to be polynomial-time!

Algebraic Approach: Repeated Squaring Method (Nontrivial for
Inequalites!)

◮ Ω(2m) (slow, unless you are lucky! (Illustrate))

Numerical Approach: Zero Bound Method
◮ O(log(1/|e|)) (fast, unless you are unlucky! (Illustrate))

Luck deals differently for the two approaches

Five Examples of Geometric Computation

(III) Shortest Path Amidst Discs

Shortest Path amidst Discs
Shortest path from p to q avoiding discs A,B

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 17 / 113

Five Examples of Geometric Computation

(III) Shortest Path Amidst Discs

Shortest Path amidst Discs
Shortest path from p to q avoiding discs A,B

p −p

q

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 17 / 113

Five Examples of Geometric Computation

(III) Shortest Path Amidst Discs

Shortest Path amidst Discs
Shortest path from p to q avoiding discs A,B

p −p

q

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 17 / 113

Five Examples of Geometric Computation

(III) Shortest Path Amidst Discs

Shortest Path amidst Discs
Shortest path from p to q avoiding discs A,B

p −p

q

A

B

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 17 / 113

Five Examples of Geometric Computation

(III) Shortest Path Amidst Discs

Shortest Path amidst Discs
Shortest path from p to q avoiding discs A,B

p −p

q

A

B

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 17 / 113

Five Examples of Geometric Computation

(III) Shortest Path Amidst Discs

Shortest Path amidst Discs
Shortest path from p to q avoiding discs A,B

p −p

q

A

B

◮ Segment length is a
square-root of an algebraic
number

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 17 / 113

Five Examples of Geometric Computation

(III) Shortest Path Amidst Discs

Shortest Path amidst Discs
Shortest path from p to q avoiding discs A,B

p −p

q

A

B

◮ Segment length is a
square-root of an algebraic
number

◮ Arc lengh is rθ

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 17 / 113

Five Examples of Geometric Computation

(III) Shortest Path Amidst Discs

Shortest Path amidst Discs
Shortest path from p to q avoiding discs A,B

p −p

q

A

B

◮ Segment length is a
square-root of an algebraic
number

◮ Arc lengh is rθ

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 17 / 113

Five Examples of Geometric Computation

(III) Shortest Path Amidst Discs

Shortest Path amidst Discs
Shortest path from p to q avoiding discs A,B

p −p

q

A

B

◮ Segment length is a
square-root of an algebraic
number

◮ Arc lengh is rθ

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 17 / 113

Five Examples of Geometric Computation

(III) Shortest Path Amidst Discs

Shortest Path amidst Discs
Shortest path from p to q avoiding discs A,B

p −p

q

A

B

◮ Segment length is a
square-root of an algebraic
number

◮ Arc lengh is rθ

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 17 / 113

Disc Obstacles, contd.

Reduction to Dijkstra’s Algorithm (Again?)

Combinatorial complexity: O(n2 logn) (negligible, exercise)

Path length = γ +α
where γ is algebraic , but α is transcendental

Not even clear that we can compute this!

◮ Why? Numerical Halting Problem

Analogue of the Turing Halting Problem

◮ Also semi-decidable

Disc Obstacles, contd.

Reduction to Dijkstra’s Algorithm (Again?)

Combinatorial complexity: O(n2 logn) (negligible, exercise)

Path length = γ +α
where γ is algebraic , but α is transcendental

Not even clear that we can compute this!

◮ Why? Numerical Halting Problem

Analogue of the Turing Halting Problem

◮ Also semi-decidable

Disc Obstacles, contd.

Reduction to Dijkstra’s Algorithm (Again?)

Combinatorial complexity: O(n2 logn) (negligible, exercise)

Path length = γ +α
where γ is algebraic , but α is transcendental

Not even clear that we can compute this!

◮ Why? Numerical Halting Problem

Analogue of the Turing Halting Problem

◮ Also semi-decidable

Disc Obstacles, contd.

Reduction to Dijkstra’s Algorithm (Again?)

Combinatorial complexity: O(n2 logn) (negligible, exercise)

Path length = γ +α
where γ is algebraic , but α is transcendental

Not even clear that we can compute this!

◮ Why? Numerical Halting Problem

Analogue of the Turing Halting Problem

◮ Also semi-decidable

Disc Obstacles, contd.

Reduction to Dijkstra’s Algorithm (Again?)

Combinatorial complexity: O(n2 logn) (negligible, exercise)

Path length = γ +α
where γ is algebraic , but α is transcendental

Not even clear that we can compute this!

◮ Why? Numerical Halting Problem

Analogue of the Turing Halting Problem

◮ Also semi-decidable

Disc Obstacles, contd.

Reduction to Dijkstra’s Algorithm (Again?)

Combinatorial complexity: O(n2 logn) (negligible, exercise)

Path length = γ +α
where γ is algebraic , but α is transcendental

Not even clear that we can compute this!

◮ Why? Numerical Halting Problem

Analogue of the Turing Halting Problem

◮ Also semi-decidable

Disc Obstacles, contd.

Reduction to Dijkstra’s Algorithm (Again?)

Combinatorial complexity: O(n2 logn) (negligible, exercise)

Path length = γ +α
where γ is algebraic , but α is transcendental

Not even clear that we can compute this!

◮ Why? Numerical Halting Problem

Analogue of the Turing Halting Problem

◮ Also semi-decidable

Disc Obstacles, contd.

Reduction to Dijkstra’s Algorithm (Again?)

Combinatorial complexity: O(n2 logn) (negligible, exercise)

Path length = γ +α
where γ is algebraic , but α is transcendental

Not even clear that we can compute this!

◮ Why? Numerical Halting Problem

Analogue of the Turing Halting Problem

◮ Also semi-decidable

Five Examples of Geometric Computation

Addition/Subtraction of Arc Lengths

Simple Case: Unit Discs
Let A = [C,p,q,n] and A′ = [C′,p′,q′,n′] encode two arc lengths.

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 19 / 113

Five Examples of Geometric Computation

Addition/Subtraction of Arc Lengths

Simple Case: Unit Discs
Let A = [C,p,q,n] and A′ = [C′,p′,q′,n′] encode two arc lengths.

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 19 / 113

Five Examples of Geometric Computation

Addition/Subtraction of Arc Lengths

Simple Case: Unit Discs
Let A = [C,p,q,n] and A′ = [C′,p′,q′,n′] encode two arc lengths.

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 19 / 113

Five Examples of Geometric Computation

Addition/Subtraction of Arc Lengths

Simple Case: Unit Discs
Let A = [C,p,q,n] and A′ = [C′,p′,q′,n′] encode two arc lengths.

θ

θ′

p

q

p′

q′

C

C ′

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 19 / 113

Five Examples of Geometric Computation

Addition/Subtraction of Arc Lengths

Simple Case: Unit Discs
Let A = [C,p,q,n] and A′ = [C′,p′,q′,n′] encode two arc lengths.

θ

θ′

p

q

p′

q′

C

C ′

θ′

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 19 / 113

Five Examples of Geometric Computation

Addition/Subtraction of Arc Lengths

Simple Case: Unit Discs
Let A = [C,p,q,n] and A′ = [C′,p′,q′,n′] encode two arc lengths.

θ

θ′

p

q

p′

q′

C

C ′

θ′

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 19 / 113

Five Examples of Geometric Computation

Addition/Subtraction of Arc Lengths

Simple Case: Unit Discs
Let A = [C,p,q,n] and A′ = [C′,p′,q′,n′] encode two arc lengths.

θ

θ′

p

q

p′

q′

C

C ′

θ′

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 19 / 113

Five Examples of Geometric Computation

Addition/Subtraction of Arc Lengths

Simple Case: Unit Discs
Let A = [C,p,q,n] and A′ = [C′,p′,q′,n′] encode two arc lengths.

θ

θ′

p

q

p′

q′

C

C ′

θ′

C
C ′

θ′

θ

p

q

q′

p′

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 19 / 113

Five Examples of Geometric Computation

Addition/Subtraction of Arc Lengths

Simple Case: Unit Discs
Let A = [C,p,q,n] and A′ = [C′,p′,q′,n′] encode two arc lengths.

θ

θ′

p

q

p′

q′

C

C ′

θ′

C
C ′

θ′

θ

p

q

q′

p′

θ′

q′′

C ′′

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 19 / 113

Five Examples of Geometric Computation

Addition/Subtraction of Arc Lengths

Simple Case: Unit Discs
Let A = [C,p,q,n] and A′ = [C′,p′,q′,n′] encode two arc lengths.

θ

θ′

p

q

p′

q′

C

C ′

θ′

C
C ′

θ′

θ

p

q

q′

p′

θ′

q′′

C ′′

q′′′

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 19 / 113

Five Examples of Geometric Computation

Computability of Shortest Paths
[Chang/Choi/Kwon/Park/Y. (2005)]

Is it really Transcendental?
LEMMA: cosθi is algebraic.
COROLLARY (Lindemann 1882): θi is transcendental.

Theorem (Unit Disc)
Shortest Path for unit disc obstacles is computable.

Rational Case
Much harder – use Chebyshev functions of first kind.
Main issue: how to transfer arc lengths to circles with different radii.

Theorem (Commensurable Radii)
Shortest Path for commensurable radii discs is computable.

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 20 / 113

Five Examples of Geometric Computation

Computability of Shortest Paths
[Chang/Choi/Kwon/Park/Y. (2005)]

Is it really Transcendental?
LEMMA: cosθi is algebraic.
COROLLARY (Lindemann 1882): θi is transcendental.

Theorem (Unit Disc)
Shortest Path for unit disc obstacles is computable.

Rational Case
Much harder – use Chebyshev functions of first kind.
Main issue: how to transfer arc lengths to circles with different radii.

Theorem (Commensurable Radii)
Shortest Path for commensurable radii discs is computable.

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 20 / 113

Five Examples of Geometric Computation

Computability of Shortest Paths
[Chang/Choi/Kwon/Park/Y. (2005)]

Is it really Transcendental?
LEMMA: cosθi is algebraic.
COROLLARY (Lindemann 1882): θi is transcendental.

Theorem (Unit Disc)
Shortest Path for unit disc obstacles is computable.

Rational Case
Much harder – use Chebyshev functions of first kind.
Main issue: how to transfer arc lengths to circles with different radii.

Theorem (Commensurable Radii)
Shortest Path for commensurable radii discs is computable.

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 20 / 113

Five Examples of Geometric Computation

Computability of Shortest Paths
[Chang/Choi/Kwon/Park/Y. (2005)]

Is it really Transcendental?
LEMMA: cosθi is algebraic.
COROLLARY (Lindemann 1882): θi is transcendental.

Theorem (Unit Disc)
Shortest Path for unit disc obstacles is computable.

Rational Case
Much harder – use Chebyshev functions of first kind.
Main issue: how to transfer arc lengths to circles with different radii.

Theorem (Commensurable Radii)
Shortest Path for commensurable radii discs is computable.

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 20 / 113

Five Examples of Geometric Computation

Computability of Shortest Paths (contd.)

No complexity Bounds!
Elementary methods fail us.
Appeal to Baker’s Linear Form in Logarithms: |α0 +∑n

i=1 αi logβi |> B

Theorem (Commensurable Radii Complexity)
Shortest Paths for rational discs is in single-exponential time.

Rare positive result from Transcendental Number Theory

First transcendental geometric problem shown computable

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 21 / 113

Five Examples of Geometric Computation

Computability of Shortest Paths (contd.)

No complexity Bounds!
Elementary methods fail us.
Appeal to Baker’s Linear Form in Logarithms: |α0 +∑n

i=1 αi logβi |> B

Theorem (Commensurable Radii Complexity)
Shortest Paths for rational discs is in single-exponential time.

Rare positive result from Transcendental Number Theory

First transcendental geometric problem shown computable

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 21 / 113

Five Examples of Geometric Computation

Computability of Shortest Paths (contd.)

No complexity Bounds!
Elementary methods fail us.
Appeal to Baker’s Linear Form in Logarithms: |α0 +∑n

i=1 αi logβi |> B

Theorem (Commensurable Radii Complexity)
Shortest Paths for rational discs is in single-exponential time.

Rare positive result from Transcendental Number Theory

First transcendental geometric problem shown computable

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 21 / 113

Five Examples of Geometric Computation

Computability of Shortest Paths (contd.)

No complexity Bounds!
Elementary methods fail us.
Appeal to Baker’s Linear Form in Logarithms: |α0 +∑n

i=1 αi logβi |> B

Theorem (Commensurable Radii Complexity)
Shortest Paths for rational discs is in single-exponential time.

Rare positive result from Transcendental Number Theory

First transcendental geometric problem shown computable

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 21 / 113

Five Examples of Geometric Computation

(IV) Mesh Generation
Meshing of Surfaces

Surface S = f−1(0) where f : Rn→R (n = 1,2,3)

Wants a triangulated surface S̃ that is isotopic to S

“Tangled Cube” “Chair”

Case n = 1 is root isolation !

Return to meshing in Lecture 2

Applications

Visualization, Graphics, Simulation, Modeling: prerequisite

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 22 / 113

Five Examples of Geometric Computation

(IV) Mesh Generation
Meshing of Surfaces

Surface S = f−1(0) where f : Rn→R (n = 1,2,3)

Wants a triangulated surface S̃ that is isotopic to S

“Tangled Cube” “Chair”

Case n = 1 is root isolation !

Return to meshing in Lecture 2

Applications

Visualization, Graphics, Simulation, Modeling: prerequisite

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 22 / 113

Five Examples of Geometric Computation

(IV) Mesh Generation
Meshing of Surfaces

Surface S = f−1(0) where f : Rn→R (n = 1,2,3)

Wants a triangulated surface S̃ that is isotopic to S

“Tangled Cube” “Chair”

Case n = 1 is root isolation !

Return to meshing in Lecture 2

Applications

Visualization, Graphics, Simulation, Modeling: prerequisite

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 22 / 113

Five Examples of Geometric Computation

(IV) Mesh Generation
Meshing of Surfaces

Surface S = f−1(0) where f : Rn→R (n = 1,2,3)

Wants a triangulated surface S̃ that is isotopic to S

“Tangled Cube” “Chair”

Case n = 1 is root isolation !

Return to meshing in Lecture 2

Applications

Visualization, Graphics, Simulation, Modeling: prerequisite

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 22 / 113

Five Examples of Geometric Computation

(IV) Mesh Generation
Meshing of Surfaces

Surface S = f−1(0) where f : Rn→R (n = 1,2,3)

Wants a triangulated surface S̃ that is isotopic to S

“Tangled Cube” “Chair”

Case n = 1 is root isolation !

Return to meshing in Lecture 2

Applications

Visualization, Graphics, Simulation, Modeling: prerequisite

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 22 / 113

Five Examples of Geometric Computation

(IV) Mesh Generation
Meshing of Surfaces

Surface S = f−1(0) where f : Rn→R (n = 1,2,3)

Wants a triangulated surface S̃ that is isotopic to S

“Tangled Cube” “Chair”

Case n = 1 is root isolation !

Return to meshing in Lecture 2

Applications

Visualization, Graphics, Simulation, Modeling: prerequisite

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 22 / 113

Five Examples of Geometric Computation

(IV) Mesh Generation
Meshing of Surfaces

Surface S = f−1(0) where f : Rn→R (n = 1,2,3)

Wants a triangulated surface S̃ that is isotopic to S

“Tangled Cube” “Chair”

Case n = 1 is root isolation !

Return to meshing in Lecture 2

Applications

Visualization, Graphics, Simulation, Modeling: prerequisite

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 22 / 113

Five Examples of Geometric Computation

(IV) Mesh Generation
Meshing of Surfaces

Surface S = f−1(0) where f : Rn→R (n = 1,2,3)

Wants a triangulated surface S̃ that is isotopic to S

“Tangled Cube” “Chair”

Case n = 1 is root isolation !

Return to meshing in Lecture 2

Applications

Visualization, Graphics, Simulation, Modeling: prerequisite

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 22 / 113

Five Examples of Geometric Computation

(IV) Mesh Generation
Meshing of Surfaces

Surface S = f−1(0) where f : Rn→R (n = 1,2,3)

Wants a triangulated surface S̃ that is isotopic to S

“Tangled Cube” “Chair”

Case n = 1 is root isolation !

Return to meshing in Lecture 2

Applications

Visualization, Graphics, Simulation, Modeling: prerequisite

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 22 / 113

Five Examples of Geometric Computation

(IV) Mesh Generation
Meshing of Surfaces

Surface S = f−1(0) where f : Rn→R (n = 1,2,3)

Wants a triangulated surface S̃ that is isotopic to S

“Tangled Cube” “Chair”

Case n = 1 is root isolation !

Return to meshing in Lecture 2

Applications

Visualization, Graphics, Simulation, Modeling: prerequisite

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 22 / 113

Five Examples of Geometric Computation

(V) Discrete Morse Theory

Edelsbrunner, Harer, Zomorodian (2003)

Methodology: discrete analogues of continuous concepts

◮ Differential geometry, Ricci flows, etc

Morse-Smale Complex of a surface S = f−1(0):

◮ Critical Points (max/min/saddle)

◮ Integral Lines

◮ OPEN: How to connect saddle to its
maximas

Exactness Bottleneck: this “Continuous-to-Discrete” transformation

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 23 / 113

Five Examples of Geometric Computation

(V) Discrete Morse Theory

Edelsbrunner, Harer, Zomorodian (2003)

Methodology: discrete analogues of continuous concepts

◮ Differential geometry, Ricci flows, etc

Morse-Smale Complex of a surface S = f−1(0):

◮ Critical Points (max/min/saddle)

◮ Integral Lines

◮ OPEN: How to connect saddle to its
maximas

Exactness Bottleneck: this “Continuous-to-Discrete” transformation

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 23 / 113

Five Examples of Geometric Computation

(V) Discrete Morse Theory

Edelsbrunner, Harer, Zomorodian (2003)

Methodology: discrete analogues of continuous concepts

◮ Differential geometry, Ricci flows, etc

Morse-Smale Complex of a surface S = f−1(0):

◮ Critical Points (max/min/saddle)

◮ Integral Lines

◮ OPEN: How to connect saddle to its
maximas

Exactness Bottleneck: this “Continuous-to-Discrete” transformation

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 23 / 113

Five Examples of Geometric Computation

(V) Discrete Morse Theory

Edelsbrunner, Harer, Zomorodian (2003)

Methodology: discrete analogues of continuous concepts

◮ Differential geometry, Ricci flows, etc

Morse-Smale Complex of a surface S = f−1(0):

◮ Critical Points (max/min/saddle)

◮ Integral Lines

◮ OPEN: How to connect saddle to its
maximas

Exactness Bottleneck: this “Continuous-to-Discrete” transformation

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 23 / 113

Five Examples of Geometric Computation

(V) Discrete Morse Theory

Edelsbrunner, Harer, Zomorodian (2003)

Methodology: discrete analogues of continuous concepts

◮ Differential geometry, Ricci flows, etc

Morse-Smale Complex of a surface S = f−1(0):

◮ Critical Points (max/min/saddle)

◮ Integral Lines

◮ OPEN: How to connect saddle to its
maximas

Exactness Bottleneck: this “Continuous-to-Discrete” transformation

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 23 / 113

Five Examples of Geometric Computation

(V) Discrete Morse Theory

Edelsbrunner, Harer, Zomorodian (2003)

Methodology: discrete analogues of continuous concepts

◮ Differential geometry, Ricci flows, etc

Morse-Smale Complex of a surface S = f−1(0):

◮ Critical Points (max/min/saddle)

◮ Integral Lines

◮ OPEN: How to connect saddle to its
maximas

Exactness Bottleneck: this “Continuous-to-Discrete” transformation

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 23 / 113

Five Examples of Geometric Computation

(V) Discrete Morse Theory

Edelsbrunner, Harer, Zomorodian (2003)

Methodology: discrete analogues of continuous concepts

◮ Differential geometry, Ricci flows, etc

Morse-Smale Complex of a surface S = f−1(0):

◮ Critical Points (max/min/saddle)

◮ Integral Lines

◮ OPEN: How to connect saddle to its
maximas

Exactness Bottleneck: this “Continuous-to-Discrete” transformation

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 23 / 113

Five Examples of Geometric Computation

(V) Discrete Morse Theory

Edelsbrunner, Harer, Zomorodian (2003)

Methodology: discrete analogues of continuous concepts

◮ Differential geometry, Ricci flows, etc

Morse-Smale Complex of a surface S = f−1(0):

◮ Critical Points (max/min/saddle)

◮ Integral Lines

◮ OPEN: How to connect saddle to its
maximas

Exactness Bottleneck: this “Continuous-to-Discrete” transformation

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 23 / 113

Five Examples of Geometric Computation

(V) Discrete Morse Theory

Edelsbrunner, Harer, Zomorodian (2003)

Methodology: discrete analogues of continuous concepts

◮ Differential geometry, Ricci flows, etc

Morse-Smale Complex of a surface S = f−1(0):

◮ Critical Points (max/min/saddle)

◮ Integral Lines

◮ OPEN: How to connect saddle to its
maximas

Exactness Bottleneck: this “Continuous-to-Discrete” transformation

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 23 / 113

Five Examples of Geometric Computation

(V) Discrete Morse Theory

Edelsbrunner, Harer, Zomorodian (2003)

Methodology: discrete analogues of continuous concepts

◮ Differential geometry, Ricci flows, etc

Morse-Smale Complex of a surface S = f−1(0):

◮ Critical Points (max/min/saddle)

◮ Integral Lines

◮ OPEN: How to connect saddle to its
maximas

Exactness Bottleneck: this “Continuous-to-Discrete” transformation

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 23 / 113

Five Examples of Geometric Computation

(V) Discrete Morse Theory

Edelsbrunner, Harer, Zomorodian (2003)

Methodology: discrete analogues of continuous concepts

◮ Differential geometry, Ricci flows, etc

Morse-Smale Complex of a surface S = f−1(0):

◮ Critical Points (max/min/saddle)

◮ Integral Lines

◮ OPEN: How to connect saddle to its
maximas

Exactness Bottleneck: this “Continuous-to-Discrete” transformation

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 23 / 113

Five Examples of Geometric Computation

(V) Discrete Morse Theory

Edelsbrunner, Harer, Zomorodian (2003)

Methodology: discrete analogues of continuous concepts

◮ Differential geometry, Ricci flows, etc

Morse-Smale Complex of a surface S = f−1(0):

◮ Critical Points (max/min/saddle)

◮ Integral Lines

◮ OPEN: How to connect saddle to its
maximas

Exactness Bottleneck: this “Continuous-to-Discrete” transformation

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 23 / 113

Mini Summary

We saw 5 Geometric Problems:
I=classic, II=hard, III=very hard, IV=current, V=open

Up Next : Let us examine their underlying computational
models...

Mini Summary

We saw 5 Geometric Problems:
I=classic, II=hard, III=very hard, IV=current, V=open

Up Next : Let us examine their underlying computational
models...

Mini Summary

We saw 5 Geometric Problems:
I=classic, II=hard, III=very hard, IV=current, V=open

Up Next : Let us examine their underlying computational
models...

Mini Summary

We saw 5 Geometric Problems:
I=classic, II=hard, III=very hard, IV=current, V=open

Up Next : Let us examine their underlying computational
models...

ENC

Coming Up Next

1 Introduction: What is Geometric Computation?

2 Five Examples of Geometric Computation

3 Exact Numeric Computation – A Synthesis

4 Exact Geometric Computation

5 Constructive Zero Bounds

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 25 / 113

ENC

Two Worlds of Computing

(EX) Discrete, Combinatorial, Exact .

◮ Theoretical Computer Science, Computer Algebra

(AP) Continuous, Numerical, Approximate.
◮ Computational Science & Engineering (CS&E) or Physics
◮ Problems too hard in exact framework (e.g., 3D Ising Model)
◮ Even when exact solution is possible,...

The 2 Worlds meet in Geometry
◮ Solving Linear Systems (Gaussian vs. Gauss-Seidel)

◮ Linear Programming (Simplex vs. Interior-Point)

◮ Solving Numerical PDE (Symbolic vs. Numeric)

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 26 / 113

ENC

Two Worlds of Computing

(EX) Discrete, Combinatorial, Exact .

◮ Theoretical Computer Science, Computer Algebra

(AP) Continuous, Numerical, Approximate.
◮ Computational Science & Engineering (CS&E) or Physics
◮ Problems too hard in exact framework (e.g., 3D Ising Model)
◮ Even when exact solution is possible,...

The 2 Worlds meet in Geometry
◮ Solving Linear Systems (Gaussian vs. Gauss-Seidel)

◮ Linear Programming (Simplex vs. Interior-Point)

◮ Solving Numerical PDE (Symbolic vs. Numeric)

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 26 / 113

ENC

Two Worlds of Computing

(EX) Discrete, Combinatorial, Exact .

◮ Theoretical Computer Science, Computer Algebra

(AP) Continuous, Numerical, Approximate.
◮ Computational Science & Engineering (CS&E) or Physics
◮ Problems too hard in exact framework (e.g., 3D Ising Model)
◮ Even when exact solution is possible,...

The 2 Worlds meet in Geometry
◮ Solving Linear Systems (Gaussian vs. Gauss-Seidel)

◮ Linear Programming (Simplex vs. Interior-Point)

◮ Solving Numerical PDE (Symbolic vs. Numeric)

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 26 / 113

ENC

Two Worlds of Computing

(EX) Discrete, Combinatorial, Exact .

◮ Theoretical Computer Science, Computer Algebra

(AP) Continuous, Numerical, Approximate.
◮ Computational Science & Engineering (CS&E) or Physics
◮ Problems too hard in exact framework (e.g., 3D Ising Model)
◮ Even when exact solution is possible,...

The 2 Worlds meet in Geometry
◮ Solving Linear Systems (Gaussian vs. Gauss-Seidel)

◮ Linear Programming (Simplex vs. Interior-Point)

◮ Solving Numerical PDE (Symbolic vs. Numeric)

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 26 / 113

ENC

Two Worlds of Computing

(EX) Discrete, Combinatorial, Exact .

◮ Theoretical Computer Science, Computer Algebra

(AP) Continuous, Numerical, Approximate.
◮ Computational Science & Engineering (CS&E) or Physics
◮ Problems too hard in exact framework (e.g., 3D Ising Model)
◮ Even when exact solution is possible,...

The 2 Worlds meet in Geometry
◮ Solving Linear Systems (Gaussian vs. Gauss-Seidel)

◮ Linear Programming (Simplex vs. Interior-Point)

◮ Solving Numerical PDE (Symbolic vs. Numeric)

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 26 / 113

ENC

Two Worlds of Computing

(EX) Discrete, Combinatorial, Exact .

◮ Theoretical Computer Science, Computer Algebra

(AP) Continuous, Numerical, Approximate.
◮ Computational Science & Engineering (CS&E) or Physics
◮ Problems too hard in exact framework (e.g., 3D Ising Model)
◮ Even when exact solution is possible,...

The 2 Worlds meet in Geometry
◮ Solving Linear Systems (Gaussian vs. Gauss-Seidel)

◮ Linear Programming (Simplex vs. Interior-Point)

◮ Solving Numerical PDE (Symbolic vs. Numeric)

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 26 / 113

ENC

Two Worlds of Computing

(EX) Discrete, Combinatorial, Exact .

◮ Theoretical Computer Science, Computer Algebra

(AP) Continuous, Numerical, Approximate.
◮ Computational Science & Engineering (CS&E) or Physics
◮ Problems too hard in exact framework (e.g., 3D Ising Model)
◮ Even when exact solution is possible,...

The 2 Worlds meet in Geometry
◮ Solving Linear Systems (Gaussian vs. Gauss-Seidel)

◮ Linear Programming (Simplex vs. Interior-Point)

◮ Solving Numerical PDE (Symbolic vs. Numeric)

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 26 / 113

ENC

Two Worlds of Computing

(EX) Discrete, Combinatorial, Exact .

◮ Theoretical Computer Science, Computer Algebra

(AP) Continuous, Numerical, Approximate.
◮ Computational Science & Engineering (CS&E) or Physics
◮ Problems too hard in exact framework (e.g., 3D Ising Model)
◮ Even when exact solution is possible,...

The 2 Worlds meet in Geometry
◮ Solving Linear Systems (Gaussian vs. Gauss-Seidel)

◮ Linear Programming (Simplex vs. Interior-Point)

◮ Solving Numerical PDE (Symbolic vs. Numeric)

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 26 / 113

ENC

Two Worlds of Computing

(EX) Discrete, Combinatorial, Exact .

◮ Theoretical Computer Science, Computer Algebra

(AP) Continuous, Numerical, Approximate.
◮ Computational Science & Engineering (CS&E) or Physics
◮ Problems too hard in exact framework (e.g., 3D Ising Model)
◮ Even when exact solution is possible,...

The 2 Worlds meet in Geometry
◮ Solving Linear Systems (Gaussian vs. Gauss-Seidel)

◮ Linear Programming (Simplex vs. Interior-Point)

◮ Solving Numerical PDE (Symbolic vs. Numeric)

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 26 / 113

ENC

Two Worlds of Computing

(EX) Discrete, Combinatorial, Exact .

◮ Theoretical Computer Science, Computer Algebra

(AP) Continuous, Numerical, Approximate.
◮ Computational Science & Engineering (CS&E) or Physics
◮ Problems too hard in exact framework (e.g., 3D Ising Model)
◮ Even when exact solution is possible,...

The 2 Worlds meet in Geometry
◮ Solving Linear Systems (Gaussian vs. Gauss-Seidel)

◮ Linear Programming (Simplex vs. Interior-Point)

◮ Solving Numerical PDE (Symbolic vs. Numeric)

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 26 / 113

ENC

Two Worlds of Computing

(EX) Discrete, Combinatorial, Exact .

◮ Theoretical Computer Science, Computer Algebra

(AP) Continuous, Numerical, Approximate.
◮ Computational Science & Engineering (CS&E) or Physics
◮ Problems too hard in exact framework (e.g., 3D Ising Model)
◮ Even when exact solution is possible,...

The 2 Worlds meet in Geometry
◮ Solving Linear Systems (Gaussian vs. Gauss-Seidel)

◮ Linear Programming (Simplex vs. Interior-Point)

◮ Solving Numerical PDE (Symbolic vs. Numeric)

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 26 / 113

ENC

Two Worlds of Computing

(EX) Discrete, Combinatorial, Exact .

◮ Theoretical Computer Science, Computer Algebra

(AP) Continuous, Numerical, Approximate.
◮ Computational Science & Engineering (CS&E) or Physics
◮ Problems too hard in exact framework (e.g., 3D Ising Model)
◮ Even when exact solution is possible,...

The 2 Worlds meet in Geometry
◮ Solving Linear Systems (Gaussian vs. Gauss-Seidel)

◮ Linear Programming (Simplex vs. Interior-Point)

◮ Solving Numerical PDE (Symbolic vs. Numeric)

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 26 / 113

ENC

Again, What is Geometry?

Geometry is always about zeros

Problem (I): Is a Point on a Hyperplane?

Problems (II),(III): Are two path lengths are equal?

Problems (IV),(V): Continuous-to-discrete transformations,
defined by zero sets

These zero decisions are captured by geometric predicates

View developed by CG’ers in robust geometric computation

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 27 / 113

ENC

Again, What is Geometry?

Geometry is always about zeros

Problem (I): Is a Point on a Hyperplane?

Problems (II),(III): Are two path lengths are equal?

Problems (IV),(V): Continuous-to-discrete transformations,
defined by zero sets

These zero decisions are captured by geometric predicates

View developed by CG’ers in robust geometric computation

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 27 / 113

ENC

Again, What is Geometry?

Geometry is always about zeros

Problem (I): Is a Point on a Hyperplane?

Problems (II),(III): Are two path lengths are equal?

Problems (IV),(V): Continuous-to-discrete transformations,
defined by zero sets

These zero decisions are captured by geometric predicates

View developed by CG’ers in robust geometric computation

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 27 / 113

ENC

Again, What is Geometry?

Geometry is always about zeros

Problem (I): Is a Point on a Hyperplane?

Problems (II),(III): Are two path lengths are equal?

Problems (IV),(V): Continuous-to-discrete transformations,
defined by zero sets

These zero decisions are captured by geometric predicates

View developed by CG’ers in robust geometric computation

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 27 / 113

ENC

Again, What is Geometry?

Geometry is always about zeros

Problem (I): Is a Point on a Hyperplane?

Problems (II),(III): Are two path lengths are equal?

Problems (IV),(V): Continuous-to-discrete transformations,
defined by zero sets

These zero decisions are captured by geometric predicates

View developed by CG’ers in robust geometric computation

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 27 / 113

ENC

Again, What is Geometry?

Geometry is always about zeros

Problem (I): Is a Point on a Hyperplane?

Problems (II),(III): Are two path lengths are equal?

Problems (IV),(V): Continuous-to-discrete transformations,
defined by zero sets

These zero decisions are captured by geometric predicates

View developed by CG’ers in robust geometric computation

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 27 / 113

ENC

Again, What is Geometry?

Geometry is always about zeros

Problem (I): Is a Point on a Hyperplane?

Problems (II),(III): Are two path lengths are equal?

Problems (IV),(V): Continuous-to-discrete transformations,
defined by zero sets

These zero decisions are captured by geometric predicates

View developed by CG’ers in robust geometric computation

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 27 / 113

ENC

Four Computational Models for Geometry

How to compute in a Continuum (Rn)?

(EX) Algebraic Computational Model
(e.g., Real RAM, Blum-Shub-Smale model, Disc Shortest Path)

◮ PROBLEM: Zero is trivial

(EX’) Abstract Operational Models
(e.g., CG, Traub, Orientation, Ray shooting, Giftwrap)

◮ PROBLEM: Zero is hidden

(AP) Analytic Computational Model (e.g., Ko, Weihrauch)

◮ PROBLEM: Zero is undecidable

(AP’) Numerical Analysis Model (e.g., x⊕ y = (x + y)(1+ ε))

◮ PROBLEM: Zero is abolished

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 28 / 113

ENC

Four Computational Models for Geometry

How to compute in a Continuum (Rn)?

(EX) Algebraic Computational Model
(e.g., Real RAM, Blum-Shub-Smale model, Disc Shortest Path)

◮ PROBLEM: Zero is trivial

(EX’) Abstract Operational Models
(e.g., CG, Traub, Orientation, Ray shooting, Giftwrap)

◮ PROBLEM: Zero is hidden

(AP) Analytic Computational Model (e.g., Ko, Weihrauch)

◮ PROBLEM: Zero is undecidable

(AP’) Numerical Analysis Model (e.g., x⊕ y = (x + y)(1+ ε))

◮ PROBLEM: Zero is abolished

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 28 / 113

ENC

Four Computational Models for Geometry

How to compute in a Continuum (Rn)?

(EX) Algebraic Computational Model
(e.g., Real RAM, Blum-Shub-Smale model, Disc Shortest Path)

◮ PROBLEM: Zero is trivial

(EX’) Abstract Operational Models
(e.g., CG, Traub, Orientation, Ray shooting, Giftwrap)

◮ PROBLEM: Zero is hidden

(AP) Analytic Computational Model (e.g., Ko, Weihrauch)

◮ PROBLEM: Zero is undecidable

(AP’) Numerical Analysis Model (e.g., x⊕ y = (x + y)(1+ ε))

◮ PROBLEM: Zero is abolished

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 28 / 113

ENC

Four Computational Models for Geometry

How to compute in a Continuum (Rn)?

(EX) Algebraic Computational Model
(e.g., Real RAM, Blum-Shub-Smale model, Disc Shortest Path)

◮ PROBLEM: Zero is trivial

(EX’) Abstract Operational Models
(e.g., CG, Traub, Orientation, Ray shooting, Giftwrap)

◮ PROBLEM: Zero is hidden

(AP) Analytic Computational Model (e.g., Ko, Weihrauch)

◮ PROBLEM: Zero is undecidable

(AP’) Numerical Analysis Model (e.g., x⊕ y = (x + y)(1+ ε))

◮ PROBLEM: Zero is abolished

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 28 / 113

ENC

Four Computational Models for Geometry

How to compute in a Continuum (Rn)?

(EX) Algebraic Computational Model
(e.g., Real RAM, Blum-Shub-Smale model, Disc Shortest Path)

◮ PROBLEM: Zero is trivial

(EX’) Abstract Operational Models
(e.g., CG, Traub, Orientation, Ray shooting, Giftwrap)

◮ PROBLEM: Zero is hidden

(AP) Analytic Computational Model (e.g., Ko, Weihrauch)

◮ PROBLEM: Zero is undecidable

(AP’) Numerical Analysis Model (e.g., x⊕ y = (x + y)(1+ ε))

◮ PROBLEM: Zero is abolished

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 28 / 113

ENC

Four Computational Models for Geometry

How to compute in a Continuum (Rn)?

(EX) Algebraic Computational Model
(e.g., Real RAM, Blum-Shub-Smale model, Disc Shortest Path)

◮ PROBLEM: Zero is trivial

(EX’) Abstract Operational Models
(e.g., CG, Traub, Orientation, Ray shooting, Giftwrap)

◮ PROBLEM: Zero is hidden

(AP) Analytic Computational Model (e.g., Ko, Weihrauch)

◮ PROBLEM: Zero is undecidable

(AP’) Numerical Analysis Model (e.g., x⊕ y = (x + y)(1+ ε))

◮ PROBLEM: Zero is abolished

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 28 / 113

ENC

Four Computational Models for Geometry

How to compute in a Continuum (Rn)?

(EX) Algebraic Computational Model
(e.g., Real RAM, Blum-Shub-Smale model, Disc Shortest Path)

◮ PROBLEM: Zero is trivial

(EX’) Abstract Operational Models
(e.g., CG, Traub, Orientation, Ray shooting, Giftwrap)

◮ PROBLEM: Zero is hidden

(AP) Analytic Computational Model (e.g., Ko, Weihrauch)

◮ PROBLEM: Zero is undecidable

(AP’) Numerical Analysis Model (e.g., x⊕ y = (x + y)(1+ ε))

◮ PROBLEM: Zero is abolished

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 28 / 113

ENC

Four Computational Models for Geometry

How to compute in a Continuum (Rn)?

(EX) Algebraic Computational Model
(e.g., Real RAM, Blum-Shub-Smale model, Disc Shortest Path)

◮ PROBLEM: Zero is trivial

(EX’) Abstract Operational Models
(e.g., CG, Traub, Orientation, Ray shooting, Giftwrap)

◮ PROBLEM: Zero is hidden

(AP) Analytic Computational Model (e.g., Ko, Weihrauch)

◮ PROBLEM: Zero is undecidable

(AP’) Numerical Analysis Model (e.g., x⊕ y = (x + y)(1+ ε))

◮ PROBLEM: Zero is abolished

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 28 / 113

ENC

Four Computational Models for Geometry

How to compute in a Continuum (Rn)?

(EX) Algebraic Computational Model
(e.g., Real RAM, Blum-Shub-Smale model, Disc Shortest Path)

◮ PROBLEM: Zero is trivial

(EX’) Abstract Operational Models
(e.g., CG, Traub, Orientation, Ray shooting, Giftwrap)

◮ PROBLEM: Zero is hidden

(AP) Analytic Computational Model (e.g., Ko, Weihrauch)

◮ PROBLEM: Zero is undecidable

(AP’) Numerical Analysis Model (e.g., x⊕ y = (x + y)(1+ ε))

◮ PROBLEM: Zero is abolished

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 28 / 113

ENC

Four Computational Models for Geometry

How to compute in a Continuum (Rn)?

(EX) Algebraic Computational Model
(e.g., Real RAM, Blum-Shub-Smale model, Disc Shortest Path)

◮ PROBLEM: Zero is trivial

(EX’) Abstract Operational Models
(e.g., CG, Traub, Orientation, Ray shooting, Giftwrap)

◮ PROBLEM: Zero is hidden

(AP) Analytic Computational Model (e.g., Ko, Weihrauch)

◮ PROBLEM: Zero is undecidable

(AP’) Numerical Analysis Model (e.g., x⊕ y = (x + y)(1+ ε))

◮ PROBLEM: Zero is abolished

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 28 / 113

ENC

Other Issues

You cannot avoid the Zero Problem
(EX) How do you implement R?

(EX’) We may abstract away too much
◮ cf. Problems (II) and (III)

(AP) Only continuous functions are computable
◮ Geometry is a discontinuous phenomenon

(AP’) Approximate geometry maybe harder than exact geometry
◮ Exercise: Program a geometric algorithm w/o equality test

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 29 / 113

ENC

Other Issues

You cannot avoid the Zero Problem
(EX) How do you implement R?

(EX’) We may abstract away too much
◮ cf. Problems (II) and (III)

(AP) Only continuous functions are computable
◮ Geometry is a discontinuous phenomenon

(AP’) Approximate geometry maybe harder than exact geometry
◮ Exercise: Program a geometric algorithm w/o equality test

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 29 / 113

ENC

Other Issues

You cannot avoid the Zero Problem
(EX) How do you implement R?

(EX’) We may abstract away too much
◮ cf. Problems (II) and (III)

(AP) Only continuous functions are computable
◮ Geometry is a discontinuous phenomenon

(AP’) Approximate geometry maybe harder than exact geometry
◮ Exercise: Program a geometric algorithm w/o equality test

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 29 / 113

ENC

Other Issues

You cannot avoid the Zero Problem
(EX) How do you implement R?

(EX’) We may abstract away too much
◮ cf. Problems (II) and (III)

(AP) Only continuous functions are computable
◮ Geometry is a discontinuous phenomenon

(AP’) Approximate geometry maybe harder than exact geometry
◮ Exercise: Program a geometric algorithm w/o equality test

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 29 / 113

ENC

Other Issues

You cannot avoid the Zero Problem
(EX) How do you implement R?

(EX’) We may abstract away too much
◮ cf. Problems (II) and (III)

(AP) Only continuous functions are computable
◮ Geometry is a discontinuous phenomenon

(AP’) Approximate geometry maybe harder than exact geometry
◮ Exercise: Program a geometric algorithm w/o equality test

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 29 / 113

ENC

Other Issues

You cannot avoid the Zero Problem
(EX) How do you implement R?

(EX’) We may abstract away too much
◮ cf. Problems (II) and (III)

(AP) Only continuous functions are computable
◮ Geometry is a discontinuous phenomenon

(AP’) Approximate geometry maybe harder than exact geometry
◮ Exercise: Program a geometric algorithm w/o equality test

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 29 / 113

ENC

Other Issues

You cannot avoid the Zero Problem
(EX) How do you implement R?

(EX’) We may abstract away too much
◮ cf. Problems (II) and (III)

(AP) Only continuous functions are computable
◮ Geometry is a discontinuous phenomenon

(AP’) Approximate geometry maybe harder than exact geometry
◮ Exercise: Program a geometric algorithm w/o equality test

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 29 / 113

ENC

Other Issues

You cannot avoid the Zero Problem
(EX) How do you implement R?

(EX’) We may abstract away too much
◮ cf. Problems (II) and (III)

(AP) Only continuous functions are computable
◮ Geometry is a discontinuous phenomenon

(AP’) Approximate geometry maybe harder than exact geometry
◮ Exercise: Program a geometric algorithm w/o equality test

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 29 / 113

ENC

Other Issues

You cannot avoid the Zero Problem
(EX) How do you implement R?

(EX’) We may abstract away too much
◮ cf. Problems (II) and (III)

(AP) Only continuous functions are computable
◮ Geometry is a discontinuous phenomenon

(AP’) Approximate geometry maybe harder than exact geometry
◮ Exercise: Program a geometric algorithm w/o equality test

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 29 / 113

ENC

Duality in Numbers

Physics Analogy:

◮

Discrete Continuous

Light particle wave
R field metric space
Numbers algebraic analytic

α =
√

15−
√

224 ≈ 0.0223
√

15−
√

224 is exact, but 0.0223 is more useful!
◮ WHY? Want the locus of α in the continuum
◮ JOKE: a physicist and an engineer were in a hot-air balloon...

How to capture this Duality?
◮ For exact computation, need algebraic representation.
◮ For analytic properties, need an approximation process
◮ What about deciding zero? (Algebraic or Numeric)

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 30 / 113

ENC

Duality in Numbers

Physics Analogy:

◮

Discrete Continuous

Light particle wave
R field metric space
Numbers algebraic analytic

α =
√

15−
√

224 ≈ 0.0223
√

15−
√

224 is exact, but 0.0223 is more useful!
◮ WHY? Want the locus of α in the continuum
◮ JOKE: a physicist and an engineer were in a hot-air balloon...

How to capture this Duality?
◮ For exact computation, need algebraic representation.
◮ For analytic properties, need an approximation process
◮ What about deciding zero? (Algebraic or Numeric)

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 30 / 113

ENC

Duality in Numbers

Physics Analogy:

◮

Discrete Continuous

Light particle wave
R field metric space
Numbers algebraic analytic

α =
√

15−
√

224 ≈ 0.0223
√

15−
√

224 is exact, but 0.0223 is more useful!
◮ WHY? Want the locus of α in the continuum
◮ JOKE: a physicist and an engineer were in a hot-air balloon...

How to capture this Duality?
◮ For exact computation, need algebraic representation.
◮ For analytic properties, need an approximation process
◮ What about deciding zero? (Algebraic or Numeric)

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 30 / 113

ENC

Duality in Numbers

Physics Analogy:

◮

Discrete Continuous

Light particle wave
R field metric space
Numbers algebraic analytic

α =
√

15−
√

224 ≈ 0.0223
√

15−
√

224 is exact, but 0.0223 is more useful!
◮ WHY? Want the locus of α in the continuum
◮ JOKE: a physicist and an engineer were in a hot-air balloon...

How to capture this Duality?
◮ For exact computation, need algebraic representation.
◮ For analytic properties, need an approximation process
◮ What about deciding zero? (Algebraic or Numeric)

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 30 / 113

ENC

Duality in Numbers

Physics Analogy:

◮

Discrete Continuous

Light particle wave
R field metric space
Numbers algebraic analytic

α =
√

15−
√

224 ≈ 0.0223
√

15−
√

224 is exact, but 0.0223 is more useful!
◮ WHY? Want the locus of α in the continuum
◮ JOKE: a physicist and an engineer were in a hot-air balloon...

How to capture this Duality?
◮ For exact computation, need algebraic representation.
◮ For analytic properties, need an approximation process
◮ What about deciding zero? (Algebraic or Numeric)

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 30 / 113

ENC

Duality in Numbers

Physics Analogy:

◮

Discrete Continuous

Light particle wave
R field metric space
Numbers algebraic analytic

α =
√

15−
√

224 ≈ 0.0223
√

15−
√

224 is exact, but 0.0223 is more useful!
◮ WHY? Want the locus of α in the continuum
◮ JOKE: a physicist and an engineer were in a hot-air balloon...

How to capture this Duality?
◮ For exact computation, need algebraic representation.
◮ For analytic properties, need an approximation process
◮ What about deciding zero? (Algebraic or Numeric)

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 30 / 113

ENC

Duality in Numbers

Physics Analogy:

◮

Discrete Continuous

Light particle wave
R field metric space
Numbers algebraic analytic

α =
√

15−
√

224 ≈ 0.0223
√

15−
√

224 is exact, but 0.0223 is more useful!
◮ WHY? Want the locus of α in the continuum
◮ JOKE: a physicist and an engineer were in a hot-air balloon...

How to capture this Duality?
◮ For exact computation, need algebraic representation.
◮ For analytic properties, need an approximation process
◮ What about deciding zero? (Algebraic or Numeric)

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 30 / 113

ENC

Duality in Numbers

Physics Analogy:

◮

Discrete Continuous

Light particle wave
R field metric space
Numbers algebraic analytic

α =
√

15−
√

224 ≈ 0.0223
√

15−
√

224 is exact, but 0.0223 is more useful!
◮ WHY? Want the locus of α in the continuum
◮ JOKE: a physicist and an engineer were in a hot-air balloon...

How to capture this Duality?
◮ For exact computation, need algebraic representation.
◮ For analytic properties, need an approximation process
◮ What about deciding zero? (Algebraic or Numeric)

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 30 / 113

ENC

Duality in Numbers

Physics Analogy:

◮

Discrete Continuous

Light particle wave
R field metric space
Numbers algebraic analytic

α =
√

15−
√

224 ≈ 0.0223
√

15−
√

224 is exact, but 0.0223 is more useful!
◮ WHY? Want the locus of α in the continuum
◮ JOKE: a physicist and an engineer were in a hot-air balloon...

How to capture this Duality?
◮ For exact computation, need algebraic representation.
◮ For analytic properties, need an approximation process
◮ What about deciding zero? (Algebraic or Numeric)

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 30 / 113

ENC

Duality in Numbers

Physics Analogy:

◮

Discrete Continuous

Light particle wave
R field metric space
Numbers algebraic analytic

α =
√

15−
√

224 ≈ 0.0223
√

15−
√

224 is exact, but 0.0223 is more useful!
◮ WHY? Want the locus of α in the continuum
◮ JOKE: a physicist and an engineer were in a hot-air balloon...

How to capture this Duality?
◮ For exact computation, need algebraic representation.
◮ For analytic properties, need an approximation process
◮ What about deciding zero? (Algebraic or Numeric)

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 30 / 113

ENC

Duality in Numbers

Physics Analogy:

◮

Discrete Continuous

Light particle wave
R field metric space
Numbers algebraic analytic

α =
√

15−
√

224 ≈ 0.0223
√

15−
√

224 is exact, but 0.0223 is more useful!
◮ WHY? Want the locus of α in the continuum
◮ JOKE: a physicist and an engineer were in a hot-air balloon...

How to capture this Duality?
◮ For exact computation, need algebraic representation.
◮ For analytic properties, need an approximation process
◮ What about deciding zero? (Algebraic or Numeric)

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 30 / 113

ENC

Duality in Numbers

Physics Analogy:

◮

Discrete Continuous

Light particle wave
R field metric space
Numbers algebraic analytic

α =
√

15−
√

224 ≈ 0.0223
√

15−
√

224 is exact, but 0.0223 is more useful!
◮ WHY? Want the locus of α in the continuum
◮ JOKE: a physicist and an engineer were in a hot-air balloon...

How to capture this Duality?
◮ For exact computation, need algebraic representation.
◮ For analytic properties, need an approximation process
◮ What about deciding zero? (Algebraic or Numeric)

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 30 / 113

ENC

Duality in Numbers

Physics Analogy:

◮

Discrete Continuous

Light particle wave
R field metric space
Numbers algebraic analytic

α =
√

15−
√

224 ≈ 0.0223
√

15−
√

224 is exact, but 0.0223 is more useful!
◮ WHY? Want the locus of α in the continuum
◮ JOKE: a physicist and an engineer were in a hot-air balloon...

How to capture this Duality?
◮ For exact computation, need algebraic representation.
◮ For analytic properties, need an approximation process
◮ What about deciding zero? (Algebraic or Numeric)

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 30 / 113

ENC

Duality in Numbers

Physics Analogy:

◮

Discrete Continuous

Light particle wave
R field metric space
Numbers algebraic analytic

α =
√

15−
√

224 ≈ 0.0223
√

15−
√

224 is exact, but 0.0223 is more useful!
◮ WHY? Want the locus of α in the continuum
◮ JOKE: a physicist and an engineer were in a hot-air balloon...

How to capture this Duality?
◮ For exact computation, need algebraic representation.
◮ For analytic properties, need an approximation process
◮ What about deciding zero? (Algebraic or Numeric)

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 30 / 113

Mini Summary

Geometry is decided by Zeros

Zero is a special number

Numbers have a dual nature: need dual representation

Up Next : A General Solution

Mini Summary

Geometry is decided by Zeros

Zero is a special number

Numbers have a dual nature: need dual representation

Up Next : A General Solution

Mini Summary

Geometry is decided by Zeros

Zero is a special number

Numbers have a dual nature: need dual representation

Up Next : A General Solution

Mini Summary

Geometry is decided by Zeros

Zero is a special number

Numbers have a dual nature: need dual representation

Up Next : A General Solution

Mini Summary

Geometry is decided by Zeros

Zero is a special number

Numbers have a dual nature: need dual representation

Up Next : A General Solution

Mini Summary

Geometry is decided by Zeros

Zero is a special number

Numbers have a dual nature: need dual representation

Up Next : A General Solution

EGC

Coming Up Next

1 Introduction: What is Geometric Computation?

2 Five Examples of Geometric Computation

3 Exact Numeric Computation – A Synthesis

4 Exact Geometric Computation

5 Constructive Zero Bounds

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 32 / 113

EGC

The Universal Solution (EGC)

Key Principle of Exact Geometric Computation (EGC)
Algorithm = Sequence of Steps

Steps = Construction x := y +2; or Tests if x = 0 goto L

Geometric relations determined by Tests (Zero or Sign)

THUS: if Tests are error free , the Geometry is exact

Numerical robustness follows! Take-home message

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 33 / 113

EGC

The Universal Solution (EGC)

Key Principle of Exact Geometric Computation (EGC)
Algorithm = Sequence of Steps

Steps = Construction x := y +2; or Tests if x = 0 goto L

Geometric relations determined by Tests (Zero or Sign)

THUS: if Tests are error free , the Geometry is exact

Numerical robustness follows! Take-home message

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 33 / 113

EGC

The Universal Solution (EGC)

Key Principle of Exact Geometric Computation (EGC)
Algorithm = Sequence of Steps

Steps = Construction x := y +2; or Tests if x = 0 goto L

Geometric relations determined by Tests (Zero or Sign)

THUS: if Tests are error free , the Geometry is exact

Numerical robustness follows! Take-home message

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 33 / 113

EGC

The Universal Solution (EGC)

Key Principle of Exact Geometric Computation (EGC)
Algorithm = Sequence of Steps

Steps = Construction x := y +2; or Tests if x = 0 goto L

Geometric relations determined by Tests (Zero or Sign)

THUS: if Tests are error free , the Geometry is exact

Numerical robustness follows! Take-home message

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 33 / 113

EGC

The Universal Solution (EGC)

Key Principle of Exact Geometric Computation (EGC)
Algorithm = Sequence of Steps

Steps = Construction x := y +2; or Tests if x = 0 goto L

Geometric relations determined by Tests (Zero or Sign)

THUS: if Tests are error free , the Geometry is exact

Numerical robustness follows! Take-home message

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 33 / 113

EGC

The Universal Solution (EGC)

Key Principle of Exact Geometric Computation (EGC)
Algorithm = Sequence of Steps

Steps = Construction x := y +2; or Tests if x = 0 goto L

Geometric relations determined by Tests (Zero or Sign)

THUS: if Tests are error free , the Geometry is exact

Numerical robustness follows! Take-home message

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 33 / 113

EGC

The Universal Solution (EGC)

Key Principle of Exact Geometric Computation (EGC)
Algorithm = Sequence of Steps

Steps = Construction x := y +2; or Tests if x = 0 goto L

Geometric relations determined by Tests (Zero or Sign)

THUS: if Tests are error free , the Geometry is exact

Numerical robustness follows! Take-home message

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 33 / 113

EGC

Implementing the Universal Solution (Core
Library)
Any programmer can access this capability

#define Core Level 3

#include ”CORE.h”

.... Standard C++ Program

Numerical Accuracy API

Level 1: Machine Accuracy (int, long, float, double)

Level 2: Arbitrary Accuracy (BigInt, BigRat, BigFloat)

Level 3: Guaranteed Accuracy (Expr)

Program should compile at every Accuracy Level
Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 34 / 113

EGC

Implementing the Universal Solution (Core
Library)
Any programmer can access this capability

#define Core Level 3

#include ”CORE.h”

.... Standard C++ Program

Numerical Accuracy API

Level 1: Machine Accuracy (int, long, float, double)

Level 2: Arbitrary Accuracy (BigInt, BigRat, BigFloat)

Level 3: Guaranteed Accuracy (Expr)

Program should compile at every Accuracy Level
Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 34 / 113

EGC

Implementing the Universal Solution (Core
Library)
Any programmer can access this capability

#define Core Level 3

#include ”CORE.h”

.... Standard C++ Program

Numerical Accuracy API

Level 1: Machine Accuracy (int, long, float, double)

Level 2: Arbitrary Accuracy (BigInt, BigRat, BigFloat)

Level 3: Guaranteed Accuracy (Expr)

Program should compile at every Accuracy Level
Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 34 / 113

EGC

Implementing the Universal Solution (Core
Library)
Any programmer can access this capability

#define Core Level 3

#include ”CORE.h”

.... Standard C++ Program

Numerical Accuracy API

Level 1: Machine Accuracy (int, long, float, double)

Level 2: Arbitrary Accuracy (BigInt, BigRat, BigFloat)

Level 3: Guaranteed Accuracy (Expr)

Program should compile at every Accuracy Level
Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 34 / 113

EGC

Implementing the Universal Solution (Core
Library)
Any programmer can access this capability

#define Core Level 3

#include ”CORE.h”

.... Standard C++ Program

Numerical Accuracy API

Level 1: Machine Accuracy (int, long, float, double)

Level 2: Arbitrary Accuracy (BigInt, BigRat, BigFloat)

Level 3: Guaranteed Accuracy (Expr)

Program should compile at every Accuracy Level
Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 34 / 113

EGC

Implementing the Universal Solution (Core
Library)
Any programmer can access this capability

#define Core Level 3

#include ”CORE.h”

.... Standard C++ Program

Numerical Accuracy API

Level 1: Machine Accuracy (int, long, float, double)

Level 2: Arbitrary Accuracy (BigInt, BigRat, BigFloat)

Level 3: Guaranteed Accuracy (Expr)

Program should compile at every Accuracy Level
Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 34 / 113

EGC

Implementing the Universal Solution (Core
Library)
Any programmer can access this capability

#define Core Level 3

#include ”CORE.h”

.... Standard C++ Program

Numerical Accuracy API

Level 1: Machine Accuracy (int, long, float, double)

Level 2: Arbitrary Accuracy (BigInt, BigRat, BigFloat)

Level 3: Guaranteed Accuracy (Expr)

Program should compile at every Accuracy Level
Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 34 / 113

EGC

Implementing the Universal Solution (Core
Library)
Any programmer can access this capability

#define Core Level 3

#include ”CORE.h”

.... Standard C++ Program

Numerical Accuracy API

Level 1: Machine Accuracy (int, long, float, double)

Level 2: Arbitrary Accuracy (BigInt, BigRat, BigFloat)

Level 3: Guaranteed Accuracy (Expr)

Program should compile at every Accuracy Level
Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 34 / 113

EGC

What is Achieved?

Features
Removed numerical non-robustness from geometry (!)

Algorithm-independent solution to non-robustness

Standard (Euclidean) geometry (why important?)

Exactness in geometry (can use approximate numbers !)

Implemented in LEDA , CGAL , Core Library

Other Implications
A new approach to do algebraic number computation

Euclidean Shortest Path need signs of expressions like
∑100

i=1 ai
√

bi .
Standard algebraic approach is doomed

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 35 / 113

EGC

What is Achieved?

Features
Removed numerical non-robustness from geometry (!)

Algorithm-independent solution to non-robustness

Standard (Euclidean) geometry (why important?)

Exactness in geometry (can use approximate numbers !)

Implemented in LEDA , CGAL , Core Library

Other Implications
A new approach to do algebraic number computation

Euclidean Shortest Path need signs of expressions like
∑100

i=1 ai
√

bi .
Standard algebraic approach is doomed

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 35 / 113

EGC

What is Achieved?

Features
Removed numerical non-robustness from geometry (!)

Algorithm-independent solution to non-robustness

Standard (Euclidean) geometry (why important?)

Exactness in geometry (can use approximate numbers !)

Implemented in LEDA , CGAL , Core Library

Other Implications
A new approach to do algebraic number computation

Euclidean Shortest Path need signs of expressions like
∑100

i=1 ai
√

bi .
Standard algebraic approach is doomed

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 35 / 113

EGC

What is Achieved?

Features
Removed numerical non-robustness from geometry (!)

Algorithm-independent solution to non-robustness

Standard (Euclidean) geometry (why important?)

Exactness in geometry (can use approximate numbers !)

Implemented in LEDA , CGAL , Core Library

Other Implications
A new approach to do algebraic number computation

Euclidean Shortest Path need signs of expressions like
∑100

i=1 ai
√

bi .
Standard algebraic approach is doomed

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 35 / 113

EGC

What is Achieved?

Features
Removed numerical non-robustness from geometry (!)

Algorithm-independent solution to non-robustness

Standard (Euclidean) geometry (why important?)

Exactness in geometry (can use approximate numbers !)

Implemented in LEDA , CGAL , Core Library

Other Implications
A new approach to do algebraic number computation

Euclidean Shortest Path need signs of expressions like
∑100

i=1 ai
√

bi .
Standard algebraic approach is doomed

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 35 / 113

EGC

What is Achieved?

Features
Removed numerical non-robustness from geometry (!)

Algorithm-independent solution to non-robustness

Standard (Euclidean) geometry (why important?)

Exactness in geometry (can use approximate numbers !)

Implemented in LEDA , CGAL , Core Library

Other Implications
A new approach to do algebraic number computation

Euclidean Shortest Path need signs of expressions like
∑100

i=1 ai
√

bi .
Standard algebraic approach is doomed

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 35 / 113

EGC

What is Achieved?

Features
Removed numerical non-robustness from geometry (!)

Algorithm-independent solution to non-robustness

Standard (Euclidean) geometry (why important?)

Exactness in geometry (can use approximate numbers !)

Implemented in LEDA , CGAL , Core Library

Other Implications
A new approach to do algebraic number computation

Euclidean Shortest Path need signs of expressions like
∑100

i=1 ai
√

bi .
Standard algebraic approach is doomed

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 35 / 113

EGC

What is Achieved?

Features
Removed numerical non-robustness from geometry (!)

Algorithm-independent solution to non-robustness

Standard (Euclidean) geometry (why important?)

Exactness in geometry (can use approximate numbers !)

Implemented in LEDA , CGAL , Core Library

Other Implications
A new approach to do algebraic number computation

Euclidean Shortest Path need signs of expressions like
∑100

i=1 ai
√

bi .
Standard algebraic approach is doomed

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 35 / 113

EGC

What is Achieved?

Features
Removed numerical non-robustness from geometry (!)

Algorithm-independent solution to non-robustness

Standard (Euclidean) geometry (why important?)

Exactness in geometry (can use approximate numbers !)

Implemented in LEDA , CGAL , Core Library

Other Implications
A new approach to do algebraic number computation

Euclidean Shortest Path need signs of expressions like
∑100

i=1 ai
√

bi .
Standard algebraic approach is doomed

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 35 / 113

Zero Bounds

Coming Up Next

1 Introduction: What is Geometric Computation?

2 Five Examples of Geometric Computation

3 Exact Numeric Computation – A Synthesis

4 Exact Geometric Computation

5 Constructive Zero Bounds

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 36 / 113

Zero Bounds

Adaptive Zero Determination

Core of Core Library
Must use numerical method based on Zero Bounds

◮ Must NOT use algebraic methods!

Let Ω = {+,−,×, . . .}∪Z be a class of operators

◮ ZERO(Ω) is the corresponding zero problem

Zero Bound for Ω is a function B : Expr(Ω)→R≥0

such that e ∈ Expr(Ω) is non-zero implies

|e|> B(e)

How to use zero bounds? Combine with approximation.

Zero Bound is the bottleneck only in case of zero.

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 37 / 113

Zero Bounds

Adaptive Zero Determination

Core of Core Library
Must use numerical method based on Zero Bounds

◮ Must NOT use algebraic methods!

Let Ω = {+,−,×, . . .}∪Z be a class of operators

◮ ZERO(Ω) is the corresponding zero problem

Zero Bound for Ω is a function B : Expr(Ω)→R≥0

such that e ∈ Expr(Ω) is non-zero implies

|e|> B(e)

How to use zero bounds? Combine with approximation.

Zero Bound is the bottleneck only in case of zero.

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 37 / 113

Zero Bounds

Adaptive Zero Determination

Core of Core Library
Must use numerical method based on Zero Bounds

◮ Must NOT use algebraic methods!

Let Ω = {+,−,×, . . .}∪Z be a class of operators

◮ ZERO(Ω) is the corresponding zero problem

Zero Bound for Ω is a function B : Expr(Ω)→R≥0

such that e ∈ Expr(Ω) is non-zero implies

|e|> B(e)

How to use zero bounds? Combine with approximation.

Zero Bound is the bottleneck only in case of zero.

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 37 / 113

Zero Bounds

Adaptive Zero Determination

Core of Core Library
Must use numerical method based on Zero Bounds

◮ Must NOT use algebraic methods!

Let Ω = {+,−,×, . . .}∪Z be a class of operators

◮ ZERO(Ω) is the corresponding zero problem

Zero Bound for Ω is a function B : Expr(Ω)→R≥0

such that e ∈ Expr(Ω) is non-zero implies

|e|> B(e)

How to use zero bounds? Combine with approximation.

Zero Bound is the bottleneck only in case of zero.

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 37 / 113

Zero Bounds

Adaptive Zero Determination

Core of Core Library
Must use numerical method based on Zero Bounds

◮ Must NOT use algebraic methods!

Let Ω = {+,−,×, . . .}∪Z be a class of operators

◮ ZERO(Ω) is the corresponding zero problem

Zero Bound for Ω is a function B : Expr(Ω)→R≥0

such that e ∈ Expr(Ω) is non-zero implies

|e|> B(e)

How to use zero bounds? Combine with approximation.

Zero Bound is the bottleneck only in case of zero.

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 37 / 113

Zero Bounds

Adaptive Zero Determination

Core of Core Library
Must use numerical method based on Zero Bounds

◮ Must NOT use algebraic methods!

Let Ω = {+,−,×, . . .}∪Z be a class of operators

◮ ZERO(Ω) is the corresponding zero problem

Zero Bound for Ω is a function B : Expr(Ω)→R≥0

such that e ∈ Expr(Ω) is non-zero implies

|e|> B(e)

How to use zero bounds? Combine with approximation.

Zero Bound is the bottleneck only in case of zero.

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 37 / 113

Zero Bounds

Adaptive Zero Determination

Core of Core Library
Must use numerical method based on Zero Bounds

◮ Must NOT use algebraic methods!

Let Ω = {+,−,×, . . .}∪Z be a class of operators

◮ ZERO(Ω) is the corresponding zero problem

Zero Bound for Ω is a function B : Expr(Ω)→R≥0

such that e ∈ Expr(Ω) is non-zero implies

|e|> B(e)

How to use zero bounds? Combine with approximation.

Zero Bound is the bottleneck only in case of zero.

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 37 / 113

Zero Bounds

Some Constructive Bounds

Degree-Measure Bounds [Mignotte (1982)], [Sekigawa (1997)]

Degree-Height, Degree-Length [Yap-Dubé (1994)]

BFMS Bound [Burnikel et al (1989)]

Eigenvalue Bounds [Scheinerman (2000)]

Conjugate Bounds [Li-Yap (2001)]

BFMSS Bound [Burnikel et al (2001)]
◮ One of the best bounds

k-ary Method [Pion-Yap (2002)]
◮ Idea: division is bad. k-ary numbers are good

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 38 / 113

Zero Bounds

An Example

Consider the e =
√

x +
√

y−
√

x + y +2
√

xy .

Assume x = a/b and y = c/d where a,b,c,d are L-bit integers.

Then Li-Yap Bound is 28L+60 bits, BFMSS is 96L+30 and
Degree-Measure is 80L+56.

Timing in seconds (Core 1.6):

L 50 100 500 5000
BFMS 0.637 9.12 101.9 202.9

Measure 0.063 0.07 1.93 15.26
BFMSS 0.073 0.61 1.95 15.41
Li-Yap 0.013 0.07 1.88 1.89

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 39 / 113

Zero Bounds

An Example

Consider the e =
√

x +
√

y−
√

x + y +2
√

xy .

Assume x = a/b and y = c/d where a,b,c,d are L-bit integers.

Then Li-Yap Bound is 28L+60 bits, BFMSS is 96L+30 and
Degree-Measure is 80L+56.

Timing in seconds (Core 1.6):

L 50 100 500 5000
BFMS 0.637 9.12 101.9 202.9

Measure 0.063 0.07 1.93 15.26
BFMSS 0.073 0.61 1.95 15.41
Li-Yap 0.013 0.07 1.88 1.89

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 39 / 113

Zero Bounds

An Example

Consider the e =
√

x +
√

y−
√

x + y +2
√

xy .

Assume x = a/b and y = c/d where a,b,c,d are L-bit integers.

Then Li-Yap Bound is 28L+60 bits, BFMSS is 96L+30 and
Degree-Measure is 80L+56.

Timing in seconds (Core 1.6):

L 50 100 500 5000
BFMS 0.637 9.12 101.9 202.9

Measure 0.063 0.07 1.93 15.26
BFMSS 0.073 0.61 1.95 15.41
Li-Yap 0.013 0.07 1.88 1.89

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 39 / 113

Zero Bounds

An Example

Consider the e =
√

x +
√

y−
√

x + y +2
√

xy .

Assume x = a/b and y = c/d where a,b,c,d are L-bit integers.

Then Li-Yap Bound is 28L+60 bits, BFMSS is 96L+30 and
Degree-Measure is 80L+56.

Timing in seconds (Core 1.6):

L 50 100 500 5000
BFMS 0.637 9.12 101.9 202.9

Measure 0.063 0.07 1.93 15.26
BFMSS 0.073 0.61 1.95 15.41
Li-Yap 0.013 0.07 1.88 1.89

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 39 / 113

Zero Bounds

An Example

Consider the e =
√

x +
√

y−
√

x + y +2
√

xy .

Assume x = a/b and y = c/d where a,b,c,d are L-bit integers.

Then Li-Yap Bound is 28L+60 bits, BFMSS is 96L+30 and
Degree-Measure is 80L+56.

Timing in seconds (Core 1.6):

L 50 100 500 5000
BFMS 0.637 9.12 101.9 202.9

Measure 0.063 0.07 1.93 15.26
BFMSS 0.073 0.61 1.95 15.41
Li-Yap 0.013 0.07 1.88 1.89

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 39 / 113

Zero Bounds

An Example

Consider the e =
√

x +
√

y−
√

x + y +2
√

xy .

Assume x = a/b and y = c/d where a,b,c,d are L-bit integers.

Then Li-Yap Bound is 28L+60 bits, BFMSS is 96L+30 and
Degree-Measure is 80L+56.

Timing in seconds (Core 1.6):

L 50 100 500 5000
BFMS 0.637 9.12 101.9 202.9

Measure 0.063 0.07 1.93 15.26
BFMSS 0.073 0.61 1.95 15.41
Li-Yap 0.013 0.07 1.88 1.89

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 39 / 113

Mini Summary

There is a “Universal Solution” for synthesizing the Algebraic and
the Geometric viewpoints

Slogan: Algebraic computation without Algebra

(Use approximations & zero bounds)

PUZZLE 3: What was the answer to PUZZLE 2?

Mini Summary

There is a “Universal Solution” for synthesizing the Algebraic and
the Geometric viewpoints

Slogan: Algebraic computation without Algebra

(Use approximations & zero bounds)

PUZZLE 3: What was the answer to PUZZLE 2?

Mini Summary

There is a “Universal Solution” for synthesizing the Algebraic and
the Geometric viewpoints

Slogan: Algebraic computation without Algebra

(Use approximations & zero bounds)

PUZZLE 3: What was the answer to PUZZLE 2?

Mini Summary

There is a “Universal Solution” for synthesizing the Algebraic and
the Geometric viewpoints

Slogan: Algebraic computation without Algebra

(Use approximations & zero bounds)

PUZZLE 3: What was the answer to PUZZLE 2?

Mini Summary

There is a “Universal Solution” for synthesizing the Algebraic and
the Geometric viewpoints

Slogan: Algebraic computation without Algebra

(Use approximations & zero bounds)

PUZZLE 3: What was the answer to PUZZLE 2?

Summary of Lecture 1

Nature of Geometric Computation:
◮ Discrete as well as Continuous
◮ Algebraic as well as Analytic

It is possible to provide a fairly general solution (ENC) that
combines the dual nature of numbers

Up Next : Directly design ENC algorithms

Summary of Lecture 1

Nature of Geometric Computation:
◮ Discrete as well as Continuous
◮ Algebraic as well as Analytic

It is possible to provide a fairly general solution (ENC) that
combines the dual nature of numbers

Up Next : Directly design ENC algorithms

Summary of Lecture 1

Nature of Geometric Computation:
◮ Discrete as well as Continuous
◮ Algebraic as well as Analytic

It is possible to provide a fairly general solution (ENC) that
combines the dual nature of numbers

Up Next : Directly design ENC algorithms

Summary of Lecture 1

Nature of Geometric Computation:
◮ Discrete as well as Continuous
◮ Algebraic as well as Analytic

It is possible to provide a fairly general solution (ENC) that
combines the dual nature of numbers

Up Next : Directly design ENC algorithms

Summary of Lecture 1

Nature of Geometric Computation:
◮ Discrete as well as Continuous
◮ Algebraic as well as Analytic

It is possible to provide a fairly general solution (ENC) that
combines the dual nature of numbers

Up Next : Directly design ENC algorithms

Summary of Lecture 1

Nature of Geometric Computation:
◮ Discrete as well as Continuous
◮ Algebraic as well as Analytic

It is possible to provide a fairly general solution (ENC) that
combines the dual nature of numbers

Up Next : Directly design ENC algorithms

Summary of Lecture 1

Nature of Geometric Computation:
◮ Discrete as well as Continuous
◮ Algebraic as well as Analytic

It is possible to provide a fairly general solution (ENC) that
combines the dual nature of numbers

Up Next : Directly design ENC algorithms

PART 2

Explicitization and Subdivision

“It can be of no practical use to know that π is irrational, but if we can
know, it surely would be intolerable not to know.”

— E.C. Titchmarsh

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 42 / 113

Introduction

Coming Up Next

6 Introduction

7 Review of Subdivision Algorithms

8 Cxy Algorithm

9 Extensions of Cxy

10 How to treat Boundary

11 How to treat Singularity

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 43 / 113

Introduction

Towards Exact Numerical Computation (ENC)

Beyond the Universal Solution

Design algorithms directly incorporating the principles of EGC

What do we need? What are its features?
◮ It must be numerical in nature
◮ It must be arbitrary precision
◮ It must respect zero
◮ It must be adaptive

⋆ actively control precision
⋆ exploit filters

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 44 / 113

Introduction

Towards Exact Numerical Computation (ENC)

Beyond the Universal Solution

Design algorithms directly incorporating the principles of EGC

What do we need? What are its features?
◮ It must be numerical in nature
◮ It must be arbitrary precision
◮ It must respect zero
◮ It must be adaptive

⋆ actively control precision
⋆ exploit filters

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 44 / 113

Introduction

Towards Exact Numerical Computation (ENC)

Beyond the Universal Solution

Design algorithms directly incorporating the principles of EGC

What do we need? What are its features?
◮ It must be numerical in nature
◮ It must be arbitrary precision
◮ It must respect zero
◮ It must be adaptive

⋆ actively control precision
⋆ exploit filters

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 44 / 113

Introduction

Towards Exact Numerical Computation (ENC)

Beyond the Universal Solution

Design algorithms directly incorporating the principles of EGC

What do we need? What are its features?
◮ It must be numerical in nature
◮ It must be arbitrary precision
◮ It must respect zero
◮ It must be adaptive

⋆ actively control precision
⋆ exploit filters

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 44 / 113

Introduction

Towards Exact Numerical Computation (ENC)

Beyond the Universal Solution

Design algorithms directly incorporating the principles of EGC

What do we need? What are its features?
◮ It must be numerical in nature
◮ It must be arbitrary precision
◮ It must respect zero
◮ It must be adaptive

⋆ actively control precision
⋆ exploit filters

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 44 / 113

Introduction

Towards Exact Numerical Computation (ENC)

Beyond the Universal Solution

Design algorithms directly incorporating the principles of EGC

What do we need? What are its features?
◮ It must be numerical in nature
◮ It must be arbitrary precision
◮ It must respect zero
◮ It must be adaptive

⋆ actively control precision
⋆ exploit filters

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 44 / 113

Introduction

Towards Exact Numerical Computation (ENC)

Beyond the Universal Solution

Design algorithms directly incorporating the principles of EGC

What do we need? What are its features?
◮ It must be numerical in nature
◮ It must be arbitrary precision
◮ It must respect zero
◮ It must be adaptive

⋆ actively control precision
⋆ exploit filters

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 44 / 113

Introduction

Towards Exact Numerical Computation (ENC)

Beyond the Universal Solution

Design algorithms directly incorporating the principles of EGC

What do we need? What are its features?
◮ It must be numerical in nature
◮ It must be arbitrary precision
◮ It must respect zero
◮ It must be adaptive

⋆ actively control precision
⋆ exploit filters

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 44 / 113

Introduction

Towards Exact Numerical Computation (ENC)

Beyond the Universal Solution

Design algorithms directly incorporating the principles of EGC

What do we need? What are its features?
◮ It must be numerical in nature
◮ It must be arbitrary precision
◮ It must respect zero
◮ It must be adaptive

⋆ actively control precision
⋆ exploit filters

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 44 / 113

Introduction

Computational Ring Approach
Computational Ring (D,0,1,+,−,×,÷2)

D is countable, dense subset of R

D is a ring extension of Z

Efficient representation ρ : {0,1}∗ ≻D for implementing ring
operations, and exact comparison.

Examples of D

BigFloats or dyadic numbers:

F := {m2n : m,n ∈Z}= Z[
1

2
]

Rationals: Q (avoid, if possible)

Real Algebraic Numbers: A (AVOID!)

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 45 / 113

Introduction

Computational Ring Approach
Computational Ring (D,0,1,+,−,×,÷2)

D is countable, dense subset of R

D is a ring extension of Z

Efficient representation ρ : {0,1}∗ ≻D for implementing ring
operations, and exact comparison.

Examples of D

BigFloats or dyadic numbers:

F := {m2n : m,n ∈Z}= Z[
1

2
]

Rationals: Q (avoid, if possible)

Real Algebraic Numbers: A (AVOID!)

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 45 / 113

Introduction

Computational Ring Approach
Computational Ring (D,0,1,+,−,×,÷2)

D is countable, dense subset of R

D is a ring extension of Z

Efficient representation ρ : {0,1}∗ ≻D for implementing ring
operations, and exact comparison.

Examples of D

BigFloats or dyadic numbers:

F := {m2n : m,n ∈Z}= Z[
1

2
]

Rationals: Q (avoid, if possible)

Real Algebraic Numbers: A (AVOID!)

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 45 / 113

Introduction

Computational Ring Approach
Computational Ring (D,0,1,+,−,×,÷2)

D is countable, dense subset of R

D is a ring extension of Z

Efficient representation ρ : {0,1}∗ ≻D for implementing ring
operations, and exact comparison.

Examples of D

BigFloats or dyadic numbers:

F := {m2n : m,n ∈Z}= Z[
1

2
]

Rationals: Q (avoid, if possible)

Real Algebraic Numbers: A (AVOID!)

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 45 / 113

Introduction

Computational Ring Approach
Computational Ring (D,0,1,+,−,×,÷2)

D is countable, dense subset of R

D is a ring extension of Z

Efficient representation ρ : {0,1}∗ ≻D for implementing ring
operations, and exact comparison.

Examples of D

BigFloats or dyadic numbers:

F := {m2n : m,n ∈Z}= Z[
1

2
]

Rationals: Q (avoid, if possible)

Real Algebraic Numbers: A (AVOID!)

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 45 / 113

Introduction

Computational Ring Approach
Computational Ring (D,0,1,+,−,×,÷2)

D is countable, dense subset of R

D is a ring extension of Z

Efficient representation ρ : {0,1}∗ ≻D for implementing ring
operations, and exact comparison.

Examples of D

BigFloats or dyadic numbers:

F := {m2n : m,n ∈Z}= Z[
1

2
]

Rationals: Q (avoid, if possible)

Real Algebraic Numbers: A (AVOID!)

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 45 / 113

Introduction

Computational Ring Approach
Computational Ring (D,0,1,+,−,×,÷2)

D is countable, dense subset of R

D is a ring extension of Z

Efficient representation ρ : {0,1}∗ ≻D for implementing ring
operations, and exact comparison.

Examples of D

BigFloats or dyadic numbers:

F := {m2n : m,n ∈Z}= Z[
1

2
]

Rationals: Q (avoid, if possible)

Real Algebraic Numbers: A (AVOID!)

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 45 / 113

Introduction

Computational Ring Approach
Computational Ring (D,0,1,+,−,×,÷2)

D is countable, dense subset of R

D is a ring extension of Z

Efficient representation ρ : {0,1}∗ ≻D for implementing ring
operations, and exact comparison.

Examples of D

BigFloats or dyadic numbers:

F := {m2n : m,n ∈Z}= Z[
1

2
]

Rationals: Q (avoid, if possible)

Real Algebraic Numbers: A (AVOID!)

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 45 / 113

Introduction

What else is needed in ENC Algorithms?

Intervals
D: set of dyadic intervals

Dn: set of n-boxes

Box Functions
Let f : Dm→D.

Box function f : m(D)→ (D)
◮ (1) Inclusion: f (B)⊆ f (B).
◮ (2) Convergence: limi→∞ f (Bi) = f (limi→∞ Bi).

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 46 / 113

Introduction

What else is needed in ENC Algorithms?

Intervals
D: set of dyadic intervals

Dn: set of n-boxes

Box Functions
Let f : Dm→D.

Box function f : m(D)→ (D)
◮ (1) Inclusion: f (B)⊆ f (B).
◮ (2) Convergence: limi→∞ f (Bi) = f (limi→∞ Bi).

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 46 / 113

Introduction

What else is needed in ENC Algorithms?

Intervals
D: set of dyadic intervals

Dn: set of n-boxes

Box Functions
Let f : Dm→D.

Box function f : m(D)→ (D)
◮ (1) Inclusion: f (B)⊆ f (B).
◮ (2) Convergence: limi→∞ f (Bi) = f (limi→∞ Bi).

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 46 / 113

Introduction

What else is needed in ENC Algorithms?

Intervals
D: set of dyadic intervals

Dn: set of n-boxes

Box Functions
Let f : Dm→D.

Box function f : m(D)→ (D)
◮ (1) Inclusion: f (B)⊆ f (B).
◮ (2) Convergence: limi→∞ f (Bi) = f (limi→∞ Bi).

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 46 / 113

Introduction

What else is needed in ENC Algorithms?

Intervals
D: set of dyadic intervals

Dn: set of n-boxes

Box Functions
Let f : Dm→D.

Box function f : m(D)→ (D)
◮ (1) Inclusion: f (B)⊆ f (B).
◮ (2) Convergence: limi→∞ f (Bi) = f (limi→∞ Bi).

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 46 / 113

Introduction

What else is needed in ENC Algorithms?

Intervals
D: set of dyadic intervals

Dn: set of n-boxes

Box Functions
Let f : Dm→D.

Box function f : m(D)→ (D)
◮ (1) Inclusion: f (B)⊆ f (B).
◮ (2) Convergence: limi→∞ f (Bi) = f (limi→∞ Bi).

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 46 / 113

Introduction

What else is needed in ENC Algorithms?

Intervals
D: set of dyadic intervals

Dn: set of n-boxes

Box Functions
Let f : Dm→D.

Box function f : m(D)→ (D)
◮ (1) Inclusion: f (B)⊆ f (B).
◮ (2) Convergence: limi→∞ f (Bi) = f (limi→∞ Bi).

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 46 / 113

Introduction

What else is needed in ENC Algorithms?

Intervals
D: set of dyadic intervals

Dn: set of n-boxes

Box Functions
Let f : Dm→D.

Box function f : m(D)→ (D)
◮ (1) Inclusion: f (B)⊆ f (B).
◮ (2) Convergence: limi→∞ f (Bi) = f (limi→∞ Bi).

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 46 / 113

Introduction

What else is needed in ENC Algorithms?

Intervals
D: set of dyadic intervals

Dn: set of n-boxes

Box Functions
Let f : Dm→D.

Box function f : m(D)→ (D)
◮ (1) Inclusion: f (B)⊆ f (B).
◮ (2) Convergence: limi→∞ f (Bi) = f (limi→∞ Bi).

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 46 / 113

Introduction

Our Target: Explicitization Problems
From Implicit to Explicit Representation

Mesh generation [Problem (IV)]

Discrete Morse-Smale complex [Problem (V)]

Arrangement of hypersurfaces

Voronoi diagram of a collection of objects

Cell complex approximation of algebraic variety

Representation of Flow fields

From Parameter Space to Ambient Space
Why this class? Interface between Continuous and Discrete!

ENC Algorithms is ideal for this class

Interplay of Topological and Geometric requirements

Domain subdivision as the general algorithmic paradigm
Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 47 / 113

Introduction

Our Target: Explicitization Problems
From Implicit to Explicit Representation

Mesh generation [Problem (IV)]

Discrete Morse-Smale complex [Problem (V)]

Arrangement of hypersurfaces

Voronoi diagram of a collection of objects

Cell complex approximation of algebraic variety

Representation of Flow fields

From Parameter Space to Ambient Space
Why this class? Interface between Continuous and Discrete!

ENC Algorithms is ideal for this class

Interplay of Topological and Geometric requirements

Domain subdivision as the general algorithmic paradigm
Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 47 / 113

Introduction

Our Target: Explicitization Problems
From Implicit to Explicit Representation

Mesh generation [Problem (IV)]

Discrete Morse-Smale complex [Problem (V)]

Arrangement of hypersurfaces

Voronoi diagram of a collection of objects

Cell complex approximation of algebraic variety

Representation of Flow fields

From Parameter Space to Ambient Space
Why this class? Interface between Continuous and Discrete!

ENC Algorithms is ideal for this class

Interplay of Topological and Geometric requirements

Domain subdivision as the general algorithmic paradigm
Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 47 / 113

Introduction

Our Target: Explicitization Problems
From Implicit to Explicit Representation

Mesh generation [Problem (IV)]

Discrete Morse-Smale complex [Problem (V)]

Arrangement of hypersurfaces

Voronoi diagram of a collection of objects

Cell complex approximation of algebraic variety

Representation of Flow fields

From Parameter Space to Ambient Space
Why this class? Interface between Continuous and Discrete!

ENC Algorithms is ideal for this class

Interplay of Topological and Geometric requirements

Domain subdivision as the general algorithmic paradigm
Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 47 / 113

Introduction

Our Target: Explicitization Problems
From Implicit to Explicit Representation

Mesh generation [Problem (IV)]

Discrete Morse-Smale complex [Problem (V)]

Arrangement of hypersurfaces

Voronoi diagram of a collection of objects

Cell complex approximation of algebraic variety

Representation of Flow fields

From Parameter Space to Ambient Space
Why this class? Interface between Continuous and Discrete!

ENC Algorithms is ideal for this class

Interplay of Topological and Geometric requirements

Domain subdivision as the general algorithmic paradigm
Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 47 / 113

Introduction

Our Target: Explicitization Problems
From Implicit to Explicit Representation

Mesh generation [Problem (IV)]

Discrete Morse-Smale complex [Problem (V)]

Arrangement of hypersurfaces

Voronoi diagram of a collection of objects

Cell complex approximation of algebraic variety

Representation of Flow fields

From Parameter Space to Ambient Space
Why this class? Interface between Continuous and Discrete!

ENC Algorithms is ideal for this class

Interplay of Topological and Geometric requirements

Domain subdivision as the general algorithmic paradigm
Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 47 / 113

Introduction

Our Target: Explicitization Problems
From Implicit to Explicit Representation

Mesh generation [Problem (IV)]

Discrete Morse-Smale complex [Problem (V)]

Arrangement of hypersurfaces

Voronoi diagram of a collection of objects

Cell complex approximation of algebraic variety

Representation of Flow fields

From Parameter Space to Ambient Space
Why this class? Interface between Continuous and Discrete!

ENC Algorithms is ideal for this class

Interplay of Topological and Geometric requirements

Domain subdivision as the general algorithmic paradigm
Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 47 / 113

Introduction

Our Target: Explicitization Problems
From Implicit to Explicit Representation

Mesh generation [Problem (IV)]

Discrete Morse-Smale complex [Problem (V)]

Arrangement of hypersurfaces

Voronoi diagram of a collection of objects

Cell complex approximation of algebraic variety

Representation of Flow fields

From Parameter Space to Ambient Space
Why this class? Interface between Continuous and Discrete!

ENC Algorithms is ideal for this class

Interplay of Topological and Geometric requirements

Domain subdivision as the general algorithmic paradigm
Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 47 / 113

Introduction

Our Target: Explicitization Problems
From Implicit to Explicit Representation

Mesh generation [Problem (IV)]

Discrete Morse-Smale complex [Problem (V)]

Arrangement of hypersurfaces

Voronoi diagram of a collection of objects

Cell complex approximation of algebraic variety

Representation of Flow fields

From Parameter Space to Ambient Space
Why this class? Interface between Continuous and Discrete!

ENC Algorithms is ideal for this class

Interplay of Topological and Geometric requirements

Domain subdivision as the general algorithmic paradigm
Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 47 / 113

Introduction

Our Target: Explicitization Problems
From Implicit to Explicit Representation

Mesh generation [Problem (IV)]

Discrete Morse-Smale complex [Problem (V)]

Arrangement of hypersurfaces

Voronoi diagram of a collection of objects

Cell complex approximation of algebraic variety

Representation of Flow fields

From Parameter Space to Ambient Space
Why this class? Interface between Continuous and Discrete!

ENC Algorithms is ideal for this class

Interplay of Topological and Geometric requirements

Domain subdivision as the general algorithmic paradigm
Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 47 / 113

Introduction

Our Target: Explicitization Problems
From Implicit to Explicit Representation

Mesh generation [Problem (IV)]

Discrete Morse-Smale complex [Problem (V)]

Arrangement of hypersurfaces

Voronoi diagram of a collection of objects

Cell complex approximation of algebraic variety

Representation of Flow fields

From Parameter Space to Ambient Space
Why this class? Interface between Continuous and Discrete!

ENC Algorithms is ideal for this class

Interplay of Topological and Geometric requirements

Domain subdivision as the general algorithmic paradigm
Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 47 / 113

Introduction

Our Target: Explicitization Problems
From Implicit to Explicit Representation

Mesh generation [Problem (IV)]

Discrete Morse-Smale complex [Problem (V)]

Arrangement of hypersurfaces

Voronoi diagram of a collection of objects

Cell complex approximation of algebraic variety

Representation of Flow fields

From Parameter Space to Ambient Space
Why this class? Interface between Continuous and Discrete!

ENC Algorithms is ideal for this class

Interplay of Topological and Geometric requirements

Domain subdivision as the general algorithmic paradigm
Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 47 / 113

Introduction

Our Target: Explicitization Problems
From Implicit to Explicit Representation

Mesh generation [Problem (IV)]

Discrete Morse-Smale complex [Problem (V)]

Arrangement of hypersurfaces

Voronoi diagram of a collection of objects

Cell complex approximation of algebraic variety

Representation of Flow fields

From Parameter Space to Ambient Space
Why this class? Interface between Continuous and Discrete!

ENC Algorithms is ideal for this class

Interplay of Topological and Geometric requirements

Domain subdivision as the general algorithmic paradigm
Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 47 / 113

Introduction

Three Approaches to Meshing, I:

1. Algebraic Approach

Projection Based (Refinements of CAD)
E.g., [Mourrain and Tecourt (2005); Cheng, Gao, and Li (2005)]

Algebraic Subdivision Schemes
E.g., [Wolpert and Seidel (2005)]

Properties Exact; complete (usually); slow (in general); hard to

implement

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 48 / 113

Introduction

Three Approaches to Meshing, I:

1. Algebraic Approach

Projection Based (Refinements of CAD)
E.g., [Mourrain and Tecourt (2005); Cheng, Gao, and Li (2005)]

Algebraic Subdivision Schemes
E.g., [Wolpert and Seidel (2005)]

Properties Exact; complete (usually); slow (in general); hard to

implement

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 48 / 113

Introduction

Three Approaches to Meshing, I:

1. Algebraic Approach

Projection Based (Refinements of CAD)
E.g., [Mourrain and Tecourt (2005); Cheng, Gao, and Li (2005)]

Algebraic Subdivision Schemes
E.g., [Wolpert and Seidel (2005)]

Properties Exact; complete (usually); slow (in general); hard to

implement

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 48 / 113

Introduction

Three Approaches to Meshing, I:

1. Algebraic Approach

Projection Based (Refinements of CAD)
E.g., [Mourrain and Tecourt (2005); Cheng, Gao, and Li (2005)]

Algebraic Subdivision Schemes
E.g., [Wolpert and Seidel (2005)]

Properties Exact; complete (usually); slow (in general); hard to

implement

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 48 / 113

Introduction

Three Approaches to Meshing, I:

1. Algebraic Approach

Projection Based (Refinements of CAD)
E.g., [Mourrain and Tecourt (2005); Cheng, Gao, and Li (2005)]

Algebraic Subdivision Schemes
E.g., [Wolpert and Seidel (2005)]

Properties Exact; complete (usually); slow (in general); hard to

implement

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 48 / 113

Introduction

Three Approaches to Meshing, II:

2. Geometric Approach

Sampling Approach (Ray Shooting)
E.g., [Boissonnat & Oudot (2005); Cheng, Dey, Ramos and Ray (2004)]

Morse theory
E.g., [Stander & Hart (1997); Boissonnat, Cohen-Steiner & Vegter (2004)]

Properties Implementation gaps; requires “niceness conditions”

(Morseness, non-singularity, etc)

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 49 / 113

Introduction

Three Approaches to Meshing, II:

2. Geometric Approach

Sampling Approach (Ray Shooting)
E.g., [Boissonnat & Oudot (2005); Cheng, Dey, Ramos and Ray (2004)]

Morse theory
E.g., [Stander & Hart (1997); Boissonnat, Cohen-Steiner & Vegter (2004)]

Properties Implementation gaps; requires “niceness conditions”

(Morseness, non-singularity, etc)

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 49 / 113

Introduction

Three Approaches to Meshing, II:

2. Geometric Approach

Sampling Approach (Ray Shooting)
E.g., [Boissonnat & Oudot (2005); Cheng, Dey, Ramos and Ray (2004)]

Morse theory
E.g., [Stander & Hart (1997); Boissonnat, Cohen-Steiner & Vegter (2004)]

Properties Implementation gaps; requires “niceness conditions”

(Morseness, non-singularity, etc)

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 49 / 113

Introduction

Three Approaches to Meshing, II:

2. Geometric Approach

Sampling Approach (Ray Shooting)
E.g., [Boissonnat & Oudot (2005); Cheng, Dey, Ramos and Ray (2004)]

Morse theory
E.g., [Stander & Hart (1997); Boissonnat, Cohen-Steiner & Vegter (2004)]

Properties Implementation gaps; requires “niceness conditions”

(Morseness, non-singularity, etc)

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 49 / 113

Introduction

Three Approaches to Meshing, II:

2. Geometric Approach

Sampling Approach (Ray Shooting)
E.g., [Boissonnat & Oudot (2005); Cheng, Dey, Ramos and Ray (2004)]

Morse theory
E.g., [Stander & Hart (1997); Boissonnat, Cohen-Steiner & Vegter (2004)]

Properties Implementation gaps; requires “niceness conditions”

(Morseness, non-singularity, etc)

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 49 / 113

Introduction

Three Approaches to Meshing, III:

3. Numeric Approach

Curve Tracing Literature
[Ratschek & Rokne (2005)]

Subdivision Approach
[Marching Cube (1987); Snyder (1992); Plantinga & Vegter (2004)]

Properties Practical; easy to implement; adaptive; incomplete (until

recently)

This is our focus

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 50 / 113

Introduction

Three Approaches to Meshing, III:

3. Numeric Approach

Curve Tracing Literature
[Ratschek & Rokne (2005)]

Subdivision Approach
[Marching Cube (1987); Snyder (1992); Plantinga & Vegter (2004)]

Properties Practical; easy to implement; adaptive; incomplete (until

recently)

This is our focus

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 50 / 113

Introduction

Three Approaches to Meshing, III:

3. Numeric Approach

Curve Tracing Literature
[Ratschek & Rokne (2005)]

Subdivision Approach
[Marching Cube (1987); Snyder (1992); Plantinga & Vegter (2004)]

Properties Practical; easy to implement; adaptive; incomplete (until

recently)

This is our focus

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 50 / 113

Introduction

Three Approaches to Meshing, III:

3. Numeric Approach

Curve Tracing Literature
[Ratschek & Rokne (2005)]

Subdivision Approach
[Marching Cube (1987); Snyder (1992); Plantinga & Vegter (2004)]

Properties Practical; easy to implement; adaptive; incomplete (until

recently)

This is our focus

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 50 / 113

Introduction

Three Approaches to Meshing, III:

3. Numeric Approach

Curve Tracing Literature
[Ratschek & Rokne (2005)]

Subdivision Approach
[Marching Cube (1987); Snyder (1992); Plantinga & Vegter (2004)]

Properties Practical; easy to implement; adaptive; incomplete (until

recently)

This is our focus

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 50 / 113

Introduction

Three Approaches to Meshing, III:

3. Numeric Approach

Curve Tracing Literature
[Ratschek & Rokne (2005)]

Subdivision Approach
[Marching Cube (1987); Snyder (1992); Plantinga & Vegter (2004)]

Properties Practical; easy to implement; adaptive; incomplete (until

recently)

This is our focus

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 50 / 113

Introduction

Two Criteria of Meshing

I. Topological Correctness

The approximation S̃ is isotopic to the S.

S1 S2 S1 and S2 are
homeomorphic , but not
isotopic

Ambient space property!

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 51 / 113

Introduction

(contd.) Two Criteria of Meshing

II. Geometrical Accuracy (ε-closeness)

For any given ε > 0, the Hausdorff distance d(S, S̃) should not
exceed ε .

Set ε = ∞ to focus on isotopy.

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 52 / 113

Mini Summary

Want ENC algorithms for Explicitization Problems

Focus on (purely) Numerical Subdivision methods

Algorithms for Meshing Curves (and Surfaces)

What will be New?
Numerical methods that are exact and can handle singularities

Mini Summary

Want ENC algorithms for Explicitization Problems

Focus on (purely) Numerical Subdivision methods

Algorithms for Meshing Curves (and Surfaces)

What will be New?
Numerical methods that are exact and can handle singularities

Mini Summary

Want ENC algorithms for Explicitization Problems

Focus on (purely) Numerical Subdivision methods

Algorithms for Meshing Curves (and Surfaces)

What will be New?
Numerical methods that are exact and can handle singularities

Mini Summary

Want ENC algorithms for Explicitization Problems

Focus on (purely) Numerical Subdivision methods

Algorithms for Meshing Curves (and Surfaces)

What will be New?
Numerical methods that are exact and can handle singularities

Mini Summary

Want ENC algorithms for Explicitization Problems

Focus on (purely) Numerical Subdivision methods

Algorithms for Meshing Curves (and Surfaces)

What will be New?
Numerical methods that are exact and can handle singularities

Mini Summary

Want ENC algorithms for Explicitization Problems

Focus on (purely) Numerical Subdivision methods

Algorithms for Meshing Curves (and Surfaces)

What will be New?
Numerical methods that are exact and can handle singularities

Review of Subdivision Algorithms

Coming Up Next

6 Introduction

7 Review of Subdivision Algorithms

8 Cxy Algorithm

9 Extensions of Cxy

10 How to treat Boundary

11 How to treat Singularity

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 54 / 113

Review of Subdivision Algorithms

Subdivision Algorithms

Viewed as generalized binary search, organized as a quadtree.

Here is a typical output:

Figure: Approximation of the curve f (X ,Y) = Y 2−X2 +X3 +0.02 = 0

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 55 / 113

Review of Subdivision Algorithms

The Generic Subdivision Algorithm

INPUT: Curve S = f−1(0), box B0 ⊆R2, and ε > 0

OUTPUT: Graph G = (V ,E),
representing an isotopic ε-approximation of S∩B0.

1 Let Qin← {B0} be a queue of boxes
2 SUBDIVISION PHASE: Qout ← SUBDIVIDE(Qin)
3 REFINEMENT PHASE: Qref ← REFINE(Qout)
4 CONSTRUCTION PHASE: G← CONSTRUCT (Qref)

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 56 / 113

Review of Subdivision Algorithms

The Generic Subdivision Algorithm

INPUT: Curve S = f−1(0), box B0 ⊆R2, and ε > 0

OUTPUT: Graph G = (V ,E),
representing an isotopic ε-approximation of S∩B0.

1 Let Qin← {B0} be a queue of boxes
2 SUBDIVISION PHASE: Qout ← SUBDIVIDE(Qin)
3 REFINEMENT PHASE: Qref ← REFINE(Qout)
4 CONSTRUCTION PHASE: G← CONSTRUCT (Qref)

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 56 / 113

Review of Subdivision Algorithms

The Generic Subdivision Algorithm

INPUT: Curve S = f−1(0), box B0 ⊆R2, and ε > 0

OUTPUT: Graph G = (V ,E),
representing an isotopic ε-approximation of S∩B0.

1 Let Qin← {B0} be a queue of boxes
2 SUBDIVISION PHASE: Qout ← SUBDIVIDE(Qin)
3 REFINEMENT PHASE: Qref ← REFINE(Qout)
4 CONSTRUCTION PHASE: G← CONSTRUCT (Qref)

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 56 / 113

Review of Subdivision Algorithms

The Generic Subdivision Algorithm

INPUT: Curve S = f−1(0), box B0 ⊆R2, and ε > 0

OUTPUT: Graph G = (V ,E),
representing an isotopic ε-approximation of S∩B0.

1 Let Qin← {B0} be a queue of boxes
2 SUBDIVISION PHASE: Qout ← SUBDIVIDE(Qin)
3 REFINEMENT PHASE: Qref ← REFINE(Qout)
4 CONSTRUCTION PHASE: G← CONSTRUCT (Qref)

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 56 / 113

Review of Subdivision Algorithms

The Generic Subdivision Algorithm

INPUT: Curve S = f−1(0), box B0 ⊆R2, and ε > 0

OUTPUT: Graph G = (V ,E),
representing an isotopic ε-approximation of S∩B0.

1 Let Qin← {B0} be a queue of boxes
2 SUBDIVISION PHASE: Qout ← SUBDIVIDE(Qin)
3 REFINEMENT PHASE: Qref ← REFINE(Qout)
4 CONSTRUCTION PHASE: G← CONSTRUCT (Qref)

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 56 / 113

Review of Subdivision Algorithms

The Generic Subdivision Algorithm

INPUT: Curve S = f−1(0), box B0 ⊆R2, and ε > 0

OUTPUT: Graph G = (V ,E),
representing an isotopic ε-approximation of S∩B0.

1 Let Qin← {B0} be a queue of boxes
2 SUBDIVISION PHASE: Qout ← SUBDIVIDE(Qin)
3 REFINEMENT PHASE: Qref ← REFINE(Qout)
4 CONSTRUCTION PHASE: G← CONSTRUCT (Qref)

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 56 / 113

Review of Subdivision Algorithms

The Generic Subdivision Algorithm

INPUT: Curve S = f−1(0), box B0 ⊆R2, and ε > 0

OUTPUT: Graph G = (V ,E),
representing an isotopic ε-approximation of S∩B0.

1 Let Qin← {B0} be a queue of boxes
2 SUBDIVISION PHASE: Qout ← SUBDIVIDE(Qin)
3 REFINEMENT PHASE: Qref ← REFINE(Qout)
4 CONSTRUCTION PHASE: G← CONSTRUCT (Qref)

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 56 / 113

Review of Subdivision Algorithms

The Generic Subdivision Algorithm

INPUT: Curve S = f−1(0), box B0 ⊆R2, and ε > 0

OUTPUT: Graph G = (V ,E),
representing an isotopic ε-approximation of S∩B0.

1 Let Qin← {B0} be a queue of boxes
2 SUBDIVISION PHASE: Qout ← SUBDIVIDE(Qin)
3 REFINEMENT PHASE: Qref ← REFINE(Qout)
4 CONSTRUCTION PHASE: G← CONSTRUCT (Qref)

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 56 / 113

Review of Subdivision Algorithms

E.g., Marching Cube

Subdivision Phase
Subdivide until size of each box ≤ ε .

Construction Phase
(1) Evaluate sign of f at grid points, (2) insert vertices, and (3) connect
them in each box:

+

+

−

−

(b)

+

+

−

−

(d)

+

+−

−

(c)

+

+

(a)

+

−

Cannot guarantee the topological correctness

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 57 / 113

Review of Subdivision Algorithms

Parametrizability and Normal Variation

Parametrizable in X -direction

(d)(c)(b)(a)

(a) Parametrizable in X -direction

(b) Non-parametrizable in X - or Y -direction

(c) Small normal variation

(d) Big normal variation

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 58 / 113

Review of Subdivision Algorithms

Box Predicates

Three Conditions (Predicates)

C0 0 /∈ f (B) Exclusion

Cxy 0 /∈ fx(B) or 0 /∈ fy (B) Parametrizability

C1 0 /∈ fx(B)2 + fy(B)2 Small Normal Variation

Implementation: e.g., f (x,y) = x2−2xy +3y
Interval Arithmetic (Box):

◮ f (I,J) = I2−2IJ +3J

Interval Taylor (Disc):
◮ f (x ,y , r) = [f (x ,y)± r(|2(x − y)|+ |−2x +3|+3r2)]

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 59 / 113

Review of Subdivision Algorithms

Box Predicates

Three Conditions (Predicates)

C0 0 /∈ f (B) Exclusion

Cxy 0 /∈ fx(B) or 0 /∈ fy (B) Parametrizability

C1 0 /∈ fx(B)2 + fy(B)2 Small Normal Variation

Implementation: e.g., f (x,y) = x2−2xy +3y
Interval Arithmetic (Box):

◮ f (I,J) = I2−2IJ +3J

Interval Taylor (Disc):
◮ f (x ,y , r) = [f (x ,y)± r(|2(x − y)|+ |−2x +3|+3r2)]

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 59 / 113

Review of Subdivision Algorithms

Box Predicates

Three Conditions (Predicates)

C0 0 /∈ f (B) Exclusion

Cxy 0 /∈ fx(B) or 0 /∈ fy (B) Parametrizability

C1 0 /∈ fx(B)2 + fy(B)2 Small Normal Variation

Implementation: e.g., f (x,y) = x2−2xy +3y
Interval Arithmetic (Box):

◮ f (I,J) = I2−2IJ +3J

Interval Taylor (Disc):
◮ f (x ,y , r) = [f (x ,y)± r(|2(x − y)|+ |−2x +3|+3r2)]

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 59 / 113

Review of Subdivision Algorithms

Box Predicates

Three Conditions (Predicates)

C0 0 /∈ f (B) Exclusion

Cxy 0 /∈ fx(B) or 0 /∈ fy (B) Parametrizability

C1 0 /∈ fx(B)2 + fy(B)2 Small Normal Variation

Implementation: e.g., f (x,y) = x2−2xy +3y
Interval Arithmetic (Box):

◮ f (I,J) = I2−2IJ +3J

Interval Taylor (Disc):
◮ f (x ,y , r) = [f (x ,y)± r(|2(x − y)|+ |−2x +3|+3r2)]

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 59 / 113

Review of Subdivision Algorithms

Box Predicates

Three Conditions (Predicates)

C0 0 /∈ f (B) Exclusion

Cxy 0 /∈ fx(B) or 0 /∈ fy (B) Parametrizability

C1 0 /∈ fx(B)2 + fy(B)2 Small Normal Variation

Implementation: e.g., f (x,y) = x2−2xy +3y
Interval Arithmetic (Box):

◮ f (I,J) = I2−2IJ +3J

Interval Taylor (Disc):
◮ f (x ,y , r) = [f (x ,y)± r(|2(x − y)|+ |−2x +3|+3r2)]

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 59 / 113

Review of Subdivision Algorithms

Box Predicates

Three Conditions (Predicates)

C0 0 /∈ f (B) Exclusion

Cxy 0 /∈ fx(B) or 0 /∈ fy (B) Parametrizability

C1 0 /∈ fx(B)2 + fy(B)2 Small Normal Variation

Implementation: e.g., f (x,y) = x2−2xy +3y
Interval Arithmetic (Box):

◮ f (I,J) = I2−2IJ +3J

Interval Taylor (Disc):
◮ f (x ,y , r) = [f (x ,y)± r(|2(x − y)|+ |−2x +3|+3r2)]

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 59 / 113

Review of Subdivision Algorithms

Box Predicates

Three Conditions (Predicates)

C0 0 /∈ f (B) Exclusion

Cxy 0 /∈ fx(B) or 0 /∈ fy (B) Parametrizability

C1 0 /∈ fx(B)2 + fy(B)2 Small Normal Variation

Implementation: e.g., f (x,y) = x2−2xy +3y
Interval Arithmetic (Box):

◮ f (I,J) = I2−2IJ +3J

Interval Taylor (Disc):
◮ f (x ,y , r) = [f (x ,y)± r(|2(x − y)|+ |−2x +3|+3r2)]

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 59 / 113

Review of Subdivision Algorithms

Box Predicates

Three Conditions (Predicates)

C0 0 /∈ f (B) Exclusion

Cxy 0 /∈ fx(B) or 0 /∈ fy (B) Parametrizability

C1 0 /∈ fx(B)2 + fy(B)2 Small Normal Variation

Implementation: e.g., f (x,y) = x2−2xy +3y
Interval Arithmetic (Box):

◮ f (I,J) = I2−2IJ +3J

Interval Taylor (Disc):
◮ f (x ,y , r) = [f (x ,y)± r(|2(x − y)|+ |−2x +3|+3r2)]

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 59 / 113

Review of Subdivision Algorithms

Box Predicates

Three Conditions (Predicates)

C0 0 /∈ f (B) Exclusion

Cxy 0 /∈ fx(B) or 0 /∈ fy (B) Parametrizability

C1 0 /∈ fx(B)2 + fy(B)2 Small Normal Variation

Implementation: e.g., f (x,y) = x2−2xy +3y
Interval Arithmetic (Box):

◮ f (I,J) = I2−2IJ +3J

Interval Taylor (Disc):
◮ f (x ,y , r) = [f (x ,y)± r(|2(x − y)|+ |−2x +3|+3r2)]

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 59 / 113

Review of Subdivision Algorithms

Box Predicates

Three Conditions (Predicates)

C0 0 /∈ f (B) Exclusion

Cxy 0 /∈ fx(B) or 0 /∈ fy (B) Parametrizability

C1 0 /∈ fx(B)2 + fy(B)2 Small Normal Variation

Implementation: e.g., f (x,y) = x2−2xy +3y
Interval Arithmetic (Box):

◮ f (I,J) = I2−2IJ +3J

Interval Taylor (Disc):
◮ f (x ,y , r) = [f (x ,y)± r(|2(x − y)|+ |−2x +3|+3r2)]

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 59 / 113

Review of Subdivision Algorithms

Box Predicates

Three Conditions (Predicates)

C0 0 /∈ f (B) Exclusion

Cxy 0 /∈ fx(B) or 0 /∈ fy (B) Parametrizability

C1 0 /∈ fx(B)2 + fy(B)2 Small Normal Variation

Implementation: e.g., f (x,y) = x2−2xy +3y
Interval Arithmetic (Box):

◮ f (I,J) = I2−2IJ +3J

Interval Taylor (Disc):
◮ f (x ,y , r) = [f (x ,y)± r(|2(x − y)|+ |−2x +3|+3r2)]

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 59 / 113

Review of Subdivision Algorithms

Snyder’s Algorithm

Subdivision Phase
For each box B:

C0(B)⇒ discard

¬Cxy(B)⇒ subdivide B

Construction Phase
Determine intersections on boundary

Connect the intersections

(Non-trivial, unbounded complexity)

Boundary Analysis is not good (may not even terminate).

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 60 / 113

Review of Subdivision Algorithms

Snyder’s Algorithm

Subdivision Phase
For each box B:

C0(B)⇒ discard

¬Cxy(B)⇒ subdivide B

Construction Phase
Determine intersections on boundary

Connect the intersections

(Non-trivial, unbounded complexity)

Boundary Analysis is not good (may not even terminate).

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 60 / 113

Review of Subdivision Algorithms

Idea of Plantinga and Vegter
Introduce a strong predicate C1 predicate

Allow local NON-isotopy
Local incursion and excursions

B

B′

B

B′

◮ Locally, graph is not isotopic

Simple box geometry
(simpler than Snyder, less simple than Marching Cube)

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 61 / 113

Review of Subdivision Algorithms

Plantinga and Vegter’s Algorithm

Exploit the global isotopy

Subdivision Phase: For each box B:
◮ C0(B)⇒ discard
◮ ¬C1(B)⇒ subdivide B

Refinement Phase: Balance!

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 62 / 113

Review of Subdivision Algorithms

(contd.) Plantinga and Vegter’s Algorithm

Global, not local, isotopy

Construction Phase:

(b)

+

+

+

+

−

+

+

−

+

+

−

+

−

(e)

++

+ −

−

−+

(f)(d)

+−

(c)

+

(a)

+

− +

+

−

−

+

Figure: Extended Rules

Local isotopy is NOT good !

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 63 / 113

Cxy Algorithm

Coming Up Next

6 Introduction

7 Review of Subdivision Algorithms

8 Cxy Algorithm

9 Extensions of Cxy

10 How to treat Boundary

11 How to treat Singularity

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 64 / 113

Cxy Algorithm

Idea of Cxy Algorithm

Replace C1 by Cxy
C1(B) implies Cxy(B)

This would produce fewer boxes.

Exploit local non-isotopy
Local isotopy is an artifact!

This also avoid boundary analysis.

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 65 / 113

Cxy Algorithm

Obstructions to Cxy Idea

Replace C1 by Cxy
Just run PV Algorithm but using Cxy instead:

What can go wrong?

x

y

(b)

(a)

positive corner

vertex
B2B1

negative corner

KEY:

B′2 B′1

(−5,−1)

(5,1)

Figure: Elongated hyperbola

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 66 / 113

Cxy Algorithm

Cxy Algorithm
Subdivision and Refinement Phases: As before
Construction Phase:

(full-split)

− +

+

(a)

+/−

+

+

+ +

(c’)

+ +

+

+ − +

+ +

(c”)

+ +
−

+

−

+

+ − +

+ −
(b’)

+ +

+

+ − +

+ −

+ +

(b)

+

+ − +

+ +

(c)

+ +

−

+

−

+

+ − +

Figure: Resolution of Ambiguity

Nontrivial proof of correctness
Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 67 / 113

Mini Summary

What has Cxy Algorithm done?
◮ Exploit Parametrizability (like Snyder)
◮ Rejected local isotopy (like PV)

Up Next: More improvements

Mini Summary

What has Cxy Algorithm done?
◮ Exploit Parametrizability (like Snyder)
◮ Rejected local isotopy (like PV)

Up Next: More improvements

Mini Summary

What has Cxy Algorithm done?
◮ Exploit Parametrizability (like Snyder)
◮ Rejected local isotopy (like PV)

Up Next: More improvements

Mini Summary

What has Cxy Algorithm done?
◮ Exploit Parametrizability (like Snyder)
◮ Rejected local isotopy (like PV)

Up Next: More improvements

Mini Summary

What has Cxy Algorithm done?
◮ Exploit Parametrizability (like Snyder)
◮ Rejected local isotopy (like PV)

Up Next: More improvements

Mini Summary

What has Cxy Algorithm done?
◮ Exploit Parametrizability (like Snyder)
◮ Rejected local isotopy (like PV)

Up Next: More improvements

Extensions of Cxy

Coming Up Next

6 Introduction

7 Review of Subdivision Algorithms

8 Cxy Algorithm

9 Extensions of Cxy

10 How to treat Boundary

11 How to treat Singularity

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 69 / 113

Extensions of Cxy

Idea of Rectangular Cxy Algorithm

Exploit Anisotropy

(b) PV (c) Snyder

(d) Balanced Cxy (e) Rectangular Cxy

(a) Original Curve

“Heel Curve”
X2Y 2−X +Y −1 = 0 in
box
B = [(−2,−10),(10,2)]

Comparing PV, Snyder,
Cxy, Rect Cxy

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 70 / 113

Extensions of Cxy

Partial Splits for Rectangles

Splits

Full-splits:
B→ (B1,B2,B3,B4)

1

3

B14

4

B12

B342

B23

Horizontal
Half-split:

B→ (B12,B34)

Vertical Half-split:

B→ (B14,B23)

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 71 / 113

Extensions of Cxy

Rectangular Cxy Algorithm

What is needed
Aspect Ratio Bound: r > 1 arbitrary but fixed.

Splitting Procedure: do full-split if none of these hold

L0 : C0(B),Cxy (B) Terminate
Lout : C0(B12),C0(B34),C0(B14),C0(B23) Half-split
Lin : Cxy (B12),Cxy (B34),Cxy (B14),Cxy (B23) Half-split

Axis-dependent balancing: each node has a X -depth and
Y -depth.

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 72 / 113

Extensions of Cxy

Rectangular Cxy Algorithm

What is needed
Aspect Ratio Bound: r > 1 arbitrary but fixed.

Splitting Procedure: do full-split if none of these hold

L0 : C0(B),Cxy (B) Terminate
Lout : C0(B12),C0(B34),C0(B14),C0(B23) Half-split
Lin : Cxy (B12),Cxy (B34),Cxy (B14),Cxy (B23) Half-split

Axis-dependent balancing: each node has a X -depth and
Y -depth.

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 72 / 113

Extensions of Cxy

Rectangular Cxy Algorithm

What is needed
Aspect Ratio Bound: r > 1 arbitrary but fixed.

Splitting Procedure: do full-split if none of these hold

L0 : C0(B),Cxy (B) Terminate
Lout : C0(B12),C0(B34),C0(B14),C0(B23) Half-split
Lin : Cxy (B12),Cxy (B34),Cxy (B14),Cxy (B23) Half-split

Axis-dependent balancing: each node has a X -depth and
Y -depth.

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 72 / 113

Extensions of Cxy

Rectangular Cxy Algorithm

What is needed
Aspect Ratio Bound: r > 1 arbitrary but fixed.

Splitting Procedure: do full-split if none of these hold

L0 : C0(B),Cxy (B) Terminate
Lout : C0(B12),C0(B34),C0(B14),C0(B23) Half-split
Lin : Cxy (B12),Cxy (B34),Cxy (B14),Cxy (B23) Half-split

Axis-dependent balancing: each node has a X -depth and
Y -depth.

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 72 / 113

Extensions of Cxy

Rectangular Cxy Algorithm

What is needed
Aspect Ratio Bound: r > 1 arbitrary but fixed.

Splitting Procedure: do full-split if none of these hold

L0 : C0(B),Cxy (B) Terminate
Lout : C0(B12),C0(B34),C0(B14),C0(B23) Half-split
Lin : Cxy (B12),Cxy (B34),Cxy (B14),Cxy (B23) Half-split

Axis-dependent balancing: each node has a X -depth and
Y -depth.

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 72 / 113

Extensions of Cxy

Rectangular Cxy Algorithm

What is needed
Aspect Ratio Bound: r > 1 arbitrary but fixed.

Splitting Procedure: do full-split if none of these hold

L0 : C0(B),Cxy (B) Terminate
Lout : C0(B12),C0(B34),C0(B14),C0(B23) Half-split
Lin : Cxy (B12),Cxy (B34),Cxy (B14),Cxy (B23) Half-split

Axis-dependent balancing: each node has a X -depth and
Y -depth.

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 72 / 113

Extensions of Cxy

Rectangular Cxy Algorithm

What is needed
Aspect Ratio Bound: r > 1 arbitrary but fixed.

Splitting Procedure: do full-split if none of these hold

L0 : C0(B),Cxy (B) Terminate
Lout : C0(B12),C0(B34),C0(B14),C0(B23) Half-split
Lin : Cxy (B12),Cxy (B34),Cxy (B14),Cxy (B23) Half-split

Axis-dependent balancing: each node has a X -depth and
Y -depth.

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 72 / 113

Extensions of Cxy

Rectangular Cxy Algorithm

What is needed
Aspect Ratio Bound: r > 1 arbitrary but fixed.

Splitting Procedure: do full-split if none of these hold

L0 : C0(B),Cxy (B) Terminate
Lout : C0(B12),C0(B34),C0(B14),C0(B23) Half-split
Lin : Cxy (B12),Cxy (B34),Cxy (B14),Cxy (B23) Half-split

Axis-dependent balancing: each node has a X -depth and
Y -depth.

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 72 / 113

Extensions of Cxy

Ensuring Geometric Accuracy

Buffer Property of C1 predicate
Aspect Ratio ≤ 2:

a b w

S

v
a′

b′

q

u

p

B

e

Half-circle argument

Generalize C1(B) to C∗1(B). for any box B

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 73 / 113

Extensions of Cxy

Comparisons

Compare Rect Cxy to PV (note: Snyder has degeneracy).
◮ Curve X(XY −1) = 0, box Bs := [(−s,−s),(s,s)], Aspect ratio

bound r = 5: (JSO=Java stack overflow)

Increasing r can increase the performance of Rect Cxy.
◮ r = 80,s = 100⇒ Boxes/Time(ms) = 751/78

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 74 / 113

Extensions of Cxy

Comparisons (2)

Compare to Snyder’s Algorithm.
◮ Curve X(XY −1) = 0, box

Bn := [(−14×10n,−14×10n),(15×10n,15×10n)]. Maximum
aspect ratio r = 257.

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 75 / 113

Extensions of Cxy

Comparisons (2)

Compare to Snyder’s Algorithm.
◮ Curve X(XY −1) = 0, box

Bn := [(−14×10n,−14×10n),(15×10n,15×10n)]. Maximum
aspect ratio r = 257.

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 75 / 113

Extensions of Cxy

Comparisons (2)

Compare to Snyder’s Algorithm.
◮ Curve X(XY −1) = 0, box

Bn := [(−14×10n,−14×10n),(15×10n,15×10n)]. Maximum
aspect ratio r = 257.

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 75 / 113

Extensions of Cxy

Summary of Experimental Results

Cxy combines the advantages of Snyder & PV Algorithms.

Can be significantly faster than PV & Snyder’s algorithm.

Rectangular Cxy Algorithm can be significantly faster than
Balanced Cxy algorithm.

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 76 / 113

How to treat Boundary

Coming Up Next

6 Introduction

7 Review of Subdivision Algorithms

8 Cxy Algorithm

9 Extensions of Cxy

10 How to treat Boundary

11 How to treat Singularity

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 77 / 113

How to treat Boundary

Boundary (Summary)

An Obvious Way and a Better Way
◮ Exact Way : Recursively solve the problem on ∂B0

◮ Better Way : Exploit isotopy

Price for Better Way: Weaker Correctness Statement
For some B0 ⊆ B+

0 ⊆ B0⊕B(ε),
G is isotopic to S∩B+

0 .

APPLICATIONS:
◮ Singularity (below)
◮ Input region B0 to have “any” geometry, even holes, provided it

contains no singularities.

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 78 / 113

How to treat Boundary

Boundary (Summary)

An Obvious Way and a Better Way
◮ Exact Way : Recursively solve the problem on ∂B0

◮ Better Way : Exploit isotopy

Price for Better Way: Weaker Correctness Statement
For some B0 ⊆ B+

0 ⊆ B0⊕B(ε),
G is isotopic to S∩B+

0 .

APPLICATIONS:
◮ Singularity (below)
◮ Input region B0 to have “any” geometry, even holes, provided it

contains no singularities.

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 78 / 113

How to treat Boundary

Boundary (Summary)

An Obvious Way and a Better Way
◮ Exact Way : Recursively solve the problem on ∂B0

◮ Better Way : Exploit isotopy

Price for Better Way: Weaker Correctness Statement
For some B0 ⊆ B+

0 ⊆ B0⊕B(ε),
G is isotopic to S∩B+

0 .

APPLICATIONS:
◮ Singularity (below)
◮ Input region B0 to have “any” geometry, even holes, provided it

contains no singularities.

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 78 / 113

How to treat Boundary

Boundary (Summary)

An Obvious Way and a Better Way
◮ Exact Way : Recursively solve the problem on ∂B0

◮ Better Way : Exploit isotopy

Price for Better Way: Weaker Correctness Statement
For some B0 ⊆ B+

0 ⊆ B0⊕B(ε),
G is isotopic to S∩B+

0 .

APPLICATIONS:
◮ Singularity (below)
◮ Input region B0 to have “any” geometry, even holes, provided it

contains no singularities.

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 78 / 113

How to treat Boundary

Boundary (Summary)

An Obvious Way and a Better Way
◮ Exact Way : Recursively solve the problem on ∂B0

◮ Better Way : Exploit isotopy

Price for Better Way: Weaker Correctness Statement
For some B0 ⊆ B+

0 ⊆ B0⊕B(ε),
G is isotopic to S∩B+

0 .

APPLICATIONS:
◮ Singularity (below)
◮ Input region B0 to have “any” geometry, even holes, provided it

contains no singularities.

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 78 / 113

How to treat Boundary

Boundary (Summary)

An Obvious Way and a Better Way
◮ Exact Way : Recursively solve the problem on ∂B0

◮ Better Way : Exploit isotopy

Price for Better Way: Weaker Correctness Statement
For some B0 ⊆ B+

0 ⊆ B0⊕B(ε),
G is isotopic to S∩B+

0 .

APPLICATIONS:
◮ Singularity (below)
◮ Input region B0 to have “any” geometry, even holes, provided it

contains no singularities.

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 78 / 113

How to treat Boundary

Boundary (Summary)

An Obvious Way and a Better Way
◮ Exact Way : Recursively solve the problem on ∂B0

◮ Better Way : Exploit isotopy

Price for Better Way: Weaker Correctness Statement
For some B0 ⊆ B+

0 ⊆ B0⊕B(ε),
G is isotopic to S∩B+

0 .

APPLICATIONS:
◮ Singularity (below)
◮ Input region B0 to have “any” geometry, even holes, provided it

contains no singularities.

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 78 / 113

How to treat Boundary

Boundary (Summary)

An Obvious Way and a Better Way
◮ Exact Way : Recursively solve the problem on ∂B0

◮ Better Way : Exploit isotopy

Price for Better Way: Weaker Correctness Statement
For some B0 ⊆ B+

0 ⊆ B0⊕B(ε),
G is isotopic to S∩B+

0 .

APPLICATIONS:
◮ Singularity (below)
◮ Input region B0 to have “any” geometry, even holes, provided it

contains no singularities.

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 78 / 113

How to treat Boundary

Boundary (Summary)

An Obvious Way and a Better Way
◮ Exact Way : Recursively solve the problem on ∂B0

◮ Better Way : Exploit isotopy

Price for Better Way: Weaker Correctness Statement
For some B0 ⊆ B+

0 ⊆ B0⊕B(ε),
G is isotopic to S∩B+

0 .

APPLICATIONS:
◮ Singularity (below)
◮ Input region B0 to have “any” geometry, even holes, provided it

contains no singularities.

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 78 / 113

How to treat Boundary

Boundary (Summary)

An Obvious Way and a Better Way
◮ Exact Way : Recursively solve the problem on ∂B0

◮ Better Way : Exploit isotopy

Price for Better Way: Weaker Correctness Statement
For some B0 ⊆ B+

0 ⊆ B0⊕B(ε),
G is isotopic to S∩B+

0 .

APPLICATIONS:
◮ Singularity (below)
◮ Input region B0 to have “any” geometry, even holes, provided it

contains no singularities.

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 78 / 113

How to treat Singularity

Coming Up Next

6 Introduction

7 Review of Subdivision Algorithms

8 Cxy Algorithm

9 Extensions of Cxy

10 How to treat Boundary

11 How to treat Singularity

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 79 / 113

How to treat Singularity

Singularity : Algebraic Preliminary

Square-free part of f (X1, . . . ,Xn) ∈ Z[X1, . . . ,Xn]:
f

GCD(f ,∂1f ,...,∂nf)
= f

GCD(f ,∇(f))

For n = 1: square-free implies no singularities

Generally:
Singular set sing(f) := Zero(f ,∇(f)) has co-dimension ≥ 2.

For Curves:
we now assume f (X ,Y) ∈Z[X ,Y] has isolated singularities.

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 80 / 113

How to treat Singularity

Singularity : Algebraic Preliminary

Square-free part of f (X1, . . . ,Xn) ∈ Z[X1, . . . ,Xn]:
f

GCD(f ,∂1f ,...,∂nf)
= f

GCD(f ,∇(f))

For n = 1: square-free implies no singularities

Generally:
Singular set sing(f) := Zero(f ,∇(f)) has co-dimension ≥ 2.

For Curves:
we now assume f (X ,Y) ∈Z[X ,Y] has isolated singularities.

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 80 / 113

How to treat Singularity

Singularity : Algebraic Preliminary

Square-free part of f (X1, . . . ,Xn) ∈ Z[X1, . . . ,Xn]:
f

GCD(f ,∂1f ,...,∂nf)
= f

GCD(f ,∇(f))

For n = 1: square-free implies no singularities

Generally:
Singular set sing(f) := Zero(f ,∇(f)) has co-dimension ≥ 2.

For Curves:
we now assume f (X ,Y) ∈Z[X ,Y] has isolated singularities.

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 80 / 113

How to treat Singularity

Singularity : Algebraic Preliminary

Square-free part of f (X1, . . . ,Xn) ∈ Z[X1, . . . ,Xn]:
f

GCD(f ,∂1f ,...,∂nf)
= f

GCD(f ,∇(f))

For n = 1: square-free implies no singularities

Generally:
Singular set sing(f) := Zero(f ,∇(f)) has co-dimension ≥ 2.

For Curves:
we now assume f (X ,Y) ∈Z[X ,Y] has isolated singularities.

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 80 / 113

How to treat Singularity

Singularity : Algebraic Preliminary

Square-free part of f (X1, . . . ,Xn) ∈ Z[X1, . . . ,Xn]:
f

GCD(f ,∂1f ,...,∂nf)
= f

GCD(f ,∇(f))

For n = 1: square-free implies no singularities

Generally:
Singular set sing(f) := Zero(f ,∇(f)) has co-dimension ≥ 2.

For Curves:
we now assume f (X ,Y) ∈Z[X ,Y] has isolated singularities.

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 80 / 113

How to treat Singularity

Singularity : Algebraic Preliminary

Square-free part of f (X1, . . . ,Xn) ∈ Z[X1, . . . ,Xn]:
f

GCD(f ,∂1f ,...,∂nf)
= f

GCD(f ,∇(f))

For n = 1: square-free implies no singularities

Generally:
Singular set sing(f) := Zero(f ,∇(f)) has co-dimension ≥ 2.

For Curves:
we now assume f (X ,Y) ∈Z[X ,Y] has isolated singularities.

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 80 / 113

How to treat Singularity

Some Zero Bounds
Evaluation Bound Lemma
If f (X ,Y) has degree d and height L then

− logEV (f) = O(d2(L+d logd))

where EV (f) := min{|f (α)| : ∇(α) = 0, f (α) 6= 0}

Singularity Separation Bound [Y. (2006)]

Any two singularities of f = 0 are separated by

δ3 ≥ (16d+2256L812dd5)−d

Closest Approach Bound
The “locally closest” approach of a curve f = 0 to its own singularities is

δ4 ≥ (62e7)−30D(44 ·5 ·2L)−5D4

where D = max{2,deg f}
Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 81 / 113

How to treat Singularity

Some Zero Bounds
Evaluation Bound Lemma
If f (X ,Y) has degree d and height L then

− logEV (f) = O(d2(L+d logd))

where EV (f) := min{|f (α)| : ∇(α) = 0, f (α) 6= 0}

Singularity Separation Bound [Y. (2006)]

Any two singularities of f = 0 are separated by

δ3 ≥ (16d+2256L812dd5)−d

Closest Approach Bound
The “locally closest” approach of a curve f = 0 to its own singularities is

δ4 ≥ (62e7)−30D(44 ·5 ·2L)−5D4

where D = max{2,deg f}
Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 81 / 113

How to treat Singularity

Some Zero Bounds
Evaluation Bound Lemma
If f (X ,Y) has degree d and height L then

− logEV (f) = O(d2(L+d logd))

where EV (f) := min{|f (α)| : ∇(α) = 0, f (α) 6= 0}

Singularity Separation Bound [Y. (2006)]

Any two singularities of f = 0 are separated by

δ3 ≥ (16d+2256L812dd5)−d

Closest Approach Bound
The “locally closest” approach of a curve f = 0 to its own singularities is

δ4 ≥ (62e7)−30D(44 ·5 ·2L)−5D4

where D = max{2,deg f}
Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 81 / 113

How to treat Singularity

Isolating Singularities

Mountain Pass Theorem
Consider F := f 2 + f 2

X + f 2
Y .

Any 2 singularities in B0 are connected by paths γ : [0,1]→R
2

satisfying
minγ(F([0,1])) ≥ ε0

where

ε0 := min{EV (f),min F(∂B0)}

Can provide a subdivision algorithm using F ,ε0 to isolate regions
containing singularities.

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 82 / 113

How to treat Singularity

Isolating Singularities

Mountain Pass Theorem
Consider F := f 2 + f 2

X + f 2
Y .

Any 2 singularities in B0 are connected by paths γ : [0,1]→R
2

satisfying
minγ(F([0,1])) ≥ ε0

where

ε0 := min{EV (f),min F(∂B0)}

Can provide a subdivision algorithm using F ,ε0 to isolate regions
containing singularities.

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 82 / 113

How to treat Singularity

Isolating Singularities

Mountain Pass Theorem
Consider F := f 2 + f 2

X + f 2
Y .

Any 2 singularities in B0 are connected by paths γ : [0,1]→R
2

satisfying
minγ(F([0,1])) ≥ ε0

where

ε0 := min{EV (f),min F(∂B0)}

Can provide a subdivision algorithm using F ,ε0 to isolate regions
containing singularities.

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 82 / 113

How to treat Singularity

Degree of Singularites

Degree of singularity := number of half-branches

Use two concentric boxes B2 ⊆ B1:
inner box has singularity, outer radius less than δ3,δ4

p

(3)

(1)

(2)

(2)

(1)

B1

B2

(b)(a)

(a) Singularity p with
3 types of components

(b) Concentric boxes
(B1,B2)

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 83 / 113

Mini Summary

We have seen how to combine Snyder and PV, and make several
practical improvements

Future Work: Extend 3D (and beyond?)

Improve efficiency of refinement

Improve efficiency of singularity
◮ Nonsingular case is fast
◮ Singular case is (currently) not fast

Mini Summary

We have seen how to combine Snyder and PV, and make several
practical improvements

Future Work: Extend 3D (and beyond?)

Improve efficiency of refinement

Improve efficiency of singularity
◮ Nonsingular case is fast
◮ Singular case is (currently) not fast

Mini Summary

We have seen how to combine Snyder and PV, and make several
practical improvements

Future Work: Extend 3D (and beyond?)

Improve efficiency of refinement

Improve efficiency of singularity
◮ Nonsingular case is fast
◮ Singular case is (currently) not fast

Mini Summary

We have seen how to combine Snyder and PV, and make several
practical improvements

Future Work: Extend 3D (and beyond?)

Improve efficiency of refinement

Improve efficiency of singularity
◮ Nonsingular case is fast
◮ Singular case is (currently) not fast

Mini Summary

We have seen how to combine Snyder and PV, and make several
practical improvements

Future Work: Extend 3D (and beyond?)

Improve efficiency of refinement

Improve efficiency of singularity
◮ Nonsingular case is fast
◮ Singular case is (currently) not fast

Mini Summary

We have seen how to combine Snyder and PV, and make several
practical improvements

Future Work: Extend 3D (and beyond?)

Improve efficiency of refinement

Improve efficiency of singularity
◮ Nonsingular case is fast
◮ Singular case is (currently) not fast

Mini Summary

We have seen how to combine Snyder and PV, and make several
practical improvements

Future Work: Extend 3D (and beyond?)

Improve efficiency of refinement

Improve efficiency of singularity
◮ Nonsingular case is fast
◮ Singular case is (currently) not fast

Mini Summary

We have seen how to combine Snyder and PV, and make several
practical improvements

Future Work: Extend 3D (and beyond?)

Improve efficiency of refinement

Improve efficiency of singularity
◮ Nonsingular case is fast
◮ Singular case is (currently) not fast

Mini Summary

We have seen how to combine Snyder and PV, and make several
practical improvements

Future Work: Extend 3D (and beyond?)

Improve efficiency of refinement

Improve efficiency of singularity
◮ Nonsingular case is fast
◮ Singular case is (currently) not fast

Summary of Lecture 2

Problems at the interface of continuous and discrete:
Explicitization Problems

ENC Algorithms for them are novel

Numerical Treatment of Singularity and Degeneracy
◮ Possible in theory, but severe practical challenge

Summary of Lecture 2

Problems at the interface of continuous and discrete:
Explicitization Problems

ENC Algorithms for them are novel

Numerical Treatment of Singularity and Degeneracy
◮ Possible in theory, but severe practical challenge

Summary of Lecture 2

Problems at the interface of continuous and discrete:
Explicitization Problems

ENC Algorithms for them are novel

Numerical Treatment of Singularity and Degeneracy
◮ Possible in theory, but severe practical challenge

Summary of Lecture 2

Problems at the interface of continuous and discrete:
Explicitization Problems

ENC Algorithms for them are novel

Numerical Treatment of Singularity and Degeneracy
◮ Possible in theory, but severe practical challenge

Summary of Lecture 2

Problems at the interface of continuous and discrete:
Explicitization Problems

ENC Algorithms for them are novel

Numerical Treatment of Singularity and Degeneracy
◮ Possible in theory, but severe practical challenge

Summary of Lecture 2

Problems at the interface of continuous and discrete:
Explicitization Problems

ENC Algorithms for them are novel

Numerical Treatment of Singularity and Degeneracy
◮ Possible in theory, but severe practical challenge

PART 3

Complexity Analysis of Adaptivity

“A rapacious monster lurks within every computer,
and it dines exclusively on accurate digits.”

— B.D. McCullough (2000)

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 86 / 113

Analysis of Adaptive Complexity

Coming Up Next

12 Analysis of Adaptive Complexity

13 Analysis of Descartes Method

14 Integral Bounds and Framework of Stopping Functions

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 87 / 113

Analysis of Adaptive Complexity

Towards Analysis of Adaptive Algorithms

Major Challenge in Theoretical Computer Science
◮ Analysis of discrete algorithms is highly developed
◮ What about continuous , adaptive algorithms?

Previous such analysis requires probabilistic assumptions.
◮ Basically in Linear Programming: [Smale, Borgwardt,

Teng-Spielman]

We focus on the recursion tree size
◮ Return to 1-D !

Adaptive algorithms may have some deep paths, but overall size
is only polynomial in depth.

◮ Previous (trivial) result – size is exponential in depth [Kearfott
(1987)]

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 88 / 113

Analysis of Adaptive Complexity

Towards Analysis of Adaptive Algorithms

Major Challenge in Theoretical Computer Science
◮ Analysis of discrete algorithms is highly developed
◮ What about continuous , adaptive algorithms?

Previous such analysis requires probabilistic assumptions.
◮ Basically in Linear Programming: [Smale, Borgwardt,

Teng-Spielman]

We focus on the recursion tree size
◮ Return to 1-D !

Adaptive algorithms may have some deep paths, but overall size
is only polynomial in depth.

◮ Previous (trivial) result – size is exponential in depth [Kearfott
(1987)]

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 88 / 113

Analysis of Adaptive Complexity

Towards Analysis of Adaptive Algorithms

Major Challenge in Theoretical Computer Science
◮ Analysis of discrete algorithms is highly developed
◮ What about continuous , adaptive algorithms?

Previous such analysis requires probabilistic assumptions.
◮ Basically in Linear Programming: [Smale, Borgwardt,

Teng-Spielman]

We focus on the recursion tree size
◮ Return to 1-D !

Adaptive algorithms may have some deep paths, but overall size
is only polynomial in depth.

◮ Previous (trivial) result – size is exponential in depth [Kearfott
(1987)]

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 88 / 113

Analysis of Adaptive Complexity

Towards Analysis of Adaptive Algorithms

Major Challenge in Theoretical Computer Science
◮ Analysis of discrete algorithms is highly developed
◮ What about continuous , adaptive algorithms?

Previous such analysis requires probabilistic assumptions.
◮ Basically in Linear Programming: [Smale, Borgwardt,

Teng-Spielman]

We focus on the recursion tree size
◮ Return to 1-D !

Adaptive algorithms may have some deep paths, but overall size
is only polynomial in depth.

◮ Previous (trivial) result – size is exponential in depth [Kearfott
(1987)]

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 88 / 113

Analysis of Adaptive Complexity

Towards Analysis of Adaptive Algorithms

Major Challenge in Theoretical Computer Science
◮ Analysis of discrete algorithms is highly developed
◮ What about continuous , adaptive algorithms?

Previous such analysis requires probabilistic assumptions.
◮ Basically in Linear Programming: [Smale, Borgwardt,

Teng-Spielman]

We focus on the recursion tree size
◮ Return to 1-D !

Adaptive algorithms may have some deep paths, but overall size
is only polynomial in depth.

◮ Previous (trivial) result – size is exponential in depth [Kearfott
(1987)]

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 88 / 113

Analysis of Adaptive Complexity

Towards Analysis of Adaptive Algorithms

Major Challenge in Theoretical Computer Science
◮ Analysis of discrete algorithms is highly developed
◮ What about continuous , adaptive algorithms?

Previous such analysis requires probabilistic assumptions.
◮ Basically in Linear Programming: [Smale, Borgwardt,

Teng-Spielman]

We focus on the recursion tree size
◮ Return to 1-D !

Adaptive algorithms may have some deep paths, but overall size
is only polynomial in depth.

◮ Previous (trivial) result – size is exponential in depth [Kearfott
(1987)]

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 88 / 113

Analysis of Adaptive Complexity

Towards Analysis of Adaptive Algorithms

Major Challenge in Theoretical Computer Science
◮ Analysis of discrete algorithms is highly developed
◮ What about continuous , adaptive algorithms?

Previous such analysis requires probabilistic assumptions.
◮ Basically in Linear Programming: [Smale, Borgwardt,

Teng-Spielman]

We focus on the recursion tree size
◮ Return to 1-D !

Adaptive algorithms may have some deep paths, but overall size
is only polynomial in depth.

◮ Previous (trivial) result – size is exponential in depth [Kearfott
(1987)]

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 88 / 113

Analysis of Adaptive Complexity

Towards Analysis of Adaptive Algorithms

Major Challenge in Theoretical Computer Science
◮ Analysis of discrete algorithms is highly developed
◮ What about continuous , adaptive algorithms?

Previous such analysis requires probabilistic assumptions.
◮ Basically in Linear Programming: [Smale, Borgwardt,

Teng-Spielman]

We focus on the recursion tree size
◮ Return to 1-D !

Adaptive algorithms may have some deep paths, but overall size
is only polynomial in depth.

◮ Previous (trivial) result – size is exponential in depth [Kearfott
(1987)]

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 88 / 113

Analysis of Adaptive Complexity

Towards Analysis of Adaptive Algorithms

Major Challenge in Theoretical Computer Science
◮ Analysis of discrete algorithms is highly developed
◮ What about continuous , adaptive algorithms?

Previous such analysis requires probabilistic assumptions.
◮ Basically in Linear Programming: [Smale, Borgwardt,

Teng-Spielman]

We focus on the recursion tree size
◮ Return to 1-D !

Adaptive algorithms may have some deep paths, but overall size
is only polynomial in depth.

◮ Previous (trivial) result – size is exponential in depth [Kearfott
(1987)]

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 88 / 113

Analysis of Adaptive Complexity

Towards Analysis of Adaptive Algorithms

Major Challenge in Theoretical Computer Science
◮ Analysis of discrete algorithms is highly developed
◮ What about continuous , adaptive algorithms?

Previous such analysis requires probabilistic assumptions.
◮ Basically in Linear Programming: [Smale, Borgwardt,

Teng-Spielman]

We focus on the recursion tree size
◮ Return to 1-D !

Adaptive algorithms may have some deep paths, but overall size
is only polynomial in depth.

◮ Previous (trivial) result – size is exponential in depth [Kearfott
(1987)]

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 88 / 113

Analysis of Adaptive Complexity

Towards Analysis of Adaptive Algorithms

Major Challenge in Theoretical Computer Science
◮ Analysis of discrete algorithms is highly developed
◮ What about continuous , adaptive algorithms?

Previous such analysis requires probabilistic assumptions.
◮ Basically in Linear Programming: [Smale, Borgwardt,

Teng-Spielman]

We focus on the recursion tree size
◮ Return to 1-D !

Adaptive algorithms may have some deep paths, but overall size
is only polynomial in depth.

◮ Previous (trivial) result – size is exponential in depth [Kearfott
(1987)]

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 88 / 113

Analysis of Adaptive Complexity

Analytic Approach to Root Isolation

Suppose you want to isolate real roots of f (x) in I = [a,b]

Midpoint m(I) := (a+b)/2, Width w(I) := b−a

Exclusion Predicate: C0(I) : |f (m)|> ∑i≥1
|f (i)(m)|

i!

(
w(I)

2

)i

Inclusion Predicate: C1(I) : |f ′(m)|> ∑i≥1
|f (i+1)(m)|

i!

(
w(I)

2

)i

Confirmation (Bolzano) Test: f (a)f (b) < 0

Simple analytic method for root isolation!

Simpler than algebraic subdivision methods:

STURM > DESCARTES > BOLZANO

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 89 / 113

Analysis of Adaptive Complexity

Analytic Approach to Root Isolation

Suppose you want to isolate real roots of f (x) in I = [a,b]

Midpoint m(I) := (a+b)/2, Width w(I) := b−a

Exclusion Predicate: C0(I) : |f (m)|> ∑i≥1
|f (i)(m)|

i!

(
w(I)

2

)i

Inclusion Predicate: C1(I) : |f ′(m)|> ∑i≥1
|f (i+1)(m)|

i!

(
w(I)

2

)i

Confirmation (Bolzano) Test: f (a)f (b) < 0

Simple analytic method for root isolation!

Simpler than algebraic subdivision methods:

STURM > DESCARTES > BOLZANO

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 89 / 113

Analysis of Adaptive Complexity

Analytic Approach to Root Isolation

Suppose you want to isolate real roots of f (x) in I = [a,b]

Midpoint m(I) := (a+b)/2, Width w(I) := b−a

Exclusion Predicate: C0(I) : |f (m)|> ∑i≥1
|f (i)(m)|

i!

(
w(I)

2

)i

Inclusion Predicate: C1(I) : |f ′(m)|> ∑i≥1
|f (i+1)(m)|

i!

(
w(I)

2

)i

Confirmation (Bolzano) Test: f (a)f (b) < 0

Simple analytic method for root isolation!

Simpler than algebraic subdivision methods:

STURM > DESCARTES > BOLZANO

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 89 / 113

Analysis of Adaptive Complexity

Analytic Approach to Root Isolation

Suppose you want to isolate real roots of f (x) in I = [a,b]

Midpoint m(I) := (a+b)/2, Width w(I) := b−a

Exclusion Predicate: C0(I) : |f (m)|> ∑i≥1
|f (i)(m)|

i!

(
w(I)

2

)i

Inclusion Predicate: C1(I) : |f ′(m)|> ∑i≥1
|f (i+1)(m)|

i!

(
w(I)

2

)i

Confirmation (Bolzano) Test: f (a)f (b) < 0

Simple analytic method for root isolation!

Simpler than algebraic subdivision methods:

STURM > DESCARTES > BOLZANO

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 89 / 113

Analysis of Adaptive Complexity

Analytic Approach to Root Isolation

Suppose you want to isolate real roots of f (x) in I = [a,b]

Midpoint m(I) := (a+b)/2, Width w(I) := b−a

Exclusion Predicate: C0(I) : |f (m)|> ∑i≥1
|f (i)(m)|

i!

(
w(I)

2

)i

Inclusion Predicate: C1(I) : |f ′(m)|> ∑i≥1
|f (i+1)(m)|

i!

(
w(I)

2

)i

Confirmation (Bolzano) Test: f (a)f (b) < 0

Simple analytic method for root isolation!

Simpler than algebraic subdivision methods:

STURM > DESCARTES > BOLZANO

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 89 / 113

Analysis of Adaptive Complexity

Analytic Approach to Root Isolation

Suppose you want to isolate real roots of f (x) in I = [a,b]

Midpoint m(I) := (a+b)/2, Width w(I) := b−a

Exclusion Predicate: C0(I) : |f (m)|> ∑i≥1
|f (i)(m)|

i!

(
w(I)

2

)i

Inclusion Predicate: C1(I) : |f ′(m)|> ∑i≥1
|f (i+1)(m)|

i!

(
w(I)

2

)i

Confirmation (Bolzano) Test: f (a)f (b) < 0

Simple analytic method for root isolation!

Simpler than algebraic subdivision methods:

STURM > DESCARTES > BOLZANO

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 89 / 113

Analysis of Adaptive Complexity

Analytic Approach to Root Isolation

Suppose you want to isolate real roots of f (x) in I = [a,b]

Midpoint m(I) := (a+b)/2, Width w(I) := b−a

Exclusion Predicate: C0(I) : |f (m)|> ∑i≥1
|f (i)(m)|

i!

(
w(I)

2

)i

Inclusion Predicate: C1(I) : |f ′(m)|> ∑i≥1
|f (i+1)(m)|

i!

(
w(I)

2

)i

Confirmation (Bolzano) Test: f (a)f (b) < 0

Simple analytic method for root isolation!

Simpler than algebraic subdivision methods:

STURM > DESCARTES > BOLZANO

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 89 / 113

Analysis of Adaptive Complexity

Analytic Approach to Root Isolation

Suppose you want to isolate real roots of f (x) in I = [a,b]

Midpoint m(I) := (a+b)/2, Width w(I) := b−a

Exclusion Predicate: C0(I) : |f (m)|> ∑i≥1
|f (i)(m)|

i!

(
w(I)

2

)i

Inclusion Predicate: C1(I) : |f ′(m)|> ∑i≥1
|f (i+1)(m)|

i!

(
w(I)

2

)i

Confirmation (Bolzano) Test: f (a)f (b) < 0

Simple analytic method for root isolation!

Simpler than algebraic subdivision methods:

STURM > DESCARTES > BOLZANO

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 89 / 113

Analysis of Adaptive Complexity

Analytic Approach to Root Isolation

Suppose you want to isolate real roots of f (x) in I = [a,b]

Midpoint m(I) := (a+b)/2, Width w(I) := b−a

Exclusion Predicate: C0(I) : |f (m)|> ∑i≥1
|f (i)(m)|

i!

(
w(I)

2

)i

Inclusion Predicate: C1(I) : |f ′(m)|> ∑i≥1
|f (i+1)(m)|

i!

(
w(I)

2

)i

Confirmation (Bolzano) Test: f (a)f (b) < 0

Simple analytic method for root isolation!

Simpler than algebraic subdivision methods:

STURM > DESCARTES > BOLZANO

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 89 / 113

Analysis of Adaptive Complexity

EVAL Algorithm

EVAL
INPUT: Function f and interval I0 = [a,b]

OUTPUT: Isolation intervals of roots of f in I0
1 Let Qin← {I0} be a queue
2 WHILE (Q 6= /0) ⊳ Subdivision Phase
3 I← Q.remove()
4 IF (C0(I) holds), discard I
5 ELIF (C1(I) holds), output I
6 ELSE
7 IF (f (m(I)) = 0), output [m(I),m(I)]
8 Split I into two and insert in Q
9 PROCESS output list ⊳ Consruction Phase

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 90 / 113

Analysis of Adaptive Complexity

EVAL Algorithm

EVAL
INPUT: Function f and interval I0 = [a,b]

OUTPUT: Isolation intervals of roots of f in I0
1 Let Qin← {I0} be a queue
2 WHILE (Q 6= /0) ⊳ Subdivision Phase
3 I← Q.remove()
4 IF (C0(I) holds), discard I
5 ELIF (C1(I) holds), output I
6 ELSE
7 IF (f (m(I)) = 0), output [m(I),m(I)]
8 Split I into two and insert in Q
9 PROCESS output list ⊳ Consruction Phase

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 90 / 113

Analysis of Adaptive Complexity

EVAL Algorithm

EVAL
INPUT: Function f and interval I0 = [a,b]

OUTPUT: Isolation intervals of roots of f in I0
1 Let Qin← {I0} be a queue
2 WHILE (Q 6= /0) ⊳ Subdivision Phase
3 I← Q.remove()
4 IF (C0(I) holds), discard I
5 ELIF (C1(I) holds), output I
6 ELSE
7 IF (f (m(I)) = 0), output [m(I),m(I)]
8 Split I into two and insert in Q
9 PROCESS output list ⊳ Consruction Phase

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 90 / 113

Analysis of Adaptive Complexity

EVAL Algorithm

EVAL
INPUT: Function f and interval I0 = [a,b]

OUTPUT: Isolation intervals of roots of f in I0
1 Let Qin← {I0} be a queue
2 WHILE (Q 6= /0) ⊳ Subdivision Phase
3 I← Q.remove()
4 IF (C0(I) holds), discard I
5 ELIF (C1(I) holds), output I
6 ELSE
7 IF (f (m(I)) = 0), output [m(I),m(I)]
8 Split I into two and insert in Q
9 PROCESS output list ⊳ Consruction Phase

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 90 / 113

Analysis of Adaptive Complexity

EVAL Algorithm

EVAL
INPUT: Function f and interval I0 = [a,b]

OUTPUT: Isolation intervals of roots of f in I0
1 Let Qin← {I0} be a queue
2 WHILE (Q 6= /0) ⊳ Subdivision Phase
3 I← Q.remove()
4 IF (C0(I) holds), discard I
5 ELIF (C1(I) holds), output I
6 ELSE
7 IF (f (m(I)) = 0), output [m(I),m(I)]
8 Split I into two and insert in Q
9 PROCESS output list ⊳ Consruction Phase

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 90 / 113

Analysis of Adaptive Complexity

EVAL Algorithm

EVAL
INPUT: Function f and interval I0 = [a,b]

OUTPUT: Isolation intervals of roots of f in I0
1 Let Qin← {I0} be a queue
2 WHILE (Q 6= /0) ⊳ Subdivision Phase
3 I← Q.remove()
4 IF (C0(I) holds), discard I
5 ELIF (C1(I) holds), output I
6 ELSE
7 IF (f (m(I)) = 0), output [m(I),m(I)]
8 Split I into two and insert in Q
9 PROCESS output list ⊳ Consruction Phase

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 90 / 113

Analysis of Adaptive Complexity

EVAL Algorithm

EVAL
INPUT: Function f and interval I0 = [a,b]

OUTPUT: Isolation intervals of roots of f in I0
1 Let Qin← {I0} be a queue
2 WHILE (Q 6= /0) ⊳ Subdivision Phase
3 I← Q.remove()
4 IF (C0(I) holds), discard I
5 ELIF (C1(I) holds), output I
6 ELSE
7 IF (f (m(I)) = 0), output [m(I),m(I)]
8 Split I into two and insert in Q
9 PROCESS output list ⊳ Consruction Phase

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 90 / 113

Analysis of Adaptive Complexity

EVAL Algorithm

EVAL
INPUT: Function f and interval I0 = [a,b]

OUTPUT: Isolation intervals of roots of f in I0
1 Let Qin← {I0} be a queue
2 WHILE (Q 6= /0) ⊳ Subdivision Phase
3 I← Q.remove()
4 IF (C0(I) holds), discard I
5 ELIF (C1(I) holds), output I
6 ELSE
7 IF (f (m(I)) = 0), output [m(I),m(I)]
8 Split I into two and insert in Q
9 PROCESS output list ⊳ Consruction Phase

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 90 / 113

Analysis of Adaptive Complexity

EVAL Algorithm

EVAL
INPUT: Function f and interval I0 = [a,b]

OUTPUT: Isolation intervals of roots of f in I0
1 Let Qin← {I0} be a queue
2 WHILE (Q 6= /0) ⊳ Subdivision Phase
3 I← Q.remove()
4 IF (C0(I) holds), discard I
5 ELIF (C1(I) holds), output I
6 ELSE
7 IF (f (m(I)) = 0), output [m(I),m(I)]
8 Split I into two and insert in Q
9 PROCESS output list ⊳ Consruction Phase

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 90 / 113

Analysis of Adaptive Complexity

EVAL Algorithm

EVAL
INPUT: Function f and interval I0 = [a,b]

OUTPUT: Isolation intervals of roots of f in I0
1 Let Qin← {I0} be a queue
2 WHILE (Q 6= /0) ⊳ Subdivision Phase
3 I← Q.remove()
4 IF (C0(I) holds), discard I
5 ELIF (C1(I) holds), output I
6 ELSE
7 IF (f (m(I)) = 0), output [m(I),m(I)]
8 Split I into two and insert in Q
9 PROCESS output list ⊳ Consruction Phase

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 90 / 113

Analysis of Adaptive Complexity

EVAL Algorithm

EVAL
INPUT: Function f and interval I0 = [a,b]

OUTPUT: Isolation intervals of roots of f in I0
1 Let Qin← {I0} be a queue
2 WHILE (Q 6= /0) ⊳ Subdivision Phase
3 I← Q.remove()
4 IF (C0(I) holds), discard I
5 ELIF (C1(I) holds), output I
6 ELSE
7 IF (f (m(I)) = 0), output [m(I),m(I)]
8 Split I into two and insert in Q
9 PROCESS output list ⊳ Consruction Phase

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 90 / 113

Analysis of Adaptive Complexity

EVAL Algorithm

EVAL
INPUT: Function f and interval I0 = [a,b]

OUTPUT: Isolation intervals of roots of f in I0
1 Let Qin← {I0} be a queue
2 WHILE (Q 6= /0) ⊳ Subdivision Phase
3 I← Q.remove()
4 IF (C0(I) holds), discard I
5 ELIF (C1(I) holds), output I
6 ELSE
7 IF (f (m(I)) = 0), output [m(I),m(I)]
8 Split I into two and insert in Q
9 PROCESS output list ⊳ Consruction Phase

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 90 / 113

Analysis of Adaptive Complexity

EVAL Algorithm

EVAL
INPUT: Function f and interval I0 = [a,b]

OUTPUT: Isolation intervals of roots of f in I0
1 Let Qin← {I0} be a queue
2 WHILE (Q 6= /0) ⊳ Subdivision Phase
3 I← Q.remove()
4 IF (C0(I) holds), discard I
5 ELIF (C1(I) holds), output I
6 ELSE
7 IF (f (m(I)) = 0), output [m(I),m(I)]
8 Split I into two and insert in Q
9 PROCESS output list ⊳ Consruction Phase

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 90 / 113

Analysis of Adaptive Complexity

Main Complexity Goal – Benchmark Problem

Benchmark Problem in Root Isolation
Problem: isolate ALL (real) roots of square-free f (X) ∈Z[X] of
degree ≤ d and height < 2L.

Highly classical problem:
◮ Bit complexity is Õ(d3L) [Schöhage 1982].

⋆ Improvement: Õ(d2L) arithmetic complexity [Pan]

◮ Sturm tree size is O(d(L+ logd)) [Davenport, 1985]
◮ Descartes tree size is Θ(d(L+ logd)) [Eigenwillig-Sharma-Y,

2006]

MAIN RESULT: Bolzano tree size is O(d2(L+ logd))
◮ Sketch in this lecture. See [Burr-Krahmer-Y-Sagraloff, 2008-9]

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 91 / 113

Analysis of Adaptive Complexity

Main Complexity Goal – Benchmark Problem

Benchmark Problem in Root Isolation
Problem: isolate ALL (real) roots of square-free f (X) ∈Z[X] of
degree ≤ d and height < 2L.

Highly classical problem:
◮ Bit complexity is Õ(d3L) [Schöhage 1982].

⋆ Improvement: Õ(d2L) arithmetic complexity [Pan]

◮ Sturm tree size is O(d(L+ logd)) [Davenport, 1985]
◮ Descartes tree size is Θ(d(L+ logd)) [Eigenwillig-Sharma-Y,

2006]

MAIN RESULT: Bolzano tree size is O(d2(L+ logd))
◮ Sketch in this lecture. See [Burr-Krahmer-Y-Sagraloff, 2008-9]

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 91 / 113

Analysis of Adaptive Complexity

Main Complexity Goal – Benchmark Problem

Benchmark Problem in Root Isolation
Problem: isolate ALL (real) roots of square-free f (X) ∈Z[X] of
degree ≤ d and height < 2L.

Highly classical problem:
◮ Bit complexity is Õ(d3L) [Schöhage 1982].

⋆ Improvement: Õ(d2L) arithmetic complexity [Pan]

◮ Sturm tree size is O(d(L+ logd)) [Davenport, 1985]
◮ Descartes tree size is Θ(d(L+ logd)) [Eigenwillig-Sharma-Y,

2006]

MAIN RESULT: Bolzano tree size is O(d2(L+ logd))
◮ Sketch in this lecture. See [Burr-Krahmer-Y-Sagraloff, 2008-9]

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 91 / 113

Analysis of Adaptive Complexity

Main Complexity Goal – Benchmark Problem

Benchmark Problem in Root Isolation
Problem: isolate ALL (real) roots of square-free f (X) ∈Z[X] of
degree ≤ d and height < 2L.

Highly classical problem:
◮ Bit complexity is Õ(d3L) [Schöhage 1982].

⋆ Improvement: Õ(d2L) arithmetic complexity [Pan]

◮ Sturm tree size is O(d(L+ logd)) [Davenport, 1985]
◮ Descartes tree size is Θ(d(L+ logd)) [Eigenwillig-Sharma-Y,

2006]

MAIN RESULT: Bolzano tree size is O(d2(L+ logd))
◮ Sketch in this lecture. See [Burr-Krahmer-Y-Sagraloff, 2008-9]

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 91 / 113

Analysis of Adaptive Complexity

Main Complexity Goal – Benchmark Problem

Benchmark Problem in Root Isolation
Problem: isolate ALL (real) roots of square-free f (X) ∈Z[X] of
degree ≤ d and height < 2L.

Highly classical problem:
◮ Bit complexity is Õ(d3L) [Schöhage 1982].

⋆ Improvement: Õ(d2L) arithmetic complexity [Pan]

◮ Sturm tree size is O(d(L+ logd)) [Davenport, 1985]
◮ Descartes tree size is Θ(d(L+ logd)) [Eigenwillig-Sharma-Y,

2006]

MAIN RESULT: Bolzano tree size is O(d2(L+ logd))
◮ Sketch in this lecture. See [Burr-Krahmer-Y-Sagraloff, 2008-9]

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 91 / 113

Analysis of Adaptive Complexity

Main Complexity Goal – Benchmark Problem

Benchmark Problem in Root Isolation
Problem: isolate ALL (real) roots of square-free f (X) ∈Z[X] of
degree ≤ d and height < 2L.

Highly classical problem:
◮ Bit complexity is Õ(d3L) [Schöhage 1982].

⋆ Improvement: Õ(d2L) arithmetic complexity [Pan]

◮ Sturm tree size is O(d(L+ logd)) [Davenport, 1985]
◮ Descartes tree size is Θ(d(L+ logd)) [Eigenwillig-Sharma-Y,

2006]

MAIN RESULT: Bolzano tree size is O(d2(L+ logd))
◮ Sketch in this lecture. See [Burr-Krahmer-Y-Sagraloff, 2008-9]

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 91 / 113

Analysis of Adaptive Complexity

Main Complexity Goal – Benchmark Problem

Benchmark Problem in Root Isolation
Problem: isolate ALL (real) roots of square-free f (X) ∈Z[X] of
degree ≤ d and height < 2L.

Highly classical problem:
◮ Bit complexity is Õ(d3L) [Schöhage 1982].

⋆ Improvement: Õ(d2L) arithmetic complexity [Pan]

◮ Sturm tree size is O(d(L+ logd)) [Davenport, 1985]
◮ Descartes tree size is Θ(d(L+ logd)) [Eigenwillig-Sharma-Y,

2006]

MAIN RESULT: Bolzano tree size is O(d2(L+ logd))
◮ Sketch in this lecture. See [Burr-Krahmer-Y-Sagraloff, 2008-9]

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 91 / 113

Analysis of Adaptive Complexity

Main Complexity Goal – Benchmark Problem

Benchmark Problem in Root Isolation
Problem: isolate ALL (real) roots of square-free f (X) ∈Z[X] of
degree ≤ d and height < 2L.

Highly classical problem:
◮ Bit complexity is Õ(d3L) [Schöhage 1982].

⋆ Improvement: Õ(d2L) arithmetic complexity [Pan]

◮ Sturm tree size is O(d(L+ logd)) [Davenport, 1985]
◮ Descartes tree size is Θ(d(L+ logd)) [Eigenwillig-Sharma-Y,

2006]

MAIN RESULT: Bolzano tree size is O(d2(L+ logd))
◮ Sketch in this lecture. See [Burr-Krahmer-Y-Sagraloff, 2008-9]

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 91 / 113

Analysis of Adaptive Complexity

Main Complexity Goal – Benchmark Problem

Benchmark Problem in Root Isolation
Problem: isolate ALL (real) roots of square-free f (X) ∈Z[X] of
degree ≤ d and height < 2L.

Highly classical problem:
◮ Bit complexity is Õ(d3L) [Schöhage 1982].

⋆ Improvement: Õ(d2L) arithmetic complexity [Pan]

◮ Sturm tree size is O(d(L+ logd)) [Davenport, 1985]
◮ Descartes tree size is Θ(d(L+ logd)) [Eigenwillig-Sharma-Y,

2006]

MAIN RESULT: Bolzano tree size is O(d2(L+ logd))
◮ Sketch in this lecture. See [Burr-Krahmer-Y-Sagraloff, 2008-9]

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 91 / 113

Analysis of Adaptive Complexity

Main Complexity Goal – Benchmark Problem

Benchmark Problem in Root Isolation
Problem: isolate ALL (real) roots of square-free f (X) ∈Z[X] of
degree ≤ d and height < 2L.

Highly classical problem:
◮ Bit complexity is Õ(d3L) [Schöhage 1982].

⋆ Improvement: Õ(d2L) arithmetic complexity [Pan]

◮ Sturm tree size is O(d(L+ logd)) [Davenport, 1985]
◮ Descartes tree size is Θ(d(L+ logd)) [Eigenwillig-Sharma-Y,

2006]

MAIN RESULT: Bolzano tree size is O(d2(L+ logd))
◮ Sketch in this lecture. See [Burr-Krahmer-Y-Sagraloff, 2008-9]

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 91 / 113

Analysis of Adaptive Complexity

Warm Up Technique: Algebraic Amortization

Idea of Amortization [Davenport (1985), Du/Sharma/Y. (2005)]

Let A(X) ∈Z[X] have degree n and L-bit coefficients.

Root separation bound: − log |α−β |= O(n(L+ logn))

Amortized bound: −∏(α,β)∈E |β −α|= O(n(L+ logn))

What are restrictions on set E?

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 92 / 113

Analysis of Adaptive Complexity

Warm Up Technique: Algebraic Amortization

Idea of Amortization [Davenport (1985), Du/Sharma/Y. (2005)]

Let A(X) ∈Z[X] have degree n and L-bit coefficients.

Root separation bound: − log |α−β |= O(n(L+ logn))

Amortized bound: −∏(α,β)∈E |β −α|= O(n(L+ logn))

What are restrictions on set E?

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 92 / 113

Analysis of Adaptive Complexity

Warm Up Technique: Algebraic Amortization

Idea of Amortization [Davenport (1985), Du/Sharma/Y. (2005)]

Let A(X) ∈Z[X] have degree n and L-bit coefficients.

Root separation bound: − log |α−β |= O(n(L+ logn))

Amortized bound: −∏(α,β)∈E |β −α|= O(n(L+ logn))

What are restrictions on set E?

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 92 / 113

Analysis of Adaptive Complexity

Warm Up Technique: Algebraic Amortization

Idea of Amortization [Davenport (1985), Du/Sharma/Y. (2005)]

Let A(X) ∈Z[X] have degree n and L-bit coefficients.

Root separation bound: − log |α−β |= O(n(L+ logn))

Amortized bound: −∏(α,β)∈E |β −α|= O(n(L+ logn))

What are restrictions on set E?

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 92 / 113

Analysis of Adaptive Complexity

Warm Up Technique: Algebraic Amortization

Idea of Amortization [Davenport (1985), Du/Sharma/Y. (2005)]

Let A(X) ∈Z[X] have degree n and L-bit coefficients.

Root separation bound: − log |α−β |= O(n(L+ logn))

Amortized bound: −∏(α,β)∈E |β −α|= O(n(L+ logn))

What are restrictions on set E?

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 92 / 113

Analysis of Adaptive Complexity

Warm Up Technique: Algebraic Amortization

Idea of Amortization [Davenport (1985), Du/Sharma/Y. (2005)]

Let A(X) ∈Z[X] have degree n and L-bit coefficients.

Root separation bound: − log |α−β |= O(n(L+ logn))

Amortized bound: −∏(α,β)∈E |β −α|= O(n(L+ logn))

What are restrictions on set E?

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 92 / 113

Analysis of Adaptive Complexity

The Davenport–Mahler Bound

Theorem ([Davenport (1985), Johnson (1991/98), Du/Sharma/Y. (2005)])

Consider a polynomial A(X) ∈ C[X] of degree n. Let G = (V ,E) be a
digraph whose node set V consists of the roots ϑ1, . . . ,ϑn of A(X). If

(i) (α,β) ∈ E =⇒ |α| ≤ |β |,
(ii) β ∈ V =⇒ indeg(β)≤ 1, and

(iii) G is acyclic,

then
∏

(α,β)∈E

|β −α| ≥
√
|discr(A)|

M(A)n−1 ·2−O(n logn),

where

discr(A) := a2n−2
n ∏

i>j

(ϑi −ϑj)
2 and M(A) := |an|∏

i

max{1, |ϑi |}.

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 93 / 113

Mini Summary

Adaptive analysis is important but virgin territory

Subdivision of Analytic Algorithms in 1-D is current challenge

Standard target is Benchmark Problem for root isolation

Warm-Up Exercise: Use Mahler-Davenport bound for Descartes
Method

Mini Summary

Adaptive analysis is important but virgin territory

Subdivision of Analytic Algorithms in 1-D is current challenge

Standard target is Benchmark Problem for root isolation

Warm-Up Exercise: Use Mahler-Davenport bound for Descartes
Method

Mini Summary

Adaptive analysis is important but virgin territory

Subdivision of Analytic Algorithms in 1-D is current challenge

Standard target is Benchmark Problem for root isolation

Warm-Up Exercise: Use Mahler-Davenport bound for Descartes
Method

Mini Summary

Adaptive analysis is important but virgin territory

Subdivision of Analytic Algorithms in 1-D is current challenge

Standard target is Benchmark Problem for root isolation

Warm-Up Exercise: Use Mahler-Davenport bound for Descartes
Method

Mini Summary

Adaptive analysis is important but virgin territory

Subdivision of Analytic Algorithms in 1-D is current challenge

Standard target is Benchmark Problem for root isolation

Warm-Up Exercise: Use Mahler-Davenport bound for Descartes
Method

Mini Summary

Adaptive analysis is important but virgin territory

Subdivision of Analytic Algorithms in 1-D is current challenge

Standard target is Benchmark Problem for root isolation

Warm-Up Exercise: Use Mahler-Davenport bound for Descartes
Method

Analysis of Descartes Method

Coming Up Next

12 Analysis of Adaptive Complexity

13 Analysis of Descartes Method

14 Integral Bounds and Framework of Stopping Functions

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 95 / 113

Analysis of Descartes Method

What is the Descartes Method?

Same framework as EVAL or Sturm
To isolate roots of square-free A(X) in interval I

Routine DescartesTest (A(X), I) gives an upper estimate on the
number of real roots in I.

If DescartesTest (A(X), I) ∈ {0,1} then estimate is exact.

We keep splitting intervals until we get an exact estimate.

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 96 / 113

Analysis of Descartes Method

What is the Descartes Method?

Same framework as EVAL or Sturm
To isolate roots of square-free A(X) in interval I

Routine DescartesTest (A(X), I) gives an upper estimate on the
number of real roots in I.

If DescartesTest (A(X), I) ∈ {0,1} then estimate is exact.

We keep splitting intervals until we get an exact estimate.

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 96 / 113

Analysis of Descartes Method

What is the Descartes Method?

Same framework as EVAL or Sturm
To isolate roots of square-free A(X) in interval I

Routine DescartesTest (A(X), I) gives an upper estimate on the
number of real roots in I.

If DescartesTest (A(X), I) ∈ {0,1} then estimate is exact.

We keep splitting intervals until we get an exact estimate.

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 96 / 113

Analysis of Descartes Method

What is the Descartes Method?

Same framework as EVAL or Sturm
To isolate roots of square-free A(X) in interval I

Routine DescartesTest (A(X), I) gives an upper estimate on the
number of real roots in I.

If DescartesTest (A(X), I) ∈ {0,1} then estimate is exact.

We keep splitting intervals until we get an exact estimate.

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 96 / 113

Analysis of Descartes Method

What is the Descartes Method?

Same framework as EVAL or Sturm
To isolate roots of square-free A(X) in interval I

Routine DescartesTest (A(X), I) gives an upper estimate on the
number of real roots in I.

If DescartesTest (A(X), I) ∈ {0,1} then estimate is exact.

We keep splitting intervals until we get an exact estimate.

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 96 / 113

Analysis of Descartes Method

What is the Descartes Method?

Same framework as EVAL or Sturm
To isolate roots of square-free A(X) in interval I

Routine DescartesTest (A(X), I) gives an upper estimate on the
number of real roots in I.

If DescartesTest (A(X), I) ∈ {0,1} then estimate is exact.

We keep splitting intervals until we get an exact estimate.

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 96 / 113

Analysis of Descartes Method

Analysis of Descartes Method

Two-circle Theorem
[Ostrowski (1950), Krandick/Mehlhorn (2006)]

If DescartesTest (A(X), [c,d])≥ 2, then the
two-circles figure in C around interval [c,d]
contains two roots α,β of A(X).

Corollary
Can choose α,β to be complex conjugate or adjacent real roots.
Moreover, |β −α|<

√
3(d−c); i.e., (d−c) > |β −α|/

√
3.

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 97 / 113

Analysis of Descartes Method

Analysis of Descartes Method

Two-circle Theorem
[Ostrowski (1950), Krandick/Mehlhorn (2006)]

If DescartesTest (A(X), [c,d])≥ 2, then the
two-circles figure in C around interval [c,d]
contains two roots α,β of A(X).

Corollary
Can choose α,β to be complex conjugate or adjacent real roots.
Moreover, |β −α|<

√
3(d−c); i.e., (d−c) > |β −α|/

√
3.

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 97 / 113

Analysis of Descartes Method

Analysis of Descartes Method

Two-circle Theorem
[Ostrowski (1950), Krandick/Mehlhorn (2006)]

If DescartesTest (A(X), [c,d])≥ 2, then the
two-circles figure in C around interval [c,d]
contains two roots α,β of A(X).

Corollary
Can choose α,β to be complex conjugate or adjacent real roots.
Moreover, |β −α|<

√
3(d−c); i.e., (d−c) > |β −α|/

√
3.

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 97 / 113

Analysis of Descartes Method

Analysis of Descartes Method

Two-circle Theorem
[Ostrowski (1950), Krandick/Mehlhorn (2006)]

If DescartesTest (A(X), [c,d])≥ 2, then the
two-circles figure in C around interval [c,d]
contains two roots α,β of A(X).

Corollary
Can choose α,β to be complex conjugate or adjacent real roots.
Moreover, |β −α|<

√
3(d−c); i.e., (d−c) > |β −α|/

√
3.

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 97 / 113

Analysis of Descartes Method

Analysis of Descartes Method

Two-circle Theorem
[Ostrowski (1950), Krandick/Mehlhorn (2006)]

If DescartesTest (A(X), [c,d])≥ 2, then the
two-circles figure in C around interval [c,d]
contains two roots α,β of A(X).

Corollary
Can choose α,β to be complex conjugate or adjacent real roots.
Moreover, |β −α|<

√
3(d−c); i.e., (d−c) > |β −α|/

√
3.

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 97 / 113

Analysis of Descartes Method

Analysis of Descartes Method

β

α Two-circle Theorem
[Ostrowski (1950), Krandick/Mehlhorn (2006)]

If DescartesTest (A(X), [c,d])≥ 2, then the
two-circles figure in C around interval [c,d]
contains two roots α,β of A(X).

Corollary
Can choose α,β to be complex conjugate or adjacent real roots.
Moreover, |β −α|<

√
3(d−c); i.e., (d−c) > |β −α|/

√
3.

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 97 / 113

Analysis of Descartes Method

Analysis of Descartes Method

βα

Two-circle Theorem
[Ostrowski (1950), Krandick/Mehlhorn (2006)]

If DescartesTest (A(X), [c,d])≥ 2, then the
two-circles figure in C around interval [c,d]
contains two roots α,β of A(X).

Corollary
Can choose α,β to be complex conjugate or adjacent real roots.
Moreover, |β −α|<

√
3(d−c); i.e., (d−c) > |β −α|/

√
3.

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 97 / 113

Analysis of Descartes Method

Analysis of Descartes Method

Two-circle Theorem
[Ostrowski (1950), Krandick/Mehlhorn (2006)]

If DescartesTest (A(X), [c,d])≥ 2, then the
two-circles figure in C around interval [c,d]
contains two roots α,β of A(X).

Corollary
Can choose α,β to be complex conjugate or adjacent real roots.
Moreover, |β −α|<

√
3(d−c); i.e., (d−c) > |β −α|/

√
3.

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 97 / 113

Analysis of Descartes Method

Tree Bound in terms of Roots (1)

J =3d

0I
A bound on path length

1 Consider any path in the recursion tree
from I0 to a parent J of two leaves.

2 At depth d , interval width is 2−d |I0|.
Hence depth of J is d = log |I0|/|J|.

3 The path consists of d +1 internal
nodes.

4 There is a pair of roots (αJ ,βJ)
such that |J|> |βJ−αJ |/

√
3; hence

d +1 < log |I0|− log |βJ−αJ |+2.

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 98 / 113

Analysis of Descartes Method

Tree Bound in terms of Roots (1)

J =3d

0I
A bound on path length

1 Consider any path in the recursion tree
from I0 to a parent J of two leaves.

2 At depth d , interval width is 2−d |I0|.
Hence depth of J is d = log |I0|/|J|.

3 The path consists of d +1 internal
nodes.

4 There is a pair of roots (αJ ,βJ)
such that |J|> |βJ−αJ |/

√
3; hence

d +1 < log |I0|− log |βJ−αJ |+2.

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 98 / 113

Analysis of Descartes Method

Tree Bound in terms of Roots (1)

J =3d

0I
A bound on path length

1 Consider any path in the recursion tree
from I0 to a parent J of two leaves.

2 At depth d , interval width is 2−d |I0|.
Hence depth of J is d = log |I0|/|J|.

3 The path consists of d +1 internal
nodes.

4 There is a pair of roots (αJ ,βJ)
such that |J|> |βJ−αJ |/

√
3; hence

d +1 < log |I0|− log |βJ−αJ |+2.

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 98 / 113

Analysis of Descartes Method

Tree Bound in terms of Roots (1)

J =3d

0I
A bound on path length

1 Consider any path in the recursion tree
from I0 to a parent J of two leaves.

2 At depth d , interval width is 2−d |I0|.
Hence depth of J is d = log |I0|/|J|.

3 The path consists of d +1 internal
nodes.

4 There is a pair of roots (αJ ,βJ)
such that |J|> |βJ−αJ |/

√
3; hence

d +1 < log |I0|− log |βJ−αJ |+2.

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 98 / 113

Analysis of Descartes Method

Tree Bound in terms of Roots (2)

J

0I

#(internal nodes on path) < log |I0|− log |βJ−αJ |+2
#(internal nodes in tree) < ∑J (log |I0|− log |βJ−αJ |+2)
#(all nodes in tree) < 1+2 ·∑J (log |I0|− log |βJ−αJ |+2)

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 99 / 113

Analysis of Descartes Method

Tree Bound in terms of Roots (2)

JJ

J

J

0I

#(internal nodes on path) < log |I0|− log |βJ−αJ |+2
#(internal nodes in tree) < ∑J (log |I0|− log |βJ−αJ |+2)
#(all nodes in tree) < 1+2 ·∑J (log |I0|− log |βJ−αJ |+2)

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 99 / 113

Analysis of Descartes Method

Tree Bound in terms of Roots (2)

JJ

J

J

0I

#(internal nodes on path) < log |I0|− log |βJ−αJ |+2
#(internal nodes in tree) < ∑J (log |I0|− log |βJ−αJ |+2)
#(all nodes in tree) < 1+2 ·∑J (log |I0|− log |βJ−αJ |+2)

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 99 / 113

Analysis of Descartes Method

Tree Bound in terms of Roots (2)

JJ

J

J

0I

#(internal nodes on path) < log |I0|− log |βJ−αJ |+2
#(internal nodes in tree) < ∑J (log |I0|− log |βJ−αJ |+2)
#(all nodes in tree) < 1+2 ·∑J (log |I0|− log |βJ−αJ |+2)

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 99 / 113

Proposition
The size of the recursion tree is bounded by

−2 log ∏
J

|βJ−αJ |+n log |I0|+2n +1

Analysis of Descartes Method

Tree Bound in terms of Roots (2)

JJ

J

J

0I

#(internal nodes on path) < log |I0|− log |βJ−αJ |+2
#(internal nodes in tree) < ∑J (log |I0|− log |βJ−αJ |+2)
#(all nodes in tree) < 1+2 ·∑J (log |I0|− log |βJ−αJ |+2)

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 99 / 113

Proposition
The size of the recursion tree is bounded by

−2 log ∏
J

|βJ−αJ |+n log |I0|+2n +1

Analysis of Descartes Method

Turning our Product into an Admissible Graph

We want to rewrite

∏
J

|βJ−αJ | as ∏
(α,β)∈E

|β −α|.

How often |βJ−αJ | appears?

adjacent real: ≤ 1

complex conjugate ≤ 2

We need two graphs. (Paper: just 1)

Conditions on G = (V ,E)

(i) (α,β) ∈ E =⇒ |α| ≤ |β |✓
(ii) β ∈ V =⇒ indeg(β)≤ 1 ✓
(iii) G is acyclic ✓

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 100 / 113

Analysis of Descartes Method

Turning our Product into an Admissible Graph

We want to rewrite

∏
J

|βJ−αJ | as ∏
(α,β)∈E

|β −α|.

How often |βJ−αJ | appears?

adjacent real: ≤ 1

complex conjugate ≤ 2

We need two graphs. (Paper: just 1)

Conditions on G = (V ,E)

(i) (α,β) ∈ E =⇒ |α| ≤ |β |✓
(ii) β ∈ V =⇒ indeg(β)≤ 1 ✓
(iii) G is acyclic ✓

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 100 / 113

Analysis of Descartes Method

Turning our Product into an Admissible Graph

We want to rewrite

∏
J

|βJ−αJ | as ∏
(α,β)∈E

|β −α|.

How often |βJ−αJ | appears?

adjacent real: ≤ 1

complex conjugate ≤ 2

We need two graphs. (Paper: just 1)

Conditions on G = (V ,E)

(i) (α,β) ∈ E =⇒ |α| ≤ |β |✓
(ii) β ∈ V =⇒ indeg(β)≤ 1 ✓
(iii) G is acyclic ✓

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 100 / 113

Analysis of Descartes Method

Turning our Product into an Admissible Graph

We want to rewrite

∏
J

|βJ−αJ | as ∏
(α,β)∈E

|β −α|.

How often |βJ−αJ | appears?

adjacent real: ≤ 1

complex conjugate ≤ 2

We need two graphs. (Paper: just 1)

Conditions on G = (V ,E)

(i) (α,β) ∈ E =⇒ |α| ≤ |β |✓
(ii) β ∈ V =⇒ indeg(β)≤ 1 ✓
(iii) G is acyclic ✓

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 100 / 113

Analysis of Descartes Method

Turning our Product into an Admissible Graph

We want to rewrite

∏
J

|βJ−αJ | as ∏
(α,β)∈E

|β −α|.

How often |βJ−αJ | appears?

adjacent real: ≤ 1

complex conjugate ≤ 2

We need two graphs. (Paper: just 1)

Conditions on G = (V ,E)

(i) (α,β) ∈ E =⇒ |α| ≤ |β |✓
(ii) β ∈ V =⇒ indeg(β)≤ 1 ✓
(iii) G is acyclic ✓

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 100 / 113

Analysis of Descartes Method

Turning our Product into an Admissible Graph

We want to rewrite

∏
J

|βJ−αJ | as ∏
(α,β)∈E

|β −α|.

How often |βJ−αJ | appears?

adjacent real: ≤ 1

complex conjugate ≤ 2

We need two graphs. (Paper: just 1)

Conditions on G = (V ,E)

(i) (α,β) ∈ E =⇒ |α| ≤ |β |✓
(ii) β ∈ V =⇒ indeg(β)≤ 1 ✓
(iii) G is acyclic ✓

0

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 100 / 113

Analysis of Descartes Method

Turning our Product into an Admissible Graph

We want to rewrite

∏
J

|βJ−αJ | as ∏
(α,β)∈E

|β −α|.

How often |βJ−αJ | appears?

adjacent real: ≤ 1

complex conjugate ≤ 2

We need two graphs. (Paper: just 1)

Conditions on G = (V ,E)

(i) (α,β) ∈ E =⇒ |α| ≤ |β |✓
(ii) β ∈ V =⇒ indeg(β)≤ 1 ✓
(iii) G is acyclic ✓

0

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 100 / 113

Analysis of Descartes Method

Turning our Product into an Admissible Graph

We want to rewrite

∏
J

|βJ−αJ | as ∏
(α,β)∈E

|β −α|.

How often |βJ−αJ | appears?

adjacent real: ≤ 1

complex conjugate ≤ 2

We need two graphs. (Paper: just 1)

Conditions on G = (V ,E)

(i) (α,β) ∈ E =⇒ |α| ≤ |β |✓
(ii) β ∈ V =⇒ indeg(β)≤ 1 ✓
(iii) G is acyclic ✓

0

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 100 / 113

Analysis of Descartes Method

Main Result on Descartes Analysis

Theorem (Eigenwillig/Sharma/Y. (2006))
On the Benchmark Problem, we obtain

|T |= O(n(L+ logn)).

For L≥ logn, this is optimal.

Argument of [Krandick/Mehlhorn, 2006]: |T |= O(n logn (L+ logn)).

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 101 / 113

Mini Summary

Almost Tight Bound on Descartes Method based on Algebraic
Amortization

Benchmark complexity of Sturm and Descartes are the same
◮ “theory caught up with practice”

What about EVAL?
◮ New ideas needed – one is Amortized Evaluation Bounds

Mini Summary

Almost Tight Bound on Descartes Method based on Algebraic
Amortization

Benchmark complexity of Sturm and Descartes are the same
◮ “theory caught up with practice”

What about EVAL?
◮ New ideas needed – one is Amortized Evaluation Bounds

Mini Summary

Almost Tight Bound on Descartes Method based on Algebraic
Amortization

Benchmark complexity of Sturm and Descartes are the same
◮ “theory caught up with practice”

What about EVAL?
◮ New ideas needed – one is Amortized Evaluation Bounds

Mini Summary

Almost Tight Bound on Descartes Method based on Algebraic
Amortization

Benchmark complexity of Sturm and Descartes are the same
◮ “theory caught up with practice”

What about EVAL?
◮ New ideas needed – one is Amortized Evaluation Bounds

Mini Summary

Almost Tight Bound on Descartes Method based on Algebraic
Amortization

Benchmark complexity of Sturm and Descartes are the same
◮ “theory caught up with practice”

What about EVAL?
◮ New ideas needed – one is Amortized Evaluation Bounds

Mini Summary

Almost Tight Bound on Descartes Method based on Algebraic
Amortization

Benchmark complexity of Sturm and Descartes are the same
◮ “theory caught up with practice”

What about EVAL?
◮ New ideas needed – one is Amortized Evaluation Bounds

Mini Summary

Almost Tight Bound on Descartes Method based on Algebraic
Amortization

Benchmark complexity of Sturm and Descartes are the same
◮ “theory caught up with practice”

What about EVAL?
◮ New ideas needed – one is Amortized Evaluation Bounds

Integral Bounds and Framework of Stopping Functions

Coming Up Next

12 Analysis of Adaptive Complexity

13 Analysis of Descartes Method

14 Integral Bounds and Framework of Stopping Functions

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 103 / 113

Integral Bounds and Framework of Stopping Functions

Subdivision Phase

Subdivision based on a Predicate C(I)
Initialize a queue Q←{I0}

1 WHILE (Q 6= /0)
2 I← Q.remove()
3 IF (C(I) holds), output I
4 ELSE
5 Split I and insert children into Q

Goal – Bound the size of recursion tree T (I0)

NOTE: C(I)≡ C0(I)∨C1(I) in EVAL

The leaves of T (I0) induces a partition P(I) of I0
Suffices to upper bound #P(I0)

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 104 / 113

Integral Bounds and Framework of Stopping Functions

Subdivision Phase

Subdivision based on a Predicate C(I)
Initialize a queue Q←{I0}

1 WHILE (Q 6= /0)
2 I← Q.remove()
3 IF (C(I) holds), output I
4 ELSE
5 Split I and insert children into Q

Goal – Bound the size of recursion tree T (I0)

NOTE: C(I)≡ C0(I)∨C1(I) in EVAL

The leaves of T (I0) induces a partition P(I) of I0
Suffices to upper bound #P(I0)

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 104 / 113

Integral Bounds and Framework of Stopping Functions

Subdivision Phase

Subdivision based on a Predicate C(I)
Initialize a queue Q←{I0}

1 WHILE (Q 6= /0)
2 I← Q.remove()
3 IF (C(I) holds), output I
4 ELSE
5 Split I and insert children into Q

Goal – Bound the size of recursion tree T (I0)

NOTE: C(I)≡ C0(I)∨C1(I) in EVAL

The leaves of T (I0) induces a partition P(I) of I0
Suffices to upper bound #P(I0)

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 104 / 113

Integral Bounds and Framework of Stopping Functions

Subdivision Phase

Subdivision based on a Predicate C(I)
Initialize a queue Q←{I0}

1 WHILE (Q 6= /0)
2 I← Q.remove()
3 IF (C(I) holds), output I
4 ELSE
5 Split I and insert children into Q

Goal – Bound the size of recursion tree T (I0)

NOTE: C(I)≡ C0(I)∨C1(I) in EVAL

The leaves of T (I0) induces a partition P(I) of I0
Suffices to upper bound #P(I0)

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 104 / 113

Integral Bounds and Framework of Stopping Functions

Subdivision Phase

Subdivision based on a Predicate C(I)
Initialize a queue Q←{I0}

1 WHILE (Q 6= /0)
2 I← Q.remove()
3 IF (C(I) holds), output I
4 ELSE
5 Split I and insert children into Q

Goal – Bound the size of recursion tree T (I0)

NOTE: C(I)≡ C0(I)∨C1(I) in EVAL

The leaves of T (I0) induces a partition P(I) of I0
Suffices to upper bound #P(I0)

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 104 / 113

Integral Bounds and Framework of Stopping Functions

Subdivision Phase

Subdivision based on a Predicate C(I)
Initialize a queue Q←{I0}

1 WHILE (Q 6= /0)
2 I← Q.remove()
3 IF (C(I) holds), output I
4 ELSE
5 Split I and insert children into Q

Goal – Bound the size of recursion tree T (I0)

NOTE: C(I)≡ C0(I)∨C1(I) in EVAL

The leaves of T (I0) induces a partition P(I) of I0
Suffices to upper bound #P(I0)

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 104 / 113

Integral Bounds and Framework of Stopping Functions

Subdivision Phase

Subdivision based on a Predicate C(I)
Initialize a queue Q←{I0}

1 WHILE (Q 6= /0)
2 I← Q.remove()
3 IF (C(I) holds), output I
4 ELSE
5 Split I and insert children into Q

Goal – Bound the size of recursion tree T (I0)

NOTE: C(I)≡ C0(I)∨C1(I) in EVAL

The leaves of T (I0) induces a partition P(I) of I0
Suffices to upper bound #P(I0)

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 104 / 113

Integral Bounds and Framework of Stopping Functions

Subdivision Phase

Subdivision based on a Predicate C(I)
Initialize a queue Q←{I0}

1 WHILE (Q 6= /0)
2 I← Q.remove()
3 IF (C(I) holds), output I
4 ELSE
5 Split I and insert children into Q

Goal – Bound the size of recursion tree T (I0)

NOTE: C(I)≡ C0(I)∨C1(I) in EVAL

The leaves of T (I0) induces a partition P(I) of I0
Suffices to upper bound #P(I0)

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 104 / 113

Integral Bounds and Framework of Stopping Functions

Subdivision Phase

Subdivision based on a Predicate C(I)
Initialize a queue Q←{I0}

1 WHILE (Q 6= /0)
2 I← Q.remove()
3 IF (C(I) holds), output I
4 ELSE
5 Split I and insert children into Q

Goal – Bound the size of recursion tree T (I0)

NOTE: C(I)≡ C0(I)∨C1(I) in EVAL

The leaves of T (I0) induces a partition P(I) of I0
Suffices to upper bound #P(I0)

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 104 / 113

Integral Bounds and Framework of Stopping Functions

Subdivision Phase

Subdivision based on a Predicate C(I)
Initialize a queue Q←{I0}

1 WHILE (Q 6= /0)
2 I← Q.remove()
3 IF (C(I) holds), output I
4 ELSE
5 Split I and insert children into Q

Goal – Bound the size of recursion tree T (I0)

NOTE: C(I)≡ C0(I)∨C1(I) in EVAL

The leaves of T (I0) induces a partition P(I) of I0
Suffices to upper bound #P(I0)

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 104 / 113

Integral Bounds and Framework of Stopping Functions

Subdivision Phase

Subdivision based on a Predicate C(I)
Initialize a queue Q←{I0}

1 WHILE (Q 6= /0)
2 I← Q.remove()
3 IF (C(I) holds), output I
4 ELSE
5 Split I and insert children into Q

Goal – Bound the size of recursion tree T (I0)

NOTE: C(I)≡ C0(I)∨C1(I) in EVAL

The leaves of T (I0) induces a partition P(I) of I0
Suffices to upper bound #P(I0)

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 104 / 113

Integral Bounds and Framework of Stopping Functions

Framework of Stopping Functions

Stopping Function for C(I) is F : R→R≥0

For all interval I:
If (∃b ∈ I)[w(I) < F(b)],

then C(I) holds.

How to use F? The Penultimate Property

Similar to Descartes proof

If J ∈ P(I0), its parent (“penultimate leaf”) has width 2w(J).

Conclude from definition of stopping function:
(∀c ∈ J) [2w(J) ≥ F(c)].

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 105 / 113

Integral Bounds and Framework of Stopping Functions

Framework of Stopping Functions

Stopping Function for C(I) is F : R→R≥0

For all interval I:
If (∃b ∈ I)[w(I) < F(b)],

then C(I) holds.

How to use F? The Penultimate Property

Similar to Descartes proof

If J ∈ P(I0), its parent (“penultimate leaf”) has width 2w(J).

Conclude from definition of stopping function:
(∀c ∈ J) [2w(J) ≥ F(c)].

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 105 / 113

Integral Bounds and Framework of Stopping Functions

Framework of Stopping Functions

Stopping Function for C(I) is F : R→R≥0

For all interval I:
If (∃b ∈ I)[w(I) < F(b)],

then C(I) holds.

How to use F? The Penultimate Property

Similar to Descartes proof

If J ∈ P(I0), its parent (“penultimate leaf”) has width 2w(J).

Conclude from definition of stopping function:
(∀c ∈ J) [2w(J) ≥ F(c)].

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 105 / 113

Integral Bounds and Framework of Stopping Functions

Framework of Stopping Functions

Stopping Function for C(I) is F : R→R≥0

For all interval I:
If (∃b ∈ I)[w(I) < F(b)],

then C(I) holds.

How to use F? The Penultimate Property

Similar to Descartes proof

If J ∈ P(I0), its parent (“penultimate leaf”) has width 2w(J).

Conclude from definition of stopping function:
(∀c ∈ J) [2w(J) ≥ F(c)].

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 105 / 113

Integral Bounds and Framework of Stopping Functions

Framework of Stopping Functions

Stopping Function for C(I) is F : R→R≥0

For all interval I:
If (∃b ∈ I)[w(I) < F(b)],

then C(I) holds.

How to use F? The Penultimate Property

Similar to Descartes proof

If J ∈ P(I0), its parent (“penultimate leaf”) has width 2w(J).

Conclude from definition of stopping function:
(∀c ∈ J) [2w(J) ≥ F(c)].

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 105 / 113

Integral Bounds and Framework of Stopping Functions

An Integral Bound

Theorem (Integral Bound
[Burr/Krahmer/Y.])

#P(I0)≤max

{
1,

∫

I0

2dx

F(x)

}

Proof.

1 If #P(I0) = 1, result is true.

2 Else pick any J ∈ P(I0): it has
the penultimate property.

3 Choosing c∗ ∈ J such that F(c∗)
is maximum

Pf (contd)

∫

J

2dx

F(x)
≥

∫

J

2dx

F(c∗)

≥ 2

F(c∗)

∫

J
dx

=
2w(J)

F(c∗)
≥ 1 [PenultimateProp.]

∫

I0

2dx

F(x)
= ∑

J∈P(I0)

∫

J

2dx

F(c∗)

≥ ∑
J∈P(I0)

1 = #P(I0)

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 106 / 113

Integral Bounds and Framework of Stopping Functions

An Integral Bound

Theorem (Integral Bound
[Burr/Krahmer/Y.])

#P(I0)≤max

{
1,

∫

I0

2dx

F(x)

}

Proof.

1 If #P(I0) = 1, result is true.

2 Else pick any J ∈ P(I0): it has
the penultimate property.

3 Choosing c∗ ∈ J such that F(c∗)
is maximum

Pf (contd)

∫

J

2dx

F(x)
≥

∫

J

2dx

F(c∗)

≥ 2

F(c∗)

∫

J
dx

=
2w(J)

F(c∗)
≥ 1 [PenultimateProp.]

∫

I0

2dx

F(x)
= ∑

J∈P(I0)

∫

J

2dx

F(c∗)

≥ ∑
J∈P(I0)

1 = #P(I0)

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 106 / 113

Integral Bounds and Framework of Stopping Functions

An Integral Bound

Theorem (Integral Bound
[Burr/Krahmer/Y.])

#P(I0)≤max

{
1,

∫

I0

2dx

F(x)

}

Proof.

1 If #P(I0) = 1, result is true.

2 Else pick any J ∈ P(I0): it has
the penultimate property.

3 Choosing c∗ ∈ J such that F(c∗)
is maximum

Pf (contd)

∫

J

2dx

F(x)
≥

∫

J

2dx

F(c∗)

≥ 2

F(c∗)

∫

J
dx

=
2w(J)

F(c∗)
≥ 1 [PenultimateProp.]

∫

I0

2dx

F(x)
= ∑

J∈P(I0)

∫

J

2dx

F(c∗)

≥ ∑
J∈P(I0)

1 = #P(I0)

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 106 / 113

Integral Bounds and Framework of Stopping Functions

An Integral Bound

Theorem (Integral Bound
[Burr/Krahmer/Y.])

#P(I0)≤max

{
1,

∫

I0

2dx

F(x)

}

Proof.

1 If #P(I0) = 1, result is true.

2 Else pick any J ∈ P(I0): it has
the penultimate property.

3 Choosing c∗ ∈ J such that F(c∗)
is maximum

Pf (contd)

∫

J

2dx

F(x)
≥

∫

J

2dx

F(c∗)

≥ 2

F(c∗)

∫

J
dx

=
2w(J)

F(c∗)
≥ 1 [PenultimateProp.]

∫

I0

2dx

F(x)
= ∑

J∈P(I0)

∫

J

2dx

F(c∗)

≥ ∑
J∈P(I0)

1 = #P(I0)

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 106 / 113

Integral Bounds and Framework of Stopping Functions

An Integral Bound

Theorem (Integral Bound
[Burr/Krahmer/Y.])

#P(I0)≤max

{
1,

∫

I0

2dx

F(x)

}

Proof.

1 If #P(I0) = 1, result is true.

2 Else pick any J ∈ P(I0): it has
the penultimate property.

3 Choosing c∗ ∈ J such that F(c∗)
is maximum

Pf (contd)

∫

J

2dx

F(x)
≥

∫

J

2dx

F(c∗)

≥ 2

F(c∗)

∫

J
dx

=
2w(J)

F(c∗)
≥ 1 [PenultimateProp.]

∫

I0

2dx

F(x)
= ∑

J∈P(I0)

∫

J

2dx

F(c∗)

≥ ∑
J∈P(I0)

1 = #P(I0)

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 106 / 113

Integral Bounds and Framework of Stopping Functions

An Integral Bound

Theorem (Integral Bound
[Burr/Krahmer/Y.])

#P(I0)≤max

{
1,

∫

I0

2dx

F(x)

}

Proof.

1 If #P(I0) = 1, result is true.

2 Else pick any J ∈ P(I0): it has
the penultimate property.

3 Choosing c∗ ∈ J such that F(c∗)
is maximum

Pf (contd)

∫

J

2dx

F(x)
≥

∫

J

2dx

F(c∗)

≥ 2

F(c∗)

∫

J
dx

=
2w(J)

F(c∗)
≥ 1 [PenultimateProp.]

∫

I0

2dx

F(x)
= ∑

J∈P(I0)

∫

J

2dx

F(c∗)

≥ ∑
J∈P(I0)

1 = #P(I0)

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 106 / 113

Integral Bounds and Framework of Stopping Functions

An Integral Bound

Theorem (Integral Bound
[Burr/Krahmer/Y.])

#P(I0)≤max

{
1,

∫

I0

2dx

F(x)

}

Proof.

1 If #P(I0) = 1, result is true.

2 Else pick any J ∈ P(I0): it has
the penultimate property.

3 Choosing c∗ ∈ J such that F(c∗)
is maximum

Pf (contd)

∫

J

2dx

F(x)
≥

∫

J

2dx

F(c∗)

≥ 2

F(c∗)

∫

J
dx

=
2w(J)

F(c∗)
≥ 1 [PenultimateProp.]

∫

I0

2dx

F(x)
= ∑

J∈P(I0)

∫

J

2dx

F(c∗)

≥ ∑
J∈P(I0)

1 = #P(I0)

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 106 / 113

Integral Bounds and Framework of Stopping Functions

An Integral Bound

Theorem (Integral Bound
[Burr/Krahmer/Y.])

#P(I0)≤max

{
1,

∫

I0

2dx

F(x)

}

Proof.

1 If #P(I0) = 1, result is true.

2 Else pick any J ∈ P(I0): it has
the penultimate property.

3 Choosing c∗ ∈ J such that F(c∗)
is maximum

Pf (contd)

∫

J

2dx

F(x)
≥

∫

J

2dx

F(c∗)

≥ 2

F(c∗)

∫

J
dx

=
2w(J)

F(c∗)
≥ 1 [PenultimateProp.]

∫

I0

2dx

F(x)
= ∑

J∈P(I0)

∫

J

2dx

F(c∗)

≥ ∑
J∈P(I0)

1 = #P(I0)

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 106 / 113

Integral Bounds and Framework of Stopping Functions

An Integral Bound

Theorem (Integral Bound
[Burr/Krahmer/Y.])

#P(I0)≤max

{
1,

∫

I0

2dx

F(x)

}

Proof.

1 If #P(I0) = 1, result is true.

2 Else pick any J ∈ P(I0): it has
the penultimate property.

3 Choosing c∗ ∈ J such that F(c∗)
is maximum

Pf (contd)

∫

J

2dx

F(x)
≥

∫

J

2dx

F(c∗)

≥ 2

F(c∗)

∫

J
dx

=
2w(J)

F(c∗)
≥ 1 [PenultimateProp.]

∫

I0

2dx

F(x)
= ∑

J∈P(I0)

∫

J

2dx

F(c∗)

≥ ∑
J∈P(I0)

1 = #P(I0)

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 106 / 113

Integral Bounds and Framework of Stopping Functions

An Integral Bound

Theorem (Integral Bound
[Burr/Krahmer/Y.])

#P(I0)≤max

{
1,

∫

I0

2dx

F(x)

}

Proof.

1 If #P(I0) = 1, result is true.

2 Else pick any J ∈ P(I0): it has
the penultimate property.

3 Choosing c∗ ∈ J such that F(c∗)
is maximum

Pf (contd)

∫

J

2dx

F(x)
≥

∫

J

2dx

F(c∗)

≥ 2

F(c∗)

∫

J
dx

=
2w(J)

F(c∗)
≥ 1 [PenultimateProp.]

∫

I0

2dx

F(x)
= ∑

J∈P(I0)

∫

J

2dx

F(c∗)

≥ ∑
J∈P(I0)

1 = #P(I0)

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 106 / 113

Integral Bounds and Framework of Stopping Functions

An Integral Bound

Theorem (Integral Bound
[Burr/Krahmer/Y.])

#P(I0)≤max

{
1,

∫

I0

2dx

F(x)

}

Proof.

1 If #P(I0) = 1, result is true.

2 Else pick any J ∈ P(I0): it has
the penultimate property.

3 Choosing c∗ ∈ J such that F(c∗)
is maximum

Pf (contd)

∫

J

2dx

F(x)
≥

∫

J

2dx

F(c∗)

≥ 2

F(c∗)

∫

J
dx

=
2w(J)

F(c∗)
≥ 1 [PenultimateProp.]

∫

I0

2dx

F(x)
= ∑

J∈P(I0)

∫

J

2dx

F(c∗)

≥ ∑
J∈P(I0)

1 = #P(I0)

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 106 / 113

Integral Bounds and Framework of Stopping Functions

Remarks on Integral Bound

Too hard to directly bound the integral implied by C0(I)∨C1(I).
◮ So we devise stopping functions F(x) that can be analyzed.

Technique of bounding
∫

I φ(x)dx is Continuous Amortization
where φ(x) is charge function.

◮ In discrete “amortization arguments”, we bound ∑n
i=1 φ(i) where

φ(i) is “charge” for the ith operation.

Ruppert (1995) introduced a similar integral for triangulation.
◮ Unlike us, he does not evaluate his integral.

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 107 / 113

Integral Bounds and Framework of Stopping Functions

Remarks on Integral Bound

Too hard to directly bound the integral implied by C0(I)∨C1(I).
◮ So we devise stopping functions F(x) that can be analyzed.

Technique of bounding
∫

I φ(x)dx is Continuous Amortization
where φ(x) is charge function.

◮ In discrete “amortization arguments”, we bound ∑n
i=1 φ(i) where

φ(i) is “charge” for the ith operation.

Ruppert (1995) introduced a similar integral for triangulation.
◮ Unlike us, he does not evaluate his integral.

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 107 / 113

Integral Bounds and Framework of Stopping Functions

Remarks on Integral Bound

Too hard to directly bound the integral implied by C0(I)∨C1(I).
◮ So we devise stopping functions F(x) that can be analyzed.

Technique of bounding
∫

I φ(x)dx is Continuous Amortization
where φ(x) is charge function.

◮ In discrete “amortization arguments”, we bound ∑n
i=1 φ(i) where

φ(i) is “charge” for the ith operation.

Ruppert (1995) introduced a similar integral for triangulation.
◮ Unlike us, he does not evaluate his integral.

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 107 / 113

Integral Bounds and Framework of Stopping Functions

Remarks on Integral Bound

Too hard to directly bound the integral implied by C0(I)∨C1(I).
◮ So we devise stopping functions F(x) that can be analyzed.

Technique of bounding
∫

I φ(x)dx is Continuous Amortization
where φ(x) is charge function.

◮ In discrete “amortization arguments”, we bound ∑n
i=1 φ(i) where

φ(i) is “charge” for the ith operation.

Ruppert (1995) introduced a similar integral for triangulation.
◮ Unlike us, he does not evaluate his integral.

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 107 / 113

Integral Bounds and Framework of Stopping Functions

Remarks on Integral Bound

Too hard to directly bound the integral implied by C0(I)∨C1(I).
◮ So we devise stopping functions F(x) that can be analyzed.

Technique of bounding
∫

I φ(x)dx is Continuous Amortization
where φ(x) is charge function.

◮ In discrete “amortization arguments”, we bound ∑n
i=1 φ(i) where

φ(i) is “charge” for the ith operation.

Ruppert (1995) introduced a similar integral for triangulation.
◮ Unlike us, he does not evaluate his integral.

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 107 / 113

Integral Bounds and Framework of Stopping Functions

Remarks on Integral Bound

Too hard to directly bound the integral implied by C0(I)∨C1(I).
◮ So we devise stopping functions F(x) that can be analyzed.

Technique of bounding
∫

I φ(x)dx is Continuous Amortization
where φ(x) is charge function.

◮ In discrete “amortization arguments”, we bound ∑n
i=1 φ(i) where

φ(i) is “charge” for the ith operation.

Ruppert (1995) introduced a similar integral for triangulation.
◮ Unlike us, he does not evaluate his integral.

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 107 / 113

Integral Bounds and Framework of Stopping Functions

An Amortized Evaluation Bound
The Idea

Want lower bounds on |f (α)|
Multivariate version used in [Cheng/Gao/Y. ISSAC’2007]

Amortization: give lower bounds on ∏i∈J |f (αi)|.

Theorem

Let F ,H ∈Z[X] be relatively prime such that F = φφ̃ , H = ηη̃ where
φ , φ̃ ,η, η̃ ∈ C[X] have degrees m,m̃,n, ñ, respectively. If β1, . . . ,βn
are all the zeros of η(X), then

n

∏
i=1

|φ(βi)| ≥
1

lc(η)m ((m +1)‖φ‖)ñ M(η̃)m
(
(m̃ +1)‖φ̃‖

)n+ñ
M(H)m̃

.

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 108 / 113

Integral Bounds and Framework of Stopping Functions

An Amortized Evaluation Bound
The Idea

Want lower bounds on |f (α)|
Multivariate version used in [Cheng/Gao/Y. ISSAC’2007]

Amortization: give lower bounds on ∏i∈J |f (αi)|.

Theorem

Let F ,H ∈Z[X] be relatively prime such that F = φφ̃ , H = ηη̃ where
φ , φ̃ ,η, η̃ ∈ C[X] have degrees m,m̃,n, ñ, respectively. If β1, . . . ,βn
are all the zeros of η(X), then

n

∏
i=1

|φ(βi)| ≥
1

lc(η)m ((m +1)‖φ‖)ñ M(η̃)m
(
(m̃ +1)‖φ̃‖

)n+ñ
M(H)m̃

.

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 108 / 113

Integral Bounds and Framework of Stopping Functions

An Amortized Evaluation Bound
The Idea

Want lower bounds on |f (α)|
Multivariate version used in [Cheng/Gao/Y. ISSAC’2007]

Amortization: give lower bounds on ∏i∈J |f (αi)|.

Theorem

Let F ,H ∈Z[X] be relatively prime such that F = φφ̃ , H = ηη̃ where
φ , φ̃ ,η, η̃ ∈ C[X] have degrees m,m̃,n, ñ, respectively. If β1, . . . ,βn
are all the zeros of η(X), then

n

∏
i=1

|φ(βi)| ≥
1

lc(η)m ((m +1)‖φ‖)ñ M(η̃)m
(
(m̃ +1)‖φ̃‖

)n+ñ
M(H)m̃

.

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 108 / 113

Integral Bounds and Framework of Stopping Functions

An Amortized Evaluation Bound
The Idea

Want lower bounds on |f (α)|
Multivariate version used in [Cheng/Gao/Y. ISSAC’2007]

Amortization: give lower bounds on ∏i∈J |f (αi)|.

Theorem

Let F ,H ∈Z[X] be relatively prime such that F = φφ̃ , H = ηη̃ where
φ , φ̃ ,η, η̃ ∈ C[X] have degrees m,m̃,n, ñ, respectively. If β1, . . . ,βn
are all the zeros of η(X), then

n

∏
i=1

|φ(βi)| ≥
1

lc(η)m ((m +1)‖φ‖)ñ M(η̃)m
(
(m̃ +1)‖φ̃‖

)n+ñ
M(H)m̃

.

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 108 / 113

Integral Bounds and Framework of Stopping Functions

An Amortized Evaluation Bound
The Idea

Want lower bounds on |f (α)|
Multivariate version used in [Cheng/Gao/Y. ISSAC’2007]

Amortization: give lower bounds on ∏i∈J |f (αi)|.

Theorem

Let F ,H ∈Z[X] be relatively prime such that F = φφ̃ , H = ηη̃ where
φ , φ̃ ,η, η̃ ∈ C[X] have degrees m,m̃,n, ñ, respectively. If β1, . . . ,βn
are all the zeros of η(X), then

n

∏
i=1

|φ(βi)| ≥
1

lc(η)m ((m +1)‖φ‖)ñ M(η̃)m
(
(m̃ +1)‖φ̃‖

)n+ñ
M(H)m̃

.

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 108 / 113

Integral Bounds and Framework of Stopping Functions

Complex Roots: Lesson from Meshing Curves

How to isolate complex roots?
Previous subdivision methods:

◮ Pan-Weyl Algorithm (Turan Test)
◮ Root isolation on boundary of boxes (topological degree)

Hints from Curve Meshing (Snyder/PV/Cxy) – not good idea

New Result (with Sagraloff)
There is an exact analog CEVAL for complex roots that is simple and
easy to implement exactly.
It achieves the same bit complexity bound as in the real case.

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 109 / 113

Integral Bounds and Framework of Stopping Functions

Complex Roots: Lesson from Meshing Curves

How to isolate complex roots?
Previous subdivision methods:

◮ Pan-Weyl Algorithm (Turan Test)
◮ Root isolation on boundary of boxes (topological degree)

Hints from Curve Meshing (Snyder/PV/Cxy) – not good idea

New Result (with Sagraloff)
There is an exact analog CEVAL for complex roots that is simple and
easy to implement exactly.
It achieves the same bit complexity bound as in the real case.

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 109 / 113

Integral Bounds and Framework of Stopping Functions

Complex Roots: Lesson from Meshing Curves

How to isolate complex roots?
Previous subdivision methods:

◮ Pan-Weyl Algorithm (Turan Test)
◮ Root isolation on boundary of boxes (topological degree)

Hints from Curve Meshing (Snyder/PV/Cxy) – not good idea

New Result (with Sagraloff)
There is an exact analog CEVAL for complex roots that is simple and
easy to implement exactly.
It achieves the same bit complexity bound as in the real case.

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 109 / 113

Integral Bounds and Framework of Stopping Functions

Complex Roots: Lesson from Meshing Curves

How to isolate complex roots?
Previous subdivision methods:

◮ Pan-Weyl Algorithm (Turan Test)
◮ Root isolation on boundary of boxes (topological degree)

Hints from Curve Meshing (Snyder/PV/Cxy) – not good idea

New Result (with Sagraloff)
There is an exact analog CEVAL for complex roots that is simple and
easy to implement exactly.
It achieves the same bit complexity bound as in the real case.

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 109 / 113

Mini Summary

The Bolzano approach to Root Isolation is an Exact and Analytic
approach to root isolation

It seems to have complexity that matches Sturm and Descartes

It is much easier to implement than either

Summary of Lecture 3

Complexity Analysis of Adaptivity at infancy

Analysis Techniques we have seen so far:

◮ Continuous amortization via integral bounds
◮ Amortized root separation bounds
◮ Amortized evaluation bounds
◮ Cluster analysis

Major Open Problems
◮ How to characterize local complexity?
◮ How to extend to higher dimensions

Summary of Lecture 3

Complexity Analysis of Adaptivity at infancy

Analysis Techniques we have seen so far:

◮ Continuous amortization via integral bounds
◮ Amortized root separation bounds
◮ Amortized evaluation bounds
◮ Cluster analysis

Major Open Problems
◮ How to characterize local complexity?
◮ How to extend to higher dimensions

Summary of Lecture 3

Complexity Analysis of Adaptivity at infancy

Analysis Techniques we have seen so far:

◮ Continuous amortization via integral bounds
◮ Amortized root separation bounds
◮ Amortized evaluation bounds
◮ Cluster analysis

Major Open Problems
◮ How to characterize local complexity?
◮ How to extend to higher dimensions

Summary of Lecture 3

Complexity Analysis of Adaptivity at infancy

Analysis Techniques we have seen so far:

◮ Continuous amortization via integral bounds
◮ Amortized root separation bounds
◮ Amortized evaluation bounds
◮ Cluster analysis

Major Open Problems
◮ How to characterize local complexity?
◮ How to extend to higher dimensions

Summary of Lecture 3

Complexity Analysis of Adaptivity at infancy

Analysis Techniques we have seen so far:

◮ Continuous amortization via integral bounds
◮ Amortized root separation bounds
◮ Amortized evaluation bounds
◮ Cluster analysis

Major Open Problems
◮ How to characterize local complexity?
◮ How to extend to higher dimensions

Summary of Lecture 3

Complexity Analysis of Adaptivity at infancy

Analysis Techniques we have seen so far:

◮ Continuous amortization via integral bounds
◮ Amortized root separation bounds
◮ Amortized evaluation bounds
◮ Cluster analysis

Major Open Problems
◮ How to characterize local complexity?
◮ How to extend to higher dimensions

Summary of Lecture 3

Complexity Analysis of Adaptivity at infancy

Analysis Techniques we have seen so far:

◮ Continuous amortization via integral bounds
◮ Amortized root separation bounds
◮ Amortized evaluation bounds
◮ Cluster analysis

Major Open Problems
◮ How to characterize local complexity?
◮ How to extend to higher dimensions

Summary of Lecture 3

Complexity Analysis of Adaptivity at infancy

Analysis Techniques we have seen so far:

◮ Continuous amortization via integral bounds
◮ Amortized root separation bounds
◮ Amortized evaluation bounds
◮ Cluster analysis

Major Open Problems
◮ How to characterize local complexity?
◮ How to extend to higher dimensions

Summary of Lecture 3

Complexity Analysis of Adaptivity at infancy

Analysis Techniques we have seen so far:

◮ Continuous amortization via integral bounds
◮ Amortized root separation bounds
◮ Amortized evaluation bounds
◮ Cluster analysis

Major Open Problems
◮ How to characterize local complexity?
◮ How to extend to higher dimensions

Summary of Lecture 3

Complexity Analysis of Adaptivity at infancy

Analysis Techniques we have seen so far:

◮ Continuous amortization via integral bounds
◮ Amortized root separation bounds
◮ Amortized evaluation bounds
◮ Cluster analysis

Major Open Problems
◮ How to characterize local complexity?
◮ How to extend to higher dimensions

Summary of Lecture 3

Complexity Analysis of Adaptivity at infancy

Analysis Techniques we have seen so far:

◮ Continuous amortization via integral bounds
◮ Amortized root separation bounds
◮ Amortized evaluation bounds
◮ Cluster analysis

Major Open Problems
◮ How to characterize local complexity?
◮ How to extend to higher dimensions

Summary of Lecture 3

Complexity Analysis of Adaptivity at infancy

Analysis Techniques we have seen so far:

◮ Continuous amortization via integral bounds
◮ Amortized root separation bounds
◮ Amortized evaluation bounds
◮ Cluster analysis

Major Open Problems
◮ How to characterize local complexity?
◮ How to extend to higher dimensions

Summary of Tutorial

MANY advantages in numerical/analytic approaches to algebraic
and geometric problems

◮ practical, adaptive, easy to implement

New ingredient we seek: a priori guarantees and exactness

Zero problems is the locus of our investigation

Exact Numerical Computation (ENC) is a suitable computational
model

The explicitization problems are central for ENC

Analysis of adaptive algorithms is wide open

Summary of Tutorial

MANY advantages in numerical/analytic approaches to algebraic
and geometric problems

◮ practical, adaptive, easy to implement

New ingredient we seek: a priori guarantees and exactness

Zero problems is the locus of our investigation

Exact Numerical Computation (ENC) is a suitable computational
model

The explicitization problems are central for ENC

Analysis of adaptive algorithms is wide open

Summary of Tutorial

MANY advantages in numerical/analytic approaches to algebraic
and geometric problems

◮ practical, adaptive, easy to implement

New ingredient we seek: a priori guarantees and exactness

Zero problems is the locus of our investigation

Exact Numerical Computation (ENC) is a suitable computational
model

The explicitization problems are central for ENC

Analysis of adaptive algorithms is wide open

Summary of Tutorial

MANY advantages in numerical/analytic approaches to algebraic
and geometric problems

◮ practical, adaptive, easy to implement

New ingredient we seek: a priori guarantees and exactness

Zero problems is the locus of our investigation

Exact Numerical Computation (ENC) is a suitable computational
model

The explicitization problems are central for ENC

Analysis of adaptive algorithms is wide open

Summary of Tutorial

MANY advantages in numerical/analytic approaches to algebraic
and geometric problems

◮ practical, adaptive, easy to implement

New ingredient we seek: a priori guarantees and exactness

Zero problems is the locus of our investigation

Exact Numerical Computation (ENC) is a suitable computational
model

The explicitization problems are central for ENC

Analysis of adaptive algorithms is wide open

Summary of Tutorial

MANY advantages in numerical/analytic approaches to algebraic
and geometric problems

◮ practical, adaptive, easy to implement

New ingredient we seek: a priori guarantees and exactness

Zero problems is the locus of our investigation

Exact Numerical Computation (ENC) is a suitable computational
model

The explicitization problems are central for ENC

Analysis of adaptive algorithms is wide open

Summary of Tutorial

MANY advantages in numerical/analytic approaches to algebraic
and geometric problems

◮ practical, adaptive, easy to implement

New ingredient we seek: a priori guarantees and exactness

Zero problems is the locus of our investigation

Exact Numerical Computation (ENC) is a suitable computational
model

The explicitization problems are central for ENC

Analysis of adaptive algorithms is wide open

Summary of Tutorial

MANY advantages in numerical/analytic approaches to algebraic
and geometric problems

◮ practical, adaptive, easy to implement

New ingredient we seek: a priori guarantees and exactness

Zero problems is the locus of our investigation

Exact Numerical Computation (ENC) is a suitable computational
model

The explicitization problems are central for ENC

Analysis of adaptive algorithms is wide open

Summary of Tutorial

MANY advantages in numerical/analytic approaches to algebraic
and geometric problems

◮ practical, adaptive, easy to implement

New ingredient we seek: a priori guarantees and exactness

Zero problems is the locus of our investigation

Exact Numerical Computation (ENC) is a suitable computational
model

The explicitization problems are central for ENC

Analysis of adaptive algorithms is wide open

Thank you!

Website http://cs.nyu.edu/exact/

Download Papers

Download Core Library

GENERAL REFERENCE

Chee K. Yap.

Theory of Real Computation according to EGC.

In P. Hertling, Ch.M. Hoffmann, W. Luther, and N.Revol, editors, Reliable
Implementation of Real Number Algorithms: Theory and Practice,
No. 5045 in LNCS, pp. 193–237. Springer, 2008.

Yap (NYU) Tutorial: Exact Numerical Computation ISSAC, July 2009 113 / 113

	FRONT MATERIAL
	ENC and Zero Problem
	Introduction: What is Geometric Computation?
	Five Examples of Geometric Computation
	Exact Numeric Computation -- A Synthesis
	Exact Geometric Computation
	Constructive Zero Bounds

	Explicitization
	Introduction
	Review of Subdivision Algorithms
	Cxy Algorithm
	Extensions of Cxy
	How to treat Boundary
	How to treat Singularity

	Adaptive Complexity Analysis
	Analysis of Adaptive Complexity
	Analysis of Descartes Method
	Integral Bounds and Framework of Stopping Functions

	END MATERIAL

