
(Extended Abstract)

Integral Analysis of Evaluation-Based Root Isolation

Michael Burr, Felix Krahmer and Chee Yap

Courant Institute

New York University

{burr,krahmer,yap}@cims.nyu.edu

April 11, 2008

Abstract

Let f be a univariate polynomial with real coefficients, f ∈ R[X]. Subdivision methods
are widely used for isolating the roots of f in a given interval. In this paper we consider
evaluation-based subdivision algorithms that use using simpler primitives than well-known
subdivision methods such as Sturm or Descartes methods. In particular, we study the EVAL
algorithm based on an algorithm by Mitchell, which can be seen as a 1-dimensional analogue of
Plantinga-Vegter’s meshing algorithm.

(1) First we give a general framework for performing an adaptive analysis of the EVAL al-
gorithm. This leads to an upper bound, defined via an integral, for the complexity of the EVAL
algorithm. This novel technique for complexity analysis can be viewed as a continuous amorti-
zation technique. In addition, this framework is quite general and promises to be applicable for
analyzing the complexity of other evaluation-based algorithms.

(2) Next we consider the benchmark case of a square-free integer polynomial f of degree d
and logarithmic height L. We give a priori worst-case upper bounds of the form O(d3(log d+L))
for the size of the subdivision tree. This bound exploits the Mahler-Davenport root bound as
well as new evaluation analogues of such bounds.

1

1 Introduction
A basic problem in the computational geometry of surfaces is the meshing of implicit surfaces. This
problem asks for an isotopic ε-approximation S̃ of a surface S in R

n given by the equation f = 0
where f : R

n → R. A survey of recent literature on meshing can be found in [4]. When f is a poly-
nomial, there are many algebraic methods for solving this problem (e.g., [5]). However, numeric and
geometric methods based on subdivision are widely used by practitioners because these methods
are easier to implement than algebraic methods. Furthermore, such methods have an adaptive
complexity that can be quite efficient on most inputs. A standard example of subdivision methods
is the Marching Cube [22]. This algorithm, as is the case with most non-algebraic algorithms, is
incomplete [38]; hence, hybrid methods that combine algebraic primitives with subdivision [32] are
usually necessary to ensure complete algorithms. The first purely numerical subdivision method
that is provably complete for non-singular surfaces is from Plantinga-Vegter [27, 28]. They provided
algorithms in 2 and 3-D, i.e., f : R

n → R for n = 2 or 3.
In this paper, we provide a complexity analysis for the 1-D version of the Plantinga-Vegter

algorithm, which we call the EVAL algorithm. The algorithm amounts to real root isolation (and
refinement); there are many well-known subdivision algorithms in this case, e.g., Sturm method
[11, 30, 21] or the Descartes method [8, 15, 2]. The computational model [28] of the EVAL algorithm
is purely numerical: like the Marching Cubes algorithm, it is based on evaluation of functions, but it
also uses interval versions of the function and its derivatives. We call such algorithms evaluation-
based. In contrast, Sturm or Descartes methods more sophisticated primitives which restrict f to
polynomials. So evaluation-based methods are more widely applicable (e.g. f could be analytic,
although the more general setting is outside our present scope). The 1-D version of Plantinga-
Vegter’s algorithm was first formulated by Mitchell [23], based on an algorithm of Moore [24]. In
[6], we extended the EVAL algorithm to the case where f may have multiple roots.

The adaptive complexity of subdivision algorithms is a topic of growing interest. But what
is the proper way to quantify the adaptivity of an algorithm? Most approaches in the literature
are based on the condition number of the problem. For instance, Mourrain and Pavone [25] use the
condition number to bound the complexity of Bernstein-type subdivision for isolating multivariate
zeros. Condition number approaches to complexity are extensively used in the Smale school [3].
Another quantity is based on the precision sensitivity [33], the bit-version of output sensitivity
which is well-known in computational geometry. In this paper we introduce a different quantity,
defined via an integral, which can be viewed as a continuous amortization technique.

Amortization is a standard analysis technique for discrete algorithms [9]. In the continuous
domain, Davenport [10] was the first to give an amortization argument yielding the optimal subdi-
vision tree complexity for Sturm method. Recently, amortization arguments have been used in [12]
for the Sturm method and [15] for the Descartes method. These complexity bounds are dependent
on the Mahler-Davenport root separation bounds [10, 39]. In this paper, we also require bounds
analogous to Mahler-Davenport type bounds, but in the form of evaluation bounds.

Subdivision methods for root isolation may be classified by their stopping predicates. The
Sturm predicate is based on Sturm sequences, and Descartes predicate is based on the Descartes
rule of sign. In the EVAL algorithm, we use an extremely simple principle: in an interval [a, b]
where f(a)f(b) < 0 and f is continuous, there exists c ∈ (a, b) such that f(c) = 0. This is known
as the Bolzano Theorem, a special case of the Intermediate Value Theorem. For this reason, the
EVAL algorithm could be called the “Bolzano method”. These predicates represent a progression
of decreasing strength:

STURM > DESCARTES > BOLZANO (1)

Sturm is the strongest predicate and is algebraic in nature, working only for polynomials. Bolzano is

1

the weakest but is more general, being purely numerical in nature. The computational complexity
of the predicates also decreases in this sequence. This may work to the advantage of simpler
predicates due to the trade off between the number of subdivisions and the complexity of each step.
Thus, the Descartes method is empirically faster than Sturm for a wide range of inputs [16, 31],
even discounting the overhead of computing the Sturm sequence. This difference is attributable to
the cheaper Descartes predicate because the number of subdivisions in Sturm method is minimal
among all subdivision methods. In [6] we offer evidence that evaluation-based methods might
similarly be competitive with the Descartes method.

For the purposes of complexity analysis, however, we find a reverse ordering in (1): the simpler
predicates are harder to analyze. It is standard to judge these algorithms using the benchmark
problem of isolating all the real roots of an integer polynomial of degree d and logarithmic height L.
What is the size of the subdivision tree in terms of d and L? Davenport [10] proves that the tree size
is O(d(log d + L)) for the Sturm predicate. The Descartes method is also O(d(log d + L)) but more
subtle to show [15]. In this paper, we prove that the EVAL has a complexity of O(d3(log d + L)).

¶1. Overview of Paper. In Section 2, we describe the Plantinga-Vegter computational model
and the algorithm EVAL. In Section 3, we describe the general framework of “stopping functions”
for analyzing the complexity of EVAL. In Section 4, we give our main result, an a priori tree
size bound of O(d3(log d + L)) on EVAL. In Section 5, we bound the gamma integral which is a
component of the main bound. We conclude in Section 6. An appendix gives missing proofs and
some additional material.

¶2. Additional Background. Root isolation has a large literature; we touch on a few results.
It appears that evaluation-based methods, in order to be complete, are necessarily tied to

interval arithmetic. Other examples of evaluation-based root isolation are based on interval forms
of the Newton operator. Moore, Krawcyk and others have provided such algorithms [24]. Mitchell
[23] presented a form of EVAL, noting that his algorithm is simpler than Moore’s [24]. His version is
incomplete because he implicitly adopted the numerical analyst’s view of fixed precision arithmetic.
Snyder [5] introduced interval-based methods for meshing which recursively solves the problem on
the boundary of subdivision boxes. Kearfott [18, 17] has provided empirical evaluation of Newton-
type subdivision algorithms, and also provided a complexity analysis. Evaluation bounds were used
in [7] for numerical solution of zero-dimensional triangular systems.

A comprehensive treatment of the Descartes method including its historical roots is available in
an upcoming thesis of Eigenwillig [13]. The Descartes method can be developed into algorithms such
as the Bisection Algorithm of Collins-Akritas [8] or the Continued Fraction Algorithm [1, 35, 34].
The Bernstein polynomial approach [20, 26] may also be viewed as a variant of the Descartes
method [15]. Rouillier and Zimmermann [31] describe various improvements on the basic algorithm
of [8]. The almost optimality of its tree size was established in [15]. The Descartes method can be
generalized to a setting where coefficients are viewed as on-demand bit-streams [14].

2 An Evaluation-based Algorithm.
Fix f to be a square-free polynomial in R[X] of degree d. In the Plantinga-Vegter computational
model, we need the box (i.e., interval) version of f and its derivatives.

¶3. Box Functions. For any set S ⊆ R, let S denote the set of closed intervals in S. If I = [a, b],
let m(I) denote the midpoint (a+b)/2 of I and let w(I) denote the width b−a of I. A partition
of I is a finite subset P ⊆ I such that the union of the intervals in P is equal to I, and any two
intervals in P have disjoint interiors. The size #(P) of P is the number of intervals in P . Our
partitions of I mostly come from repeated bisections: for any interval X = [a, b], the term children

2

of X refers to the two intervals [a, m(X)], [m(X), b]. Note that {X} and {[a, m(X)], [m(X), b]} are
both partitions of X. In general, if P is a partition of I, and X ∈ P , then to bisect X in P means
to replace X by its two children in P . As a result #(P) increases by 1. A partition of I that arises
from repeated bisections of the initial {I} is called a subdivision of I.

A box function for f over I is a function of the form f : I → R such that for all X ∈ I,
we have f(X) ⊆ f(X). f(X) is the set extension of f where f(S) = {f(a) : a ∈ S} for any set
S ⊆ R. To ensure the termination of the EVAL algorithm, we need f to be continuous, i.e., if for
X1, X2, · · · a decreasing sequence sequence of intervals, i.e. Xi ⊇ Xi+1 of finite width in I such
that ∩Xi = {p}, then f(Xi) → {f(p)}.
¶4. The Evaluation Algorithm. We now present the Evaluation Algorithm, EVAL, also
discussed in [6]. Given an interval I = [a, b], EVAL will isolate all the real roots of f(x) in the
open interval (a, b). Specifically, it will output a sequence of isolating intervals, one for each real
root of f in the interval (a, b). The isolating intervals are either [c, c], implying that f(c) = 0 or
[c, d], implying that there is a root in (c, d). The idea is to maintain a subdivision P of I. Initially,
P = {I}. The algorithm operates in two phases.

Phase 1: Repeatedly bisect each X ∈ P until each interval X in P is terminal. By this, we
mean that one of the following two conditions hold for X:

C0(X) : 0 6∈ f(X) (2)

C1(X) : 0 6∈ f ′(X) (3)

If f(m(X)) = 0, then we also output [m(X), m(X)].
Phase 2: Let PI denote the subdivision of I at the end of Phase 1. For each X ∈ PI , we take

one of two actions: If C0(X) holds, we discard X. If C1(X) holds, we evaluate the signs of f at
the two end points of X = [c, d]. If f(c)f(d) < 0 we output (c, d), else we discard X. Let P ′

I be the
set of output intervals. Proving correctness of this algorithm amounts to showing that P ′

I is a set
of isolating intervals for the roots of f in I.

The first phase of the algorithm terminates by the continuity of f and f ′ and the fact that all
zeros of f in [a, b] are simple. We can easily determine if the endpoints of I are roots by evaluation
to extend the algorithm to find all roots of f in the closed interval [a, b]. When f is an integer
polynomial, EVAL can be implemented exactly using bigfloats.

An important property of the EVAL algorithm is that it only depends on the existence of box
functions for f and f ′, and ability to evaluate sign of f, f ′ at dyadic points. For many C1 functions,
these conditions are satisfied. So the EVAL algorithm can be used on such functions to isolate its
roots in an interval I, provided I contains a finite number of roots, all simple.

¶5. The Centered Interval Functions. For our complexity results, we need additional con-
vergence properties of the box functions. So we assume f is the centered form box function
[29], defined as follows:

f(X) :=
d∑

i=0

|f (i)(m(X))|
i!

(
w(X)

2
[−1, 1]

)i

. (4)

where f = deg f and
(

w(X)
2 [−1, 1]

)i
is an interval arithmetic expression. To quantify the range of

our box functions, for any interval X, define

KX = KX(f) := max
a∈X

d∑

i=1

|f (i)(a)|
i!

(w(X))i−1 . (5)

3

Also, we write K ′
X for KX(f ′) where f ′ = f (1) is the first derivative. Note that X ⊆ Y implies

KX ≤ KY . Call KX a Lipschitz constant as it can be seen that |f(a) − f(b)| ≤ KX |a − b| for
a, b ∈ X follows from the following proposition:

Proposition 1. Let Y ⊆ X be an interval, then:
(i) f(Y) ⊆ f(X).
(ii) w(f(Y)) ≤ KX · w(Y).
(iii) w(f(Y)) − w(f(Y)) ≤ KX · w(Y)2.

Property (i) shows that f is inclusion isotone and Property (iii) is called quadratic conver-
gence for f . However, we do not use this property.

Our goal is to find an upper bound for the size #(PI) of PI from the EVAL algorithm. #(PI)
is one more than the number of bisection steps. We begin our analysis with a simple observation:

Lemma 2. If a ∈ Y ⊆ X and 0 ∈ f(Y) then w(Y) ≥ |f(a)|/KX .

Proof. Since {0, f(a)} ⊆ f(Y), we have w(f(Y)) ≥ |f(a)|. By Proposition 1(ii), w(Y) ≥
w(f(Y))/KX and hence w(Y) ≥ |f(a)|/KX . Q.E.D.

3 General Framework of Stopping Functions.
Let g : R → R be a continuous function. If X is any interval, we will call X big (relative to g) if

w(X) ≥ 1

2
max
a∈X

{g(a)}. (6)

For convenience, we say X is large (relative to g) if w(X) ≥ maxa∈X{g(a)}. Clearly, if X is large,
then X is big, and both of the children of X are also big. A partition P of I is big if each X ∈ P
is big. Our key definition is this: call g a stopping function (over an interval I) if any interval
X ⊆ I that is not large relative to g must be terminal. Recall that the notion of “terminal interval”
is based on the EVAL algorithm. The following is immediate:

Lemma 3. If g1, g2 are stopping functions over I, then so is max {g1, g2}.

We remark that this simple device of using max {g1, g2} is useful for achieving complexity
bounds; it acts as a regularizing device when we integrate.

Lemma 4. If P is a big partition of I relative to stopping function g, then its size is at most

S := 2

∫

I

1

g(a)
da (7)

In addition, if g is never zero in I, then the integral S is finite.

Proof. If g is never zero, 1/g is continuous and never infinite. As I is compact and 1/g is contin-
uous, 1/g is bounded in I, thus the integral is finite. S can be rewritten as S =

∑
X∈P

∫
X

2
g(a)da.

It remains to show that this sum is at least #P . It suffices to show that each summand is at least
1. For any X ∈ P , if we choose c = arg maxa∈X{g(a)}. Then we have

∫

X

2

g(a)
da ≥

∫

X

2

g(c)
da = w(X) · 2

g(c)
≥ 1, (8)

where the last step uses the fact that X is big. Q.E.D.

To apply these lemmas, consider the following conceptual Procedure G (‘G’ for generic). We
say “conceptual” because it is not meant to be implemented, but to be used as an analysis tool.

4

Procedure G:
Input: interval I, and a stopping function g
Output: partition P of I

If P is not large relative to g
Return P = {I}.

Initialize a queue Q = {I}, and an empty partition P = ∅.
(A) While Q is non-empty

Remove any J from Q
(B) If J is not large, insert J into P
(C) Else bisect J into J0, J1 and insert them into Q.

Return P .

¶6. Subdivision Tree. Let Tg = Tg(I) denote the subdivision tree rooted at I that is
constructed by Procedure G on input I, g. Thus Tg is a binary tree whose nodes are subintervals
of I, and each non-leaf J has two children obtained by bisection. Moreover, the set of leaves of Tg

forms a partition Pg = Pg(I) of I. Procedure G is essentially EVAL in which we have used g in
place of the normal termination criteria based on C0 and C1 ((2) and (3)).

Theorem 5. Let Tg = Tg(I) be the subdivision tree constructed by Procedure G using interval I
and stopping function g.
(i) Then Tg(I) is a refinement of the corresponding subdivision tree produced by EVAL.
(ii) If the set of leaves of Tg is Pg = Pg(I), then

#(Pg) ≤ max

{
1,

∫

I

2

g(a)
da

}
. (9)

Proof. (i) By inclusion isotonicity, if an interval J is terminal, then any subinterval of J must
also be terminal. Since g is a stopping function, if a node J ⊆ I is a leaf of Tg, then J is terminal.
Clearly, EVAL must terminate at some node J ′ along the path from I to J ; possibly J ′ = J . Thus
the tree from EVAL is a subtree of Tg. (ii) If #(Pg) = 1, the bound (9) is immediate. Assuming
#(Pg) > 1, then I is non-terminal and so I is must be large. Consider the while loop (Line A in
Procedure G): we have the invariant that P ∪ Q is a partition of I, P contains only big intervals
and Q contains only children of large intervals. Line B transfers big intervals of Q into P , and Line
C converts a large interval into two large or big intervals for Q. Thus the loop invariant is thus
preserved by Lines B and C. At termination, Q is empty and P becomes our output Pg(I). Thus
Pg(I) is a big partition of I. Now Lemma 4 implies that #(Pg) ≤

∫
I

2
g(a)da. Q.E.D.

Thus we see the utility of a stopping function g: it is an analysis tool for bounding the complexity
of EVAL. We next investigate possible g’s and discuss the information that each provides.

So far, we have not seen any explicit stopping functions. We now give a first example by defining
for X ∈ I,

fX(a) := max

{ |f(a)|
KX

,
|f ′(a)|
K ′

X

}
. (10)

It is easy to show that g = fI (i.e. X = I in (10)) is a stopping function, as given in the appendix.
The use of the “global constant” KI in this stopping function limits its usefulness; its main merit
lies in its simplicity. The Appendix introduces more useful stopping functions, based on local
Lipschitz constants Ka (a ∈ I).

4 An Integral Bound based on Refined Stopping Function
In the remainder of this paper, we will use stopping functions to analyze the complexity of the
EVAL algorithm for the benchmark problem: f ∈ Z[X] square free of height ‖f‖ ≤ 2L and the

5

endpoints of I = [a, b] are integers. We may assume that a, b ≤ 2L since all real zeros of f lie in
this range [39]. We also assume that f ′ is square free; this removal assumption will be treated in
the full paper.

The height ‖f‖ is the maximum absolute value of the coefficients of f and the logarithmic height
is log ‖f‖. In particular, we want a priori complexity bounds in terms of d and L

The bound given in this section is an a priori worst-case bound. Thus, it is non-adaptive, and
does not replace the utility of adaptive integral bounds such as Theorem 5, which are adapted to
the individual f and I. Our main result is the following:

Theorem 6 (Main Result). The number of bisections performed by EVAL on input f and an
interval I is O(d3(log d + L)).

Making the mild assumption of L ≥ log d, the bound in this theorem is becomes O(d3L). This
should be contrasted with the optimal bound of O(dL) known for Descartes method [15].

Our proof exploits the “gamma function” that is central in Smale’s theory of point estimates
[3, 36]. This is defined as

γ(x) = γf (x) := max
i≥2

(
|f (i)(x)|
i!|f ′(x)|

)1/(i−1)

. (11)

Intuitively, γ(x)−1 is the radius of Newton convergence of f at x. Write γ′(x) for γf ′(x); in the
literature, γ′(x) is also written as γ2(x). Thus, γ′(x) should not be confused with the derivative of
γ(x) which is not used in this paper.

Lemma 7. Let b ∈ J such that w(J) ≤ 1
2γ(b) . Then KJ ≤ 2d|f ′(b)|.

This is proved by replacing each f (i)(a) in the definition of KJ (5) by its Taylor expansion at b.
We now introduce the stopping function that we use in our analysis:

G(a) := min

{
1

2γ(a)
,

|f(a)|
2d|f ′(a)|

}
. (12)

Also let G′(a) denote the function analogous to G(a) based on f ′ instead of f . Again, G′(a) is not
the derivative of G.

Lemma 8. G is a stopping function.

Proof. Suppose J is not large relative to G. This means there exists b ∈ J such that w(J) < G(b).
We must show that J is terminal. It suffices to show that C0(J) holds. Since w(J) < G(b), we

have w(J) < |f(b)|
2d|f ′(b)| ≤

|f(b)|
KJ

where the second inequality follows from Lemma 7. The conclusion

that C0(J) holds now follows from Lemma 2. Q.E.D.

By a similar argument, G′(a), and hence max {G(a), G′(a)}, is a stopping function. We can
now use the function g(a) := max {G(a), G′(a)} in our generic Procedure G, as in Theorem 5.
However, this function g need not lead to a finite integral bound. Specifically, the integral becomes
unbounded when G(a) = G′(a) = 0. This is addressed in the next paragraph.

¶7. Avoiding Zeros of ff ′. By definition, G(a) ≥ 0 and G′(a) ≥ 0 for all a. Now, G(a) = 0
iff f(a) = 0 or f ′(a) = 0. Similarly, G′(a) = 0 iff f ′(a) = 0 or f ′′(a) = 0. Thus, if the integral∫

da
max{G(a),G′(a)} of Theorem 5 is taken over a set of intervals I ′ ⊆ I that avoid the zeros of f and

f ′, the integral will be bounded. We next show how to construct such a set I ′.

6

For each zero α ∈ Zero(f), let ρ(α) denote the distance from α to the nearest zero of Zero(f)
different from α. Since f is square-free, ρ(α) > 0. Similarly, if β ∈ Zero(f ′), let ρ′(β) be
the corresponding function for f ′. The ρ′ function is also positive as f ′ and are square free (by
assumption). Since f and f ′ have no roots in common, we can merge these two ρ functions into
one, ρ : Zero(ff ′) → R>0 where ρ(α) = ρ(α) if f(α) = 0 and ρ(α) = ρ′(α) if f ′(α) = 0.

We now provide a conceptual Procedure H, viewed as a two-staged refinement of Procedure G:

Procedure H:
Input: interval I
Output: partition P2 of I

Start with the partition P = {I}.
Stage 1:

While there is a J ∈ P satisfying (a) or (b) below, split J in P :
(a) #(J ∩ Zero(ff ′)) > 1.

(b) #(J ∩ Zero(ff ′)) = 1, and w(J) ≥ min
{

B(α), ρ(α)
4d(d−1)

}

where α ∈ Zero(ff ′) ∩ J and B(α) is a technical bound discussed below
Stage 2:

For each J ∈ P , partition J using Procedure G.

¶8. Partitions P1 and P2 of I. We consider two partitions of I: Let P1 be the partition at
the end of Stage 1, and P2 be the partition at the end of Stage 2. An interval J ∈ P1 is said to be
special if #(J ∩ Zero(ff ′)) = 1 and non-special otherwise. Let the number of special intervals
be sI . Clearly, sI ≤ 2d− 1. Let P ′

1 ⊆ P1 denote the set of non-special intervals of P1 and I ′ =
⋃

P ′
1

is the union of all non-special intervals. The following lemma will be shown in the next paragraph:

Lemma 9. If J ∈ P1 is special then it is terminal,

In view of Lemma 9, we have the following bound on P2 the final partition of Procedure H:

#(P2) ≤ sI +
∑

J∈P ′

1

max

{
1,

∫

J

2da

max {G(a), G′(a)}

}
≤ sI +

∑

J∈P ′

1

1 + 2
∑

J∈P ′

1

∫

J

da

max {G(a), G′(a)}

≤ #(P1) + 2

∫

I′

da

max {G(a), G′(a)} . (13)

Below we will show that #(P1) = O(d(log d+L)), and in the next section, we show
∫
I′

da
max{G(a),G′(a)} =

O(d3(log d + L)) (Theorem 14). These calculations will complete the proof of our main theorem.

¶9. Proof that Special Intervals are Terminal. We now prove Lemma 9. Let J be a special
interval. Then there is a unique α ∈ J ∩ Zero(ff ′). There are two cases: when α ∈ Zero(f), we
show that C1(J) holds, and when α ∈ Zero(f ′), we show that C0(J) holds. We now define the
technical bound B(α) in Procedure H. Define

B(α) =

{
∞ if α is zero of f√

|f(α)|
3|f ′′(α)| if α is zero of f ′ . (14)

The technical bound ρ(α)
4d(d−1) is designed to bound w(J) by 1

8γ(α) or 1
8γ′(α) . This follows from an

application of the following bound from [37]:

Proposition 10. 1
γ(α) > 2ρ(α)

d(d−1) .

7

Now we can use this bound on w(J) to ensure that C0 or C1 hold; the full calculations can be
found in the appendix.
(i) α ∈ Zero(f): Since B(α) = ∞, it plays no role in the stopping condition (b) of Procedure H.
Since there is a zero of f in J , we require C1(J) to hold. By Lemma 30, C1(J) would hold provided

w(J) < |f ′(α)|
K′

J
. Using the bound on w(J), a Taylor expansion about α, and the triangle inequality

one can show K ′
J ≤ 7

9
|f ′(α)|
w(J) , giving the desired bound. See Lemma 28.

(ii) α ∈ Zero(f ′): By Lemma 30, C0(J) would hold provided w(J) < |f(α)|
KJ

. Again, using the bound
on w(J), a Taylor expansion about α, and the triangle inequality we see that KJ ≤ 3|f ′′(α)|w(J),
giving the bound when combined with the additional condition supplied by B(α). See Lemma 29.

¶10. Bounding the Size of P1. We will bound the size of the partition P1 as follows:

Lemma 11. #(P1) = O(d(log d + L)).

For this purpose, we focus on the (at most) 2d − 1 special intervals. Consider the subdivision
tree T1 whose leaves are labeled by P1. Clearly, #(T1) = 2#(P1) − 1. A leaf is said to be special
iff it is labeled by a special interval. Let T2 be the result of pruning all non-special leaves from T1.
Every non-special leaf has a sibling which is either special or an interior node, and the root has no
sibling. Hence #(T2) ≥ #(T1)−1

2 = #(P1) − 1. Thus, we now want to upper bound #(T2).
The external path length, denoted EPL(T), of a tree T is the sum of lengths of paths from

the root to each leaf of T (Knuth [19, p. 399]). Then, #(T2) ≤ EPL(T2) + 1. Lemma 11 follows
from:

Lemma 12. EPL(T2) = O(d(log d + L)).

In some subsequent application, we will need the stronger result of Lemma 12 instead of
Lemma 11. To prove Lemma 12, let S = Zero(f) ∩ I and S′ = Zero(f ′) ∩ I where I is the
input interval. Each leaf of T2 is associated with a unique α ∈ S ∪ S′; the corresponding interval
will be denoted Iα. Let T3 (resp., T ′

3) denote the subtree of T2 comprising all the paths from a
leaf Iα where α ∈ S (resp., α ∈ S′) to the root of T2. Clearly EPL(T2) = EPL(T3) + EPL(T ′

3).
Moreover,

EPL(T3) ≤
∑

α∈S

lg(w(I)/w(Iα)), EPL(T ′
3) ≤

∑

α∈S′

lg(w(I)/w(Iα)),

where lg = log2. Recall our assumption that w(I) ≤ 2L+1. Hence

EPL(T3) ≤ d(L + 1) −
∑

α∈S

lg w(Iα) (15)

But w(Iα) ≥ 1
2 min

{
B(α), ρ(α)

4d(d−1)

}
, by our stopping condition in Procedure H. If α ∈ S, this

reduces to w(Iα) ≥ 1
2

ρ(α)
4d(d−1) , and hence we obtain:

− lg
∏

α∈S

w(Iα) ≤ − lg
∏

α∈S

ρ(α)

8d(d − 1)
= O(d log d + dL). (16)

The last relation is from [12, p. 126]. Combining (15,16), we get EPL(T3) = O(d log d + dL).

8

Next, we consider the case α ∈ S′. In this case, B(α) =
√

|f(α)|
3|f ′′(α)| . Therefore w(Iα) ≥

min {B(α)/2, ρ′(α)/8d(d − 1)}. We split S′ into S′
0∪S′

1 where α ∈ S′
0 iff min {B(α)/2, ρ′(α)/8d(d − 1)} =

B(α)/2. Thus
∏

α∈S′ w(Iα) ≥∏α∈S′
0
B(α)

∏
α∈S′

1

ρ′(α)
8d(d−1) . We have

− lg
∏

α∈S′
1

ρ′(α)

8d(d − 1)
= O(d log d + dL) (17)

as in (16). The final bound we need is

− lg
∏

α∈S′
0

√
|f(α)|

3|f ′′(α)| = O(d log d + dL). (18)

From (17) and (18), we see that EPL(T ′
3) = O(d log d + dL), completing the proof of Lemma 12.

¶11. The Evaluation Bound. The final bound (18) above comes from an application of the
following evaluation bound.

Theorem 13. Let φ(x), η(x) ∈ C[x] be complex polynomials of degrees m and n. Let β1, . . . , βn be
all the zeros of η(x).
(a)

n∏

i=1

|φ(βi)| ≤ ((m + 1)‖φ‖)n

(
M(η)

lc(η)

)m

. (19)

(b) Suppose there exists relatively prime F, H ∈ Z[x] such that F = φφ, H = ηη for some φ, η ∈ C[x].
If the degrees of φ and η are m and n, then

n∏

i=1

|φ(βi)| ≥
1

lc(η)m · ((m + 1)‖φ‖)n M(η)m ·
(
(m + 1)‖φ‖

)n+n
M(H)m

. (20)

This theorem has independent interest. Its proof and applications (in particular, to the bound
(18)) are in the appendix.

5 Bounding the Integral
∫

I ′
dx

max{G(x),G′(x)}.
This section bounds the following expression from (13), used in the main result (Theorem 6):

Theorem 14.
∫
I′

dx
max{G(x),G′(x)} =

∫
I′

dx
G(x) = O(d3(log d + L)).

The trick in Theorem 14 is to replace the first integral by the second integral, which involves
only G(x) but not G′(x). The second integral is finite because I ′ excludes both zeros of f and f ′.
Next, we bound the second integral by a sum of two integrals:

1

2

∫

I′

dx

G(x)
=

∫

I′
max

{
γ(x),

d|f ′(x)|
|f(x)|

}
dx ≤

∫

I′
γ(x)dx + d

∫

I′

∣∣∣∣
f ′(x)

f(x)

∣∣∣∣ dx = Γ + dR

where Γ :=
∫
I′ γ(x)dx (“gamma integral”) and R :=

∫
I′

∣∣∣f
′(x)

f(x)

∣∣∣ dx (“logarithmic-derivative inte-

gral”). The next two lemmas provide bounds on these integrals:

Lemma 15. R =
∫
I′

∣∣∣f
′(x)

f(x)

∣∣∣ dx = O(d2(log d + L)).

9

Lemma 16. Γ =
∫
I′ γ(x)dx = O(d2(log d + L)).

Thus Theorem 14 follows from Lemmas 15 and 16.
The proof of Lemma 15 is in the appendix. The basic idea is to write I ′ as a union of intervals,

I ′ =
⋃k

i=0[ai, bi] and note that f ′(x)/f(x) has constant sign on each interval [ai, bi]. Thus so we are

integrating the logarithmic derivative of f , with the result
∫ bi

ai
|f ′(x)/f(x)|dx = log |f(bi)/f(ai)|.

We then apply the evaluation bound on log
∏k

i=0 |f(bi)| and log
∏k

i=0 |f(ai)|, exploiting the fact
that the ai’s and bi’s from Procedure H have nice bounds.

In the rest of this section, we outline the proof of Lemma 16 which bounds the gamma integral.
Let β1, · · · , βd be the foots of f ′. The gamma function satisfies a key inequality:

Lemma 17.

Γ =

∫

I′
γ(x)dx ≤

d∑

i=2

∫

I′

dx

2|x − βi|

The proof exploits the relation f (i)(x)/f ′(x) =
∑′

(j2,...,ji)

∏i
ℓ=2

1
x−βjℓ

, where jℓ’s are taken from

the set {1, . . . , d − 1}, and the prime in the summation indicates that the jℓ’s are pairwise distinct.
Next, we write βi = ri + isi where ri = Re(βi) and si = Im(βi) are the real and imaginary

parts, and i =
√
−1. Furthermore, assume si = 0 iff i ≤ k, so all the real roots of f ′ are given

by r2, . . . , rk. In the appendix, we construct two integer polynomials R(X) (Lemma 22) and S(X)
(Lemma 23) of degrees ≤ d2 whose zero set contains ri and si (resp.). We split the summation
from Lemma 17 into the real and complex parts:

Lemma 18 (Real Part).
k∑

i=2

∫

I′

dx

2|x − ri|
= O(d2(log d + L)).

We outline the proof used in the appendix: note that I ′ is equal to I minus the special intervals.
The special intervals contain the real zeros of f and of f ′. Let I ′′ be I minus the special intervals
that contain real zeros of f . Since I ′ ⊆ I ′′, it is enough to bound the integral of Lemma 18
over I ′′. If [aj , bj] (j = 0, . . . , ℓ) is a connected component of I ′′, the integral

∫ bj

aj
dx/|x − ri| is

log |aj − ri|/|bj − ri|. Summing over all i and j, we obtain the bound of the form
∑

j

∑
i log |aj −

ri|/|bj − ri| =
∑

j log |ΦR(aj)/ΦR(bj)| where φR(X) =
∏k

i=2(X − ri). We can now apply the
evaluation bound of Theorem 13.

For the complex part, we obtain the better bound:

Lemma 19 (Complex Part).

d∑

i=k+1

∫

I′

dx

2|x − βi|
= O(d(d + L)).

The proof in the appendix uses a very similar argument as for the real part.
This completes the proof of Lemma 16.

6 Conclusion
In this paper, we introduced novel techniques for analyzing the complexity of evaluation-based
algorithms. Our bounds are based on an integral formula (9) and an amortized evaluation bound
(Appendix). This can be viewed as a continuous amortization. We pose several open problems:
(a) Is the inherent complexity of EVAL Θ(d2L) or Θ(dL) in the benchmark case (with L ≥ lg d)?
(b) Extend integral analysis to the Plantinga-Vegter algorithms in 2- and 3-D.

10

References

[1] A. G. Akritas and A. Strzeboński. A comparative study of two real root isolation methods.
Nonlinear Analysis:Modelling and Control, 10(4):297–304, 2005.

[2] A. Alesina and M. Galuzzi. A new proof of Vincent’s theorem. L’Enseignement Mathémathique,
44:219–256, 1998.

[3] L. Blum, F. Cucker, M. Shub, and S. Smale. Complexity and Real Computation. Springer-
Verlag, New York, 1998.

[4] J.-D. Boissonnat, D. Cohen-Steiner, B. Mourrain, G. Rote, and G. Vegter. Meshing of surfaces.
In Boissonnat and Teillaud [5]. Chapter 5.

[5] J.-D. Boissonnat and M. Teillaud, editors. Effective Computational Geometry for Curves and
Surfaces. Number 59 in Mathematics and Visualization. Springer, 2006.

[6] M. Burr, V. Sharma, and C. Yap. Evaluation-based root isolation, Nov. 2007. In preparation.

[7] J.-S. Cheng, X.-S. Gao, and C. K. Yap. Complete numerical isolation of real zeros
in general triangular systems. In Proc. Int’l Symp. Symbolic and Algebraic Computa-
tion (ISSAC’07), pages 92–99, 2007. Waterloo, Canada, Jul 29-Aug 1, 2007. DOI:
http://doi.acm.org/10.1145/1277548.1277562.

[8] G. E. Collins and A. G. Akritas. Polynomial real root isolation using Descartes’ rule of signs.
In R. D. Jenks, editor, Proceedings of the 1976 ACM Symposium on Symbolic and Algebraic
Computation, pages 272–275. ACM Press, 1976.

[9] T. H. Corman, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms. The
MIT Press and McGraw-Hill Book Company, Cambridge, Massachusetts and New York, second
edition, 2001.

[10] J. H. Davenport. Computer algebra for cylindrical algebraic decomposition. Tech. Rep., Royal
Inst. of Technology, Dept. of Numer. Analysis and Computing Science, Stockholm, Sweden,
1985. Reprinted as Tech. Rep. 88-10, U. of Bath, School of Math. Sciences, Bath, England.
URL http://www.bath.ac.uk/ masjhd/TRITA.pdf.

[11] Z. Du, V. Sharma, and C. Yap. Amortized bounds for root isolation via Sturm sequences. In
D. Wang and L. Zhi, editors, Proc. Internat. Workshop on Symbolic-Numeric Computation,
pages 81–93, School of Science, Beihang University, Beijing, China, 2005. Int’l Workshop on
Symbolic-Numeric Computation, Xi’an, China, Jul 19–21, 2005.

[12] Z. Du, V. Sharma, and C. Yap. Amortized bounds for root isolation via Sturm sequences. In
D. Wang and L. Zhi, editors, Symbolic-Numeric Computation, Trends in Mathematics, pages
113–130. Birkhäuser Verlag AG, Basel, 2007. Proc. Int’l Workshop on Symbolic-Numeric
Computation, Xi’an, China, Jul 19–21, 2005.

[13] A. Eigenwillig. Real Root Isolation for Exact and Approximate Polynomials using Descartes’
Rule of Signs. PhD thesis, University of Saarlandes, (to appear) May 2008.

[14] A. Eigenwillig, L. Kettner, W. Krandick, K. Mehlhorn, S. Schmitt, and N. Wolpert. A
Descartes algorithm for polynomials with bit stream coefficients. In 8th Int’l Workshop on
Comp.Algebra in Sci.Computing (CASC 2005), pages 138–149. Springer, 2005. LNCS 3718.

11

[15] A. Eigenwillig, V. Sharma, and C. Yap. Almost tight complexity bounds for the Descartes
method. In Proc. Int’l Symp. Symbolic and Algebraic Computation (ISSAC’06), 2006. Genova,
Italy. Jul 9-12, 2006.

[16] J. Johnson. Algorithms for polynomial real root isolation. In B. Caviness and J. Johnson, edi-
tors, Quantifier Elimination and Cylindrical Algebraic Decomposition, Texts and monographs
in Symbolic Computation, pages 269–299. Springer, 1998.

[17] R. B. Kearfott. Abstract generalized bisection with a cost bound. Math.Comp., 49:187–202,
1987.

[18] R. B. Kearfott. Empirical evaluation of innovations in interval branch and bound algorithms
for nonlinear systems. SIAM J. Sci.Comput., 18(2):574–594, 1997.

[19] D. E. Knuth. The Art of Computer Programming: Fundamental Algorithms, volume 1.
Addison-Wesley, Boston, 2nd edition edition, 1975.

[20] J. M. Lane and R. F. Riesenfeld. Bounds on a polynomial. BIT, 21:112–117, 1981.

[21] T. Lickteig and M.-F. Roy. Sylvester-Habicht sequences and fast Cauchy index computation.
J. of Symbolic Computation, 31:315–341, 2001.

[22] W. E. Lorensen and H. E. Cline. Marching cubes: A high resolution 3D surface construc-
tion algorithm. In M. C. Stone, editor, Computer Graphics (SIGGRAPH ’87 Proceedings),
volume 21, pages 163–169, July 1987.

[23] D. Mitchell. Robust ray intersection with interval arithmetic. In Graphics Interface’90, pages
68–74, 1990.

[24] R. E. Moore. Interval Analysis. Prentice Hall, Englewood Cliffs, NJ, 1966.

[25] B. Mourrain and J.-P. Pavone. Subdivision methods for solving polynomial equations. Tech-
nical Report 5658, INRIA, 2005.

[26] B. Mourrain, F. Rouillier, and M.-F. Roy. The Bernstein basis and real root isolation. In
J. E. Goodman, J. Pach, and E. Welzl, editors, Combinatorial and Computational Geometry,
number 52 in MSRI Publications, pages 459–478. Cambridge University Press, 2005.

[27] S. Plantinga. Certified Algorithms for Implicit Surfaces. Ph.D. thesis, Groningen University,
Institute for Mathematics and Computing Science, Groningen, Netherlands, Dec. 2006.

[28] S. Plantinga and G. Vegter. Isotopic approximation of implicit curves and surfaces. In Proc.
Eurographics Symposium on Geometry Processing, pages 245–254, New York, 2004. ACM
Press.

[29] H. Ratschek and J. Rokne. Computer Methods for the Range of Functions. Horwood Publishing
Limited, Chichester, West Sussex, UK, 1984.

[30] D. Reischert. Asymptotically fast computation of subresultants. In ISSAC 97, pages 233–240,
1997. Maui, Hawaii.

[31] F. Rouillier and P. Zimmerman. Efficient isolation of [a] polynomial’s real roots. J. Computa-
tional and Applied Mathematics, 162:33–50, 2004.

12

[32] R. Seidel and N. Wolpert. On the exact computation of the topology of real algebraic curves.
In Proc. 21st ACM Symp. on Comp. Geometry, pages 107–116, 2005. Pisa, Italy.

[33] J. Sellen, J. Choi, and C. Yap. Precision-sensitive Euclidean shortest path in 3-Space. SIAM J.
Computing, 29(5):1577–1595, 2000. Also: 11th ACM Symp. on Comp. Geom., (1995)350–359.

[34] V. Sharma. Complexity Analysis of Algorithms in Algebraic Computation. Ph.D. thesis,
New York University, Department of Computer Science, Courant Institute, Dec. 2006. From
http://cs.nyu.edu/exact/doc/.

[35] V. Sharma. Complexity analysis of real root isolation using continued fractions. In Proc. Int’l
Symp. Symbolic and Algebraic Computation (ISSAC’07), 2007. Waterloo, Canada, Jul 29-Aug
1, 2007.

[36] V. Sharma, Z. Du, and C. Yap. Robust approximate zeros. In G. S. Brodal and S. Leonardi,
editors, Proc. 13th European Symp. on Algorithms (ESA), volume 3669 of Lecture Notes in
Computer Science, pages 874–887. Springer-Verlag, Apr. 2005. Palma de Mallorca, Spain, Oct
3-6, 2005.

[37] V. Sharma and C. Yap. Complexity of strong root isolation, 2007. In preparation.

[38] B. T. Stander and J. C. Hart. Guaranteeing the topology of an implicit surface polygonalization
for interactive meshing. In Proc. 24th Computer Graphics and Interactive Techniques, pages
279–286, 1997.

[39] C. K. Yap. Fundamental Problems of Algorithmic Algebra. Oxford University Press, 2000.

13

APPENDIX

7 An Amortized Evaluation Bound

Our main complexity result is based on two distinct kinds of bounds. The first is the usual Mahler-
Davenport bounds (e.g., [15]) that involves root separation bounds. But like [7], we need another
class of bounds that we call evaluation bounds. Evaluation bounds refer to upper and lower
bounds on |f(α)| where f ∈ C[X] and α ∈ C. Of course, lower bounds are only possibly with the
additional assumption that f, α are algebraic. Our bounds are described as “amortized bounds”
because they bound a product of |f(α)|’s. Remark that the evaluation bound here is distinct from
the multivariate version used in [7].

Let f =
∑d

i=t ciX
i ∈ C[X] (t ≤ d) where c0ct 6= 0. Recall that the height of f is ‖f‖ =

maxd
i=t |ci|. Let lc(f) = |cd| and tc(f) = |ct| (resp.) denote the absolute values of the leading

coefficient and tail coefficient (i.e., smallest non-zero coefficient) of f . We write res(f, g) for the
resultant of two polynomials f, g. In addition to heights, we use the Mahler measure of polynomials,
defined as M(f) = lc(f)M1(f) where

M1(f) :=
d∏

i=1

max {1, |αi|}

where α1, . . . , αd are all the complex roots of f .
We restate Theorem 13 here; we add an additional clause (b’) which is just a variation of (b).

Theorem 13. Let φ(X), η(X) ∈ C[X] be complex polynomials of degrees m and n. Let β1, . . . , βn

be all the zeros of η(X).
(a)

n∏

i=1

|φ(βi)| ≤ ((m + 1)‖φ‖)n

(
M(η)

lc(η)

)m

. (21)

(b) Suppose there exists relatively prime F, H ∈ Z[X] such that F = φφ, H = ηη for some φ, η ∈
C[X]. If the degrees of φ and η are m and n, then

n∏

i=1

|φ(βi)| ≥
1

lc(η)m · ((m + 1)‖φ‖)n M(η)m ·
(
(m + 1)‖φ‖

)n+n
M(H)m

. (22)

(b’) As alternative to (b), we also have:

n∏

i=1

|φ(βi)| ≥
1

lc(η)m · ((m + m + 1)‖F‖)n M(η)m+m ·
(
(m + 1)‖φ‖

)n
M(η)m

. (23)

Proof. (a) We may index the βi’s such that, for some n′ ∈ {0, 1, . . . , n}, we have |βi| ≥ 1 iff
i > n′. Now for i = 1, . . . , n′, we have |φ(βi)| < ‖φ‖(m + 1) and hence

n′∏

i=1

|φ(βi)| ≤ (‖φ‖(m + 1))n′

. (24)

This inequality is strict iff n′ > 0. For i = n′ + 1, . . . , n, we have |φ(βi)| ≤ ‖φ‖(m + 1)|βi|m. So

n∏

i=n′+1

|φ(βi)| ≤ (‖φ‖(m + 1))n−n′

(
n∏

i=n′+1

|βi|
)m

= (‖φ‖(m + 1))n−n′

(
M(η)

lc(η)

)m

(25)

14

Part (a) follows from (24) and (25).
(b) We have res(F, H) = lc(H)m+m

∏n+n
i=1 F (βi) where β1, . . . , βn, βn+1, . . . , βn+n are all the

zeros of H ([39, p. 167]). Thus,

1 ≤ |res(F, H)| = lc(H)m+m ·
n∏

i=1

|φ(βi)|
(

n+n∏

i=n+1

|φ(βi)| ·
n+n∏

i=1

|φ(βi)|
)

n∏

i=1

|φ(βi)| ≥ 1

lc(H)m+m ·∏n+n
i=n+1 |φ(βi)| ·

∏n+n
i=1 |φ(βi)|

≥ 1

lc(H)m+m · ((m + 1)‖φ‖)n (M(η)/ lc(η))m ·
(
(m + 1)‖φ‖

)n+n
(M(H)/ lc(H))m

,

where the last inequality is an application of the bound in part (a). Since lc(H) = lc(η) lc(η), the
last expression simplifies to the bound in the (20). Alternatively, we could proceed thus:

n∏

i=1

|φ(βi)| ≥ 1

lc(H)m+m ·∏n+n
i=n+1 |F (βi)| ·

∏n
i=1 |φ(βi)|

≥ 1

lc(H)m+m · ((m + m + 1)‖F‖)n (M(η)/ lc(η))m+m ·
(
(m + 1)‖φ‖

)n
(M(η)/ lc(η))m

.

which simplifies to the bound in (23). Q.E.D.

¶12. Proof of (18). We want to show

− lg
∏

α∈S′
0

√
|f(α)|

3|f ′′(α)| = O(d(log d + L)).

Since |S′
0| ≤ d, it suffices to show that − lg

∏
α∈S′

0

|f(α)|
|f ′′(α)| = O(d(log d+L)). This in turn reduces to

− lg
∏

α∈S′
0

|f(α)| = O(d(log d + L)) (26)

and
lg
∏

α∈S′
0

|f ′′(α)| = O(d(log d + L)). (27)

To prove (26), we substitute into Theorem 13(b) the following: let φ(X) = F (X) be equal to f ,
and let H(X) be equal to f ′(X) and also η(X) =

∏
α∈S′

0
(X − α). We use the fact that

M(η) ≤ M(f ′) ≤ ‖f ′‖2 ≤
√

d‖f ′‖ ≤ d3/22L

Since n = m = 0, φ = 1 and lc(η) = 1, the bound (22) gives

− lg
∏

α∈S′
0

|f(α)| = − lg
n∏

i=1

|φ(βi)|

≤ lg
(
lc(η)m · ((m + m + 1)‖F‖)n M(η)m+m ·

(
(m + 1)‖φ‖

)n
M(η)m

)

≤ lg
(
M(η)d

)

15

= O(d(log d + L)).

Similarly, we obtain (27) from the upper bound in (21) by choosing f ′ for φ(X) = F (X), but
choosing H(X), η(X) as before. The bound (21) gives

lg
∏

α∈S′
0

|f ′′(α)| = lg
n∏

i=1

|φ(βi)|

≤ ((m + 1)‖φ‖)n

(
M(η)

lc(η)

)m

= O(d(log d + L)).

¶13. We will also need the following bound:

Lemma 20. If S ⊆ {α1, . . . , αd} is a set of non-zero roots of f then

∏

α∈S

|α| ≥ tc(f)

M(f)
.

Proof.

∏

α∈S

|α| ≥
d∏

i=t+1

min {1, |αi|}

=

∏d
i=t+1 |αi|∏d

i=t+1 max {1, |αi|}

=
lc(f)

∏d
i=t+1 |αi|

M(f)

=
tc(f)

M(f)
.

Q.E.D.

So if f is an integer polynomial,
∏

α∈S |α| ≥ 1
M(f) .

8 Bound on Integral of Logarithmic Derivatives

Our goal is to show Lemma 15, which claims that R =
∫
I′ |f ′(x)/f(x)|dx = O(d2(log d + L)). Let

us write I ′ =
⋃k

i=0[ai, bi] where the [ai, bi]’s are pairwise disjoint intervals, for some k < 2d. Note
that f ′(x)/f(x) has constant non-zero sign over each [ai, bi], and so we can evaluate the integral∫ bi

ai
|f ′(x)/f(x)|dx = [log |f(x)|]bi

ai
= log |f(bi)|/|f(ai)|. Therefore, using the natural logarithm ln,

we have

R =

k∑

i=0

ln |f(bi)|/|f(ai)|. (28)

Thus, Lemma 15 follows from the upper bound

lg
k∏

i=0

|f(bi)| = O(d2L) (29)

16

and the lower bound

− lg
k∏

i=0

|f(ai)| = O(d2(log d + L)). (30)

To show (29) and (30), we first give an amortized bound on the complexity of the ai’s and bi’s:

Lemma 21. Let η(X) :=
∏k

i=0(X − ai)(X − bi). There is an integer N such that H(X) := 4Nη(X)
is an integer polynomial and

N = lg(lc(H)) = O(d(log d + L)), lg M(η) = O(dL)

These bounds hold even when η is replaced by any of its factors; in particular when η =
∏k

i=0(X−ai)

or when η =
∏k

i=0(X − bi).

Proof. Note that I = [a0, bk] and I ′ is I minus the special intervals which are enumerated
by [b0, a1], [b1, a2], . . . , [bk−1, ak]. Let N =

∑k
i=1 ni where ni is the depth of the special interval

[bi−1, ai] in the tree T2 in ¶10. But N is the external path length bound of the tree T2, and hence
N = O(d log d + dL) from Lemma 12. By assumption, the polynomial η0(X) := (X − a0)(X − bk)
is an integer polynomial. Let ηi(X) := (X − bi−1)(X − ai) for i = 1, . . . , k. Thus each 4niηi(X)
(i = 1, . . . , k) is an integer polynomial; this is a consequence of the way the subdivision tree is
obtained. This implies 4Nη(X) = 4N

∏k
i=0 ηi(X) ∈ Z[X], as claimed. Further, from

M(ηi(X)) = max {1, |bi−1|}max {1, |ai|} ≤ 4L

we infer M(η) = 4kL or lg M(η) = O(dL).
Q.E.D.

To prove (29), we use Theorem 13(a) where the polynomials φ(x) and η(x) in the theorem are
replaced by f(x) and

∏k
i=0(x−bi). Also, F (x) is replaced by f(x), and H(x) is given by Lemma 21.

Using the notations of Theorem 13(a), we also have

m = d, n ≤ 2d, lg ‖φ‖ = lg ‖f‖ ≤ L, lg M(η) ≤ dL, lg M(η) = O(d(log d + L)).
(31)

Thus (21) gives

lg
k∏

i=0

|f(bi)| = lg
n∏

i=1

|φ(βi)| ≤ lg

(
((m + 1)‖φ‖)n ·

(
M(η)

lc(η)

)m)

= O(d2L).

To prove (30), we use Theorem 13(b) where the polynomials φ(x), η(x) in Theorem 13 are replaced
by f(x), and η(x) =

∏k
i=0(x − ai). As before, we have (31). Thus (22) yields

− lg
k∏

i=0

|f(bi)| = − lg
n∏

i=1

|φ(βi)| ≤ lg
(
lc(η)m · ((m + 1)‖φ‖)n M(η)m ·

(
(m + 1)‖φ‖

)n+n
M(H)m

)

= lg M(η)m = O(d2(log d + L)).

This concludes the proof of Lemma 15.

17

9 On the Real and Imaginary Part of Zeros.

Let f ∈ R[X] be a real polynomial of degree d ≥ 1. Suppose its complex zeros are α1, . . . , αd

and let ri = Re(αi) and si = Im(αi) for each i. Our goal is to construct two integer polynomials
R(X), S(X) whose roots contains the ri’s and si’s respectively. We also want to bound the heights
of R(X) and S(X). CAVEAT: In this section, ri, si here refer to real/complex parts of roots of f ;
elsewhere, they refer to real/complex parts of roots of f ′.

¶14. Real Part. We first construct a polynomial R(X) whose roots include all the ri’s (cf. [39,
p. 202]).

Use the Taylor expansion of f(X + iY) at the point X:

f(X + iY) = f(X) + f ′(X)(iY) +
f ′′(X)

2
(iY)2 + · · · + f (d)(X)

d!
(iY)d

= P (X, Y) + (iY)Q(X, Y)

where

P = P (X, Y) :=

⌊d/2⌋∑

j=0

f2j(X)(−Y 2)j

Q = Q(X, Y) :=

⌈d/2⌉−1∑

j=0

f2j+1(X)(−Y 2)j

and fi(X) := (−1)⌊i/2⌋ f (i)(X)
i! is the “normalized” ith derivative (with sign). Note that f0(X) =

f(X) and degY (P) ≥ degY (Q). It follows that ri are real zeros of the resultant R(X) :=
resY (P (X, Y), Y · Q(X, Y)). It is easy to verify that

resY (P, Y · Q) = f0(X)resY (P, Q).

To further factor R(X), let us assume d ≥ 3, so that degY (P) ≥ degY (Q) ≥ 2. Then we can write

P (X, Y) = P (X, Y 2), Q(X, Y) = Q(X, Y 2)

where degY P = ⌊d/2⌋ ≥ ⌈d/2⌉ − 1 = degY Q. Then we may verify

R(X) = f(X) · R(X)2

where R(X) = resY (P , Q).
For the next bound, we use the 1-norm ‖f‖1 and 2-norm ‖f‖2 of f .

Lemma 22. The degree of R = resY (P , Q) is

(
d

2

)
=

d(d − 1)

2
.

Also, ‖R‖2 ≤ (2d‖f‖1)
d−1.

Proof. The degree of R comes from looking at the main diagonal of the Sylvester matrix defining
the resultant. There are two cases: Case d is odd: here degY P = degY Q = (d−1)/2. The product
of the diagonal elements is (f0)

(d−1)/2(fd)
(d−1)/2. Since deg f0 = d and deg fd = 0, the degree of

18

this product is d(d−1)/2. Case d is even: here degY P = d/2 and degY Q = (d−2)/2. The product
of the diagonal elements is (f0)

(d−2)/2(fd−1)
d/2. Since deg f0 = d and deg fd−1 = 1, the degree of

this product is again d(d−2)
2 + d/2 = d(d − 1)/2.

For the height of R, we use the Goldstein-Graham bound ([39, p. 173]). Let resY (P , Q) =
det(T) where T = [tij]i,j is the (d − 1) × (d − 1) Sylvester matrix constructed from P , Q. For
instance the first and last rows of T are (respectively) given by

(f0, f2, f4, . . . , f⌊d/2⌋, 0, . . . , 0),

(0, . . . , 0, f1, f3, , . . . , f⌈d/2⌉−1).

Let W = [wij]i,j be the (d − 1) × (d − 1) matrix whose (i, j)th entry is given by wij = ‖tij‖1.

Each of the tij is of the form fk for some k = k(i, j). We use the simple estimate ‖fk‖1 ≤
(
d
k

)
‖f‖1

and hence the 2-norm of the first row of W is

(
‖f0‖2

1 + ‖f2‖2
1 + ‖f4‖2

1 + · · · + ‖f⌊d/2⌋‖2
1

)1/2
<

∑

i≥0

(
d

i

)2

‖f‖2
1)

1/2

≤ 2d‖f‖1.

In fact, the 2-norm of every row of W is bounded by 2d‖f‖1. The Graham-Goldstein bound says
‖R‖2 is upper bounded by the product of these 2-norms, i.e., ‖R‖2 ≤ (2d‖f‖1)

d−1. Q.E.D.

Since lg ‖f‖1 ≤ lg d + L, we obtain

lg ‖R‖2 = O(d(d + L)). (32)

¶15. Complex Part. A similar procedure can be used to construct a polynomial S(Y) whose
roots include all the si = Im(αi). The details are somewhat different, which we proceed to derive.
First, we write f(X) as a sum of its even and odd parts:

f(X) = fe(X) + fo(X) (33)

= fe(X
2) + X · fo(X

2) (34)

where fe, fo ∈ R[X] have degrees ⌈(d − 1)/2⌉ and ⌊(d − 1)/2⌋, respectively. For i ≥ 0, we further
write the i-th derivatives of fe and fe in the form:

f (i)
e (X) =

{
fe,i(X

2) if i = even

X · fe,i(X
2) if i = odd,

f (i)
o (X) =

{
X · fo,i(X

2) if i = even

fo,i(X
2) if i = odd.

The polynomials fe,i and fo,i are implicitly defined by these equations.
Use the Taylor expansion of f(X + iY) at the point iY :

f(X + iY) =
∑

i≥0

f (i)(iY)
Xi

i!

=
∑

i≥0

[
f (i)

e (iY) + f (i)
o (iY)

] Xi

i!

=
∑

i≥0

[
fe,2i(−Y 2) + iY fo,2i(−Y 2)

] X2i

(2i)!
+
∑

i≥0

[
iY fe,2i+1(−Y 2) + fo,2i+1(−Y 2)

] X2i+1

(2i + 1)!

19

=
∑

i≥0

[
fe,2i(−Y 2)

(2i)!
+ X

fo,2i+1(−Y 2)

(2i + 1)!

]
X2i + iY

∑

i≥0

[
X

fe,2i+1(−Y 2)

(2i + 1)!
+

fo,2i(−Y 2)

(2i)!

]
X2i

= P (X, Y) + iY Q(X, Y)

where
P (X, Y) =

∑2⌊(d−1)/2⌋
i=0 pi(Y)Xi,

with p2i(Y) =
fe,2i(−Y 2)

(2i)! and p2i+1(Y) =
fo,2i+1(−Y 2)

(2i+1)! ,

Q(X, Y) =
∑2⌈(d−1)/2⌉

i=0 qi(Y)Xi,

with q2i(Y) =
fo,2i(−Y 2)

(2i)! and q2i+1(Y) =
fe,2i+1(−Y 2)

(2i+1)! .

NOTE: we are reusing the symbols P, Q, and they should not be confused with the polynomials
P, Q used in the definition of R(X) above.

Now the imaginary part of the zeros of f(X) are zeros of the resultant S(Y) := resX(P, Q)
since

resX(P (X, Y), Y · Q(X, Y)) = Y 2⌊(d−1)/2⌋resX(P, Q). (35)

Note that S(Y) is the determinant of a Sylvester matrix T whose first and last rows are

(p0, p1, p2, . . . , p2⌊(d−1)/2⌋, 0, . . . , 0),

(0, . . . , 0, q0, q1, . . . , q2⌈(d−1)/2⌉).

The dimension of T is (d − 1) × (d − 1), and deg(S(Y)) ≤ d(d − 1).
To bound the height of S(Y), we proceed as before: ‖pi‖1 ≤

(
d
i

)
‖f‖1 and ‖qi‖1 ≤

(
d
i

)
‖f‖1.

Then the Goldstein-Graham bound implies ‖S‖2 ≤ (2d‖f‖1)
d−1, or lg ‖S‖2 = O(dL).

Lemma 23. The degree of S = resX(P, Q) is

(
d

2

)
=

d(d − 1)

2
.

Also, ‖S‖2 ≤ (2d‖f‖1)
d−1.

10 Bounding the Gamma Integral

We first prove the key inequality of Lemma 17, restated here:

Lemma 24. Let β2, . . . , βd be all the critical points of f(x) (i.e., zeros of f ′). Then

γ(x) ≤
d∑

j=2

1

2|x − βj |

Proof. We have

f (i)(x)

f ′(x)
=

′∑

(j2,...,ji)

i∏

ℓ=2

1

x − βjℓ

where the summation ranges over all ordered (i−1)-tuples (j2, j3, . . . , ji) taken from {1, . . . , d − 1},
1 ≤ j2 < j3 < · · · < ji ≤ d − 1. The prime in the summation symbol,

∑′, indicates the strict

20

inequality, j2 < · · · < ji. When we omit the prime in the summation, it means that the tuples
could have duplicated components, 1 ≤ j2 ≤ j3 ≤ · · · ≤ ji ≤ d − 1. Thus

∣∣∣∣∣
f (i)(x)

f ′(x)

∣∣∣∣∣

1/(i−1)

=

∣∣∣∣∣∣

∑

(j2,...,ji)

′
i∏

ℓ=2

1

x − βjℓ

∣∣∣∣∣∣

1/(i−1)

≤

∑

(j2,...,ji)

′
i∏

ℓ=2

1

|x − βjℓ
|

1/(i−1)

≤

∑

(j2,...,ji)

i∏

ℓ=2

1

|x − βjℓ
|

1/(i−1)

unprimed summation

=

d∑

j=2

1

|x − βj |

i−1

1/(i−1)

≤
d∑

j=2

1

|x − βj |
.

For i ≥ 2, we have i! ≥ 2i−1, and hence

∣∣∣∣∣
f (i)(x)

i!f ′(x)

∣∣∣∣∣

1/(i−1)

≤ 1

2

∣∣∣∣∣
f (i)(x)

f ′(x)

∣∣∣∣∣

1/(i−1)

≤ 1

2

d∑

j=2

1

|x − βj |
.

Q.E.D.

Recall that βi = ri + isi where ri = Re(βi), si = Im(βi). Wlog, let si = 0 iff 2 ≤ i ≤ k. We next
split the analysis into the real and nonreal parts.

¶16. Real Part. Recall that Procedure H produces sI < 2d disjoint special intervals which
contain real zeros of f and f ′. Assume the real roots of f ′ in I are r2 < r3 < · · · < rk for some
k ≤ d, and each ri ∈ [bi, ai+1]. Let I ′′ := I \⋃k

i=1[bi, ai+1] where For consistency, let I = [a1, bk+1].
Writing

φR(X) =
k∏

i=2

(X − ri), (36)

we have:

∫

I′

k∑

i=2

dx

|x − ri|
≤

∫

I′′

k∑

i=2

dx

|x − ri|

=
k∑

j=1

∫ aj+1

bj

k∑

i=2

dx

|x − ri|

=

k∑

j=1

k∑

i=2

∫ aj+1

bj

dx

|x − ri|

=
k∑

j=1

k∑

i=2

[log |x − ri|]aj+1

bj

21

=
k∑

j=1

k∑

i=2

log |(bj − ri)/(aj+1 − ri)|

=
k∑

j=1

log

∣∣∣∣
φR(aj+1)

φR(bj)

∣∣∣∣ .

Thus we have shown:

Lemma 25. ∫

I′

k∑

i=1

dx

|x − ri|
≤ log

k∏

j=1

∣∣∣∣
φR(aj+1)

φR(bj)

∣∣∣∣ .

¶17. Complex Part. Consider the case where βi = ri + isi is nonreal, i.e., i > k. Initially,
assume a + |si| ≤ ri ≤ b − |si| where I = [a, b]. Then

∫

I′

dx

|x − βi|
≤

∫ b

a

dx

|x − βi|

≤
∫ b

a

dx

max {|x − ri|, |si|}
(∗)
=

∫ ri−|si|

a

dx

ri − x
+

∫ ri+|si|

ri−|si|

dx

|si|
+

∫ b

ri+|si|

dx

x − ri

= ln

(
ri − a

|si|

)
+ 2 + ln

(
b − ri

|si|

)
.

where (*) is valid since max {|x − ri|, |si|} = |si| iff x ∈ [ri−|si|, ri+|si|]. Next, suppose ri−|si| ≤ a.

Then the above bound holds, provided the term ln
(

ri−a
|si|

)
be dropped. Similarly, if ri + |si| ≥ b

then the term ln
(

b−ri

|si|

)
should be dropped. Combining all these cases, we obtain:

Lemma 26.
∫

I′

dx

|x − βi|
≤ lnmax

{
1,

(
ri − a

|si|

)}
+ 2 + lnmax

{
1,

(
b − ri

|si|

)}
.

We may assume that the roots βi are indexed so that

rk+1 − |sk+1| ≤ rk+2 − |sk+2| ≤ · · · ≤ rd − |sd|. (37)

Then there exists ℓ ∈ {k + 1, . . . , d + 1} such that a < ri − |si| iff ℓ ≤ i. Note that ℓ = d + 1 means
there is no such i. Note that (37) is equivalent to

rk+1 + |sk+1| ≤ rk+2 + |sk+2| ≤ · · · ≤ rd + |sd|.

Thus, there exists λ ∈ {k, k + 1, . . . , d} such that rj + |sj | < b iff λ ≤ j. Again, λ = k means there
is no such j. Thus Lemma 26 implies:

∫

I′

d∑

i=k+1

dx

|x − βi|
≤ ln

d∏

i=k+1

max

{
1,

(
ri − a

|si|

)}
+ 2(d − k) + ln

d∏

i=k+1

max

{
1,

(
b − ri

|si|

)}

22

= ln
d∏

i=ℓ

(
ri − a

|si|

)
+ 2(d − k) + ln

λ∏

i=k+1

(
b − ri

|si|

)
.

In order to bound the integral in Lemma 27 in terms of d and L, we introduce the polynomials

φA(X) :=
d∏

i=ℓ

(ri − X) (38)

φB(X) :=
λ∏

i=k+1

(X − ri) (39)

φC(X) :=
d∏

i=k+1

(X − si). (40)

It follows from Lemma 20 that

d∏

i=ℓ

|si| ≥
1

M(φC)
≥ 1

M(S)
,

λ∏

i=k+1

|si| ≥
1

M(φC)
≥ 1

M(S)
(41)

where S(Y) is the polynomial of Lemma 23. This allows us to rephrase the preceding integral
bound in a compact form:

Lemma 27. ∫

I′

d∑

i=k+1

dx

|x − βi|
≤ ln

φA(a)φB(b)

M(φC)2
+ 2(d − k)

11 Applying the Evaluation Bounds.

In the previous section, we bounded the integrals for the real part (Lemma 25) and non-real parts
(Lemma 27). These bounds were given in terms of the polynomials φR, φA, φB, φC ((36) and (38))
evaluated at suitable points. To convert these into explicit bounds in terms of d and L, we now use
the Evaluation Bound in Theorem 13.

¶18. Bound on Real Part. We want to bound the evaluation expression in Lemma 25. Define

ηA(X) =
ℓ∏

j=0

(X − aj+1), ηB(X) =
ℓ∏

j=0

(X − bj). (42)

We split the proof into two steps. The first step is to upper bound

lg
ℓ∏

j=0

|φR(aj+1)|.

We exploit the fact that all the zeros of φR ((36)) are also zeros of f ′. Hence we have

‖φR‖ ≤ 2dM(φR) ≤ 2dM(f ′).

23

We apply Theorem 13(a), with φ replaced φR(X), η replaced by ηA(X), H by HA. By Lemma 21,
lg M(ηA) = O(dL). Hence m ≤ d and n ≤ d, and

ℓ∏

j=0

|φR(aj+1)| ≤ ((d + 1)‖φR‖)d M(ηA)d

≤
(
(d + 1)2dM(f ′))

)d
M(ηA)d.

lg
ℓ∏

j=0

|φR(aj+1)| = O(d(d + L)).

The second step is to lower bound

lg
ℓ∏

j=0

|φR(bj)|.

We apply Theorem 13(b), with φ replaced by φR(X) as before, but η replaced by ηB(X), F by f ′,
and H given by Lemma 21. We have m ≤ d − 1 and n ≤ d as before. Now φ is given by f ′/φR of
degree m ≤ d − 1, and η = HB/ηB = KB of degree n = 0. Thus:

− lg

ℓ∏

j=0

|φR(bj)| ≤ lg
(
lc(HB)d−1 · ((d‖φR‖)0 M(η)d−1 · ((m + 1)‖φ‖)dM(HB)d−1

)

= O(d2(log d + L)).

This concludes the proof of Lemma 18.

¶19. Bound on Complex Part. We bound the evaluation expression in Lemma 27. Consider
the polynomial φA(X) in (38). We have ([39, p. 118])

‖φA‖ ≤ 2dM(φA) ≤ 2dM(R
′
) ≤ 2d‖R′‖2 (43)

where R
′
is defined for f ′, analogous to the definition of R defined for f in ¶14. From (32), we

conclude that lg ‖φA‖ = O(d(d + L)). Recall that w.l.o.g. a, b are integers satisfying |a|, |b| ≤ 2L.

We now apply Theorem 13(a) where we take the polynomial φ(X) to be φA, and F to be R
′
. The

polynomial η(X) is just X − a, and H = η. Hence m = d and n = 1. As M(η) ≤ 2L and we have

|φA(a)| ≤ ((d + 1)‖φA‖) · M(η)d ≤ (d + 1)M(R
′
) · 2Ld

and taking logs,
lg φA(a) = O(d(d + L)). (44)

Similarly, lg φB(b) = O(d(d + L)).
From (41), we see that − lg

∏
i |si| ≤ lg M(S). By Lemma 23, we get lg M(S) = O(d(d + L)).

Plugging this and (44) into Lemma 27, we obtain a bound for the integral over non-real roots βi’s:

∫

I′

d∑

i=k+1

dx

|x − βi|
= O(d(d + L)). (45)

This concludes the proof of Lemma 19.

24

12 Shifting γ and γ
′

We now provide the two lemmas are needed in ¶9 to guarantee that special intervals are terminal.
But before this, we prove Lemma 7, restated here:

Lemma 7. Let b ∈ J such that w(J) ≤ 1
2γ(b) . Then KJ ≤ 2d|f ′(b)|.

Proof.

KJ = max
a∈J

d∑

i=1

|f (i)(a)|
i!

w(J)i−1

= max
a∈J

d∑

i=1

∣∣∣∣∣∣

d∑

j=i

f (j)(b)(b − a)j−i

i!(j − i)!

∣∣∣∣∣∣
w(J)i−1

≤
d∑

i=1

d∑

j=i

|f (j)(b)|
i!(j − i)!

w(J)j−1 |a − b| ≤ w(J)

=
d∑

j=1

|f (j)(b)|
j!

w(J)j−1
j∑

i=1

(
j
i

)

≤
d∑

j=1

|f (j)(b)|
j!

w(J)j−12j

≤
d∑

j=1

|f (j)(b)|
j!

2j

2j−1γ(b)j−1
w(J) ≤ 1

2γ(b)

≤ 2
d∑

j=1

|f (j)(b)|
j!

j!|f ′(b)|
|f (j)(b)| γ(b) ≥

(
|f (j)(b)|
j!|f ′(b)|

) 1
j−1

= 2d|f ′(b)|

Q.E.D.

Lemma 28. Let J be a special interval containing α with α ∈ Zero(f) and w(J) < ρ(α)
4d(d−1) . Then

w(J) < |f ′(α)|
K′

J
.

Proof. From Proposition 10 we know that the condition on w(J) implies that w(J) < 1
8γ(α) .

Now, by computing an upper bound on K ′
J , we show the desired result.

K ′
J = max

a∈J

d−1∑

i=1

|(f ′)(i)(a)|
i!

w(J)i−1

= max
a∈J

d∑

i=2

|f (i)(a)|
(i − 1)!

w(J)i−2

= max
a∈J

d∑

i=2

∣∣∣∣∣∣

d∑

j=i

f (j)(α)(a − α)j−i

(j − i)!(i − 1)!

∣∣∣∣∣∣
w(J)i−2

25

≤
d∑

i=2

d∑

j=i

|f (j)(α)|
(j − i)!(i − 1)!

w(J)j−2 |a − α| ≤ w(J)

=
d∑

j=2

|f (j)(α)|
(j − 1)!

w(J)j−2
j∑

i=2

(
j − 1
i − 1

)

≤
d∑

j=2

|f (j)(α)|
(j − 1)!

w(J)j−22j−1

≤ 1

w(J)

d∑

j=2

|f (j)(α)|
(j − 1)!

2j−1

8j−1γ(α)j−1
w(J) ≤ 1

8γ(α)

≤ 1

w(J)

d∑

j=2

|f (j)(α)|
(j − 1)!

j!|f ′(α)|
|f (j)(α)|2

−2j+2 γ(α) ≥
(
|f (j)(α)|
j!|f ′(α)|

) 1
j−1

=
|f ′(α)|
w(J)

d∑

j=2

j2−2j+2

<
7

9

|f ′(α)|
w(J)

Then, by rearranging w(J) and K ′
J , we find that w(J) < |f ′(α)|

K′
J

< 7
9
|f ′(α)|

K′
J

as desired. Q.E.D.

Lemma 29. Let J be a special interval containing α with α ∈ Zero(f) and w(J) < min
{

ρ′(α)
4d(d−1) ,

√
|f(α)|

3|f ′′(α)|

}
.

Then w(J) < |f(α)|
KJ

.

Proof. From Proposition 10 we know that the condition on w(J) implies that w(J) < 1
8γ′(α) .

Now by computing an upper bound on KJ , we can show the desired result.

KJ = max
a∈J

d∑

i=1

|f (i)(a)|
i!

w(J)i−1

= max
a∈J

d∑

i=1

∣∣∣∣∣∣

d∑

j=i

f (j)(α)(a − α)j−i

(j − i)!i!

∣∣∣∣∣∣
w(J)i−1

≤
d∑

i=1

d∑

j−i

|f (j)(α)|
(j − i)!i!

w(J)i−1 |a − α| ≤ w(J)

=
d∑

j=1

|f (j)(α)|
j!

w(J)j−1
j∑

i=1

(
j
i

)

≤
d∑

j=1

|f (j)(α)|
j!

w(J)j−12j

=
d∑

j=2

|f (j)(α)|
j!

w(J)j−12j α ∈ Zero(f ′)

26

= w(J)
d∑

j=2

|f (j)(α)|
j!

w(J)j−22j

≤ w(J)
d∑

j=2

|f (j)(α)|
j!

2j

8j−2γ′(α)j−2

≤ w(J)
d∑

j=2

|f (j)(α)|
j!

(j − 1)!|f ′′(α)|
|f (j)(α)| 2−2j+6 γ(α) ≥

(
|(f ′)(j−1)(α)|

(j − 1)!|(f ′)′(α)|

) 1
j−2

= |f ′′(α)|w(J)
d∑

j=2

2−2j+6

j

< 64|f ′′(α)|w(J)|
(

ln

(
4

3

)
− 1

4

)

< 3|f ′′(α)|w(J)

Therefore, it follows that |f(α)|
KJ

> |f(α)|
3|f ′′(α)|w(J) ≥ (w(J))2

w(J) = w(J), completing the result. Q.E.D.

13 Basic Stopping Functions

We now address the stopping functions mentioned at the end of ¶6.

¶20. Global Lipschitz Constants. The function g = fI defined in ¶6 is based on the “global”
Lipschitz constant KI . To show that g is a stopping function, we show that if X is not large then
X is terminal:

Lemma 30. The functions |f(a)|
KI

, |f ′(a)|
K′

I
and fI are stopping functions over I.

The result easily follows from Lemma 2. Using this stopping function, we can now apply
Theorem 5 to get an integral bound on the complexity of EVAL. Naturally, such a bound based on
a global constant KI is not very satisfactory. The next section introduces a local local Lipschitz
constants Ka (a ∈ I) and a corresponding stopping function in the next section.

¶21. Local Lipschitz Constants. One suggestion to use more local Lipschitz constants is to use
KX and fX instead of KI and fI in our algorithms. This seems to lead to complicated conditions
on our partitions, and it is hard to state an integral independent of the partition. Instead, we
proceed as follows.

In this section, we fix the interval I, and throughout, X range over I. For any a ∈ I and ℓ > 0,
define

Ka,ℓ := max
X⊆I
a∈X

w(X)≤ℓ

KX . (46)

.
If we replace KX by K ′

X in (46), the resulting constant will be denoted by K ′
a,ℓ.

Lemma 31. Let a ∈ I and ℓ > 0.
(i.a) Ka,ℓ is monotonically non-decreasing with ℓ.

(i.b) As ℓ → ∞, we have Ka,ℓ → ∞ and
|f(a)|
Ka,ℓ

→ |f(a)|
KI

.

27

(i.c) As ℓ → 0, we have Ka,ℓ → |f ′(a)| and
|f(a)|
Ka,ℓ

→ |f(a)|
|f ′(a)| . (Hence, define Ka,0 = |f ′(a)|.)

(ii.a) The product ℓ · Ka,ℓ in strictly increasing with ℓ.
(ii.b) As ℓ → ∞, we have ℓ · Ka,ℓ → ∞.
(ii.c) As ℓ → 0, we have ℓ · Ka,ℓ → 0.

The proof is omitted. From (ii.a-c), we conclude that there is a unique ℓ = ℓa such that
ℓa ·Ka,ℓ = |f(a)|. Define w(a) := ℓa as the local width at a, and define Ka := Ka,w(a) as the local
Lipschitz constant at a. Note that f(a) = 0 implies w(a) = 0 and hence Ka = |f ′(a)|.

We can also define the local width w′(a) (resp., local Lipschitz constant K ′
a) if we use f ′, K ′

a,ℓ

instead of f, Ka,ℓ in the above definitions of w(a) (resp., Ka).
For all a ∈ I, we have

w(a) =
|f(a)|
Ka

. (47)

From Lemma 31(ii), we immediately obtain:

Lemma 32. Let a ∈ I and ℓ > 0. Then

ℓ ≥ |f(a)|
Ka,ℓ

⇔ ℓ ≥ w(a) ≥ |f(a)|
Ka,ℓ

.

ℓ ≤ |f(a)|
Ka,ℓ

⇔ ℓ ≤ w(a) ≤ |f(a)|
Ka,ℓ

.

Moreover, equality is simultaneously achieved on both sides.

We define fℓ(a) = max

{
|f(a)|
Ka,l

,
|f ′(a)|
K ′

a,l

}
.

Using these facts, we define our candidate for a stopping functions:

f∗(a) := max

{ |f(a)|
Ka

,
|f ′(a)|

K ′
a

}
(48)

= max
{
w(a), w′(a)

}
. (49)

Using these definitions, Lemma 32 can be rephrased as follows:

ℓ ≥ fℓ(a) ⇔ ℓ ≥ f∗(a) ≥ fℓ(a). (50)

ℓ ≤ fℓ(a) ⇔ ℓ ≤ f∗(a) ≤ fℓ(a). (51)

Moreover, equality occurs simultaneously on both sides.

Lemma 33. f∗ is a stopping function.

Proof. Let a ∈ X. If C0(X) and C1(X) fail, as before, it means w(X) ≥ max {|f(a)|/KX , |f ′(a)|/K ′
X} =

fX(a). Thus w(X) ≥ fw(X)(a). By (50), this is equivalent to w(X) ≥ f∗(a). Hence X is large.
Q.E.D.

Theorem 34. Let PI be the partition of I at the end of Phase 1 of the Evaluation Algorithm. Then

#(P) ≤ max

{
1,

∫

I

2da

f∗(a)

}
= max

{
1,

∫

I
min

{
Ka

|f(a)| ,
Ka

|f(a)|

}
2da

}
. (52)

and this integral is finite.

We already know that f∗ is a stopping function. This result follows from Theorem 5 if f∗ is
never 0. f∗ is never 0 since f is square free and so f and f ′ do not share any roots.

28

