
Electronic Notes in Theoretical Computer Science 66 No. 1 (2002)
URL: http://www.elsevier.nl/locate/entcs/volume66.html 12 pages

Hypergeometric Functions
in Exact Geometric Computation

Zilin Du a,1, Maria Eleftheriou b, José E. Moreira b, Chee Yap a,1

a Department of Computer Science, Courant Institute, New York University, 251
Mercer Street, New York, NY 10012

b IBM T.J. Watson Research Center, P.O. Box 218, Yorktown Heights, NY 10598

Abstract

Most problems in computational geometry are algebraic. A general approach to
address nonrobustness in such problems is Exact Geometric Computation (EGC).
There are now general libraries that support EGC for the general programmer (e.g.,
Core Library, LEDA Real). Many applications require non-algebraic functions as
well. In this paper, we describe how to provide non-algebraic functions in the context
of other EGC capabilities. We implemented a multiprecision hypergeometric series
package which can be used to evaluate common elementary math functions to an
arbitrary precision. This can be achieved relatively easily using the Core Library
which supports a guaranteed precision level of accuracy. We address several issues
of efficiency in such a hypergeometric package: automatic error analysis, argument
reduction, preprocessing of hypergeometric parameters, and precomputed constants.
Some preliminary experimental results are reported.

1 Introduction

There are two basic modes of numerical computation: those that assume
fixed precision and those that require arbitrarily high precision. A second
dichotomy in numerical computation is based on classifying computations as
either algebraic or those that go beyond algebraic. By definition, an algebraic
computation may only use algebraic functions as primitives (for instance,
+,−,×,÷,

√
); thus non-algebraic computation would require some non-

algebraic functions such as sin or log. An algebraic problem is one that
can be solved using algebraic computations [22]. Most problems arising in
computational geometry [7,1], and a large part of geometric modeling, are
algebraic. One could treat algorithmic issues of non-algebraic computation

1 Supported by NSF/ITR Grant #CCR-0082056. This paper was presented at CCA 2002,
Malaga, Spain (June 12-13, 2002).

c©2002 Published by Elsevier Science B. V.

Yap

using the approach of computable analysis [19]. Instead, we attempt to gen-
eralize the stronger techniques available for numerical algebraic computation
to non-algebraic settings.

This paper addresses numerical computation that is non-algebraic and
which requires arbitrarily high precision. More precisely, we want to evaluate
hypergeometric functions with guaranteed precision. Guaranteed precision
for an algebraic setting was first proposed in [20] and embodied in the Core

Library accuracy API [10]. The problem is that, when we incorporate non-
algebraic functions into our system, it is a major open problem whether a
similar guarantee can be made.

The concept of guaranteed accuracy is rooted in a general solution to
the widespread problem of numerical non-robustness in geometric algorithms
[18,21]. This well-known problem plagues many scientific and engineering com-
putations. In principle, such problems can be eliminated for a large class of
problems using an approach we call exact geometric computation (EGC)
[22]. Basically, EGC amounts to computing with guaranteed accuracy. It is
important to realize that guaranteed accuracy does not require “exact arith-
metic” but arithmetic that has “sufficient accuracy”. Techniques such as float-
ing point filters [2,6,12], constructive root bounds [11,5,4,12], and low-degree
predicates [13] are among the techniques driven by the EGC mode of compu-
tation. There are currently two general numerical libraries that support the
EGC mode: LEDA Real [3] and the Core Library [10].

Many numerical computations require both algebraic and non-algebraic
computations. Currently, Core Library and LEDA Real do not support non-
algebraic functions. This paper takes a first step at filling this gap. We de-
scribe the design and implementation of a hypergeometric package in the Core
Library. Most common non-algebraic functions such as exp(x), log(x), erf(x)
and the trigonometric functions are hypergeometric. Indeed, all the non-
algebraic mathematical functions in a standard library such as math.h are
hypergeometric. Jeandel [9] describes a recent effort to provide hypergeomet-
ric functions in a general multiprecision number package (in this case, gmp).
While multiprecision arithmetic is a pre-requisite for EGC, it still lacks the
critical EGC capability of exact comparison.

Is EGC possible for non-algebraic computation? The design of the
Core Library aims to make robust programs easily constructed by any pro-
grammer. Towards this end, we define in [20] a natural and simple numerical
accuracy API with four accuracy levels:
• Level I: Machine Accuracy (i.e., IEEE 754 Standard)

• Level II: Arbitrary Accuracy (e.g., compute to 1000 bits)

• Level III: Guaranteed Accuracy (e.g., guarantee 100 bits)

• Level IV: Mixed Accuracy (i.e., combinations of 3 previous levels)

The goal is to allow a single program to be run in any of these levels, just by
calling the library. Level II has no guarantees: computing to 1000 bits do not

2

Yap

guarantee that any fraction of 1000 bits are correct because of error propa-
gation. There is a fundamental gap between Levels II and III that may not
be apparent: Level III is more than simply iterating a Level II computation
with increasing precision. While we know how to provide Level III capability
for all algebraic computation [21], it is an open question whether Level III is
possible in the non-algebraic case. We call this the fundamental problem
of EGC. Let Ω be a set of real or complex functions or constants. In practice,
Ω contains +,−,×, n ∈ Z are among its operators. The set of constant ex-
pressions over Ω is denoted E(Ω). The value of an expression e ∈ E(Ω) is a
real (or complex) number, but it may also be undefined. The Constant Zero
Problem for Ω, denoted CZP(Ω), is to decide for a given e ∈ E(Ω), whether
the value of e is defined and equal to 0. When Ω contains at least one non-
algebraic function such as sin x or log x, the Constant Zero Problem for Ω is
not known to be decidable, and closely related to undecidable ones [14]. Yet,
this is precisely what we need for guaranteed accuracy. So the fundamental
problem of EGC is really a family of problems, CZP(Ω) for each Ω.

Contributions of This Paper.
• We describe the design and implementation of a multiprecision hypergeo-

metric library. This is easily implemented with Level III accuracy of the
Core Library.

• This paper introduces the problem of processing of hypergeometric param-
eters for efficient evaluation of hypergeometric functions.

• We introduce techniques for automatic error analysis of hypergeometric
functions.

• We address the problem of argument reduction.

• A natural application of the library is in computing mathematical constants
to arbitrary accuracy. This is both an application of the hypergeometric
package, as well as an application to the package. We also define file formats
for storing and accessing these constants.

2 Hypergeometric Series

A hypergeometric series
∑∞

k=0 tk is one in which t0 = 1 and the ratio of two
consecutive terms is a rational function of the summation index k

tk+1

tk
=

P (k)

Q(k)
x,(1)

where P (k) and Q(k) are monic polynomials in k, and x is a constant called
the argument. By factoring the polynomials P (k) and Q(k) we can write

tk+1

tk
=

P (k)

Q(k)
x =

(a1 + k)(a2 + k) · · · (ap + k)

(b1 + k)(b2 + k) · · · (bq + k)(k + 1)
x.(2)

3

Yap

The rising factorial or Pochhammer symbol (a)k is given by (a)k = a(a +
1)(a+2) · · · (a+k−1) for k ≥ 1 and (a)0 = 1. Using this symbol, the general
expression for term tk becomes

tk =
(a1)k(a2)k · · · (ap)k

(b1)k(b2)k · · · (bq)k

xk

k!
.(3)

Thus, a hypergeometric series is completely defined by the sequences a =
(a1, a2, . . . , ap) and b = (b1, b2, . . . , bq). The bi’s may not be zero or negative
integers (otherwise we will have a division by 0). A negative ai, on the other
hand, turns

∑
k≥0 tk into a finite series and hence a polynomial in x. Note that

the conventional factor of k! in the denominator of tk in (3) amounts to an
implicit lower parameter of b0 = 1. The hypergeometric series corresponding
to these parameters is denoted

pFq(a1, a2, ..., ap; b1, b1, b2, ..., bq; x) =

∞∑
k=0

(a1)k(a2)k · · · (ap)k

(b1)k(b2)k · · · (bq)k

xk

k!
,(4)

The above series converges for any complex x when p ≤ q, and for |x| < 1
when p = q + 1. The corresponding complex function is a hypergeometric
functions. In this paper, we are only interested in the case where x as well
as the parameters ai, bj are real.

Elementary Functions. Most common elementary functions [16] are

hypergeometric functions. For example, the usual series for exp(x) is
∑∞

k=0
xk

k!

with the initial term t0 = 1. The ratio between two consecutive terms is
tk+1/tk = x/(k + 1). From Equation (2), we see that p = q = 0 and hence
exp(x) = 0F0(; ; x).

Table 1 lists the hypergeometric series representation of some elementary
functions. For each function, we list (i) the usual power series representation
of that function, (ii) the ratio tk+1/tk between two consecutive terms of that
power series, and (iii) the corresponding hypergeometric series. In some cases,
the first term t0 of the power series is not 1, and has to be factored out.

Table 1
The representation of some elementary functions in terms of hypergeometric series.

Elementary functions Power series Ratio tk+1/tk Hypergeometric series

exp(x)
P∞

k=0
xk

k!
1

(k+1)
x 0F0(; ; x)

erf(x) 2x√
π

P∞
k=0

(−1)k

(2k+1)k!
x2k −x2 (k+ 1

2)

(k+ 3
2)(k+1)

�
2x√

π

�
1F1(1

2
; 3

2
;−x2)

sin(x) x
P∞

k=0(−1)k x2k

(2k+1)!
(− 1

4
x2) 1

(k+ 3
2)(k+1)

x · 0F1(;
3
2
; −x2

4
)

cos(x)
P∞

k=0(−1)k x2k

(2k)!
− 1

4
x2 1

(k+ 1
2)(k+1)

0F1(;
1
2
; −x2

4
)

arcsin(x) x
P∞

k=0
(2k)!

22k(2k+1)(k!)2
x2k x2 (k+ 1

2)2

(k+ 3
2)(k+1)

x · 2F1(1
2
, 1

2
; 3
2
; x2)

arctan(x) x
P∞

k=0(−1)k x2k

2k+1
−x2 (k+ 1

2)

(k+ 3
2)

x · 2F1(1
2
, 1; 3

2
;−x2)

log(1 + x) x
P∞

k=0
(−x)k

k+1
(−x)

(k+1)(k+1)
(k+2)(k+1)

x · 2F1(1, 1; 2;−x)

The standard series for log(1 + x) in Table 1 has poor convergence prop-
erties. By subtracting the standard series for log(1 + x) from log(1 − x), we

4

Yap

obtain

log
1 − x

1 + x
= −2x

[
1 +

x2

3
+

x4

5
+ · · ·

]
= −2x · 2F1(1,

1

2
;
3

2
; x2).

Changing variables, we obtain

log y = −2

(
1 − y

1 + y

)
2F1

(
1,

1

2
;
3

2
;

(
1 − y

1 + y

)2
)

,

for 0 < y < ∞. In addition to the functions in Table 1, we also com-
pute tan(x), cot(x), and arccos(x) as tan(x) = sin(x)

cos(x)
, cot(x) = cos(x)

sin(x)
, and

arccos(x) = arcsin
(√

1 − x2
)
, 0 ≤ x ≤ 1.

3 Automatic Error Analysis

For this analysis, let f(n) = P (n)/Q(n), P (n) =
∏p

i=1(n + ai), and Q(n) =∏q
j=0(n+bj). Let p ≤ q+1, since otherwise the series diverge. Moreover, let the

hypergeometric parameters a1, . . . , ap, b1, . . . , bq be positive. Let S =
∑∞

i=0 ti,
Sn =

∑n−1
i=0 ti and Rn = S − Sn.

Our goal is to compute a value S̃ such that |S̃ − S| ≤ ε, where ε ≥ 0 is
a given (absolute) error bound. If we evaluate the series to n terms only, we

obtain an approximate value S̃n, and so |Sn − S̃n| is the evaluation error.
The term |Rn| is the truncation error. A third source of error occurst when
the argument x is only an approximated of some true value x∗: |x − x∗| ≤ ε′,
where ε′ is the argument error bound. Argument reduction introduces such
errors, which will be discussed in the next section.

Using the Core Library, it turns out that the approximation error |Sn −
S̃n| is a non-issue because we simply rely on the Core Library facility to
compute an expression to any desired error bounds. We can simply set the
approximation error to ε/2. It remains to bound the truncation error by ε/2.
Our goal is to determine the n such that |Rn| ≤ ε/2. There are two basic
cases, depending on whether the argument x is negative or not.

(A) The Alternating Case. Let tntn+1 ≤ 0 for all n ∈ N (this happens iff
x ≤ 0). In this case, we have a well-known fact: if |ti| ≥ |ti+1| for all i ≥ n
then |Rn| ≤ |tn| and Rntn ≥ 0. To apply this result to hypergeometric series,
let a = (a1 + · · ·+ap)/p, b = (1+ b1 + · · ·+ bq)/(q +1), and a∗ = maxi=1,...,p ai.

Lemma 3.1 Let Rn =
∑

i≥n ti be alternating. Then |Rn| ≤ |tn| in the follow-
ing two situations:

(i) Case p = q + 1: b > a and n ≥ 2p(a∗)2

(b−a)p
.

(ii) Case p ≤ q: n ≥ max{2, 2pa∗}.
5

Yap

(B) The Geometric Case. When the series is not alternating, we use the
following observation:

Lemma 3.2 There is a monotone decreasing function g(n) such that f(n) ≤
g(n) and limn→∞ g(n) = limn→∞ f(n).

Proof. Observe that for any a ≤ 0, b ≤ 0, (n + a)/(n + b) ≤ 1 if a ≤ b,
(n + a)/(n + b) < (m + a)/(m + b) < a/b if a > b, n > m. Reorder the ai’s
and bj ’s such that for some 0 ≤ r ≤ p, we have that ai > bi−1 for i = 1, . . . , r,
and ai ≤ bi−1 for i = r + 1, . . . , p. Then

f(n) =

∏p
i=1(n + ai)∏q
j=0(n + bi)

=

p∏
i=1

n + ai

n + bi−1

q∏
j=p

1

n + bi

≤
r∏

i=1

n + ai

n + bi−1

q∏
j=p

1

n + bi

= g(n).

Thus g(n) is monotone decreasing. Note that limn→∞ g(n) = limn→∞ f(n)
(this limit is 0 or 1, depending on whether p < q + 1 or not). Q.E.D.

Lemma 3.3 With g(n) given in Lemma 3.2, if xg(n) < 1 then |Rn| ≤ tn
1−xg(n)

.

Proof. Note that for i ≥ 0,

tn+i = tnxi
i−1∏
j=0

f(n + j) ≤ tnxi
i−1∏
j=0

g(n + j) ≤ tnxig(n)i.

Summing,

Rn =
∑
i≥0

tn+i ≤ tn
∑
i≥0

xig(n)i = tn/(1 − xg(n)).

Q.E.D.

A even simpler choice for g(n) is g(n) = np−q−1. In practice, there is a
tradeoff between choosing g(n) as small as possible and the computational
effort to compute g(n).

Implementation. The above bounds are applied directly to the elemen-
tary functions in Table 1. Here is an algorithm to dynamically evaluate any
hypergeometric series:
(1) First we check if p > q + 1 or (p = q + 1 and |x| ≥ 1). If so, we report a
“divergent series” error.
(2) Else, we check if x < 0. If so, we can apply case (A) for alternating series.
(3) Else, we compute g(n) and apply case (B) for the geometric case.

In general, to determine the n such that |Rn| ≤ ε/2, we need to upper
bound the value of tn. A simple method is to accumulate the terms in Sn

while at the same time check the next term tn. On the face of it, computing
tn requires an iteration, as the number of factors in tn grows with n. But in
many situations, the number of factors in tn is independent of n because of

6

Yap

cancellation (e.g., in log(1 + x).) In this case, we can determine n in constant
time by a direct evaluation. This yields a much faster implementation. This
situation is exploited under parameter processing (see below).

4 Argument Reduction

An issue in the efficient evaluation of hypergeometric functions is the well-
known problem of argument reduction. Each hypergeometric series is gen-
erally valid within a bounded range, and the problem is to reduce a general
argument to this range. Even when an argument is in the valid range, argu-
ment reduction can still be applied to achieve faster convergence. As noted in
[16, p.145–147], argument reduction in trigonometric functions are prone to
catastrophic errors.

Whenever we perform argument reductions, an error is introduced into the
modified arguments. We need to bound the effects of this error. For instance,
argument reduction for the trigonometric functions uses the fact that they
have period 2π. By exploiting other properties, the arguments can be reduced
to a range of size π/2. If r is the reduced argument corresponding to an
original argument of x, we have

r = x − π

2

⌊
2

π
x

⌋
.

But we can only compute an approximation r̃ to r. Using a sufficiently accu-
rate π, we can bound |r − r̃| by any desired error bound ε′. The choice of ε′

for the standard functions is deduced from the following lemma.

Lemma 4.1 For ε > 0, we have the following bounds:

| sin(x + ε) − sin x| ≤ ε

| cos(x + ε) − cos x| ≤ ε

| tan(x + ε) − tanx| ≤ 4ε, 0 ≤ x ≤ π/4, ε < π/12

| cot(x + ε) − cotx| ≤ 2ε, π/4 ≤ x ≤ π/2, ε ≤ π/4

| arcsin(x + ε) − arcsin x| ≤ 2ε, |x| < 0.5, ε ≤ 1/4

| arccos(x + ε) − arccos x| ≤ 2ε, |x| < 0.5, ε ≤ 1/4

| arctan(x + ε) − arctanx| ≤ ε, |x| < 1

| log(x + ε) − log x| ≤ ε/x, x > 0

| exp(x + ε) − exp x| ≤ 2ε exp(x), ε ≤ log(2)

The proof use the remainder form of the Taylor expansion, f(x+h) = f(x)+
hf ′(x + θ), 0 ≤ θ ≤ h.

Natural Log function. If x > 2, we let x = 2kr where k ∈ N and
1 < r ≤ 2. Then log(x) = k log(2) + log(r). Here are the steps to approxi-
mate this expression:
1. First compute k = blog2 xc.

7

Yap

2. Compute l̃og(2) as an approximation of log(2) to absolute error ≤ ε/(2k).
3. Compute r̃ such that |r − r̃| ≤ ε/4 where r = x2−k.

4. Compute l̃og(r̃) as an approximation of log(r̃) to absolute error ≤ ε/4.

5. Return z = kl̃og(2) + l̃og(r̃).
Using lemma 4.1 (among other things), we can prove correctness of this proce-
dure. That is, |z− log(x)| ≤ ε. Moreover, each of the steps is easily computed
using the Core Library. Step 2 requires an approximation to the constant
log(2), which we precompute (see Section 6).

Exponential function. Let k = bx/ log(2)c and r = x − k log(2). Then
exp(x) = 2kexp(r). Note that 1 ≤ r < 2.
1. First, we compute k (requires a suitable approximation to log 2).
2. Compute r̃ as an approximation to r = x − k log 2, to absolute error
ε2−k−2e−2.
3. Compute ẽxp(r̃) as an approximation to exp(r̃) to absolute error ε2−k−1.

4. Return z = 2kẽxp(r̃).

Trigonometric functions. To compute arcsin(x) when 0.5 < x ≤ 1, use

arcsin(x) =
π

2
− 2 arcsin

(√
1 − x

2

)

From Lemma 4.1, we see that it is sufficient to compute π to absolute error
bound of ε/2 and compute

√
(1 − x)/2 to absolute error bound of ε/8. A

similar reduction applies for arccos(x). For arctan(x) when |x| > 1, we use

arctan(x) =
π

2
− arctan

(
1

x

)
.

Again, we need to compute 1/x to absolute error bound of ε/2. The cases for
sin, cos, tan, cot are even simpler.

5 Hypergeometric Parameter Pre-processing

Preprocessing is achieved in our implementation by introducing a “registration
facility” for hypergeometric functions before they are called for the first time.
Preprocessing includes computing bounding functions for the truncation error
(e.g., the function g(n) in Section 3). But we now discuss another important
aspect of preprocessing.

Extra hypergeometric parameters are sometimes artificially introduced in
order to achieve the standard form of these series. For instance, one of the
upper parameters in x · 2F1(1, 1; 2;−x) (= log(1 + x)) amounts to cancelling
the implicit lower parameter of b0 = 1. This leads to a factor k!/k! in the kth
term tk. While mathematically harmless, this has major performance impact
in the Core Library evaluation mechanism. The example of log(1 + x) also
illustrates another improvement possible: the upper parameter of 1 with a

8

Yap

lower parameter of 2 amounts to the factor 1/(k + 1) in the ratio tk+1/tk.
Again, it is important not to evaluate this factor as (1)k/(2)k. More generally,
whenever an upper and a lower parameter differs by an integer, cancellations
occur and one can gain improvements in efficiency by recognizing this.

We outline a general algorithm for processing the hypergeometric param-
eters. Let a1, a2, , . . . , ap and b0, b1, , . . . , bq be parameters of pFq. Note that
we have added b0 = 1 to the standard list of lower parameters.

(1) We first sort the a’s and then the b’s. Let a1 ≤ a2 ≤ · · · ≤ ap and
b0 ≤ b1 ≤ · · · ≤ bq be the sorted result.

(2) By a merge-like algorithm we eliminate common terms from both lists.
Note that we still maintain the separate lists.

(3) Next we form the maximum number of (ai, bj) of an upper and a
lower parameter where ai − bi is an integer. Let us call two real numbers
x, y equivalent if x − y ∈ Z. Let (Ai, Bi) (i = 1, . . . , r) be the set of such
equivalent pairs; these are called ab-pairs since Ai is an upper parameter and
Bi a lower parameter. Their corresponding values Ai, Bi are deleted from the
original parameter lists. It is easy to see that the maximum number r of
ab-pairs is unique. However, the set of these pairs are not unique. To ensure
the most efficient code, we need to match Ai to Bi so as to minimize the sum∑r

i=1 |Ai − Bi|. This “matching problem” is solved below.

(4) We compute the successive terms tn as follows: Let sn be the term that
is computed from the remaining upper and lower parameter list as follows:

sn = sn−1 × fn

where fn = (a1 +n)(a2 +n) · · · (ap +n)/(b0 +n) · · · (bq +n). We then initialize
tn to sn. Then for each pair (A, B) where B − A = k ≥ 1, we update

tn = tn ∗ A(A + 1) · · · (A + k − 1)

(A + n) · · · (A + k + n − 1)

If A − B ≥ 1, there is an analogous factor. There is a special type of pairs
that can be further exploited: when A, B are multiples of halves (this can be
generalized too). In case A = α/2 and B−A = k ≥ 1, then (A, B) contributes
the following factor to tn:

α(α + 2) · · · (α + 2(k − 1))

(α + 2n) · · · (α + 2(k + n − 1))

In the Core Library, this formulation will again lead to expressions of smaller
depth, and more efficient evaluation. The following table shows the speedup
when we exploit parameter reduction (in the standard series for log(1 + x)).

9

Yap

Number of digits 100 200 300 400 500

No preprocessing (secs.) 1. 5.01 6.99 8.89 10.46

Parameter preprocessing (secs.) 0.22 0.52 0.88 1.35 1.83

Speedup: 4.5 9.6 7.9 6.8 5.7

Minimum Matching Problem. Above, we had to solve the following
problem 2 . Given two sorted lists of real numbers, (A1 < A2 < · · · < Am)
and (B1 < B2 < · · · < Bn), where m ≤ n, we want to compute a set of m
pairs (A1, Bα(1)), . . . , (Am, Bα(m)) such that the sum S =

∑m
i=1 |Ai −Bα(i)| is

minimized. Two pairs (Ai, Bα(i)) and (Aj , Bα(j)) are said to cross if i < j
and α(i) > α(j). It is easy to see that if we “uncross” such a pair, we obtain
a solution whose sum S is not more than the original. Hence we consider
only non-crossing pairs. Consider the subproblems P (i, j) comprising the
input lists (A1, . . . , Ai) and (B1, . . . , Bj). Let S(i, j) be the minimum value
for subproblem P (i, j). When i = j, the solution is unique in the obvious way.
Otherwise, for i < j, S(i, j) = min{S(i, j − 1), S(i − 1, j − 1) + |Ai − Bj |}.
Then, using standard dynamic programming, we can solve this problem in
time O(mn).

6 Mathematical Constants: Evaluation, File Formats
and Access

The hypergeometric evaluation algorithm requires arbitrarily precise constants.
When doing argument reduction for trigonometric functions, we need π. For
argument reduction for exp(x) and for log(1 + x) we need log 2. For the error
function erf(x), we need 1/

√
π. We could compute these constants on the fly,

but performance is improved by precomputing these constants, storing them
in files, and accessing them as needed. The following table compares the time
to compute π to a certain number of bits (using Machin’s formula) versus the
time it takes to read the same value from a text file.

Bits 100 1000 3000 5000 7000 9000 10000 20000

On the fly (secs.) 0.04 0.50 2.49 5.88 10.66 17.19 21.38 107.61

Precomputed (secs.) 0.01 0.01 0.01 0.01 0.02 0.02 0.03 0.11

Speedup 4 50 249 588 533 859 713 978

We now describe facilities to compute, to store and to read constants in file
formats. A fundamental decision was to use text files rather than binary files,
as the former is human readable. The format supports both integer, floating
point and rational number representations. Next, the base of the numbers

2 This might appear to be a known problem, but we have not found a reference.

10

Yap

can be binary, hexadecimal or decimal. The advantage of binary/hexadecimal
is that conversion into the internal format of the Core Library takes linear
time. The formal specification is distributed with Core Library version
1.3 or higher 3 .

7 Conclusions

This paper describes an effort to incorporate non-algebraic functions into a
framework that supports guaranteed precision. The implementation of such a
package is naturally achieved using the basic capabilities of the Core Library.
There are several issues of efficiency and automation which we have addressed:
automatic error bound computation, hypergeometric parameter processing,
argument reduction, and finally constant precomputation, storage and re-
trieval. The full paper will describe implementation details such as a facility
for registering hypergeometric functions. Topics for future work include ac-
celeration of series. The hypergeometric package is distributed with the Core

Library, at our website http://cs.nyu.edu/exact/.

References

[1] J.-D. Boissonnat and M. Yvinec. Algorithmic Geometry. Cambridge University Press,
1997. Translated by Hervé Brönnimann.

[2] H. Brönnimann, C. Burnikel, and S. Pion. Interval arithmetic yields efficient dynamic
filters for Computation Geometry. ACM Symp. on Computational Geometry, 14:165–
174, 1998.

[3] C. Burnikel, R. Fleischer, K. Mehlhorn, and S. Schirra. Exact geometric computation
made easy. In Proc. 15th ACM Symp. Comp. Geom., pages 341–450, 1999.

[4] C. Burnikel, R. Fleischer, K. Mehlhorn, and S. Schirra. A strong and easily computable
separation bound for arithmetic expressi ons involving radicals. Algorithmica, 27:87–99,
2000.

[5] C. Burnikel, S. Funke, K. Mehlhorn, and S. Schirra. A separation bound for real
algebraic expressions, 2001. preprint (submitted to journal).

[6] C. Burnikel, S. Funke, and M. Seel. Exact geometric comptuation using cascading.
Int’l. J. Computational Geometry and Applications, 11(3):245–266, 2001. Special Issue.

[7] M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf. Computational
Geometry: Algorithms and Applications. Springer-Verlag, Berlin, 1997.

[8] A. Fabri, G.-J. Giezeman, L. Kettner, S. Schirra, and S. Schoenherr. The CGAL
kernel: a basis for geometric computation. In M. C. Lin and D. Manocha, editors,
Applied Computational Geometry: Towards Geometric Engineering, pages 191–202,
Berlin, 1996. Springer. Lecture Notes in Computer Science No. 1148; Proc. 1st
ACM Workshop on Applied Computational Geometry (WACG), Federated Computing
Research Conference 1996, Philadelphia, USA.

3 Look under the directory progs/fileIO.

11

Yap

[9] E. Jeandel. Évaluation rapide de fonctions hypergéométriques. Rapport Technique
242, INRIA, 2000. 17 pages.

[10] V. Karamcheti, C. Li, I. Pechtchanski, and C. Yap. A Core library for robust numerical
and geometric libraries. In 15th ACM Symp. Computational Geometry, pages 351–359,
1999.

[11] C. Li and C. Yap. A new constructive root bound for algebraic expressions. In
Proc. 12th ACM-SIAM Symposium on Discrete Algorithms, pages 496–505. ACM and
SIAM, Jan. 2001.

[12] C. Li and C. Yap. Recent progress in exact geometric computation. In S. Basu and
L. Gonzalez-Vega, editors, Proc. DIMACS Workshop on Algorithmic and Quantitative
Aspects of Real Algebraic Geometry in Mathematics and Computer Science, March 12
- 16, 2001., DIMACS Books Series. American Math. Society, 2001. Submitted. Paper
download http://cs.nyu.edu/exact/doc/.

[13] G. Liotta, F. Preparata, and R. Tamassia. Robust proximity queries: an illustration of
degree-driven algorithm design. SIAM J. Computing, 2001. to apear.

[14] Y. V. Matiyasevich. Hilbert’s Tenth Problem. The MIT Press, Cambridge,
Massachusetts, 1994.

[15] K. Mehlhorn and S. Näher. LEDA: a platform for combinatorial and geometric
computing. CACM, 38:96–102, 1995.

[16] J.-M. Muller. Elementary Functions: Algorithms and Implementation. Birkhäuser,
Boston, 1997.

[17] M. Overmars. Designing the computational geometry algorithms library CGAL.
In M. C. Lin and D. Manocha, editors, Applied Computational Geometry: Towards
Geometric Engineering, pages 53–58, Berlin, 1996. Springer. Lecture Notes in
Computer Science No. 1148; Proc. 1st ACM Workshop on Applied Computational
Geometry (WACG).

[18] S. Schirra. Precision and robustness in geometric computations. In M. van
Kreveld, J. Nievergelt, T. Roos, and P. Widmayer, editors, Algorithmic Foundations of
Geographic Information Systems, volume 1340 of Lecture Notes Comp. Science, pages
255–287. Springer, 1997. Chapter 9.

[19] K. Weihrauch. Computable Analysis. Springer, Berlin, 2000.

[20] C. Yap. A new number core for robust numerical and geometric libraries. In 3rd CGC
Workshop on Geometric Computing, 1998. Invited Talk. Brown University, Oct 11–12,
1998. For abstracts, see http://www.cs.brown.edu/cgc/cgc98/home.html.

[21] C. K. Yap. Robust geometric computation. In J. E. Goodman and J. O’Rourke, editors,
Handbook of Discrete and Computational Geometry, chapter 35, pages 653–668. CRC
Press LLC, Boca Raton, FL, 1997.

[22] C. K. Yap. Towards exact geometric computation. Computational Geometry: Theory
and Applications, 7:3–23, 1997. Invited talk, Proceed. 5th Canadian Conference on
Comp. Geometry, Waterloo, Aug 5–9, 1993.

12

