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ABSTRACT
Homotopy continuation is a well-known approach in numerical

root-finding. In recent years, certified algorithms for homotopy

continuation based on Smale’s alpha-theory have been developed.

Such approaches enforce very strong requirements at each step,

leading to small step sizes. In this paper, we propose an approach

that is independent of alpha-theory. It is based on the weaker no-

tion of well-isolated approximations to the roots. We apply it to

univariate polynomials and provide experimental evidence of its

feasibility.
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1 INTRODUCTION
Homotopy continuation is a method for approximating the solu-

tions of a system of polynomials f by tracking and deforming the

approximate solutions of an easier system of polynomials д. We

call f the target system and д the start system. We are given f and

the homotopy method chooses д as well as the homotopy H (z, t)
such that H (z, 0) = д and H (z, 1) = f . The recent development of

software packages for homotopy continuation has led to signifi-

cant interest and development of these techniques both within the

mathematics community as well as for their applications. Some of

the main homotopy continuation packages include Bertini [1],

PHCpack [25], Hom4PS [18], and NAG4M2 [19], see also the references
therein. Homotopy continuation algorithms (broadly speaking) con-

sist of three phases: (1) choosing an appropriate start system д and

approximating its roots, (2) tracking the roots as д is deformed

to the target system f , and (3) applying end-game techniques to

analyze singular solutions.

In this paper, we provide a certified version of Phase (2) for

univariate polynomials using well-isolated approximations to roots,

subdivisions, and interval methods. To this end, we assume that
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f has only simple roots
1
in order to avoid the end-game issues in

Phase (3). Approximating the roots of the start system д in Phase

(1) is also not an issue, especially when discussing univariate roots.

In this case, it is standard to choose д(z) = zn − 1 when deg(f ) = n.
We next describe the central problem of Phase (2).

A solution path for this homotopy is a continuous function

α(t) such that H (α(t), t) = 0 for all t ∈ [0, 1]. We call H (z, t) a
good homotopy if the n solution paths {α i : i = 1, . . . ,n} are
non-singular and do not diverge to infinity. We restrict attention to

good homotopies in this paper.

In general, path tracking consists of the following iterative proce-

dure: to track the ith path, assume we are given zi
0
as an approxima-

tion to zi (0). Starting with (zi
0
, 0), for j ≥ 0, assume we can generate

a pair (zij+1, t
i
j+1) from (z

i
j , t

i
j ) such that 1 ≥ t ij+1 > t ij . Intuitively,

each zij is an approximation to α i (tj ). If z
i
j+1 is not an approxima-

tion to α i (tj+1), we say that path jumping has occurred. Such

errors are the central concern Phase (2). Although the sequence

{zij : j ≥ 0} is explicit, the solution path α i (t) is only implicit. The

problem is how to ensure correctness without direct access to α i (t).
The preceding discussions are quite informal, as the notion “zij is

(or is not) an approximation of α i (tj )” is imprecise. We now turn

to ways to make it precise and effective.

The key idea lies
2
in defining what it means for z0 ∈ C

m
to iden-

tify a unique root z∗ ofh : Cm → Cm . It is tempting to choose z∗ to
be the root of h closest to z0, but this idea is not effective. Typically,
this identification is done via Newton iteration

3
. In the literature,

z0 ∈ C
m

typically identifies a root z∗ of h in one of two ways: (i) z0
lies in the Newton basin of z∗, or (ii) z0 converges quadratically
(from the start) towards z∗. Note that Condition (ii) is stricter than

Condition (i). By applying Newton iteration to z0 sufficiently many

times, we can (eventually) confirm these conditions, but this is not

effective. Smale’s α-theory [10] provides a way to check Condition

(ii) without applying the Newton operator. In particular, one can

effectively evaluate the function
4 αh such that if this function at z0

is less than some universal constant (e.g., 0.158), then z0 satisfies
Condition (ii). The certified homotopy methods of Beltran-Leykin

1
In practice, due to numerical issues, many homotopy continuation algorithms assume

that the system starts at t = 1 and ends at time t = 0. This allows for more numerical

precision near potentially singular solutions of the target system. Since we assume that

f has simple roots, reversing the homotopy does not impact the practical efficiency of

our approach.

2
Briefly, we consider the multivariate setting.

3
This is natural since, until the current paper, the corrector steps of homotopy contin-

uation use Newton iteration.

4
The αh function is from Smale’s alpha-theory. It is defined for the polynomial h

and should not be confused with solution paths α i .
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[6] and Bürgisser-Cucker [11] avoid path jumping by ensuring that

the zij ’s satisfy some strong form of this alpha test.

In this paper, we develop a weaker way for z0 to identify a root

z∗ that can be used to track a path α(t): we say that z0 ∈ C is awell-
isolated approximation of h if its distance to the closest root of

h is at most one-third the distance to the second closest root of h.
To make this effective, assume that such a z0 comes with a witness

radius r0. That is, we have a disc ∆(z0, r0) centered at z0 of radius
r0 with the following property: ∆(z0, r0) contains a unique root of
h(z), and ∆(z0, 3r0) contains no additional roots of h(z). In this case,

we call ∆(z0, r0) a well-isolator of a root of h. A key contribution

of this paper is to show how, given a well-isolator ∆(zj , r j ) for
hj (z) = H (z, tj ), we can compute a time tj+1 ∈ (tj , 1] and a well-

isolator ∆(zj+1, r j+1) for hj+1, such that both well-isolators identify

the same solution path α(t). We can use recently developed soft

Graeffe-Pellet tests [3, 4] to verify a well-isolator ∆(z, r ).
The main motivation for our approach comes from an intuition

that using the approximate roots ofα-theory is unnecessarily strong
for the goal of avoiding path jumping. We show that the weaker

notion of well-isolated approximations is sufficient for this pur-

pose. In consequence, we expect our approach to take fewer time

steps. This is supported by Table 1 which compares the number

of time steps using α-theory versus our well-approximated root

approach. The data for α-based tracking is from Beltrán and Leykin

[5, Section 9.1 and Table 3]. Each column correspondsto a homotopy

Hm (x1, t) = x2
1
− (1+mt) for some choice ofm. We run our tracker

using γ = 1 and γ = i . Overall, our well-isolated tracker has 4 to 8

times fewer steps than the alpha tracker.

In addition, α-theory may have been employed in previous cer-

tified algorithms because it pairs well with Newton iteration, the

typical corrector in homotopy continuation. Our approach, how-

ever, does not use Newton iteration – this is an intended (possi-

bly surprising) feature of our approach. We design our time steps

δtj := tj+1 − tj to be correlated with r0, and so a larger r0 would
allow us to take larger time steps. Newton iteration, on the other

hand, would result in more steps if r0 were very small.

Since these ideas are new, and the univariate case already has

various subtleties, we focus on the univariate case in this paper.

1.1 Literature Survey.
There are various approaches to certify the output of a homotopy

continuation algorithm: see [5–7, 11–14, 16, 17, 20], and the ref-

erences therein. The first rigorously justified algorithm in the Bit

Model of computation (this includes Turing Machines) is from Bel-

tran and Leykin [6], with implementation in [5]. The emphasis

on a computational model is important: most algorithms are de-

scribed in the Algebraic Model (in particular the Real RAM Model

or BSS Model) where each algebraic operation is treated as a primi-

tive operation. It is well-known that the correct implementation of

algebraic algorithms is highly nontrivial. Conversely, the correct

implementation of bit model algorithms is comparatively easy.

It is generally understood that certified homotopy algorithms

mean that each path is correctly tracked. But there is a weaker

notion of simply certifying the output as in [14]. Strictly speaking,

this type of certification is not specific to homotopy continuation

(since we can use the method to certify the output of any root

finding algorithm). This approach amounts to checking that the

final root is actually an approximate zero, but it is helpless to recover

any lost roots due to path jumping. On the other hand, certifying

the paths ensures that no roots are lost.

In [5–7, 11, 13, 22–24], the authors present certified complexity

analyses or homotopy continuation algorithms which remain very

close to the path, such as near the alpha-region of convergence.

In [12] the authors use an a posteriori approach to certify the cor-

rectness of a path by reversing a non-certified homotopy step. In

[15–17, 20] the authors present algorithms for path tracking using

interval arithmetic. These papers track general curves and are not

tuned to studying homotopy continuation-based paths.

1.2 Overview of Paper
In Section 2 we establish some common notation, including clarify-

ing the good homotopy assumption of this work.

In Section 3, we give an overview of our main algorithm, the

Well-Isolated Tracker. Couched in the familiar predictor-correct

framework of homotopy continuation, we expose the details of

our predictor and corrector modules. This is the main locus of our

technical contribution. We develop well-isolated approximations

into a tool for correct path tracking. Our predictor uses the classic

Euler steps (this is absent in current α-theory approaches). Instead

of Newton iteration, we use bisection using a recently developed

soft Graeffe-Pellet test.

Sections 4 and 5 provide technical details of the Update Sub-

routine, which is a loop for the interaction between the predictor

and corrector. The main algorithm is an outer loop around this

inner loop. Section 4 presents a slightly abstract view (“geometric

meaning”) of the Update Subroutine, and Section 5 instantiates

these with explicit formulas necessary for implementation. Also in

Section 5, we take care of issues of numerical approximations using

interval methods. Because of the intricate predictor-corrector in-

teraction, the correctness of the overall algorithm is nontrivial. We

first prove the termination of the inner loop (Update Subroutine).
The termination of the outer loop (the main algorithm) requires an

improved corrector strategy. In Section 6, we present experimental

results and conclude in Section 7.

2 BASIC SETUP AND NOTATION
In this paper, we follow many of the standard conventions used

in homotopy continuation, e.g., see [2]. Our goal is to find the

roots of a given target univariate polynomial f ∈ Q[x]. Suppose
that д ∈ Q[x] is the starting polynomial of the same degree as f
and whose roots we already know. We connect f and д using a

linear homotopy with the standard γ -trick, i.e., for γ ∈ C, H (x , t) =
Hγ (x , t) := t f (x) + γ (1 − t)д(x). We observe that H (x , 0) = γд(x)
and H (x , 1) = f (x). Given a root z ∈ C of д, the solution path
for z is a continuous function α : [0, 1] → C where α(0) = z and
H (α(t), t) = 0 for all t ∈ [0, 1].

Good Homotopy Assumption: all solution paths are nonsin-
gular and none diverge to infinity. The results of this paper depend
on this assumption, so it is good to clarify a potential ambiguity

about the term “non-singularity of solution paths”. Non-singularity

implies that the solution paths are pairwise disjoint. The alge-

braic set {α(t) : t ∈ [0, 1]} might be regular, yet its parametrization
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Parameterm: 10 40 70 100 1000 2000 3000 4000 5000 10000 20000 30000

# of Alpha Steps (from [5, p. 288]): 184 250 276 292 395 426 446 457 468 499 530 547

# of Well-Isolated Steps: (γ = 1) 21 32 38 39 63 68 68 75 75 79 87 88

# of Well-Isolated Steps: (γ = i ) 38 47 49 47 76 73 85 89 84 91 96 96

Table 1: Comparison against Alpha Tracking for the Homotopy H (x , t) = x2 − (1 +mt). The number of steps are identical for
both roots of the polynomials.

α(t) might be singular, i.e., α ′(t) might not be defined for some t .
We interpret the Good Homotopy Assumption to mean that the

parametrization α(t) itself is well-defined. To see what this entails,

we differentiate H (α(t), t) = 0 with respect to t :

α ′(t)
∂H

∂x
(α(t), t) +

∂H

∂t
(α(t), t) = 0.

Thus α ′(t) is well-defined provided ∂H
∂x (α(t), t) does not vanish. So

we assume that the function
∂H
∂x (α(t), t) , 0 for all t ∈ [0, 1],

viewed as part of our good homotopy assumption. Note that the

non-vanishing of α ′(t) for all t ∈ [0, 1] is the typical case for a

random choice of γ . We define the function

G(x , t) = −
∂H
∂t (x , t)

∂H
∂x (x , t)

=
γд(x) − f (x)

(1 − t)γд′(x) + t f ′(x)
. (1)

Observe that α ′(t) = G(α(t), t) for any solution path α(t).
Our algorithm proceeds by maintaining closed disks containing

the roots of H (x , t0) for t0 ∈ [0, 1]. We use the following notation

for disks: ∆(m, r ) ⊆ C denotes the closed complex disk centered at

m ∈ C of radius r > 0. Two convenient related notations follow: (i)

for any real k > 0, let k∆(m, r ) :=∆(m,kr ), and (ii) for any t ∈ [0, 1],
let ∆(m, r , t) :=∆(m, r )×{t} ⊆ C×[0, 1]. For a polynomialh ∈ Q[x],
we say that ∆(m, r ) is well-isolating (for h) if both ∆(m, r ) and
3∆(m, r ) contain a unique root of h.

In our tests, we appeal to the Graeffe-Pellet test
5
and interval

methods for functions. Details on this test and these methods can

be found in [4] and [21], respectively.

3 OVERVIEW OF ALGORITHM
In this section, we provide a high-level overview overview of our

homotopy algorithm. We frame our algorithm in the standard

predictor-corrector framework. Throughout this section, we fix

a solution path α(t) from our homotopy.

3.1 Update Subroutine
Our homotopy algorithm maintains and updates a state during its

algorithm. A state consists of the following data:

σ0 = (m0, r0, t0,δt0) ∈ C × R>0 × [0, 1]
2. (2)

This state is a valid state relative to a solution path α(t) pro-
vided ∆(m0, r0) is well-isolating for the root α(t0) of the polynomial

H (x , t0). Thus,m0 is a well-isolated approximation of the root α(t0).
Additionally, δt0 provides a suggestion for the next time step. In

our algorithm, we assume that we begin with a valid initial state

5
The Graeffe-Pellet test could be used to certify the output of a homotopy continuation,

in a similar way as the alphaCertified algorithm in [14], but we do not use it in the

present paper

for γд(x) = H (x , 0), and, in this section, we focus on the update

step that transforms σ0 to a valid state σ1 at time t1 > t0.

valid

state

Predictor

expanded

state

Corrector

next

valid state

reduced state

Figure 1: Update Subroutine

Fig. 1 is a schematic for our Update Subroutine that converts a
valid state into another valid state at the next time instance. It has

two modules, a predictor and a corrector. Starting with a valid state

σ0, the predictor produces an “expanded” state σ1 and sends it to

the corrector module. The corrector module either confirms that

σ1 is valid, or sends a “reduced” state back to the predictor. The

“expanded” and “reduced” terminology is clarified below.

Well-Isolated Tracker Algorithm

Input:Well-isolator ∆(m0, r0) for start polynomial д
Output:Well-isolator of the valid state σ at time t = 1.

Initialize state σ ← (m0, r0, 0, 2r0)
While (the time of σ is < 1)

σ ← Update(σ )
Return the well-isolator in σ .

Figure 2: Main Algorithm for path tracking

Our main algorithm is the path tracker shown in Fig. 2. It is a

while-loop around the Update Subroutine called the outer loop.
The loop in Update is called the inner loop. The tracker terminates

when the outer loop reaches a valid state at time t = 1. The input

∆(m0, r0), being a well-isolator of the starting polynomial д, defines
a unique solution path α(t). Validity of states refers to this path.

And the final valid state represents a well-isolated approximation

of the root α(1) of the final polynomial f .

3.2 Corrector Module
In this section, we provide an overview of the corrector module of

the predictor-corrector loop. The corrector module has three tests,

which we call the Bounded, On-Track, and Isolated tests. The first
two tests are computed on the “transition region” T between the

valid state and the expanded state, i.e., T ∩ C × {t0} is the starting
valid disk ∆(m0, r0, t0) andT ∩C× {t1} equals the disk ∆(m1, r1, t1)
corresponding to the expanded state. If all the three tests pass,
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the corrector sends σ1 to the output of the Update Subroutine;

otherwise, it reduces the valid disk ∆(m0, r0) and/or the suggested
step size δt0. The construction ofT and the details of the correctors

are discussed in Section 4.

expanded state

Bounded?

no

Corrector1

yes

On-Track?

no

Corrector2

yes

Isolated?

no

Corrector3

next valid state

reduced state

Figure 3: Corrector Module

The Good Homotopy Assumption implies
∂H
∂x (α(t), t) is never

zero for any solution path α(t). However, it is possible that this
derivative vanishes for some (x , t) ∈ T . The Bounded test assures
that

∂H
∂x (x , t) never vanishes within T , i.e., |G(x , t)| is bounded.

The On-Track test guarantees that the region T contains the

portion of the solution path α between t0 and t1, i.e., α([t0, t1]) ⊆ T .
This test assumes that the Bounded test has passed. The On-Track
test checks that δt = t1 − t0 is sufficiently small.

The Isolated test guarantees that the disk 3∆(m1, r1) isolates a
unique root of H (x , t1). If both the Bounded and On-Track tests are
passed, we know that this unique root is actually α(t1), and α(t1)
lies in ∆(m1, r1). Thus σ1 is a valid state relative to the path α(t).

At a high level, the corrector module is described by the follow-

ing pseudo-code: In this code, the Reduce function serves as the

corrector function, and details on this function are provided in the

next section. The parameters ε and ε ′ are often set to
1

2
or

3

4
.

Corrector Module

Input: Valid state σ0 and expanded state σ1
Output: Send a reduced state to the Predictor

or output σ1 as a valid state

If the Bounded(σ0,σ1) fails,
send Reduce(σ0, ε, ε

′) to Predictor

Else if On-Track(σ0,σ1) fails,
send Reduce(σ0, ε, 1) to Predictor

Else if Isolated(σ1) fails,
send Reduce(σ0, 1, ε

′) to Predictor

Else output σ1.

Figure 4: Corrector Module

4 DETAILS OF THE MODULES
In this section, we describe the details of the predictor and corrector

modules. The predictor is designed to be optimistic and encourages

larger disks and step sizes. The corrector reduces a valid state by

reducing r0 or δt0. The adaptivity of our algorithm is based on a

balance between these two opposing tendencies.

4.1 Predictor Module
For a given valid state σ0, the predictor module suggests a new state

σ1 at time min{t0 +δt0, 1} by approximating the path α(t) with (an

approximation to) the tangent line to the curve at t0. In particular,

we observe that, on small scales, the path α(t) starting at t0 can be

approximated by the tangent line to the curve α ′(t0)(t−t0)+α(t0) at
t0. Since we do not know the root α(t0), we approximate α(t0) with
m0 and α

′(t0) with G(m0, t0). This approximation is the pointm1

(known as the Euler step) in Program 5: Note that we define r1 and
δt1 to be twice their previous values. These choices are optimistic

and are designed to bias the algorithm using larger disks and taking

larger steps. Hence σ1 is called an “expanded state”.

Subroutine Predict(σ0)
Input: Valid state σ0
Output: Valid state σ1

m1 ←m0 +G(m0, t0)min {δt0, 1 − t0}
r1 ← 2r0
t1 ← min {1, t0 + δt0}
δt1 ← 2δt0.

Figure 5: Predictor Subroutine

By a transition, we mean a pair of states written in the form

“σ0 → σ1” where σ0 is valid and σ1 (not necessarily valid) follows

σ0 in time. We next address the the tests and the Reduce function
in the corrector module.

4.2 Bounded Test
Given σ0 and an expanded state σ1, we consider the convex hull of
∆(m0, r0, t0) and ∆(m1, r1, t1), denoted

T := Chull(∆(m0, r0, t0),∆(m1, r1, t1)).

SoT is frustum in the three-dimensional space C× [0, 1] illustrated
in Figure 6. Since the function G(x , t) is a rational function, its

value is bounded if and only if the denominator never vanishes.

The Bounded test is passed if the denominator
∂H
∂x (x , t) does not

vanish in the frustum T .

m0

m1

r1

r0
G(m0, t0)

t0 t1

∆(m0, r0)

∆(m1, r1)

Figure 6: The frustumT is the convex hull of ∆(m0, r0, t0) and
∆(m1, r1, t1).

To verify that
∂H
∂x does not vanish on T , it is easier to show that

it does not vanish on a cylinder T̂ containing T . We may define
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T̂ :=∆(m0,R) × [t0, t1] where R is chosen as

R := 3r0 + |G(m0, t0)|δt0. (3)

Taylor series has linearly many terms in its degree. Suppose that

we can find an Rx so that the following holds(
∂H

∂x

)
(∆(m0,R) × [t0, t1]) ⊆

∂H

∂x
(m0, t0) + ∆(0,Rx )

for some positive real number Rx (see Eqn. (8) in Section 5 below).

In this case, for all (x , t) ∈ ∆(m0,R) × [t0, t1],���� ∂H∂x (x , t)���� ≥ ���� ∂H∂x (m0, t0)

���� − Rx . (4)

If the right hand side of (4) is positive,
∂H
∂x will not vanish on T .

For our correctness proof below, we need the slightly stronger

condition that the right hand side of (4) is larger than
1

4

∂H
∂x (m0, t0),

which is equivalent to

Rx ≤
3

4

���� ∂H∂x (m0, t0)

���� . (5)

In particular, the Bounded test is true if Inequality (5) holds.

4.3 On-Track Test
Suppose that the bounded condition is satisfied for transition σ0 →
σ1, so that G is bounded on T . We can then define

max

(x,t )∈T
|G(x , t) −G(m0, t0)|

to be the relative variation ofG onT . Let R∗ be any upper bound
on the relative variation on T (see Eqn. (9) in Section 5 below), and

define

δt∗ :=
r0
R∗
. (6)

This quantity describes how much a solution path α starting within

∆(m0, r0) can bend away from G(m0, t0). This is made precise in

the following lemma:

Lemma 4.1 (On-Track Condition). If δt∗ ≥ δt0 and σ0 is a
valid state for α(t0), then α remains within T .

Proof. Letm(t) :=m0+G(m0, t0)(t−t0) be the path connecting the
centers of∆(m0, r0)×{t0} and∆(m1, r1)×{t1} andγ (t) :=α(t)−m(t).
Observe that by our choice of R, for all t ∈ [t0, t1), T ∩ {t} is con-

tained within the relative interior of T̂ ∩{t}. Since ∆(m0, r0) is valid
for α(t0), we know that |γ (t0)| ≤ r0. Suppose, for contradiction,
that α leaves T . By our observation, there is some time t ′ ∈ (t0, t1)

so that α(t ′) < T but α(t) ∈ T̂ for all t ∈ [t0, t
′]. We observe that

|γ (t ′)| > r0
(
1 +

t ′−t0
δt0

)
. Therefore, by the reverse triangle inequal-

ity, it follows that

|γ (t ′) − γ (t0)|

t ′ − t0
≥
|γ (t ′)| − |γ (t)|

t ′ − t0
>

r0
δt0
. (7)

However, by the mean value theorem for paths, the quantities in

Inequality (7) are bounded above by |γ ′(t ′′)| ≤ R∗ = r0
δt ∗ for some

t ′′ ∈ (t0, t
′). This contradicts the given inequality. Q.E.D.

Therefore, we define the On-Track test to be true if the inequality
in Lemma 4.1 holds.

4.4 Isolated Test
The Isolated Test verifies that ∆(m1, r1) is a well-isolator. If the

transition σ0 → σ1 satisfies both the Bounded and On-Track tests,

then the solution path α must pass through ∆(m1, r1). Therefore
∆(m1, r1) is a well-isolator if and only if 3∆(m1, r1) contains exactly
one root of H (x , t1). We certify this by using the soft-variant of the

Graeffe-Pellet test from [4]. In particular, if T̃G
1
(3∆(m1, r1),H (x , t1))

succeeds, then 3∆(m1, r1) contains exactly one root of H (x , t1).
Moreover, by [4, Lemma 4], if there are no roots other than α(t1)
in 4∆(m1, r1), then the Graeffe-Pellet test succeeds.

Thus, we define the Isolated test to be true if the Graeffe-Pellet
test T̃G

1
(3∆(m1, r1),H (x , t1)) succeeds.

4.5 Corrector
The correctors within the corrector module are based on the Reduce
function, where Reduce(σ0, ε, ε

′) reduces the step size by a factor

of ε and replaces the isolating disk ∆(m0, r0) with a new disk which

is a subset of ∆(m0, r0) of radius at most ε ′r0. Reducing the step size
is straight-forward since we may replace δt0 with εδt0. We now

focus on the reduction of the radius, by following the approach in

[4, Algorithm 8].

Since σ0 is known to be isolating, it is enough to cover ∆(m0, r0)
by smaller disks and confirm that one of these disks is isolating. In

particular, let B be the circumscribing square of ∆(m0, r0), treating
C as R2. We then split B into four equal boxes B1, . . . ,B4 by bisect-

ing each of the sides of B. For each Bi , letmi be the midpoint of

Bi and consider ∆
(
mi ,

3

4
r0
)
. We show that for one of these disks

the Graeffe-Pellet test succeeds as follows, see also Figure 7: The

disk ∆
(
mi ,

√
2

2
r0
)
contains the box Bi and ∆

(
mi ,

3

2
r0
)
is contained

within 3∆(m0, r0). Ifα(t0) ∈ Bi , then the Graeffe-Pellet test succeeds

on ∆
(
mi ,

3

4
r0
)
by [4, Lemma 4]. Moreover, the disk 3∆

(
mi ,

3

4
r0
)

is contained in 3∆(m0, r0), so ∆
(
mi ,

3

4
r0
)
is valid. This construc-

tion is made explicit in the Bisect subroutine. We summarize this

argument in the following lemma:

Lemma 4.2. The Bisect subroutine returns a valid state for α(t).

Subroutine Bisect(∆(m0, r0)
Input: Well-isolator ∆(m0, r0)
Output:Well-isolator ∆(m′

0
, r ′
0
) of radius 3r0/4.

Let B be circumscribing square of ∆(m0, r0)
Split B into 4 congruent subboxes B1, . . . ,B4

For j = 1 to 4:

Letmj be the center of Bj
If T̃G

1
(∆(mj ,

3

4
r0,H (x , t0)) succeeds

m′
0
←mj and r

′
0
← 3

4
r0

Return ∆(m′
0
, r ′
0
).

4.6 Correctness of the Algorithm
The main issue of correctness is halting: this is proved in two parts.

Here, we prove that the inner loop halts (i.e., Update halts). The
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Figure 7: Bisection Geometry. The upper right disk contains
the northeast corner, passes the Graeffe-Pellet test and is
well-isolated.

halting of the outer loop (i.e., the main tracker) is more intricate,

and awaits some additional development in Section 5.

In Program 8, we merged the Predictor and Corrector Modules

into an Update Subroutine; note that we “inverted” the linear struc-
ture of the Corrector Module (Fig. 4) into an equivalent triply-

nested If-Then-Else statements to fit into standard programming

constructs. The Else-parts of these statements are the 3 cases of the

corrector.

Subroutine Update(σ0)
Input: Valid state σ0 = (m0, r0, t0,δt0)
Output: Valid state σ1 = (m1, r1, t1,δt1), (t0 < t1 ≤ 1)

Repeat:

▷ Prediction:
σ1 ← Predict(σ0) ◁ (see Program 5)
▷ Bounded Test:
Compute R ◁ (see Eqn.(3))
If (Inequality (5) holds) then ◁ (see Eqn.(8))
▷ On-track Test:
Compute R∗ and δt∗ ◁ (see Eqs.(9) and (6))
If (δt∗ < δt0) then
▷ Isolated Test:

If (T̃G
1
(3∆(m1, r1),H (x , t1)) succeeds) then

Return σ1 ◁ (σ1 is valid)
Else ▷ Corrector3:
∆(m1, r1) ← Bisect(∆(m0, r0))
σ0 ← (m1, r1, t0,δt0)

Else ▷ Corrector2:
σ0 ← (m0, r0, t0,

1

2
δt0)

Else ▷ Corrector1:
∆(m1, r1) ← Bisect(∆(m0, r0)),

σ0 ← (m1, r1, t0,
1

2
δt0)

Figure 8: Update Subroutine

Lemma 4.3. Suppose that Rx converges to 0 as r0 and δt0 decrease
to zero. Then, the Update subroutine terminates and is correct.

Proof. By following the three tests, we see that when the update

step terminates, the result is a valid step. It remains to show that

the algorithm will terminate. If the subroutine does not terminate,

then at least one of the following three steps steps occurs infinitely

often: Inequality (5) fails, δt∗ < δt0, or the Graeffe-Pellet test.
Inequality (5) does not fail infinitely often. If it is does, both

r0 and δt0 are approaching 0. Thus Rx is approaching zero. Since

∂H
∂x is never zero on α , there exists a closed tubular neighborhood

around α where
∂H
∂x is never zero. We restrict our attention to

within this tube. By compactness,
∂H
∂x is bounded away from zero

on this tubular neighborhood, so, for all r0 and δt0 sufficiently small,

Rx is sufficiently small so that Inequality (5) succeeds.

We show that the Graeffe-Pellet test does not fail infinitely often.

Since the solution paths are disjoint, there is a global lower bound

(i.e., on [t0, t1]) on the distance between the solution path α and

any other solution path. Therefore, when r0 is sufficiently small,

the Graeffe-Pellet test will always succeed, by [4, Lemma 4], since

3∆(m1, r1) will be sufficiently far away from other roots of H (x , t1).
The test δt∗ < δt0 does not fail infinitely either: when Inequality

(5) succeeds, δt∗ is bounded away from zero, so δt0 will need to be

reduced only finitely many times for δt∗ ≥ δt0 to succeed. Q.E.D.

The preconditions of this lemma is easily satisfied by the instan-

tiations of Rx in Section 5.

5 IMPLEMENTATION DETAILS
In this section, we present the details of the computations our

algorithms’ modules. We base our calculations on the standard

centered form in interval arithmetic. Our computational model

assumes that numerical values are approximated by dyadic number

(BigFloats). During the bisection process, the representation of the

disc are exact, and remain so because the constants of subdivision

are carefully chosen [3, 4].

A formula for Rx from Section 4.2 can be constructed from the

standard centered form as follows:We defineQ(x , t) = ∂H
∂x (x , t) and

Qi (x , t) to be the i-th Taylor coefficient of Q(x , t) with respect to

x , i.e, Qi (x , t) =
∂i+1H
i !∂x i+1 (x , t). Similarly, we define P(x) = ∂H

∂t (x , t)

and Pi to be the i-th Taylor coefficient of P(x) with respect to t ,

i.e., Pi (x) =
∂i+1H

i !∂t∂x i+1 (x). We can then compute the radius of the

standard centered form on ∆(m0,R) × (t1 − t0)[−1, 1] as:

Rx =

n−1∑
i=1
|Qi (m0, t0) |Ri +

n−1∑
i=0
(i + 1) |Pi+1(m0) |Riδt0 . (8)

We fix a closed tubular neighborhood of α , and we observe that

each of these functions can be bounded from above within this

neighborhood. Moreover, as r0 and δt0 approach zero, R also ap-

proaches zero. Therefore, when r0, δt0, and R are small enough

to be within the fixed tubular neighborhood of α , we see that Rx
approaches zero as R and δt0 approach 0.

In a similar manner, we can derive a formula for R∗. We observe

that since G(x , t) = − P (x,t )
Q (x,t ) , for any x and t ,

G(x , t) −G(m0, t0) = −
P(x) +G(m0, t0)Q(x , t)

Q(x , t)
.

By maximizing the absolute value of the numerator and minimizing

the absolute value of the denominator of the right-hand-side over

∆(m0,R) × (t1 − t0)[−1, 1], we have an upper bound on the relative

variation on G. We have seen a lower bound for the denominator

in Inequality (4). On the other hand, we observe that at x = m0
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and t = t0, the numerator vanishes, so an upper bound on the

numerator is the width of the standard centered form applied to

the numerator. In other words,

Rt =
∑n

i=1
|Pi (m0) +G(m0, t0)Qi (m0, t0) | Ri

+ |G(m0, t0) |
∑n−1

i=0
(i + 1) |Pi+1(m0) |Riδt0 .

Therefore,

R∗ = Rt

/ (���� ∂H∂x (m0, t0)

���� − Rx ) (9)

is an upper bound on the relative variation of G on T .

5.1 Improved Update Strategy
The Update routine as given above implements what we will call

the basic strategy, designated S0. We now describe an improved

strategy, designated S1. The motivations for considering S1 are

two-fold: First, it is unclear how to prove its termination. More-

over, our experiments (see Table 2) show that it may be very slow).

Experimentally, we found that when the Update subroutine calls
Corrector 1, it sometimes needs to only reduce one of r0 or δt0.
However, Corrector 1 reduces both parameters. We therefore de-

couple the radius r0 from the speed δt0, by first substituting the

formula for R into the formula for Rx , see Eqns. (3) and (8). Then,

by observing that

Ri = (3r0 + |G(m0, t0)|δt0)
i ≤ (6r0)

i + (2|G(m0, t0)δt0)
i ,

we separate the r0 terms from the δt0 terms and note that δt0 is at
most 2 (otherwise, the previous step terminated). Therefore, if

n−1∑
i=1
( |Qi (m0, t0) | + 2(i + 1) |Pi+1(m0) |)6

i r i
0
≤

3

8

���� ∂H∂x (m0, t0)
���� (10)

is false, we perform the Bisect subroutine. Alternatively, if

n−1∑
i=1
( |Qi (m0, t0) | + (i + 1) |Pi+1(m0) |)2

i+1 |G(m0, t0) |i+1δt i+10
+

|P1(m0) |δt0 ≤
3

8

���� ∂H∂x (m0, t0)
���� (11)

is false, we reduce δt0 by half. We observe if both of these conditions

are true, then Inequality (5) succeeds. Our experiments show that

the refined algorithm is much more efficient than the original one.

5.2 Termination of the Algorithm
Theorem 5.1. The main loop of the homotopy algorithm with the

improved strategy terminates.

Proof. Since the Update subroutine always terminates, by Lemma 4.3,

it is enough to compute a lower bound on the step size δt taken
along a path. For the solution path α , let ρ : [0, 1] → R be the

function where ρ(t0) is the minimum distance from α(t0) to a root

of
∂H
∂x (x , t0).
We begin by proving that whenever Inequality (5) succeeds, the

distance between α(t0) andm0 is at most
1

2
ρ(t0) as follows: When

Inequality (5) succeeds, there are no roots of
∂H
∂x (x , t0) contained

in ∆(m0,R) with radius R ≥ 3r0. Since the distance between m0

and α(t0) is at most r0, we see that there are no roots of
∂H
∂x (x , t0)

within ∆(α(t0), 2r0) ⊆ ∆(m0,R). Therefore, 2r0 ≤ ρ(t0).

For the rest of this proof, we restrict our attention to the closed

tubular neighborhood T =
⋃
t ∈[0,1] ∆

(
α(t), 1

2
ρ(t), t

)
of α . We ob-

serve that we can restrict our attention to this compact set. Since

∂H
∂x does not vanish on T , there exists a positive lower bound L

on
∂H
∂x on T . By Inequality (5), it follows that the denominator of

Eqn. (9) is bounded from below by
1

4
L. On the other hand, on the

compact set T , there is a finite upper bound for |Pi (m)|, |G(m, t)|
and |Qi (m, t)| for (m, t) ∈ T .

We begin by finding a lower bound on r0. We first observe that

in Inequality (10), the term on the right can be bounded from below

and the coefficients on the left can be bounded from above. Let

r̂ be the largest value for r0 so that the corresponding inequality

with the upper and lower bounds is true. Therefore, Inequality (10)

succeeds whenever r0 ≤ r̂ .
Additionally, let τ : [0, 1] → R be the function where τ (t0)

is the minimum distance from α(t0) to a distinct root of H (x , t0).
Following the argument above since ∆(m0, r0) is well-isolating, the
distance betweenm0 and α(t0) is at least

1

8
τ (t0) by [4, Lemma 4]. By

compactness, this is bounded from below at some time t̂ . Therefore,
the Graeffe-Pellet test succeeds whenever r0 ≤

1

8
τ (t̂). Since at every

step the radius is decreased by at most a factor of
3

4
, we know that

3

4
min

{
r̂ , 1

8
τ (t̂)

}
is a lower bound for r0.

Next, we find a lower bound on δt0. Substituting the bounds

for |Pi (m)|, |G(m, t)| and |Qi (m, t)| into the formula for Rt , we

see that Rt is bounded from above, and let U be such an upper

bound. Therefore, the largest R∗ that will ever be throughout the

homotopy is 4
U
L . Since, in addition, we have a lower bound on r0,

we can construct a positive lower bound δ̂t∗ on δt∗ throughout the
algorithm.

Applying the argument from Inequality (10) from above to In-

equality (11), we conclude that we can find δ̂t , the largest value
for δt0 for which the corresponding inequality with the upper and

lower bounds is true. Therefore, Inequality (11) succeeds whenever

δt0 ≤ δ̂t . Since at every step δt0 is decreased by at most a factor of

1

2
, we know that

1

2
min

{
δ̂t∗, δ̂t

}
is a lower bound for δt0 through-

out the algorithm. Q.E.D.

6 EXPERIMENTAL RESULTS
In Table 2 we report on some experiments on a suite of polynomials

(mostly taken from the MPSolve database [8, 9]). Our software can

be downloaded from our SVN repository https://cs.nyu.edu/exact/

under progs/homotopyPath. The implementation is in C++ using
the Boost mpfi and mpfr libraries. The experiments were carried

out on a PC with an Intel Core i5-4210U CPU at 1.70 GHz and

4GB RAM. We use the Cygwin platform on a Windows 7 OS. The

timings below could be greatly improved on a native Windows

implementation, or a more powerful CPU. But our main focus

in the table is statistics on the Number of Steps (also Step Sizes

and Radii), and these are machine-independent. These tables are

reproducible as targets of Makefiles in our download folders.

For each polynomial in our test suite, we run our tracker and

count the number of successful or failing paths, and for the success-

ful paths obtain the Number of Time Steps (T), Step Size (δt ), Radius

https://cs.nyu.edu/exact/
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Table 2: Experimental Results

PolyID Strategy No.Paths No.Steps (T) Step Size (δt ) Radius (r ) Time(certified) Time(non-certified)

(S0 or S1) (succ/fail) (max/min/avg) (max/min/avg) (max/min) (max/min/avg) secs. (max/min/avg) secs.

wilk15

S1 15/0 1992/154/790.3 0.125/1.8e-15/0.0013 0.53/0.0083 1.06/0.078/6.93 0.125/0.015/0.77

S0 0/15

mign20

S1 20/0 929/174/272.2 0.0625/8.97e-44/0.0037 0.1/6.62e-25 40.8/0.12/81.2 11.9/0.015/23.6

S0 0/20

chrma20

S1 20/0 2705/123/574.7 0.125/1.16e-10/0.0017 0.1/0.0031 2.01/0.078/8.7 0.218/0/0.92

S0 7/13 6.56e+04/92/1.48e+04 0.063/7.45e-09/6.76e-05 0.025/0.0063 59.4/0.078/93.6 5.35/0/8.47

chrma22

S1 21/0 2683/26/555 0.13/5.82e-11/0.0018 0.095/0.0029 2.2/0.015/9.5 0.23/0/1.01

S0 7/14 3.75e+04/17/1.03e+04 0.25/1.19e-07/9.71e-05 0.024/0.0059 50.2/0.015/88.6 4.29/0/7.58

chrmc11

S1 11/0 1020/49/279.6 0.125/1.91e-06/0.0036 0.091/0.0057 0.36/0.031/1.12 0.062/0/0.219

S0 10/1 7.24+04/41/2.054e+04 0.063/3.81e-06/4.87e-05 0.18/0.011 41.8/0.016/101 6.58/0/15.5

kam3_1

S1 9/0 1095/853/975.3 0.13/2.58e-26/0.0010 3.56/7.89e-16 8.71/0.56/36.6

S0 0/9

cheby20

S1 20/0 860/34/239.4 0.125/1.86e-09/0.0042 0.025/0.00078 0.83/0.031/4.66 0.078/0/0.374

S0 2/18 505/505/505 0.0039/0.00195/0.0019 0.0063/0.0031 0.436/0.358/0.794 0.031/0.031/0.062

cheby40

S1 40/0 2177/49/482.4 0.13/5.55e-17/0.0021 0.013/0.00021 11.9/1.15/107 0.312/0/2.7

S0 2/38 3820/3819/3820 0.0019/0.00024/0.00026 0.0032/0.00052 11.7/11.4/23.1

(r ) as well as computing time (τ ). Since there aremultiple paths, each

of these statistics are represented by three numbers: max/min/avg.

The impact of certification on running time is indicated by another

statistic, namely the computing time for a non-certified version

(τnc )
We implemented a certified and non-certified version of our

Well-Isolated Tracker: the certified version uses interval arithmetic,

but the non-certified version accepts the usual round-off errors.

Each polynomial in our test suite is run four times, using our basic

strategy (S0) and improved stratey (S1), both in the certified as well

as non-certified code. Our certified S1 runs are always 100% suc-

cessful. We time out our S0 runs when T exceeds 100,000, counted

as failure. This accounts for the blank lines for strategy 0 of the

polynomials wilk15, mign20, kam3_1.

7 CONCLUSION
Our fundamental contribution is the introduction of well-isolated

approximation as a new tool for certified path tracking in homotopy

continuation methods. It is the first method that is independent of

α-theory, and rather unexpectedly, also devoid of Newton iteration.

We develop an predictor-corrector strategy where the predictor’s

bias for taking larger time steps is restrained by the corrector in a

calibrated way. Our basic strategy had to be refined in a non-trivial

way in order to achieve our final algorithm for which it is possible to

prove termination. A natural direction for future work is to extend

this to multivariate root tracking.
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