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35 ROBUST GEOMETRIC COMPUTATION

Chee K. Yap

INTRODUCTION

Nonrobustness refers to qualitative or catastrophic failures in geometric algorithms
arising from numerical errors. Section 35.1 provides background on these problems.
Although nonrobustness is already an issue in “purely numerical” computation, the
problem is compounded in “geometric computation.” In Section 35.2 we character-
ize such computations. Researchers trying to create robust geometric software have
tried two approaches: making fixed-precision computation robust (Section 35.3),
and making the exact approach viable (Section 35.4). Another source of nonro-
bustness is the phenomenon of degenerate inputs. General methods for treating
degenerate inputs are described in Section 35.5.

41.1 NUMERICAL NONROBUSTNESS ISSUES

Numerical nonrobustness in scientific computing is a well-known and widespread
phenomenon. The root cause is the use of fixed-precision number to represent
real numbers, with precision usually fixed by the machine word size (e.g., 32 bits).
The unpredictability of floating-point code across architectural platforms in the
1980’s was resolved through a general adoption of the IEEE standard 754-1985.
But this standard only makes program behavior predictable and consistent across
platforms; the errors are still present. Ad hoc methods for fixing these errors (such
as treating numbers smaller than some ǫ as zero) cannot guarantee their elimination.

If nonrobustness is problematic in purely numerical computation, it apparently
becomes intractable in “geometric” computation. In Section 35.2, we elucidate
the concept of geometric computations. Based on this understanding, we conclude
that nonrobustness problems within fixed-precision computation cannot be solved
by purely arithmetic solutions (better arithmetic packages, etc.). Rather, a suitable
fixed-precision geometry is needed to substitute for the original geometry (which is
usually Euclidean). We describe such approaches in Section 35.3.

In Section 35.4, we describe the exact approach for achieving robust geometric
computation. This demands some type of big number package as well as further
considerations. Indeed, current research is converging on an exciting new form of
computational model that we may call guaranteed precision computation.

In the final Section, 35.5, we address a different but common cause of numerical
nonrobustness, namely, data degeneracy. Although this problem has some connec-
tion to fixed-precision arithmetic, it is an issue even with the exact approach.

GLOSSARY

Fixed-precision computation: A mode of computation in which every number
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is represented using some fixed number L of bits, usually 32 or 64. For floating
point numbers, L is partitioned into L = LM + LE for the mantissa and the
exponent respectively. Double precision mode is a relaxation of fixed preci-
sion: the intermediate values are represented in 2L bits, but these are finally
truncated back to L bits.

Nonrobustness: The property of code failing on certain kinds of inputs. Here
we are mainly interested in nonrobustness that has a numerical origin: the code
fails on inputs containing certain patterns of numerical values. Degenerate inputs
are just extreme cases of these “bad patterns.”

Benign vs. catastrophic errors: Fixed-precision numerical errors are fully
expected and so are normally considered to be “benign.” In purely numerical
computations, errors become “catastrophic” when there is a severe loss of preci-
sion. In geometric computations, errors are “catastrophic” when the computed
results are qualitatively different from the true answer (e.g., the combinatorial
structure is wrong) or when they lead to unexpected or inconsistent states of
the programs.

Big number packages: Software packages for representing arbitrary precision
numbers (usually integers or rational numbers), and in which some basic op-
erations on these numbers are performed exactly. For instance, +,−,× are
implemented exactly with BigIntegers. With BigRationals, division can also be
exact. Other operations such as

√
still need approximations or rounding.

41.2 THE NATURE OF GEOMETRIC COMPUTATION

If the root cause of numerical nonrobustness is arithmetic, then it may appear
that the problem can be solved with the right kind of arithmetic package. We may
roughly divide the approaches into two camps, depending on whether one uses finite
precision arithmetic or insists on exactness (or at least the possibility of computing
to arbitrary precision). While arithmetic is an important topic in its own right,
our focus here will be on geometric rather than purely arithmetic approaches for
achieving robustness.

To understand why nonrobustness is especially problematic for geometric com-
putation, we need to understand what makes a computation “geometric.” Indeed,
we are revisiting the age-old question “What is Geometry?” that has been asked
and answered many times in mathematical history, by Euclid, Descartes, Hilbert,
Dieudonné and others. But as in many other topics, the perspective stemming
from modern computational viewpoint sheds new light. Geometric computation
clearly involves numerical computation, but there is something more. We use the
aphorism geometric = numeric + combinatorial to capture this. Instead of
“combinatorial” we could have substituted “discrete” or sometimes “topological.”
What is important is that this combinatorial part is concerned with discrete re-
lations among geometric objects. Examples of discrete relations are “a point lies
on a line,” “a point lies inside a simplex?,” “two disks intersect.” The geometric
objects here are points, lines, simplices and disks. Following Descartes, each object
is defined by numerical parameters. Each discrete relation is reduced to the truth of
suitable numerical inequalities involving these parameters. Geometry arises when
such discrete relations are used to characterize configurations of geometric objects.
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The mere presence of combinatorial structures in a numerical computation does
not make a computation “geometric.” There must be some nontrivial consistency
condition holding between the numerical data and the combinatorial data. Thus,
we would not consider the classical shortest-path problems on graphs to be geo-
metric: the numerical weights assigned to edges of the graphs are not restricted by
any consistency condition. Note that common restrictions on the weights (positiv-
ity, integrality, etc.) are not consistency restrictions. But the related Euclidean
shortest-path problem (Chapter 24) is geometric. See Table 41.2.1 for further
examples from well-known problems.

TABLE 41.2.1 Examples of geometric and nongeometric problems.

PROBLEM GEOMETRIC?

Matrix multiplication, determinant no

Hyperplane arrangements yes

Shortest paths on graphs no

Euclidean shortest paths yes

Point location yes

Convex hulls, linear programming yes

Minimum circumscribing circles yes

Alternatively, we can characterize a computation as “geometric” if it involves
constructing or searching a geometric structure (which may only be implicit). The
incidence graph of an arrangement of hyperplanes (Chapter 21), with suitable ad-
ditional labels and constraints, is a primary example of such a structure. A geo-
metric structure is comprised of four components:

D = (G, λ, Φ(z), I), (41.2.1)

where G = (V, E) is a directed graph, λ is a labeling function on the vertices and
edges of G, Φ is the consistency predicate, and I the input assignment. Intuitively,
G is the combinatorial part, λ the geometric part, and Φ constrains λ based on
the structure of G. The input assignment is I : {z1, . . . , zn} → R where the
zi’s are called structural variables. If I(zi) = ci then we informally identify I
with the sequence “c = (c1, . . . , cn).” The ci’s are called (structural) param-
eters. If u ∈ V ∪ E, then λ(u) is a Tarsky formula of the form ξ(x, z) where
z = (z1, . . . , zn) are the structural variables and x = (x1, . . . , xd). This formula
defines a (Chapter 29) parameterized by the structural variables. For given c, the
semialgebraic set is fc(v) = {a ∈ Rd | ξ(a, c) holds}. Folowing Tarski, we have
identified semialgebraic sets in Rd with d-dimensional geometric objects. The con-
sistency relation Φ(z) is another Tarski formula. In practice Φ(z) has the form
(∀x1, . . . , xd)φ(λ(u1), . . . , λ(um)) where u1, . . . , um ranges over elements of V ∪ E
and φ can be systematically constructed from the graph G.

As an example of this notation, consider an arrangement S of hyperplanes
in Rd. The combinatorial structure D(S) is the incidence graph G = (V, E) of
the arrangement and V is the set of faces of the arrangement. The parameter
c consists of the coefficients of the input hyperplanes. If z is the corresponding
structural parameters then the input assignment is I(z) = c. The geometric data
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associates to each node v of the graph the Tarski formula λ(v) involving x, z. When
c is substituted for z, then the formula λ(v) defines a face fc(v) (or f(v) for short)
of the arrangement. We use the convention that an edge (u, v) ∈ E represents an
“incidence” from f(u) to f(v), where the dimension of f(u) is one more than that
of f(v). So f(v) is contained in the closure of f(u). Let aff(X) denote the affine
span of a set X ⊆ Rd. Then (u, v) ∈ E implies aff(f(v)) ⊆ aff(f(u)) and f(u)
lies on one of the two open halfspaces defined by aff(f(u)). We let λ(u, v) be the
Tarski formula ξ(x, z) that defines the open halfspace in aff(f(u)) that contains
f(u). As usual, let f(u, v) = fc(u, v) denote this open halfspace. The consistency
requirement is that (a) the set {f(v) : v ∈ V } is a partition of Rd, and (b) for each
u ∈ V , the set f(u) is nonempty with an irredundant representation of the form

f(u) =
⋂
{f(u, v) | (u, v) ∈ E}.

Although the above definition is complicated, all of its elements are necessary
in order to capture the following additional concepts. We can suppress the input
assignment I, so there are only structural variables z (which is implicit in λ and
Φ) but no parameters c. The triple

D̂ = (G, λ, Φ(z))

becomes an abstract geometric structure, and D = (G, λ, Φ(z), I) is an in-

stance of D̂. The structure D in Equation 41.2.1 is consistent if the predicate
Φ(c) holds. An abstract geometric structure D̂ is realizable if it has some consis-
tent instance. Two geometric structures D, D′ are structurally similar if they
are instances of a common abstract geometric structure. We can also introduce
metrics on structurally similar geometric structures: if c and c′ are the parameters
of D, D′ then define d(D, D′) to be Euclidean norm of c− c′.

41.3 FIXED-PRECISION APPROACHES

This section surveys the various approaches within the fixed-precision paradigm.
Such approaches have strong motivation in the modern computing environment
where fast floating point hardware has become a de facto standard in every com-
puter. If we can make our geometric algorithms robust within machine arithmetic,
we are assured of the fastest possible implementation. We may classify the ap-
proaches into several basic groups. We first illustrate our classification by con-
sidering the simple question: “What is the concept of a line in fixed-precision
geometry?” Four basic answers to this question are illustrated in Figure 41.3.1 and
in Table 41.3.1.

WHAT IS A FINITE-PRECISION LINE?

We call the first approach interval geometry because it is the geometric analogue
of interval arithmetic. Segal and Sequin [SS85] and others define a zone surrounding
the line composed of all points within some ǫ distance from the actual line.

The second approach is called topologically consistent distortion . Greene
and Yao [GY86] distorted their lines into polylines, where the vertices of these
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FIGURE 41.3.1

Four concepts of finite-precision lines.

(a)                      (b)                                            (c)                           (d)     


polylines are constrained to be at grid points. Note that although the “fixed-
precision representation” is preserved, the number of bits used to represent these
polylines can have arbitrary complexity.

TABLE 41.3.1 Concepts of a finite-precision line.

APPROACH SUBSTITUTE FOR IDEAL LINE SOURCE

(a) Interval geometry a line fattened into a tubular region [SS85]

(b) Topological distortion a polyline [GY86]

(c) Rounded geometry a line whose equation has bounded coefficients [Sug89]

(d) Discretization a suitable set of pixels computer graphics

The third approach follows a tack of Sugihara [Sug89]. An ideal line is specified
by a linear equation, ax + by + c = 0. Sugihara interprets a “fixed-precision line”
to mean that the coefficients in this equation are integer and bounded: |a|, |b| <
K, |c| < K2 for some constant K. Call such lines representable (see Figure 41.3.1(c)
for the case K = 2). There are O(K4) representable lines. An arbitrary line must
be “rounded” to the closest (or some nearby) representable line in our algorithms.
Hence we call this rounded geometry .

The last approach is based on discretization: in traditional computer graphics
and in the pattern recognition community, a “line” is just a suitable collection of
pixels. This is natural in areas where pixel images are the central objects of study,
but less applicable in computational geometry, where compact line representations
are desired. This approach will not be considered further in this chapter.

INTERVAL GEOMETRY

In interval geometry, we thicken a geometric object into a zone containing the
object. Thus a point may become a disk, and a line becomes a strip between
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two parallel lines: this is the simplest case and is treated by Segal and Sequin
[SS85, Seg90]. They called these “toleranced objects,” and in order to obtain correct
predicates, they enforce minimum feature separations. To do this, features that are
too close must be merged (or pushed apart).

Guibas, Salesin, and Stolfi [GSS89] treat essentially the same class of thick
objects as Segal and Sequin, although their analysis is mostly confined to geometric
data based on points. Instead of insisting on minimum feature separations, their
predicates are allowed to return the don’t know truth value. Geometric predicates
(called ǫ-predicates) for objects are systematically treated in this paper.

In general we can consider zones with nonconstant descriptive complexity, e.g.,
a planar zone with polygonal boundaries. As with interval arithmetic, a zone is
generally a conservative estimate because the precise region of uncertainty may be
too complicated to compute or to maintain. In applications where zones expand
rapidly, there is danger of the zone becoming catastrophically large: Segal [Seg90]
reports that a sequence of duplicate-rotate-union operations repeated eleven times
to a cube eventually collapsed it to a single vertex.

TOPOLOGICALLY-CONSISTENT DISTORTION

Sugihara and Iri [SI89b, SIII00] advocates an approach based on preserving topo-
logical consistency. These ideas have been applied to several problems, including
geometric modeling [SI89a] and Voronoi diagrams for point sets [SI92]. In their
approach, one first chooses some topological property (e.g., planarity of the under-
lying graph) and construct geometric algorithms that preserve the chosen property.
Two difficulties in this prescription are (1) how to choose appropriate topologi-
cal properties, and (2) in what sense does this “work”? Greene and Yao consider
the problem of maintaining certain “topological properties” of an arrangement of
finite-precision line segments. They introduce polylines as substitutes for ideal line
segments in order to preserve certain properties of ideal arrangements (e.g., two
line segments intersect in a connected subset). Each polyline is a distortion of an
ideal segment σ when constrained to pass through the “hooks” of σ (i.e., grid points
nearest to the intersections of σ with other line segments). But this may gener-
ate new intersections (derived hooks) and the cascaded effects must be carefully
controlled. The grid model of Greene-Yao has been taken up by several other au-
thors [Hob99, GM95, GGHT97]. Extension to higher dimensions is harder: there
is a solution of Fortune [For98] in 3-dimension. Further developments include the
numerically stable algorithms in [FM91]. The interesting twist here is the use of
pseudolines rather than polylines.

Hoffmann, Hopcroft, and Karasick [HHK88] address the problem of intersect-
ing polygons in a consistent way. Phrased in terms of our notion of “geometric
structure” (Section 35.2) their goal is to compute a combinatorial structure G that
is consistent in the sense that G is the structure underlying a consistent geometric
structure D = (G, λ, Φ, c′). Here, c′ need not equal the actual input parameter
vector c. They show that the intersection of two polygons R1, R2 can be efficiently
computed, i.e., a consistent G representing R1 ∩R2 can be computed. However, in
their framework, R1 ∩ (R2 ∩ R3) 6= (R1 ∩ R2) ∩ R3. Hence they need to consider
the triple intersection R1 ∩R2 ∩R3. Unfortunately, this operation seems to require
a nontrivial amount of geometric theorem proving ability.

This suggests that the problem of verifying consistency of combinatorial struc-
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tures (the “reasoning paradigm” [HHK88]) is generally hard. Indeed, the NP-hard
existential theory of reals can be reduced to such problems. In some sense, the
ultimate approach to ensuring consistency is to design “parsimonious algorithms”
in the sense of Fortune [For89]. This also amounts to theorem proving as it entails
deducing the consequences of all previous decisions along a computation path.

STABILITY

This is a metric form of topological distortion where we place a priori bounds on
the amount of distortion. It is analogous to backwards error analysis in numerical
analysis. Framed as the problem of computing the graph G underlying some geo-
metric structure D (as above, for [HHK88]), we could say an algorithm is ǫ-stable
if there is a consistent geometric structure D = (G, λ, Φ, c′) such that ‖c− c′‖ < ǫ
where c is the input parameter vector. We say an algorithm has strong (resp. lin-
ear) stability if ǫ is a constant (resp., O(n)) where n is the input size. Fortune and
Milenkovic [FM91] provide both linearly stable and strongly stable algorithms for
line arrangements. Stable algorithms have been achieved for two other problems
on planar point sets: maintaining a triangulation of a point set [For89], and Delau-
nay triangulations [For92, For95a]. The latter problem can be solved stably using
either an incremental or a diagonal-flipping algorithm that is O(n2) in the worst
case. Jaromczk and Wasilkowski [JW94] presented stable algorithms for convex
hulls. Stability is a stronger requirement than topological consistency. E.g., the
topological algorithms (e.g., [SI92]) have not been proven stable.

ROUNDED GEOMETRY

Sugihara [Sug89] shows that the above problem of “rounding a line” can be reduced
to the classical problem of simultaneous approximation by rationals: given real
numbers a1, . . . , an, find integers p1, . . . , pn and q such that max1≤i≤n |aiq − pi| is
minimized. There are no efficient algorithms to solve this exactly, although lattice
reduction techniques yield good approximations. The above approach of Greene
and Yao can also be viewed as a geometric rounding problem. The “rounded lines”
in the Greene-Yao sense is a polyline with unbounded combinatorial complexity;
but rounded lines in the Sugihara sense still have constant complexity. Milenkovic
and Nackman [MN90] show that rounding a collection of disjoint simple polygons
while preserving their combinatorial structure is NP-complete. In Section 35.5,
rounded geometry is seen in a different light.

ARITHMETICAL APPROACHES

Certain approaches might be described as mainly based on arithmetic consider-
ations (as opposed to geometric considerations). Ottmann, Thiemt, and Ullrich
[OTU87] show that the use of an accurate scalar product operator leads to improved
robustness in segment intersection algorithms; that is, the onset of qualitative errors
is delayed. A case study of Dobkin and Silver [DS88] shows that permutation of
operations combined with random rounding (up or down) can give accurate predic-
tions of the total round-off error. By coupling this with a multiprecision arithmetic
package that is invoked when the loss in significance is too severe, they are able to
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improve the robustness of their code. There is a large literature on computation
under the interval arithmetic model (e.g., [Ull90]). It is related to what we call
interval geometry above. There are also systems providing programming language
support for interval analysis.

41.4 EXACT APPROACH

As the name suggests, this approach proposes to compute without any error. The
initial interpretation is that every numerical quantity is computed exactly. While
this has an natural meaning when all numerical quantities are rational, it is not
obvious what this means for values such as

√
2 which cannot be exactly repre-

sented “explicitly.” Informally, a number representation is explicit if it facilitates
efficient comparison operations. In practice, this amounts to representing numbers
by one or more integers in some positional notation (this covers the usual represen-
tation of rational numbers as well as floating point numbers). Although we could
achieve numerical exactness in some modified sense, this turns out to be unneces-
sary. The solution to the nonrobustness only requires a weaker notion of exactness:
it is enough to ensure “geometric exactness.” In the “Geometric = Numeric +
Combinatorial” formulation, the exactness is not to be found in the numeric part,
but in the combinatorial part, as this encodes the geometric relations. Hence this
approach is called Exact Geometric Computation (EGC), and it entails the
following:

Input is exact. We cannot speak of exact geometry unless this is true. This
assumption can be an issue if the input is inherently approximate. Sometimes
we can simply treat the approximate inputs as “nominally” exact, as in the
case of an input set of points without any constraints. Otherwise, there are
two options: (1) “clean up” the inexact input, by transforming it to data that
is exact; or (2) formulate a related problem in which the inexact input can be
treated as exact (e.g., inexact input points can be viewed as the exact centers
of small balls). So the convex hull of a set of points becomes the convex
hull of a set of balls. The cleaning up process in (1) may be nontrivial as it
may require perturbing the data to achieve some consistency property and
lies outside our present scope. The transformation (2) typically introduces a
computationally harder problem. Not much research is currently available for
such transformed problems. In any case, (1) and (2) still end up with exact
inputs for a well-defined computational problem.

Numerical quantities may be implicitly represented. This is necessary if we
want to represent irrational values exactly. In practice, we will still need ex-
plicit numbers for various purposes (e.g., comparison, output, display, etc).
So a corollary is that numerical approximations will be important, a remark
that was not obvious in the early days of EGC.

All branching decisions in a computation are errorless. At the heart of EGC
is the idea that all “critical” phenomena in geometric computations are deter-
mined by the particular sequence branches taken in a computation tree. The
key observation is that the sequence of branching decisions completely de-
cides the combinatorial nature of the output. Hence if we make only errorless
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branches, the combinatorial part of a geometric structure D (see Section 35.2)
will be correctly computed. To ensure this, we only need to evaluate test val-

ues to one bit of relative precision, i.e., enough to determine the sign correctly.

For problems (such as convex hulls) requiring only rational numbers, exact com-
putation is possible. In other applications rational arithmetic is not enough. The
most general setting in which exact computation is known to be possible is the
framework of algebraic problems [Yap97].

GLOSSARY

Computation tree: A geometric algorithm in the algebraic framework can be
viewed as an infinite sequence T1, T2, T3, . . . of computation trees. Each Tn is
restricted to inputs of size n, and is a finite tree with two kinds of nodes: (a)
nonbranching nodes, (b) branching nodes. Assume the input to Tn is a sequence
of n real parameters x1, . . . , xn. A nonbranching node at depth i computes a
value vi, say vi ← fi(v1, . . . , vi−1, x1, . . . , xn). A branching node tests a previous
computed value vi and makes a 3-way branch depending on the sign of vi. In case
vi is a complex value, we simply that the sign of the real part of vi. Call any vi

that is used solely in a branching node a test value. The branch corresponding
to a zero test value is the degenerate branch .

Exact Geometric Computation (EGC): Preferred name for the general ap-
proach of “exact computation,” as it accurately identifies the goal of determining
geometric relations exactly. The exactness of the computed numbers is either
unnecessary, or should be avoided if possible.

Composite Precision Bound: This is specified by a pair [r, a] where r, a ∈
R∪{∞}. For any z ∈ C, let z[r, a] denote the set of all z̃ ∈ C such that |z− z̃| ≤
max{2−a, |z|2−r}. When r =∞, then z[∞, a] comprises all the numbers z̃ that
approximates z with an absolute error of 2−a; we say this approximation z̃ has
a absolute bits. Similarly, z[r,∞] comprises all numbers z̃ that approximates
z with a relative error of 2−r; we say this approximation z̃ has r relative bits.

Constant Expressions: Let Ω be a set of complex algebraic operators; each
operator ω ∈ Ω is a partial function ω : Ca(ω) → C where a(ω) ∈ N is the arity
of ω. If a(ω) = 0, then ω is identified with a complex number. Let E(Ω) be
the set of expressions over Ω where an expression E is a rooted DAG (directed
acyclic graph) and each node with outdegree n ∈ N is labeled with an operator
of Ω of arity n. There is a natural evaluation function val : E(Ω) → R. If Ω
has partial functions, then val() is also partial. If val(E) is undefined, we write
val(E) =↑ and say E is invalid . When Ω = Ω2 = {+,−,×,÷,

√ } ∪ Z we
get the important class of constructible expressions, so-called because their
values are precisely the constructible reals.

Constant Zero Problem, ZERO(Ω): Given E ∈ E(Ω), decide if val(E) =↑; if
not, decide if val(E) = 0.

Guaranteed Precision Evaluation Problem, GVAL(Ω): Given E ∈ E(Ω) and
a, r ∈ Z∪{∞}, (a, r) 6= (∞,∞), compute some approximate value in val(E)[r, a],

Schanuel’s Conjecture: If z1, . . . , zn ∈ C are linearly independent over Q, then
the set {z1, . . . , zn, ez1 , . . . , ezn} contains a subset B = {b1, . . . , bn} that is alge-
braically independent, i.e., there is no polynomial P (X1, . . . , Xn) ∈ Q[X1, . . . , Xn]



10 C.K. Yap

such that P (b1, . . . , bn) = 0. This conjecture generalizes several deep results in
transcendental number theory, and implies many other conjectures.

NAIVE APPROACH

For lack of a better term, we call the approach to exact computation in which every
numerical quantity is computed exactly (explicitly if possible) the naive approach.
Thus an exact algorithm that relies solely on the use of a big number package is
probably naive. This approach, even for rational problems, faces the “bugbear of
exact computation,” namely, high numerical precision. Using an off-the-shelf big
number package does not appear to be a practical option [FvW93a, KLN91, Yu92].
There is evidence (surveyed in [YD95]) that just improving current big number
packages alone is unlikely to gain a factor of more than 10.

BIG EXPRESSION PACKAGES

The most common examples of expressions are determinants and the distance√∑
n

i=1(pi − qi)2 between two points p, q. A big expression package allows a user
to construct and evaluate expressions with big numbers values. They represent
the next logical step after big number packages, and are motivated by the obser-
vation that the numerical part of a geometric computation is invariably reduced to
repeated evaluations of a few variable1 expressions (each time with different con-
stants substituted for the variables). When these expressions are test values, then it
is sufficient to compute them to one bit of relative precision. Some implementation
efforts are shown in Table 41.4.1.

TABLE 41.4.1 Expression packages.

SYSTEM DESCRIPTION REFERENCES

LN Little Numbers [FvW96]

LEA Lazy ExAct Numbers [BJMM93]

Real/Expr Precision-driven exact expressions [YD95]

LEDA Real Exact numbers of Library of Efficient

Data structures and Algorithms [BFMS99, BKM+95]

Core Library Package with Numerical Accuracy API

and C++ interface [KLPY99]

One of LN’s goals is to remove all overhead associated with function calls or
dynamic allocation of space for numbers with unknown sizes. It incorporates an ef-
fective floating-point filter based on static error analysis. The experience in [CM93]
suggests that LN’s approach is too aggressive as it leads to code bloat. The LEA

system philosophy is to delay evaluating an expression until forced to, and to main-

1These expressions involves variables, unlike the constant expressions in E(Ω).
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tain intervals of uncertainty for values. Upon complete evaluation, the expression
is discarded. It uses root bounds to achieve exactness and floating point filters for
speed. The Real/Expr Package is the first system to achieve guaranteed precision
for a general class of non-rational expressions. Its introduces the “precision-driven
mechanism” whereby a user-specified precision at the root of the expression is
transformed and downward-propagated towards the leaves, while approximate val-
ues generated at the leaves are evaluated and error bounds upward-propagated up
to the root. This upward-downward process may need to be iterated. LEDA Real

is a number type with a similar mechanism. It is part of a much more ambitious
system of data structures for combinatorial and geometric computing (see Chap-
ter 65). The semantics of Real/Expr of expression assignment is akin to constraint
propagation in the constraint programming paradigm. The Core Library (CORE)
is derived from Real/Expr with the goal of making the system as easy to use as
possible. The two pillars of this transformation is the adoption of conventional as-
signment semantics, and the introduction of a simple Numerical Accuracy API
[Yap98].

The CGAL Library (Chapter 65) is a major library of geometric algorithms which
are designed according to the EGC principles. While it has some native num-
ber types supporting rational expressions, the current distribution relies on LEDA

Real or CORE for more general algebraic expressions. Shewchuk [She96] implements
an arithmetic package that uses adaptive-precision floating-point representations.
While not a big expression package, it has been used to implement polynomial
predicates and shown to be extremely efficient.

THEORY

The class of algebraic computational problems encompasses most problems in con-
temporary computational geometry. Such problems can be solved exactly in singly-
exponential space [Yap97]. This general result is based on recent progress in the
decision problem for Tarski’s language, on the associated cell decomposition prob-
lems, as well as cell adjacency computation (Chapter 32). However, general EGC
libraries such as Core Library and LEDA Real depend directly on the algorithms
for the guaranteed precision evaluation problem GVAL(Ω) (see Glossary), where
Ω is the set of operators in the computation model. The possibility of such al-
gorithms can be reduced to the recursiveness of a constellation of problems that
might be called the Fundamental Problems of EGC . First is the Constant Zero
Problem ZERO(Ω). But there are two closely related problems. In the Constant
Validity Problem VALID(Ω), we are to decide if a given E ∈ E(Ω) is valid, i.e.,
val(E) 6=↑. The Constant Sign Problem SIGN(Ω) is to compute sign(E) for
any given E ∈ E(Ω), where sign(E) ∈ {↑,−1, 0, +1}. In case val(E) is complex,
define sign(E) to be the sign of the real part of val(E).

There is a natural hierarchy of the expression classes, each corresponding to
a class of complex numbers as shown in 41.4.2. In Ω3, P (X) is any polynomial
with integer coefficients and I is some means of identifying a unique root of P (X):
I may be an complex interval bounding a unique root of P (X), or an integer i
to indicate the ith largest real root of P (X). The operator RootOf(P, I) can be
generalized to allow allowing expressions as coefficients of P (X) as in Burnikel et
al. [BFM+01], or by introducing systems of polynomial equations as in Richardson
[Ric97]. Although Ω4 can be treated as a set of real operators, it is more natural to
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TABLE 41.4.2 Expression Hierarchy.

OPERATORS NUMBER CLASS EXTENSIONS

Ω0 = {+,−,×} ∪ Z Integers

Ω1 = Ω0 ∪ {÷} Rational Numbers Ω+
1 = Ω1 ∪ Q

Ω2 = Ω1 ∪ {√·} Constructible Numbers Ω+
2 = Ω2 ∪ { k

√· : k ≥ 3}
Ω3 = Ω2 ∪ {RootOf(P (X), I)} Algebraic Numbers Use of ⋄(E1, . . . , Ed, i), [BFM+01]

Ω4 = Ω3 ∪ {exp(·), ln(·)} Elementary Numbers (cf. [Cho99])

treat Ω4 (and sometimes Ω3) as complex operators. Thus the elementary functions
sin x, cosx, arctanx, etc, are available as expressions in Ω4.

It is clear ZERO(Ω) and VALID(Ω) is reducible to SIGN(Ω). For Ω4, all three
problems are recursively equivalent. The fundamental problems related to Ωi is
decidable for i ≤ 3. It is a major open question whether the fundamental problems
for Ω4 are decidable. These questions have been studied by Richardson and others
[Ric97, Cho99, MW96]. The most general positive result is that SIGN(Ω3) is decid-
able. An intruiguing conditional result is that ZERO(Ω4) is decidable if Schanuel’s
conjecture is true; this may be deduced from Richardson’s work [Ric97].

CONSTRUCTIVE ROOT BOUNDS

In practice, algorithms for the guaranteed precision problem GVAL(Ω3) can exploit
the fact that algebraic numbers have computable root bounds. An root bound for
Ω is a total function β : E(Ω) → R≥0 such that for all E ∈ E(Ω), if E is valid and
val(E) 6= 0 then |val(E)| ≥ β(E). More precisisely, β is called an exclusion root
bound; it is an inclusion root bound when the inequality becomes “|val(E)| ≤
β(E).” We use the (exclusion) root bound β to solve ZERO(Ω) as follows: to test
if an expression E evaluates to zero, we compute an approximation α to val(E)
such that |α − val(E)| < β(E)/2. While computing α, we can recursively verify
the validity of E. If E is valid, we compare α with β/2. It is easy to conclude
that val(E) = 0 if |α| ≤ β/2. Otherwise |α| > β/2, and the sign of val(E) is that
of α. An important remark is that the root bound β determines the worst-case
complexity. This is unavoidable if val(E) = 0. But if val(E) 6= 0, the worst case
may be avoided by iteratively computing αi with increasing absolute precision εi.
If for any i ≥ 1, |αi| > εi, we stop and conclude sign(val(E)) = sign(αi) 6= 0.

There is an extensive classical mathematical literature on root bounds, but
they are usually not suitable for computation. Recently, new root bounds have
been introduced that explicitly depend on the structure of expressions E ∈ E(E).
In [LY01], such bounds are called constructive in the following sense: (i) There
are easy-to-compute recursive rules for maintaining a set of numerical parameters
u1(E), . . . , um(E) based on the structure of E, and (ii) β(E) is given by an explicit
formula in terms of these parameters. The first constructive bounds in EGC were
the degree-length and degree-height bounds of Yap and Dubé [YD95, Yap00] in
their implementation of Real/Expr. The (Mahler) Measure Bound was introduced
even earlier by Mignotte [Mig82, BFMS00] for the problem of “identifying algebraic
numbers.” A major improvement was achieved with the introduction of the BFMS
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Bound [BFMS00]. Li-Yap [LY01] introduced another bound aimed at improving the
BFMS Bound in the presence of division. Comparison of these bounds is not easy:
but let us say a bound β dominates another bound β′ if for every E ∈ E(Ω2),
β(E) ≤ β′(E). Burnikel et al. [BFM+01] generalized the BFMS Bound to the
BFMSS Bound. Yap noted that if we incorporate a symmetrizing trick for the

√
x/y

transformation, then BFMSS will dominate BFMS. Among current constructive
root bounds, three are not dominated by other bounds: BFMSS, Measure, and Li-
Yap Bounds. In general, BFMSS seems to be the best. Other root bounds include
a multivariate root bound of Canny [Can88] (see extension in [Yap00, Chapter XI])
and an Eigenvalue Bound of Scheinerman [Sch00]. A recent factoring technique of
Pion and Yap [PY03] can be used to improve the existing bounds (in particular,
BFMSS). This technique can exploit the presence of k-ary input numbers, and is
thus favorable for the majority of realistic inputs (which are binary or decimal).

FILTERS

An extremely effective technique for speeding up predicate evaluation is based
on the filter concept. Since evaluating the predicate amounts to determining the
sign of an expression E, we can first use machine arithmetic to quickly compute an
approximate value α of E. For a small overhead, we can simultaneously determine
an error bound ε where |val(E) − α| ≤ ε. If |α| > ε, then the sign of α is the
correct one and we are done. Otherwise, we evaluate the sign of E again, this
time using a sure-fire if slow evaluation method. The algorithm used in the first
evaluation is called a (floating-point) filter . The expected cost of the two-stage
evaluation is small if the filter is efficient with a high probability of success. This
idea was first used by Fortune and van Wyk [FvW96]. Floating-point filters can
be classified along the static-to-dynamic dimension: static filters compute the
bound ε solely from information that are known at compile time while dynamic
filters depend on information available at run time. There is an efficiency-
efficacy tradeoff : static filters (e.g., FvW Filter [FvW96]) are more efficient, but
dynamic filters (e.g., BFS Filter [BFS98]) are more accurate (efficacious). Interval
arithmetic has been shown to be an effective way to implement dynamic filters
[BBP01]. Automatic tools for generating filter code are treated in [FvW93b, Fun97].
Filters can been elaborated in several ways. First, we can use a cascade of filters
[BFS98]. The “steps” of an algorithm which are being filtered can be defined at
different levels of granularity. One extreme is to consider an entire algorithm as one
step [MNS+96, KW98]. A general formulation “structural filtering” is proposed in
[FMN99]. Probabilistic analysis [DP99] shows the efficacy of arithmetic filters. The
filtering of determinants is treated in several papers [Cla92, BBP01, PY01, BY00].

Filtering is related to program checking [BK95, BLR93]. View a computational
problem P as an input-output relation, P ⊆ I × O where I, O is the input and
output spaces respectively. Let be A a (standard) algorithm for P which, viewed
as a total function A : I → O ∪ {NaN}, has the property that for all i ∈ I,
(i, A(i)) ∈ P iff there is some o ∈ O such that (i, o) ∈ P . Let H : I → O ∪ {NaN}
be another algorithm with no restrictions; call H a heuristic algorithm for P .
Let F : I × O → {true, false}. Then F is checker for P if F computes the
characteristic function for P , F (i, o) = true iff (i, o) ∈ P . Note that F is a checker
for the problem P , and not for any purported program for P . Hence, unlike program
checking, we do not require any special properties of P such as self-reducibility. We
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call F a filter for P if F (i, o) = true implies (i, o) ∈ P . So filters are less restricted
than checkers. A filtered program for P is therefore a triple (H, F, A) where H
is heuristic algorithm, A a standard algorithm and F a filter. To run this program
on input i, we first compute H(i) and check if F (i, H(i)) is true. If so, we output
H(i); otherwise compute and output A(i). Filtered programs can be extremely
effective when H, F are both efficient and efficacious. Usually H is easy—it is just
a machine arithmetic implementation of an exact algorithm. The filter F can be
more subtle, but it is still more readily constructed than any checker. The problem
Psdet of computing the sign of determinants illustrates this: the only checkers we
know here is trivial, amounting to computing the determinant itself. On the other
hand, effective filters for Psdet are known [BBP01, PY01].

PRECISION COMPLEXITY

An important goal of EGC is to control the cost of high-precision computation.
We describe two approaches based on modifying the algorithmic specification.

In predicate evaluation, there is an in-built precision of 1-relative bit (this pre-
cision guarantees the correct sign in the predicate evaluation). But in construction
steps, any precision guarantees must be explicitly requested by the user. For op-
timization problems, a standard method to specify precision is to incorporate an
extra input parameter ǫ > 0. Assume the problem is to produce an output x
to minimizes the function µ(x). An ǫ-approximation algorithm will output a
solution x such that µ(x) ≤ (1 + ε)µ(x∗) for some optimum x∗. An example is
the Euclidean Shortest-path Problem in 3-space (3ESP). Since this prob-
lem is NP-hard (Section 24.5), we seek an ǫ-approximation algorithm. A simple
way to implement an ǫ-approximation algorithm is to directly implement any exact

algorithm in which the underlying arithmetic has guaranteed precision evaluation
(using, e.g., Core Library). However, the bit complexity of such an algorithm may
not be obvious. The more conventional approach is to explicitly build the necessary
approximation scheme directly into the algorithm. One such scheme was given by
Papadimitriou [Pap85] which is polynomial time in n and 1/ε. Choi et al. [CSY97]
give an improved scheme, and perform a rare bit-complexity analysis.

Another way to control precision is to consider output complexity. In geometric
problems, the input and output sizes are measured in two independent ways: com-
binatorial size and bit sizes. Let the input combinatorial and input bit sizes be n
and L, respectively. By an L-bit input, we mean each of the numerical parameters
in the description of the geometric object (see Section 35.2) is an L-bit number.
Now an extremely fruitful concept in algorithmic design is this: an algorithm is
said to be output-sensitive if the complexity of the algorithm can be made a
function of the output size as well as of the input size parameters. In the usual
view of output-sensitivity, only the output combinatorial size is exploited. Choi et
al. [SCY00] introduced the concept of precision-sensitivity to remedy this gap.
They presented the first precision-sensitive algorithm for 3ESP, and gave some ex-
perimental results. Using the framework of pseudo-approximation algorithms,
Asano et al. [AKY02] gave new precision-sensitive algorithms for 3ESP, as well as
for an optimal d1-motion for a rod.

GEOMETRIC ROUNDING
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We saw rounded geometry as one of the fixed-precision approaches (Section 35.3)
to robustness. But geometric rounding is also important in EGC, with a difference.
The EGC problem is to “round” a geometric structure (Section 35.2) D to a ge-
ometric structure D′ with lower precision. In fixed-precision computation, one is
typically asked to construct D′ from some input S that implicitly defines D. In
EGC, D is explicitly given (e.g., D may be computed from S by an EGC algo-
rithm). The EGC view should be more tractable since we have separated the two
tasks: (a) computing D and (b) rounding D. We are only concerned with (b), the
pure rounding problem . For instance, if S is a set of lines that are specified by
linear equations with L-bit coefficients, then the arrangement D(S) of S would have
vertices with 2L + O(1)-bit coordinates. We would like to round the arrangement,
say, back to L bits. Such a situation, where the output bit precision is larger than
the input bit precision, is typical. If we pipeline several of these computations in
a sequence, the final result could have a very high bit precision unless we perform
rounding.

If D rounds to D′, we could call D′ a simplification of D. This viewpoint
makes connection to a larger literature on simplification of geometry (e.g., sim-
plifying geometric models in computer graphics and visualization (Chapter 54).
Two distinct objectives goals in simplification are combinatorial versus preci-
sion simplification . For example, a problem that has been studied in a variety
of contexts (e.g., Douglas-Peucker algorithm in computational cartography) is that
of simplifying a polygonal line P . We can use decimation to reduce the combi-
natorial complexity (i.e., number of vertices #(P )), for example, by omitting every
other vertex in P . Or we can use clustering to reduce the bit-complexity of P to
L-bits. E.g., we collapse all vertices that lie within the same grid cell, assuming
grid points are L-bit numbers. Let d(P, P ′) be the Hausdorff distance between P
and another polyline P ′; other similar measures of distance may be used. In any
simplification P ′ of P , we want to keep d(P, P ′) small. In [BCD+02], two opti-
mization problems are studied: in the Min-# Problem , given P and ε, find P ′ to
minimize #(P ), subject to d(P, P ′) ≤ ε. In the Min-ε Problem , the roles of #(P )
and d(P, P ′) are reversed. For EGC applications, optimality can often be relaxed
to simple feasibility. Path simplification can be generalized to the simplification of
any cell complexes.

BEYOND ALGEBRAIC

Non-algebraic computation over Ω4 is important in practice. This includes
the use of elementary functions such as expx, ln x, sin x, etc, which are found in
standard libraries (math.h in C/C++). Elementary functions can be implemented
via their representation as hypergeometric functions, an approach taken Du et
al. [DEMY02]. They described solutions for fundamental issues such as automatic
error analysis, hypergeometric parameter processing and argument reduction. If f
is a hypergeometric function and x is an explicit number, one can compute f(x) to
any desired absolute accuracy. But in the absence of root bounds for Ω4, we cannot
solve the guaranteed precision problem GVAL(Ω4). One systematic way to get
around this is to invoke the uniformity conjecture [Ric00]: this conjecture provides
us with a bound. If this bound ever lead to an error, we would have produced a
counterexample to the uniformity conjecture.

There are situations where we can either avoid the use of transcendental func-
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tions, or their apparent need turn out to be non-essential (e.g., in motion planning).
For instance, rigid transformations are important in solid modeling, but they in-
volve trigonometric functions. We can get arbitrarily good approximations by using
rational rigid transformations. Solutions in 2 and 3 dimensions are given by Canny
et al. [CDR92] and Milenkovic and Milenkovic [MM93], respectively.

APPLICATIONS

We now consider issues in implementing specific algorithms under the EGC paradigm.
The rapid growth in the number of such algorithms means the following list is quite
partial. We attempt to illustrate the range of activities in several groups: (i) The
early EGC algorithms produced were those that are easily reduced to integer arith-
metic and polynomial predicates, such convex hulls or Delaunay triangulations.
The goal was to demonstrate that such algorithms are implementable and rela-
tively efficient (e.g., [FvW96]). To treat irrational predicates, the careful analysis
of root bounds were needed to ensure efficiency. Thus, Burnikel, Mehlhorn, and
Schirra [BMS94, Bur96] gave sharp bounds in the case of Voronoi diagrams for line
segments. Similarly, Dubé and Yap [DY93] analyzed the root bounds in Fortune’s
sweepline algorithm, and first identified the usefulness of floating point approxima-
tions in EGC. Another approach is to introduce algorithms that use new predicates
with low algebraic degrees. This line of work was initiated by Liotta, Preparata
and Tamassia [LPT97, BS00]. (ii) Polyhedral modeling is a natural domain for
EGC techniques. Two efforts are [CM93, For97]. The most general viewpoint here
uses Nef polyhedra [See01] in which open, closed or half-open polyhedral sets are
represented. This is a radical departure from the traditional solid modeling based
on regularized sets and the associated regularized operators. The regulariza-
tion of a set S ⊆ Rd is obtained as the closure of the interior of S; regularized
sets do not allow lower dimensional features. E.g., a line sticking out of a solid
is not permitted. Treatment of Nef polyhedra was previously impossible outside
the EGC framework. (iii) An interesting domain is optimization problems such as
linear and quadratic programming [Gae99, GS00] and smallest enclosing cylinder
problem [SSTY00]. In Linear Programming, there is a tradition of using benchmark
problems for evaluating algorithms and their implementations. But what is lacking
in the benchmarks is reference solutions with guaranteed accuracy to (say) 16
digits. One application of EGC algorithms to to produce such solutions. (iv) An
area of major challenge is computation of algebraic curves and surfaces. Krishnan
et al. [KFC+01] implemented a library of algebraic primitives to support the ma-
nipulation of algebraic curves. Algorithms for low degree curves and surfaces are
beginning to be addressed, e.g., [BEH+02, GHS01, Wei02]. (v) The development
of general geometric libraries such as CGAL [HHK+01] or LEDA [MN95] exposes a
range of issues peculiar to EGC. For instance, in EGC we want a framework where
various number kernels and filters can be used for a single algorithm.

41.5 TREATMENT OF DEGENERACIES

Suppose the input to an algorithm is a set of planar points. Depending on the con-
text, any of the following scenarios might be considered “degenerate”: two cover-



Robust geometric computation 17

tical points, three collinear points, four cocircular points. Intuitively, these are
degenerate because arbitrarily small perturbations can result in qualitatively dif-
ferent geometric structures. Degeneracy is basically a discontinuity [Yap90b, Sei94].
Sedgewick [Sed83] calls degeneracies the “bugbear of geometric algorithms.” De-
generacies is a major cause nonrobustness for two reasons. First, it present severe
difficulties for approximate arithmetic. Second, even under the EGC paradigm,
implementors is faced with a large number of special degenerate cases that must
be treated (this number grows exponentially in the dimension of the underlying
space). Thus the need to develop general techniques for handling degeneracies.

GLOSSARY

Inherent and induced degeneracy: This is illustrated by the planar convex
hull problem: an input set S with three collinear points p, q, r is inherently
degenerate if it lies entirely in one halfplane determined by the line through p, q, r.
If p, q, r are collinear but S does not lie on one side of the line through p, q, r,
then we may have an induced degeneracy for a divide-and-conquer algorithm.
This happens when the algorithm solves a subproblem S′ ⊆ S containing p, q, r
with all the remaining points on one side. Induced degeneracy is algorithm-
dependent. In this chapter, we simply say “degeneracy” for induced degeneracy.
More precisely, an input is degenerate if it leads to a path containing a vanishing
test value in the computation tree [Yap90b]. A nondegenerate input is also said
to be generic.

Generic algorithm: One that is only guaranteed to be correct on generic inputs.

General algorithm: One that works correctly for all (legal) inputs. Note that
“general” and “generic” are often used synonymously in other literature (e.g.,
“generic inputs” often means inputs in general position).

THE BASIC ISSUES

1. One basic goal of this field is to provide a systematic transformation of a
generic algorithm A into a general algorithm A′. Since generic algorithms are
widespread in the literature, the availability of general tools for this A 7→ A′

transformation is useful for implementing robust algorithms.

2. Underlying any transformations A 7→ A′ is some kind of perturbation of the
inputs. This raises the issue of controlled perturbations . For example, if A is
an algorithm for intersecting two convex polytopes, then we would like the
perturbation to expand the input polytopes so that the incidence of a vertex
in the relative interior of a face will be detected by A′.

3. There is a postprocessing issue: although A′ is “correct” in some technical
sense, it need not necessarily produce the same outputs as an ideal algorithm
A∗. For example, suppose A computes the Voronoi diagram of a set of points
in the plane. Four cocircular points are a degeneracy and are not treated by
A. The transformed A′ can handle four cocircular points but it may output
two Voronoi vertices that have identical coordinates and are connected by a
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Voronoi edge of length 0. This may arise if we use infinitesimal perturba-
tions. The postprocessing problem amounts to cleaning up the output of A′

(removing the length-0 edges in this example) so that it conforms to the ideal
output of A∗.

CONVERTING GENERIC TO GENERAL ALGORITHMS

We have two general methods for converting a generic algorithm to a general one:

Blackbox sign evaluation schemes. We postulate a sign blackbox that takes
as input a function f(x) = f(x1, . . . , xn) and parameters a = (a1, . . . , an) ∈
Rn, and outputs a nonzero sign (either + or −). In case f(a) 6= 0, this sign
is guaranteed to be the sign of f(a), but the interesting fact is that we get a
nonzero sign even if f(a) = 0. We can formulate a consistency property for
the blackbox, both in an algebraic setting [Yap90b] or in a geometric setting
[Yap90a]. The transformation A 7→ A′ amounts to replacing all evaluations
of test values by calls to this blackbox. In [Yap90b], a family of admissible
schemes for blackboxes is given in case the functions f(x) are polynomials.

Perturbation towards a nondegenerate instance. A fundamentally different
approach is provided by Seidel [Sei94], based on the following idea. For any
problem, if we know one nondegenerate input a∗ for the problem, then every
other input a can be made nondegenerate by perturbing it in the direction
of a∗. We can take the perturbed input to be a + ǫa∗ for some infinitesimal
ǫ. For example, for the convex hull of points in Rn, we can choose a∗ to be
distinct points on the moment curve (t, t2, . . . , tn).

We compare these two approaches. We currently only have blackbox schemes
for rational functions, while Seidel’s method would apply even in nonalgebraic set-
tings. Blackbox schemes are independent of particular problems, while the nonde-
generate instances a∗ depend on the problem (and on the input size); no systematic
method to choose a∗ is known.

The first work in this area is the SoS (“simulation of simplicity”) technique of
Edelsbrunner and Mücke [EM90]. The method amounts to adding powers of an
indeterminate ǫ to each input parameter. Such ǫ-methods were first used in linear
programming in the 1950’s. The SoS scheme (for determinants) turns out to be
an admissible scheme [Yap90b]. Intuitively, sign blackbox invocations should be
almost as fast as the actual evaluations with high probability [Yap90b]. But the
worst-case exponential behavior led Emiris and Canny to propose more efficient
numerical approaches [EC95]. To each input parameter ai in a, they add a pertur-
bation biǫ (where bi ∈ Z and ǫ is again an infinitesimal): these are called linear
perturbations. In case the test values are determinants, they show that a simple
choice of the bi’s will ensure nondegeneracy and efficient computation. For general
rational function tests, a lemma of Schwartz show that a random choice of the bi’s
is likely to yield nondegeneracy. Emiris, Canny, and Seidel [ECS94, Sei94] give a
general result on the validity of linear perturbations, and apply it to common test
polynomials.
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APPLICATIONS AND PRACTICE

Michelucci [Mic95] describes implementations of blackbox schemes, based on the
concept of “ǫ-arithmetic.” One advantage of his approach is the possibility of con-
trolling the perturbations. Experiences with the use of perturbation in the beneath-
beyond convex hull algorithm in arbitrary dimensions are reported in [ECS94].
Neuhauser [Neu97] improved and implemented the rational blackbox scheme of
Yap. He also considered controlled perturbation techniques. Comes and Ziegel-
mann [CZ99] implemented the linear perturbation ideas of Seidel in CGAL.

In solid modeling systems, it is very useful to systematically avoid degenerate
cases (numerous in this setting). Fortune [For97] uses symbolic perturbation to
allow an “exact manifold representation” of nonregularized polyhedral solids (see
Section 47.1). The idea is that a dangling rectangular face (for instance) can be
perturbed to look like a very flat rectangular solid, which has a manifold represen-
tation. Here, controlling the perturbation is clearly necessary.

Hertling and Weihrauch [HW94] define “levels of degeneracy” and use this to
obtain lower bounds on the size of decision computation trees.

In contrast to our general goal of eliminating explicit handling of degeneracies,
there are a few papers on “perturbation” that proposes to directly handle degen-
eracies. Burnikel, Mehlhorn, and Schirra [BMS95] describe the implementation of
a line segment intersection algorithm and semi-dynamic convex hull maintenance
in arbitrary dimensions. Based on this experience, they question the usefulness
of perturbation methods using three observations: (i) perturbations may increase
the running time of an algorithm by an arbitrary amount; (ii) the postprocessing
problem can be significant; and (iii) it is not hard to handle degeneracies directly.
But the probability of (i) occurring in a drastic way (e.g., for a degenerate input of
n identical points) is so negligible that it may not deter most users when they have
the option of writing a generic algorithm, especially when the general algorithm
is very complex or not readily available. Other experiences suggest that property
(iii) is the exception rather than the rule. In any case, users must weigh these
considerations (Cf. [Sch94]).

A weaker form of the [BMS95] approach is illustrated by work of Halperin
and co-workers [HS98, Raa99]. Again, the algorithm must explicitly detect the
presence of degeneracies but now, we explicitly perturb the input to remove all
degeneracies. Their problem may be framed as follows: given a sequence S =
(O1, . . . , On) of geometric objects, let Ai (i = 1, . . . , n) be the arrangement formed
by Si = (O1, . . . , Oi). The goal is to compute An = A(Sn). For any object O and
ε > 0, consider a predicate P1(O, ε) with this monotonicity property : if ε′ > ε
and P1(O, ε′) is true then P1(O, ε) is true. Call P1 an approximate degeneracy
predicate. If P1(O, ε) is true, we say O is ε-degenerate . Also, P1(O, 0+) reduces
to standard notions of degeneracy. Such predicates may be defined by a Boolean
combination of polynomial inequalities. For instance, let O be a curve and P1(O, ε)
is true iff there is a δ-ball B centered at a point of O, δ ≤ ε, such that B ∩O is not
connected. Thus P1(O, 0+) is the property that O is self-intersecting. In general, let
Pk denote an approximate degenerate predicate on k ≥ 1 distinct objects. If Pk and
P ′

k
are two such predicates, then so is Pk∨P ′

k
and Pk∧P ′

k
. For instance, P2(O1, O1, ε)

might say that O1, O2 are ε-close. Fix a collection P of approximate degeneracy
predicates. We say that S is ε-degenerate if for some Pk ∈ P , Pk(O1, . . . , Ok, ε)
is true for some choice of k distinct objects O1, . . . , Ok ∈ S. The following ε-δ
perturbation estimation problem is basic: given ε > 0, find δ = δ(ε, S, O) > 0
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such that if S is non ε-degenerate, and O is any object, with probability > 1/2, a
random δ-perturbation O′ of O will form a non ε-degenerate configuration with S.
By general principles, we know that δ exists; but we would like good bounds on δ
(say polynomial in |S|, etc). Using this, we can solve the perturbed arrangement
problem : given S and ε > 0, compute an arrangement A(S′) where S′ is not
ε-degenerate and S′ is a δ-perturbation of S. The cited papers above solve the
perturbed arrangement problem in two situations, when the objects are spheres
and polyhedral surfaces, respectively. The idea is to use a form of randomized
incremental construction.

41.6 OPEN PROBLEMS

1. The main theoretical question in EGC is whether the Constant Zero Prob-
lem for Ω4 is decidable. A related, possibly simpler, question is whether
ZERO(Ω3 ∪ {sin(·), π}) is decidable.

2. In constructive root bounds, it is unknown if there exists a root bound β :
E(Ω2)→ R≥0 where − lg(β(E)) = O(D(E)) and D(E) is the degree of E. In
current bounds, we only know a quadratic bound, − lg(β(E)) = O(D(E)2).
The Uniformity Conjecture of Richardson [Ric00], if true, would be a very
deep result with practical applications.

3. Give a optimal algorithm for the guaranteed precision evaluation problem
GVAL(Ω) for, say, Ω = Ω2. The solution includes a reasonable cost model.

4. In geometric rounding, we pose two problems: (a) Extend the Greene-Yao
rounding problem to non-uniform grids (e.g., the grid points are L-bit floating
point numbers). (b) Round simplicial complexes. The preferred notion of
rounding here should not increase combinatorial complexity (unlike Greene-
Yao), allow features to collapse (triangles can degenerate to a vertex), but
disallow inversion (triangles cannot flip its orientation).

5. Give good bounds for the ε-δ perturbation estimation problem.

6. Give a systematic treatment of inexact (dirty) data. Held [Hel01a, Hel01b]
describes the engineering of reliable algorithms to handle such inputs.

41.7 SOURCES AND RELATED MATERIAL

SURVEYS

Forrest [For87] is an influential overview of the field of computational geometry.
He deplores the gap between theory and practice and describes the open problem
of robust intersection of line segments (expressing a belief that robust solutions do
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not exist). Other surveys of robustness issues in geometric computation are Schirra
[Sch99], Yap and Dubé [YD95] and Fortune [For93]. Robust geometric modelers
are surveyed in [PCH+95].
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