
November 5, 2008 16:43 WSPC/Trim Size: 9in x 6in for Review Volume pap

CHAPTER 1

ON GUARANTEED ACCURACY COMPUTATION

Chee K. Yapa

Department of Computer Science
Courant Institute of Mathematical Sciences

New York University
251 Mercer Street, New York

NY 10012, USA
E-mail: yapcs.nyu.edu

The concept of guaranteed accuracy computation is a natural one: the
user could specify any á priori relative or absolute precision bound on
the numerical values which are to be computed in an algorithm. It is
a generalization of guaranteed sign computation, a concept originally
proposed to solve the ubiquitous problem of non-robustness in geometric
algorithms. In this paper, we investigate some basic properties of such
computational mode. We formulate a theory of real computation and
approximation to capture guaranteed accuracy computation. We also
introduce an algebraic and a numerical model of computation based on
Schönhage’s pointer machines.

1. Introduction

Numerical nonrobustness of computer programs is a ubiquitous phe-

nomenon: it is experienced as program failures (crashes) that inevitably

happen when the program is run on certain combinations of logically valid

inputs. One approach to solving such problems is to compute “exactly”,

but only in the geometric sense55. This is called Exact Geometric Com-

putation (EGC, for short). The basic idea of EGC is to ensure that each

aThe work is supported by NSF/ITR Grant #CCR-0082056. This paper is an expansion
of two keynote talks with the same title, at the National Computer Theory Conference

of China, Changsha, China, Oct 13-18, 2002, and at the International Conference on
Computational Science and its Applications (ICCSA 2003), Montreal, Canada, May 18-
21, 2003.

1

November 5, 2008 16:43 WSPC/Trim Size: 9in x 6in for Review Volume pap

2 C. Yap

computed real number x̃ has the same sign as the exact value x for which

x̃ is an approximation. In particular, if x = 0 then x̃ = 0. We may call

this guaranteed sign computation. Within the last 10 years, the EGC ap-

proach has emerged as the most successful approach to numerical nonro-

bustness. Unlike many approaches that require a case-by-case application

of some general principle, the EGC solution to nonrobustness can be pro-

vided through the use of a general number library. Such a library provides

EGC numbers , a designation that means the numbers support guaran-

teed sign computation. Two such number libraries are currently available:

LEDA Real12,35 and Core Library30. Using such libraries, programmers

can routinely implement robust programs by using standard algorithms (not

specially crafted “robust” algorithms). A large collection of such robust al-

gorithms have been implemented in the major software libraries CGAL20,27

and LEDA35,14,28. Many novel computing techniques to support EGC have

been developed in the last decade, including new efficient guaranteed sign

algorithms10, floating point filters and its generalizations9,23 and construc-

tive zero bounds13,44.

In this paper, we investigate a generalization of guaranteed sign: we

want to guarantee numerical accuracy. This means that we want to be able

to specify á priori any number of correct bits in each computed numerical

quantity x̃. This ability is desirable in various applications. One example

comes from numerical statistical computations34. McCullough17 describe

the problem of evaluating the accuracy of statistical packages. One basic

task here is to pre-compute model answers for standardized test suites. We

need a certain guaranteed numerical precision in the model answers in or-

der to evaluate the answers produced by commercial statistical packages.

At the National Institute of Standards and Technology (NIST), such model

answers must have 15 digits of accuracy, and these are generated by running

the program at 500 bits of accuracy. It is by no means clear that 500 bits is

sufficient; it is also possible 500 bits is sometimes more than is strictly nec-

essary. What we would like is software that automatically computes to the

accuracy that is sufficient to guaranteed the final 15 digits. Dhiflaoui et al18

address the problem of guaranteeing the results from linear programming

software. Frommer22 and Tulone et al50 provide examples of applications

in proving mathematical conjectures such as the resolution of the Kepler

Conjecture.

Guaranteed accuracy is closely related to several important topics in

numerical computing. The first is arbitrary precision computation. This is

often associated with the well-known concept of Big Numbers56. The main

November 5, 2008 16:43 WSPC/Trim Size: 9in x 6in for Review Volume pap

On Guaranteed Accuracy Computation 3

guarantee of such number types is that the ring operations (+,−,×) are

exact: these operations will not overflow or underflow, provided computer

memory is available and provided the result is representable in the num-

ber type. In the presense of errors, we may add an additional capability:

the iteration of a sub-computation at increasing precision. In the program-

ming language Numerical Turing26, this is encoded as a “precision block”

(syntactically, it resembles the begin-end block of conventional program-

ming languages). Perhaps guaranteed accuracy is most similar to interval

analysis or more generally, enclosure methods39,41,33. As a computational

mode, it is often known asb certified accuracy computation. One form of

certified accuracy is significance arithmetic36 where we automatically track

the “significance” of the bits in numerical approximations. Such capabilities

are found in, e.g., the BigFloat class in Real/Expr56 and in the PRECISE

package32.

There are three common misconceptions about guaranteed accuracy

computation. First is the distinction between guaranteed accuracy and cer-

tified accuracy. Consider the problem of computing the determinant of a

numerical matrix M . A certified accuracy computation of det(M) might

return with the answer: “the determinant is 12.34± 0.02”. It certifies the

bound 12.32 ≤ det(M) ≤ 12.36. More to the point, the error bound 0.02

is á posteriori, and deduced automatically by the computation. It depends

not only on the determinant algorithm but also on some implicit accuracy

for the basic arithmetic operations. In contrast, in a guaranteed compu-

tation of det(M), the input is a pair (M, θ) where θ is any desire error

bound (say θ = 0.02). The computation may return with “the determinant

is 12.32± θ”. As before, this answer is certified. The difference is that the

bound θ was given á priori.

The second misconception is to think of guaranteed accuracy as simply

“iterated certified accuracy”, that is, guaranteed accuracy can be achieved

simply by repeating a computation with higher and higher certified accu-

racy. To see that this may not succeed, consider the special case of guaran-

teed sign where we want to discover the sign of a real quantity x. If xi is

an approximation for x in the i-th iteration, then clearly xi → x as i→∞.

Certified accuracy will further furnish us with a bound εi > 0 such that

|x − xi| ≤ εi. In case x = 0, the pair (xi, εi) is consistent with the con-

bOr validated , or verified , or reliable accuracy . It is sometimes known as “guaranteed ac-
curacy”, but this terminology is less established. In this paper, we reserve the guaranteed
terminology for our special usage.

November 5, 2008 16:43 WSPC/Trim Size: 9in x 6in for Review Volume pap

4 C. Yap

clusion that x has any sign (0,±). Hence the sign determination algorithm

cannot stop in the i-th iteration. Intuitively, the gap between guaranteed

accuracy and certified accuracy is analogous to the gap between total re-

cursiveness and partial recursiveness (see Section 3). This problem can be

located in the so-called Zero Problem45, which we shall treat in its several

forms. Richardson45, one of the pioneers in this area, puts it this way: “most

people do not even see this as a problem at all”.

Third, it is even less appreciated that there is a non-trivial gap between

guaranteed accuracy of individual functions, and their composition. It is

well-known that there are algorithms, even efficient ones, to compute most

of the well-known mathematical functions (elementary functions, hypergeo-

metric functions, etc) to any guaranteed accuracy. But it is not obvious how

the guaranteed accuracy computation of two functions f, g : R→ R implies

that f ◦ g : R → R can also be computed with guaranteed accuracy. This

issue is captured in the problem of expression evaluation, another theme of

this paper.

We hope to outline the basic features of a theory of guaranteed accuracy

computation. But this presupposes a theory of real computation. A widely

used approach here, following Weihrauch, is the Type II Theory of Effectiv-

ity (TTE)51,31. Weihrauch [Chapter 9]51 surveys several other approaches

to computing with real numbers. Another rival approach is the Algebraic

Theory of Blum, Shub and Smale (BSS, 1989)6. Neither approaches are

suitable for us. For instance, approaches to real computing such as TTE

concede the key property of guaranteed accuracy computation (namely,

equality tests) from the start. Hence our approach cannot be equivalent

to such approaches. On the other hand, the BSS Theory does not address

issues of numerical approximation which is central in real world computa-

tion. Interestingly, one of the aims of the BSS theory [BCSS, Section 1.6]6

is to address complexity issues in numerical analysis.

The starting point of our approach to real computation is the following

idea: all numerical inputs as well as intermediate results must be “repre-

sentable”. We axiomatically introduce a set F ⊆ R of representable reals .

For instance, F is countable but dense in R, and is a ring extension of the

integers Z. The role of F mirrors that of floating point numbers in the world

of numerical computing. We initially use the Turing model of computation

to study guaranteed accuracy computation based on F. Algebraic operators

in our theory are replaced by approximate operators.

Next we introduce a model of numerical computation that lies between

the Turing model and the algebraic models. To motivate this, note that the

November 5, 2008 16:43 WSPC/Trim Size: 9in x 6in for Review Volume pap

On Guaranteed Accuracy Computation 5

numerical computation of a function f in the “real world” might be con-

strued in two steps: (A) First find an algebraic algorithm A which computes

f in an ideal error-free setting. This algorithm assumes some basis set Ω

of algebraic operators (such as ±,×) as primitives. (B) Next, construct a

numerical algorithm B that is modeled after A. But B takes into account

numerical representation, and accuracy of implementing the primitives of

Ω. Algorithm A might be regarded as a program in a suitable algebraic

model (e.g., BSS Model, but we will propose another one). But algorithm

B does not seem to have a natural theoretical model (the Turing model

notwithstanding). We propose to fill this gap by introducing the Numerical

Pointer Model based on Schönhage’s elegant pointer machines47. We choose

pointer machines to avoid artificial (Gödel) encoding of “semi-numerical”

problems. Our main result here answers the following question: when is a

function F that is algebraically computable (over a basis Ω) also numerically

approximable? We give a sufficient condition on Ω.

Overview of Paper

Section 2 reviews the place of guaranteed precision computation in the

landscape of numerical computing. A brief description of the Core Library

implementation of guaranteed accuracy is also given. Section 3 proposes a

new approach to computing with real numbers, and gives its main features

using Turing computability. The key concept is relative approximability

of functions. Section 4 examines in detail the approximability of standard

algebraic operators such as ±,×,÷,
√

. Section 5 considers the relative

approximability of a composition of such algebraic operators (the expres-

sion evaluation problem). The role of constructive zero bounds is empha-

sized. Section 6 describes the Algebraic Pointer Model based on Schönhage’s

pointer machines. This model is suitable for capturing the algebraic com-

plexity of semi-numerical problems. Section 7 introduces the Numerical

Pointer Model, and proves the basic transfer theorem relating algebraic

computability with numerical computability. Section 8 closes with some

open problems.

Preliminaries: Precision Bounds

We use N ⊆ Z ⊆ Q ⊆ R ⊆ C for the sets of natural numbers, integers,

rationals, reals and complex numbers. Let x, x̃ ∈ C. If x̃ is an approximation

to x, the error in x̃ is |x − x̃|. There are two standard ways to quantify

error, relative and absolute. Let a, r ∈ R ∪ {+∞}. We say x̃ has a absolute

November 5, 2008 16:43 WSPC/Trim Size: 9in x 6in for Review Volume pap

6 C. Yap

bits of precision if |x̃− x| ≤ 2−a and write

x̃ ∈ x[a]. (1)

Thus the expression “x[a]” denotes the interval x ± 2−a. If a = ∞ then

x̃ = x. Similarly, we say x̃ has r relative bits of precision if |(x̃−x)/x| ≤ 2−r,

and write

x̃ ∈ x〈r〉. (2)

We can combine them56 and say x̃ approximates x to composite precision

[a, r], written

x̃ ∈ x[a, r], (3)

if x̃ ∈ x[a] or x̃ ∈ x〈r〉. Our terminology allows fractional number of bits.

But when a, r are input arguments in a computation, we normally restrict

a to Z∞ := Z ∪ {∞}, and restrict r to N∞ := N ∪ {∞}. To see why we may

restrict r to non-negative values, note that when r < 0, then 0 ∈ x〈r〉 is

always true. The composite precision [a, r] = [∞,∞], amounts to asking

for an exact answer which may not exist in our computational approach

(Section 3).

Note on Terminology: in this paper, we do not distinguish between “ac-

curacy” and “precision” (but see a distinction made by Higham25). Our

definitions use “precision”, leaving the term “accuracy” for informal usage.

A related term is “error”. But we regard precision and error as complemen-

tary viewsc of the same phenomenon.

2. Modes of Numerical Accuracy and the Core Library

In this section, we give an overview of how guaranteed accuracy compu-

tation fits into the world of numerical computation. Although the rest of

this paper will focus on the theory of guaranteed accuracy, this section

will overview a specific system, the Core Library30. Of course, big num-

ber package can also offer guaranteed accuracy as long as the computed

numbers remain rational: but our main interest is in systems that admit

irrational numbers (in particular square roots and more generally algebraic

numbers). Currently, there is oned other general implementation of guar-

anteed accuracy, the LEDA Real number type12,35.

cJust as “half-full” (precision or optimistic) and “half-empty” (error or pessimistic) both
describe the state of a glass of milk.
dIt should be noted that LEDA Real is part of a much more ambitious system called LEDA

that provides efficient data structures and algorithms for many standard problems.

November 5, 2008 16:43 WSPC/Trim Size: 9in x 6in for Review Volume pap

On Guaranteed Accuracy Computation 7

Numerical computing involves numbers. Depending on the nature of

the problem, the number domain may be N as in number theory; finite

fields as in algebraic coding; R or C as in most scientific and engineering

computations. Computer algebra deals with more abstract algebraic struc-

tures but numerically, the underlying domain is often the algebraic numbers

Q (algebraic closure of Q). Because of the diversity of these applications,

the field of numerical computing has evolved several “modes” of numerical

computation:

• The symbolic mode is best represented by computer algebra systems

such as Macsyma, Maple or Mathematica. A number such as
√

2 is

represented “symbolically” and exactly.

• The FP mode is by far the most important modee in numerical

computing today. Here numbers are represented by fixed precision

numbers, typically machine numbers. In modern hardware, ma-

chine numbers have converged to the IEEE Standard49. This mode

is very fast, and is the “gold standard” whereby other numerical

modes are measured against. The main goal of numerical algorithm

design in the FP mode is to achieve high numerical accuracy pos-

sible within the applicable constraints. The term “fixed precision”

needs some clarification since it is clear that the precision θ can be

introduced as a parameter in FP algorithms, where 0 ≤ θ < 1. The

algorithms will converge to the exact answer as θ → 0. E.g., see

Chaitin-Chatelin and Frayssé15, p. 9. Nevertheless, most FP algo-

rithms are precision oblivious in the sense that their operations do

not adapt to the θ parameter.

• The arbitrary precision mode is characterized by its use of multi-

precision such as in Big Number Packages. Gowland and Lester24,

and Yap and Dubé56 are two surveys. Well-known examples include

the MP Multiprecision Package of Brent8, and the MPFun Library of

Bailey2. The iRRAM Package of Müller40 has the interesting ability

to compute limits of its functions. The ability to reiterate an arbi-

trary precision computation can be codified into suitable program-

ming constructs, as in the Numerical Turing language29. Another

variant exploits the fact that arbitrary precision arithmetic need

not be viewed as monolithic operations, but can be performed in-

crementally. This gives rise to the lazy evaluation mode37,3.

eFP stands for “floating point” or “fixed precision”, both of which seems to be charac-
teristic of this mode.

November 5, 2008 16:43 WSPC/Trim Size: 9in x 6in for Review Volume pap

8 C. Yap

• Of growing importance are various enclosure modes such as repre-

sented by the use of interval arithmetic. Enclosure methods can be

introduced in the FP mode or in the arbitrary precision mode.

• The guaranteed precision mode is increasingly used in computa-

tional geometry community, at least in the simplest form, of guar-

anteed sign mode. This mode is the norm in the libraries LEDA and

CGAL. Conceptually, every computational problem is modified for

this mode so that, in addition to the usual inputs, one is also given a

precision bound. Thus, a function f(x) is replaced by f(x, θ) where

θ is some precision bound. In contrast to the oblivious algorithms in

the FP mode, guaranteed precision algorithms will actively adjust

its computation to according to θ.

The above modes can overlap, although each mode has typical areas of

application and also its own “cultural” practices. Hence it is not easy to

fully characterize these modes. But by focusing on their numerical accu-

racies, we can capture the main features of some of these modes under a

common framework. Following Yap52, we note three “prototype” numerical

accuracies which we call Level I , II and III accuracies. These correspond

roughly to the FP Mode, the Arbitrary Accuracy Mode and the Guaran-

teed Accuracy Mode, respectively. In this framework, there is the possibility

to combine all three modes within a computation: this we call Level IV .

Briefly:

Level I or FP Accuracy. For practical purposes, it is identified with the

IEEE standard.

Level II or Arbitrary Accuracy. No overflow or underflow occurs in our

number representation until some user-specified accuracy (say 2000

bits) is exceeded. Thus
√

2 will be initially be approximated to 2000

bits.

Level III or Guaranteed Accuracy. The computed value of variable is guar-

anteed to user-specified accuracy, in absolute or relative terms. To

guarantee sign of x, we need to compute x to 1 relative bit of

accuracy.

Level IV or Mixed Accuracy. Each numerical variable in a computation is

given one of the previous three levels of accuracy. This gives the

user better control of computational efficiency.

November 5, 2008 16:43 WSPC/Trim Size: 9in x 6in for Review Volume pap

On Guaranteed Accuracy Computation 9

The Core Library

The integration of these levels of accuracy within a single programming

framework is one of the main design goals52 of the Core Library30, a sys-

tem implemented in C++. Providing all 4 accuracy levels in a single pro-

gramming environment can be achieved by asking programmers to explic-

itly specify the accuracy level for each variable in their programs. This is

essentially Level IV accuracy. But to make this framework widely usable, we

want a little more. We would like to execute any program (either a standard

C++ program or one that is explicitly written using the Core Library con-

structs) at any Level Accuracy, just by a simple recompilation. For instance,

taking an existing C++ program, we would like to add a simple preamble in

order to compile it into a Level X executable (X=I, II, III):

#define CORE LEVEL N /* N=1,2,3 or 4 */

#include "CORE.h"

// ... STANDARD C++ PROGRAM FOLLOWS ...

Thus a single program P can be executed in any of the four levels of accu-

racy. One then has the potential to trade-off the strengths and weaknesses

of the different levels: clearly, Level I is faster than Level II, which is in

turn faster than Level III. The robustness of the levels goes in the opposite

direction: Level III is fully robust while Level I is the most error-prone.

How can this be achieved? We exploit the operator overloading capa-

bility of C++, of course. To see the Core Library solution, we first identify

the native number types of each level: Level I inherits from C++ the four

machine number types: int, long, float, double. Level II has the usual

number types found in Big Number packages: BigInt, BigRat, BigFloat.

In Core Library we define a class Real that includes all the Level I and

II number as subclasses. Level III has only one number type, called Expr.

This number type is basically structured as a dag (directed acyclic graph)

to maintain information about its defining expression. Both Real and Expr

were originally introduced in the Real/Expr Package56.

Let us define a Level X program (X=I, II, III) to be one that contains

a Level X number type, but no number types at level greater than X. For

instance, a Level I Program is synonymous with a “standard C++ program”.

To allow such a Level I Program to access Level III accuracy, we introduce

a type promotion/demotion mechanism. This mechanism is triggered by the

“Compilation Level” (i.e., the CORE_LEVEL defined in the preamble above):

November 5, 2008 16:43 WSPC/Trim Size: 9in x 6in for Review Volume pap

10 C. Yap

• At Level I Compilation, BigInt demotes to long, while BigRat,

BigFloat, and Expr demotes to double.

• At Level II Compilation, long promotes to BigInt, double pro-

motes to BigFloat, while Expr demotes to BigFloat.

• At Level III Compilation, long, double, BigInt, BigRat and

BigFloat are all promoted to Expr.

• At Level IV Compilation, no promotion or demotion occurs.

Note that int and float remain at machine precision at all compila-

tion levels. Hence every compilation level can access Level I variables in

the form of int and float; these are useful for numerical quantities with

low accuracy requirements (e.g., int variables for indexing arrays). Our

approach has two major benefits. First, it reduces the effort necessary to

convert existing libraries and application programs into fully robust pro-

grams. These programs are Level I programs, and we would like to make

them fully robust just by recompiling them at Level III, say. Second, it does

not automatically (a) force programmers to design new algorithms, nor (b)

require the programmer to use new programming constructs.

Although our approach essentially allows the logic of a program to be left

intact, some amount of adjustments may still be necessary for two reasons:

(i) Issues of numerical input/output. This is inevitable because53 numerical

precision at different levels will lead to different input/output behavior. (ii)

Efficiency issues. Level III computation can be extremely slow. We generally

expect there to be opportunity for optimization. Innocuous decisions in

Level I programs can be unnecessarily inefficient when run as a Level III

program. A major challenge is to automatically detect such inefficiencies

and to replace them by optimized constructs. Techniques similar to those in

optimization compilers may ultimately be crucial52. For more details about

such issues in Level III programming, see the Core Tutorial 53.

There is considerable research still to be done within the preceding

framework. Nevertheless much has been achieved: first and foremost, non-

robustness is no longer seen as the intractable problem of the early 1990’s.

After a decade of research, for a large class of computational problems,

the speed of Level III programs can be brought down to within a factor

of 3 − 10 of a corresponding Level I computation on typical input data.

This can be automatically achieved with general software tools, not hand-

crafted code. Such results are deemed a suitable tradeoff between speed and

robustness for many applications56. The critical technique here is the idea

of floating point filters9, originally pioneered by Fortune and van Wyk21. A

November 5, 2008 16:43 WSPC/Trim Size: 9in x 6in for Review Volume pap

On Guaranteed Accuracy Computation 11

major direction in current efforts aim at extending the domain of successful

practical applications to nonlinear domains4.

3. Theory of Real Computation and Approximation

This section introduces a new approach to computing with real numbers.

We will treat two aspects of guaranteed accuracy computation. This section,

based on Turing computability, treats one aspect. Sections 6 and 7 will

develop the algebraic and numerical models of computability.

In the approximation of real numbers, there are two basic decisionf

problems: deciding if a real number is zero and determining its sign. These

issues are best approached from the view point of function evaluation. Let

f : Rm → R (4)

be a partial function and x ∈ Rm. If f(x) is undefined, we write f(x) ↑ and

call x an invalid input . Otherwise, f(x) is defined, written f(x) ↓, then we

say x is valid . We will associate five computational problems with f . But

first we briefly review the computational model.

3.1. Turing Computability

The standard Turing model43,54 of computation will be used in this section.

We assume deterministic machines, and focus only on time complexity. In

the Turing model, all objects must be represented as strings or words over

some alphabet Σ. Let

g : Σ∗ → Σ∗ (5)

be a partial function. We recognize three notions of what it means to com-

pute g:

• We say g is conditionally computable if there is a Turing machine

M such that for all w ∈ Σ∗, if g(w) ↓ then M on input w will halt

and output g(w). We make no assumption about the behavior of

M in case g(w) ↑. In particular, M may or may not halt.

• We say g is unconditionally computable if it is conditionally com-

putable by a Turing machine M as before, but in case g(w) ↑, then

f In the theory of computation, decision problems have two possible outputs: 0/1 or

yes/no or true/false. In geometric computation, it seems more natural to regard decision
problems as any function with a finite range. E.g., most geometric predicates has three
outputs: −1/0/ + 1 or in/on/out.

November 5, 2008 16:43 WSPC/Trim Size: 9in x 6in for Review Volume pap

12 C. Yap

M must halt and enter a special state q↑. This state will never be

entered on other inputs. Thus M can recognize invalid inputs and

always halt.

• Finally, we say g is partially computable if it is conditionally com-

putable by a Turing machine M as before, but in case g(w) ↑, then

M must loop (i.e., not halt). Note that partial computability is the

standard definition of what it means to compute a partial function

in computability theory46.

The three definitions coincide when g is a total function. We call g a decision

problem if g is total and has finite range. In general, we have:

g is unconditionally computable =⇒ g is partially computable

=⇒ g is conditionally computable.

We will simply say “computability” for unconditional computability, as this

will be the main concept we use. We can further introduce complexity con-

siderations to the above, e.g., “polynomial-time unconditional computabil-

ity” is just unconditional computability in which the Turing machine halts

after a polynomial number of steps.

Representation and encodings. Let D be an algebraic domain with a

partial function ω : Dm → D. In this paper, D will always be a subset of C.

We often call such a partial function an operator . To discuss computation

over D we need to represent its elements as strings. A representation of D

is any partial onto function ρ : Σ∗ → D. If ρ(w) ↑, then w is said to be ill-

formed ; otherwise it is well-formed and represents the element ρ(w) ∈ D.

Since ρ is onto, every element in D has a representation. Relative to ρ, a

partial function

f : (Σ∗)m → Σ∗ (6)

is an implementation of ω if (i) for all well-formed w1, . . . , wm, if

ω(ρ(w1), . . . , ρ(wm)) ↓ then

ρ(f(w1, . . . , wm)) = ω(ρ(w1), . . . , ρ(wm)), (7)

and (ii) if any wi is ill-formed, or if ω(ρ(w1), . . . , ρ(wm)) ↑ then

f(w1, . . . , wm) ↑. Relative to ρ, we say ω is (polynomial-time) computable

if it has an implementation (6) that is (polynomial-time) computable. Note

that “polynomial-time” in computing f(w1, . . . , wm) is with respect to the

representation size, n = |w1|+ |w2|+ · · ·+ |wm|.

November 5, 2008 16:43 WSPC/Trim Size: 9in x 6in for Review Volume pap

On Guaranteed Accuracy Computation 13

Two basic decision problems arises with any representation ρ. The pars-

ing problem wants to know from any given w ∈ Σ∗, whether ρ(w) ↓. The

isomorphism problem wants to know, for any given v, w ∈ Σ∗, whether

ρ(v) = ρ(w). In our applications, both problems will be easily (polynomial-

time) solvable.

3.2. Representable Real Numbers

Since R is uncountable, no representation of R is possible. In this paper,

we propose to treat real computation through the following device: we pos-

tulate a set F called the representable real numbers. This set satisfies the

following axioms.

• (F, +,−,×, 0, 1) is a ring that extends the integer ring, Z ⊆ F.

• If x ∈ F then x/2 ∈ F. Hence F is dense in the reals.

• F is countable and hence it has a representation, ρ : Σ∗ → F

such that lg |ρ(w)| ≤ |w| whenever w is well-formed. The parsing

problem and the isomorphism problem for ρ are both polynomial-

time decidable.

• Relative to ρ, there are polynomial-time implementations of the op-

erations of +,−,×, div2 and the comparison of representable num-

bers. Here, div2(x) denote the function x 7→ x/2.

This approach is natural and conforms fairly closely to numerical compu-

tation found in practice: typically, F is the set of floating point numbers in

a fixed base B ≥ 2. In practice, there may be limits on the precision in the

floating point representation, but these will be removed for our purposes.

The set of base B floating point numbers is given by {mBe : m ∈ Z, e ∈ Z}.
The standard representation of mBe is given by a pair of binary integers

(m, e). The size of mBe is simply 1+⌈lg |m|⌉+⌈lg |e|⌉. A possible alternative

to floating point numbers is the choice F = Q, the rational numbers.

Once F and its representation ρ : F→ Σ∗ are fixed, whenever we speak

of “computing f”, it is understood that our algorithms will be Turing ma-

chines that accepts an arbitrary string w ∈ Σ∗ as input. In particular, ill-

formed inputs may be fed to our machine, but our axioms about ρ assures

us that we can readily recognize these inputs (and enter the state q↑). But

another situation arise: we are often interested in functions f : Rm → R

where R is a proper subset of F. In this case, the Turing machine for f must

recognize inputs that do not represent elements of R. This is polynomial-

time computable when R = Z or R = N. This is shown in the following

November 5, 2008 16:43 WSPC/Trim Size: 9in x 6in for Review Volume pap

14 C. Yap

fact:

Lemma 1: The following total functions are polynomial-time computable:

(i) ⌈lg |x|⌉ and ⌊lg |x|⌋
(ii) ⌈x⌉ and ⌊x⌋
(iii) The function f : F→ {0, 1} where f(x) = 1 iff x ∈ Z.

Proof: Fix any x ∈ F.

(i) We can determine in O(lg |x|) steps the smallest k ∈ N such that 2k ≥ |x|.
This k is ⌈lg |x|⌉. This is polynomial-time since every representation w of

x satisfies |w| ≥ lg |x| (see the axioms for F). Similarly, we can compute

⌊lg |x|⌋ in polynomial time. Note that we can even do this in O(lg lg |x|)
time.

(ii) Using ⌈lg |x|⌉ from part (i), we can next compute the value ⌈|x|⌉ in

O(lg |x|) steps. The algorithm amounts to determining each bit in the binary

representation of ⌈|x|⌉. Similarly for ⌊|x|⌋.
(iii) Using part (ii), we can compare x with ⌈x⌉. Note that x = ⌈x⌉ iff

x ∈ Z.

It is interesting to see in this proof that (i) is the prerequisite to (ii).

We will see this phenomenon again.

Decision problems associated with a function. Associated to the

function (4), we have three natural decision problems:

• The validity problem, denoted VALID(f), is to decide for any x ∈ F,

whether f(x) ↑. Recall that by our general conventions, a Turing

machine for deciding validity actually accepts strings w ∈ Σ∗. If w

is ill-formed, By assumption, we can detect whether w is ill-formed

or not in polynomial-time. Assuming w is well-formed, our Tur-

ing machine must then decide whether f(ρ(w)) ↑. In the following

discussion, we do not distinguish between an ill-formed w or a well-

formed w such that f(ρ(w)) ↑. Both are simply considered invalid.

Hence, the VALID(f) problem has 2 possible outputs: invalid, valid.

• The zero problem, denoted ZERO(f), is to decide for any x ∈ F

whether f(x) ↓ and if so, whether f(x) = 0. This problem has 3

possible outputs: invalid, zero, non-zero.

• The sign problem, denoted SIGN(f), is to determine for any x ∈ F,

whether f(x) is valid and if so determine the sign of f(x) (this is

0,±1). This problem has 4 possible outputs: invalid, zero, positive,

November 5, 2008 16:43 WSPC/Trim Size: 9in x 6in for Review Volume pap

On Guaranteed Accuracy Computation 15

negative.

Although the sign problem is more important for practical applications,

the zero problem is more general since it is meaningful in unordered do-

mains such as C. To investigate the decidability (i.e., computability) of

these problems, the concept of reducibility is useful. We say f is reducible

to g if there are total computable functions s, t such that for all x ∈ F,

f(x) = s(g(t(x))). Also, f, g are recursively equivalent if f is reducible to

g and vice-versa. It is immediate that if f is reducible to g and g is com-

putable, then f is computable. So an uncomputable f is not reducible to a

computable g.

Lemma 2: For any f :

(i) VALID(f) is reducible to ZERO(f), but there is an f0 such that VALID(f0)

is decidable and ZERO(f0) is undecidable.

(ii) ZERO(f) is reducible to SIGN(f), but there is an f1 such that ZERO(f1)

is decidable and SIGN(f1) is undecidable.

Proof: The reducibility of VALID(f) to ZERO(f), and ZERO(f) to SIGN(f)

is immediate from the definition. To see f0, we just define f0 : N → {0, 1}
such that f0(i) = 1 iff the ith Turing machine on i halts. The function f1

is a simple variant, f1 : N → {−1, 1} such that f1(i) = 1 iff the ith Turing

machine on i halts.

For many problems (in particular, the evaluation problems in Section

5), VALID(f) and ZERO(f) are basically the same problem. On the other

hand, there is a potentially exponential gap between ZERO(f) and SIGN(f)

in the well-known problem of sum of square-roots. More precisely, define

the function S that, on any input sequence of integers a1, . . . , an, computes

the sum

S(a1, . . . , an) =
n∑

i=1

sign(ai)
√
|ai|.

This is the famous sum of square-roots problem. An observation of Yap5 is

that ZERO(S) is polynomial-time. On the other hand, the best current algo-

rithms for SIGN(S) require exponential time. Another important problem

where there seems to be a complexity gap is ZERO(det) and SIGN(det) where

det is the problem of computing the determinant of a square integer matrix.

Since det can be solved in OL(n3M(n lg n + L)) time for n square matrices

November 5, 2008 16:43 WSPC/Trim Size: 9in x 6in for Review Volume pap

16 C. Yap

with L-bit entries and M(L) is the complexity of L-bit integer multiplica-

tion, this gap (if it exists) is at most a factor of n2 (ignoring logarithmic

terms).

Exact and approximate computability. The function f in (4) is said

to be exactly computable if (i) f(x) ∈ F for all valid x ∈ Fm, and (ii) f is

unconditionally computable. For instance, if f is a ring operation (+,−,×)

or div2, then f is exactly computable, by our assumptions about F. But

when f does not satisfy (i), we next introduce weaker notions of computing

f , based on approximation. Indeed, even when f satisfies (i), we may still

want to compute it approximately.

A partial function

f̃ : Fm × Z→ F (8)

is an absolute approximation function of f if for all x ∈ Fm, a ∈ Z, we have

f̃(x, a) ∈ f(x)[a]. By definition, this means f̃(x, a) is undefined iff f(x) is

undefined. Similarly a partial function

f̃ : Fm × N→ F (9)

is a relative approximation of f if for all x ∈ Fm, r ∈ N, we have f̃(x, r) ∈
f(x)〈r〉. Again, f̃(x, r) ↑ iff f̃(x) ↑.

NOTATION: we will add a “colon flourish” and write “f(x : a)” to

denote an absolute approximation f̃(x, a). Similarly, we add a “semicolon

flourish” and write “f(x; r)” to denote a relative approximation f̃(x, r).

The output of approximation functions (as in (8) and (9)) are restricted

to F. We say f is absolutely approximable if it has an approximation func-

tion (8) that is unconditionally computable. Similarly, f is relatively ap-

proximable if it has an approximation function (9) that is unconditionally

computable. We also say f has guaranteed accuracy if it is relatively approx-

imable. It follows from these definitions that if f is absolutely or relatively

approximable, then VALID(f) is decidable.

3.3. Basic Relations

The next theorem shows that guaranteed relative precision is a generaliza-

tion of guaranteed sign computation.

Theorem 3: For all x ∈ F, we have sign(f(x)) = sign(f(x; 1)).

Proof: We have

|f(x)− f(x; 1)| ≤ |f(x)|/2. (10)

November 5, 2008 16:43 WSPC/Trim Size: 9in x 6in for Review Volume pap

On Guaranteed Accuracy Computation 17

If f(x) = 0 then f(x; 1) must also be 0. Conversely, if f(x; 1) = 0 then f(x)

is also 0. Hence, assume f(x)f(x; 1) 6= 0. If f(x)f(x; 1) > 0, the result is

also true. It remains to consider the case f(x)f(x; 1) < 0. In this case, we

have

|f(x)− f(x; 1)| = |f(x)|+ |f(x; 1)| ≥ |f(x)|. (11)

But (10) and (11) implies f(x) = 0, contradicting f(x)f(x; 1) < 0.

Corollary 4: The problem SIGN(f) is reducible to the relative approxima-

bility of f .

Theorem 5: The following are equivalent:

(i) The function f is relatively approximable.

(ii) The function f is absolutely approximable and ZERO(f) is decidable.

Proof: In the first direction, assume f is relatively approximable. By the

previous lemma, ZERO(f) is decidable. So it is sufficient to show how to

approximate f absolutely. First compute x′ = f(x; 1) that approximates

x to one relative bit. Thus |x′| ≥ |f(x)|/2. Using Lemma 1, we compute

r = a + 1 + ⌈lg |x′|⌉. Finally compute x′′ = f(x; r). We have |x′′ − f(x)| ≤
2−r|f(x)|, i.e.,

lg |x′′ − f(x)| ≤ −r + lg |f(x)| ≤ −r + 1 + lg |x′| = −a.

Hence we can output x′′ as f(x : a).

In the other direction, suppose f is absolutely approximable and ZERO(f)

is decidable. To compute f(x; r), we first check if f(x) = 0, and if so, we

output 0. Otherwise we perform the following code:

a← 1;

While |f(x : a)| < 2−a+1

Do a← a + 1.

Since f(x) 6= 0, this while-loop will terminate. Upon loop termination,

|f(x : a)| ≥ 2−a+1. Since |f(x)|+ 2−a ≥ |f(x : a)|, we deduce that |f(x)| ≥
2−a+1−2−a = 2−a. If we choose a′ = r+a, then |f(x : a′)−f(x)| ≤ 2−a′

=

2−r−a ≤ 2−r|f(x)|. Thus f(x : a′) approximates f(x) with r relative bits

of precision.

Theorem 5 suggests that absolute precision may be a weaker concept

than relative precision. The next result confirms this.

November 5, 2008 16:43 WSPC/Trim Size: 9in x 6in for Review Volume pap

18 C. Yap

Theorem 6: There is a function fK : F → F that is absolutely approx-

imable in polynomial time but f is not relatively approximable.

Proof: Let M0, M1, M2, . . . be a standard enumeration of Turing machines

restricted to binary input strings. By introducing a bijection between binary

strings and N (e.g., the dyadic notation), we can view the input set for each

Mi to be N. Let K : N → {0, 1} be the diagonal function where K(i) = 0

if Mi does not halt on input i and K(i) = 1 if otherwise. It is well-known

that K is not computable. Consider the function fK : N → F defined as

follows:

fK(i) =

{
0 if Mi on input i does not halt,

2−k if Mi on input i halts in exactly k steps

The theorem follows from two facts:

(a) fK is not relatively approximable. For i ∈ N, clearly fK(i; 1) = 0 iff

K(i) = 0. Hence if fK were relatively approximable, then K would be

computable, contradiction.

(b) fK is absolutely approximable. It is sufficient to show how, given (i, j) ∈
N× Z, we may compute an absolute approximation fK(i : j). If j ≤ 0, we

can just output 1. Hence assume j > 0. We first simulate Mi on i for j

steps. If Mi halts in some k ≤ j steps, then we output 2−k. Otherwise, we

output 2−j .

We show that this algorithm is correct. Consider two possibilities: (i)

Suppose fK(i) = 0. In case j ≤ 0, then |fK(i) − fK(i : j)| = 1 ≤ 2−j. So

assume j > 0. Since Mi on i does not halt, we will output 2−j as the value of

fK(i : j). This output is correct since |fK(i)−fK(i : j)| = |fK(i : j)| = 2−j.

(ii) Suppose fK(i) 6= 0. Assume Mi on i halts in k ≥ 0 steps. In case j ≤ 0,

then |fK(i) − fK(i : j)| = |1 − 2−k| ≤ 2−j . Otherwise, we will output 2−m

as the value of fK(i : j), where m = min{j, k}. This output is correct since

|fK(i : j)− fK(i)| = |2−m − 2−k| < 2−m ≤ 2−j .

Finally, is this algorithm polynomial time? To simulate Mi on i for j

steps takes O(log(i)j) time. Since the input size is Θ(log(i) + log(j)), this

is exponential time. To fix this, we can modify the function fK so that

instead of fK(i) = 2−k, we have fK(i) = 2msb(k). where msb(k) = ⌊lg |k|⌋.
But msb(k), and hence 2msb(k), can be computed in polynomial time, by

Lemma 1.

In the next section, we will address the problems of zero determination

and sign determination, using more efficient and practical algorithms than

those implied by the above generic proofs.

November 5, 2008 16:43 WSPC/Trim Size: 9in x 6in for Review Volume pap

On Guaranteed Accuracy Computation 19

4. Guaranteed Accuracy for Basic Operators

The previous section gives an abstract treatment of the approximability of

partial functions f : Rm → R. This section examines in the main opera-

tors in practice: rational operators (±,×,÷), square root (
√·), exponential

and logarithm operators (exp(·), ln(·)). We will assume the availability of

algorithms that can implement these operations to any specified accuracy.

Such algorithms may be found in Brent 8 (see Du et al 19 for hypergeometric

functions). Our main concern is how to propagate precision bounds.

Such algorithm were first given in detail and analyzed by Ouchi42 for

the rational operators and square root. These were implemented in the

Real/Expr package56, and incorporated into the original Core Library30.

The algorithms were based on propagating composite precision bounds.

What is new in this section is to revisit these questions, but where we

propagate either absolute or relative precision bounds, but not both. This

is simpler and more intuitive.

In the following, whenever we guarantee “k relative bits”, it is implicit

that k ≥ 0. But when we guarantee “k absolute bits”, k may be negative.

The role of the most significant bit position. The proofs of Lemma 1

(and Theorem 5) indicate the usefulness of approximating lg |x|. Another

use is for transforming any precision bound, from an absolute bound to

a relative one or vice-versa. To facilitate such transformations, we use

the function, µ(x) := lg |x|. In implementations, we prefer to work with

the related msb function, defined by msb(x) = ⌊lg |x|⌋. By definition,

µ(0) = msb(0) = −∞. By Lemma 1, the function msb(x) is computable.

Thus

2msb(x) ≤ |x| < 21+msb(x).

If the binary notation for x is the · · · b2b1b0.b−1b−2 · · · (bi = 0, 1) then

msb(x) = t iff bt = 1 and for all i > t, bi = 0. When x is a general

expression, it may be difficultg to determine msb(x) exactly: let µ+(x) and

µ−(x) denote any upper and lower bound on µ(x),

µ−(x) ≤ µ(x) ≤ µ+(x).

Here, µ+(x), µ−(x) are not functional notations, as the actual values of

µ+(x), µ−(x) will depend on the context. The choice µ−(x) = −∞ and

gThis remark does not contradict Lemma 1, which assumes x is explicitly given as an
element of F.

November 5, 2008 16:43 WSPC/Trim Size: 9in x 6in for Review Volume pap

20 C. Yap

µ+(x) = ∞ are trivial bounds. Non-trivial bounds on µ(x) may not be

hard to obtain; usually, µ−(x) is harder than µ+(x).

Lemma 7: Let x ∈ R and a, r ∈ R.

(i) x[a] ⊇ x〈a + µ+(x)〉.
(ii) x〈r〉 ⊇ x[r − µ−(x)].

(iii) x[a, r] ⊇ x〈min{r, a + µ+(x)}〉.
(iv) x[a, r] ⊇ x[min{a, r − µ−(x)}].

This lemma is just another way of writing the following inequalities:

(i,iii) 2−a ≥ |x|2−a−µ+(x),

(ii,iv) |x|2−r ≥ 2−r+µ−(x).

The four cases in this lemma should be viewed as rules for converting pre-

cision bounds. Thus, (i) says that if we want to guarantee a absolute bits

in x, it is enough to guarantee a + µ+(x) relative bits in x. Since µ−(x) is

generally harder to come by than µ+(x), it is preferable to assume abso-

lute bounds at the start to the propagation, and to convert such bounds

into relative bounds as needed. In short, rules (i) and (iii) are generally

preferable over the rules (ii) and (iv).

Guaranteeing 5 bits in multiplication. To understand the difference

between relative and absolute precision, consider how to guarantee that a

value x has 5 relative bits precision. Assume x = y · z. Suppose we wish to

compute x̃ = x(1 + ρx) as an approximation to x. Moreover, we want to

compute x̃ as the product ỹz̃ where ỹ = y(1 + ρy) and z̃ = z(1 + ρz) are

approximations to y, z. This gives

x(1 + ρx) = yz(1 + ρy)(1 + ρz) = yz(1 + ρy + ρz + ρyρz).

Ignoring the second order term ρyρz, we conclude that ρx = ρy + ρz. Thus,

if |ρy| and |ρz| is at most 2−6, then |ρx| ≤ 2−5. In other words, we only

need to guarantee 6 relative bits in y and z, respectively. If we wish to take

the second order effects into account, it is sufficient to guarantee an extra

bit in either y or z.

Next, consider how to guarantee 5 absolute bits in x = yz. Now we need

upper bounds on the sizes of y and z. Let us write ỹ = y + δy, z̃ = z + δz,

and

x + δx = (y + δy)(z + δz) (12)

= yz + yδz + zδy + δyδz . (13)

Ignoring the second order term again, we have δx = yδz + zδy. Hence, if

November 5, 2008 16:43 WSPC/Trim Size: 9in x 6in for Review Volume pap

On Guaranteed Accuracy Computation 21

|δy| ≤ 2−6−µ+(z) and |δz| ≤ 2−6−µ+(y), then we would have |δx| ≤ 2−6 +

2−6 = 2−5. Thus it is sufficient to guarantee 6 + µ+(z) absolute bits for y,

and 6 + µ+(y) absolute bits for z. We now account for the omission of the

second order term: First, if µ(x) ≥ −5, then |δzδy| ≤ 2−12−µ+(x) ≤ 2−7 and

so it is enough to guarantee an extra bit in either y or z. But what if µ(x) <

−5? Choose ay and az such that ay + az = 7 (for instance ay = 3, az = 4).

Then it suffices to to require max{ay, 7 + µ+(z)} and max{az, 6 + µ+(y)}
absolute bits from y and z (respectively). Then |yδz|+ |zδy| ≤ 2−6 +2−7, as

before. Moreover, |δyδz | ≤ 2−ay−az ≤ 2−7, and hence |δx| ≤ 2−5, as desired.

We may represent the flow of information in the guaranteed precision

multiplication operator as in figure 1. This is typical of the other operators

as well. Basically, in computing an approximate value for x, we see a down-

ward flow of precision bounds [a, r], and an upward flow of approximation

values x̃. In general, we will need to iterate this downward-upward cycle of

computation.

(eyez) ∈ x[5](eyez) ∈ x〈5〉〈5〉

[max{az , 6 + µ+(z)}] [max{ay , 7 + µ+(y)}]〈6〉 〈7〉

ez ez

[5]

(a)

ey

(b)

ey

× ×

x

yz zy

x

Fig. 1. Propagation Rules: (a) Relative Precision Multiplication (b) Absolute Precision
Multiplication

The above analysis is completely general: to guarantee k bits in x, we

just replace the constants “5, 6, 7” in the preceding arguments by “k, k +

1, k + 2” (respectively). Thus we have proved:

Lemma 8: Let x = yz. We want to compute an approximate value x̃ as

ỹz̃ where ỹ, z̃ are approximate values for y, z. Assume that we can multiply

approximate values without error.

(i) To guarantee k relative bits in x, it is sufficient to guarantee k + 1 bits

in y and k + 2 bits in z.

November 5, 2008 16:43 WSPC/Trim Size: 9in x 6in for Review Volume pap

22 C. Yap

(ii) Let ay + az = k + 2. To guarantee k absolute bits in x, it is sufficient

to guarantee max{ay, k + 1 + µ+(z)} absolute bits for y and max{az, k +

1 + µ+(y)} absolute bits for z.

In the absence of other information, we propagate precision bounds to y

and z symmetrically. When there is asymmetry in our treatment of y and z,

it is clear that we reverse the roles of y and z. The optimal allocation of bits

to y and z is an interesting problem that we will not treat in the present

paper. This calls for a sensitivity analysis of the underlying expression and a

reasonable cost model. In the example of multiplication, absolute precision

is harder to guarantee than relative precision. We next see that the reverse

is true for addition, but in a more profound way.

Can we guarantee relative precision in addition? It is trivial to guar-

antee absolute precision in addition. For instance, to guarantee 5 absolute

bits of precision for x = y + z, it is enough to guarantee 6 absolute bits for

y and for z. Then we have |δx| ≤ |δy|+ |δz| ≤ 2−6 + 2−6 = 2−5.

What about relative bits? If we guarantee 5 relative bits from y and z,

then x(1 + ρx) = y(1 + ρy) + z(1 + ρz) and so

|xρx| = |yρy + zρz| ≤ |y|2−5 + |z|2−5.

In case yz ≥ 0, then the last expression is equal to |y + z|2−5 = |x|2−5, as

desired. But if yz < 0 then we get nothing of the sort when catastrophic

cancellation takes place. Indeed, when y = −z then x = 0 and it is impossi-

ble to write a bound of the form |xρx| ≤ |x|C for any finite value of C. This

is the first indication that guaranteeing the relative precision of addition

can be nontrivial.

But suppose we have some lower bound on |x|, say, in the form µ−(x).

Let k′ = 1+k−µ−(x). Then we can compute ỹ = y(1+ρy) and z̃ = z(1+ρz)

such that lg |ρy| ≤ −k′ and lg |ρz| ≤ −k′. Then

|x̃− x| = |yρy + zρz| ≤ 2−k+µ−(x) ≤ |x|2−k,

thus ensuring k relative bits of precision. Note that in case x = 0, then

µ−(x) = −∞. In summary,

Lemma 9: Let x = y + z.

(i) To guarantee k absolute bits in x, it suffices to guaranteed k + 1 bits in

y and z.

(ii) To guaranteed k-relative bits in x, it suffices to guarantee k+1−µ−(x)

relative bits in y and z.

November 5, 2008 16:43 WSPC/Trim Size: 9in x 6in for Review Volume pap

On Guaranteed Accuracy Computation 23

Note that part (ii) cannot be used in a recursive evaluation method since

what we need is an estimate of µ(x), not an estimate of µ(y) or µ(z). We

shall see that µ−(x) can be replaced by a weaker concept, by a conditional

lower bound β(x). Such a lower bound has the property that, in case x 6= 0,

then β(x) ≤ µ(x). We return to this issue in the next section.

Guaranteeing division. Next consider the problem of guaranteeing k

relative bits in the division x = y/z, assuming z 6= 0. Let ỹ = y(1 + ρy)

and z̃ = z(1 + ρz). A new phenomenon arises: the division, ỹ/z̃, cannot

be computed without error for number representations such as Big Floats.

For addition and multiplication, we had assumed that ỹ + z̃ and ỹz̃ can be

computed exactly (this agrees with our axioms for the representable reals

F). For division, we need to specify a precision bound for this operation:

assume a relative error of ρ÷. Then we may write

x(1 + ρx) = x̃

=
ỹ

z̃
(1 + ρ÷)

=
y(1 + ρy)

z(1− ρz)
(1 + ρ÷)

= x(1 + ρy + ρ÷ + ρyρ÷)

(
1 + ρz + ρ2

z

1

1− ρz

)
.

To first order terms, ρx = ρy + ρ÷ + ρz. Therefore, if |ρy|, |ρ÷|, |ρz| were at

most 2−k−2, then we have |ρx| ≤ 2−k. The neglected nonlinear terms are

in

D = ρz(ρy + ρ÷) +
ρ2

z

1− ρz
+

ρyρ÷
1− ρz

+ (ρy + ρ÷)
ρ2

z

1− ρz
.

Assuming max{|ρy|, |ρz |, |ρ÷|} ≤ 2−k−2, we have

|D| ≤ 2 · 2−2k−4 + 2 · 2−2k−4 + 2 · 2−2k−4 + 4 · 22k−4 ≤ 5 · 2−2k−3.

The total absolute error is therefore at most 3 · 2−k−2 + 5 · 2−2k−3 ≤ 2−k

(assuming k ≥ 2). This proves:

Lemma 10: Let x = y/z and z 6= 0. We want to compute the approximate

value x̃ as ỹ/z̃ where ỹ, z̃ are approximate values for y, z Assume that we

can divide approximate values with relative error ρ÷. To guarantee k ≥ 2

relative bits in x, it is sufficient to guarantee k+2 bits in both y and z, and

to perform division with relative precision k + 2.

November 5, 2008 16:43 WSPC/Trim Size: 9in x 6in for Review Volume pap

24 C. Yap

Next consider the propagation of absolute precision: instead of writing

ỹ = y + δy, we write ỹ = y(1 + δ′y) where δ′y = δy/y. Similarly, write

z̃ = z(1− δ′z) where δ′z = δz/z. Then

x + δx = x̃

=
ỹ

z̃
+ δ÷

=
y(1 + δ′y)

z(1− δ′z)
+ δ÷.

Assuming |δ′z | ≤ 1/2, we see that (1− δ′z)
−1 = 1 + Cδ′z for some |C| ≤ 2 or

δx = x(δ′y + Cδ′z + Cδ′yδ′z) =
δy

z
+

Cδzy

z2
+

Cδyδ′z
z

=
C′δy

z
+

Cyδz

z2

for some |C′| = 1 + |Cδ′z | ≤ 2. Thus we have:

Lemma 11: With the notations of Lemma 10, to guarantee k absolute bits

from x = y/z, it is sufficient to guarantee k +1 absolute bits in the division

operation, and to guarantee ky and kz absolute bits from y and z, where

ky ≥ k + 2− µ−(z), kz ≥ max{1− µ−(z), k + 2− 2µ−(z) + µ+(y)}.

If µ(z) = −∞ (i.e., z = 0) the operation is invalid. But even when the

operation is valid, we cannot propagate absolute precision bounds without

knowing effective lower bounds on µ(z) or upper bounds on µ(y).

Guaranteeing square roots. Let x =
√

y, assuming y > 0. As in divi-

sion, computing the square root of an approximate value is generally inex-

act, and we assume that the relative error is ρ√. Hence, if x̃ = x(1 + ρx)

and ỹ = y(1 + ρy), then we have

x(1 + ρx) =
√

ỹ(1 + ρ√)

=
√

y(1 + ρy)(1 + ρ√)

=
√

y(1 + ρy)
1/2(1 + ρ√).

(1 + ρ)1/2 = 1 +
ρ

2
+

(1/2)(−1/2)

2!
ρ2 +

(1/2)(−1/2)(−3/2)

3!
ρ3 + · · ·

= 1 +
∑

k≥1

(−1)k+1 (2k − 3)!!

2kk!
ρk

= 1 +
ρ

2
−

∑

k≥1

ρ2k (4k − 3)!!

4k(2k)!

(
1− ρ

4k − 1

4k + 2

)
.

November 5, 2008 16:43 WSPC/Trim Size: 9in x 6in for Review Volume pap

On Guaranteed Accuracy Computation 25

Here n!! is the double factorial given by the recursive formula n!! = (n−2)!!·
n when n ≥ 1, with base case (−1)!! = 0!! = 1. To first order, we see that

x(1 + ρx) =
√

y(1 + 1
2ρy + ρ√) or ρx = 1

2ρy + ρ√. To bound the nonlinear

terms, let us simply write ρ for ρy. Also let (1 + ρ)1/2 = 1 + 1
2ρ + Kρ2 for

some K. We will further assume max{|ρ|, |ρ√|} ≤ 1/2. The following shows

that |K| < 5/24:
∣∣∣∣(1 + ρ)1/2 − (1 +

1

2
ρ)

∣∣∣∣ <
∑

k≥1

ρ2k 1

8

(
1 +

1

4

)

=
ρ2

1− ρ2

5

32

≤ 5ρ2

24
.

The neglected nonlinear terms in x(1 + ρx) =
√

y(1 + 1
2ρ + Kρ2)(1 + ρ√) is

bounded by
∣∣∣∣Kρ2 +

1

2
ρρ√ + Kρ2ρ√

∣∣∣∣ < ρ

(|K|
2

+
1

4
+
|K|
4

)
< ρ/6.

Summarizing,

|ρx| <
1

2
|ρy|+ |ρ√|+

1

6
|ρy|. (14)

We can similarly guarantee absolute precision by propagating absolute pre-

cision bounds. Writing δ′y for δy/
√

y, we have:

x + δx =
√

y + δy + δ√

=
√

y
√

1 + δ′y + δ√

=
√

y

(
1 +

1

2
δ′y + Kδ′2y

)
+ δ√.

To first order, we have δx =
√

y(δ′y/2)+δ√ = 1
2δy +δ√. The neglected term

is
√

yKδ′2y = δy(Kδ′y). Assuming, |δ′y| ≤ 1/2, we get the bound |Kδ′y| <

5|δ′y|/24 < 5/48. Summarizing,

|δx| ≤ |δy|
(

1

2
+

5

48

)
+ |δ√|. (15)

Lemma 12: Let x =
√

y.

(i) To guarantee k ≥ 0 relative bits in x̃, it suffices to ensure k + 1 relative

bits in ỹ and k + 1 relative bits in the approximate square root extraction.

(ii) To guarantee k absolute bits in x̃, it suffices to ensure ky = max{k +

November 5, 2008 16:43 WSPC/Trim Size: 9in x 6in for Review Volume pap

26 C. Yap

1, 1−µ−(y)/2} absolute bits in ỹ and k+1 absolute bits in the approximate

square root extraction.

Proof:

(i) If |ρy| ≤ 2−k−1 and |ρ√| ≤ 2−k−1 then we conclude from (14) that

|ρx| ≤ 2−k. Note that requirement max{|ρy|, |ρ√|} ≤ 1/2 is satisfied since

k ≥ 0.

(ii) If |δy| ≤ 2−ky ≤ 2−k−1 and |δ√| ≤ 2−k−1 then we conclude from (15)

that |δx| ≤ 2−k. But our derivation also require |δ′y| ≤ 1/2 or |δy| ≤
√

y/2.

This follows if we ensure that |δy| ≤ 2−ky ≤ 2−1+(µ−(y))/2.

Like propagating absolute precision for division, propagating relative

precision for square roots requires a lower bound on y.

Exponential function. Let x = exp(y). Suppose we want to guarantee k

absolute bits in the approximate value x̃.

Lemma 13: Let ky ≥ max{1, k+2+2µ+(y)+1}. If ỹ has ky absolute bits of

precision and x̃ = exp(ỹ, k + 1) (i.e., exp(ỹ) is computed to k + 1 absolute

bits) then x̃ will have k absolute bits of precision.

Proof: Now ỹ = y + δy where |δy| ≤ 2−ky . It is sufficient to show that

|x− exp(ỹ)| ≤ 2−k−1. The lemma now follows from:

| exp(ỹ)− x| = | exp(y + δy)− exp(y)|
= exp(y) |exp(δy)− 1|
< exp(y) |2δy| , (|δy| ≤ 1/2)

≤ exp(y)2−ky+1

≤ exp(y)2−k−1−2µ+(y)+1

≤ 2−k−1.

Next, suppose we want to compute x = exp(y) to k ≥ 0 relative bits.

Let ỹ = y(1 + ρy) where |ρy| ≤ 2−ky for some ky, and assume that an

approximate x̃ is exp(ỹ) computed to ke relative bits.

Lemma 14: If ky ≥ k + 2 + µ+(y) and ke ≥ k + 2, then x̃ has at least k

relative bits.

Proof: We have

x̃ = exp(ỹ)(1 + ρe), (lg |ρe| ≤ −ke)

= exp(y) exp(yρy)(1 + ρe), (lg |ρy| ≤ −ky)

|x− x̃| = exp(y) · |1− exp(yρy)(1 + ρe)|

November 5, 2008 16:43 WSPC/Trim Size: 9in x 6in for Review Volume pap

On Guaranteed Accuracy Computation 27

So we need

|1− exp(yρy)(1 + ρe)| ≤ 2−k

or

1− 2−k ≤ exp(yρy)(1 + ρe) ≤ 1 + 2−k (16)

Since |ρe| ≤ 2−k−2, (16) will be satisfied if exp(yρy) = (1 + ρ′) with |ρ′| ≤
2−k−1. Note that |yρy| < 1/2 because |yρy| ≤ |y|2−ky ≤ 2−2−k. From the

fact that | exp(z)− (1 + z)| ≤ |z| for |z| ≤ 1/2, we get exp(z) = 1 + ρ′ with

|ρ′| ≤ 2|z|. Hence exp(yρy) = 1 + ρ′ with

|ρ′| ≤ 2|yρy| ≤ 2|y|2−2−k−µ+(y) ≤ 2−k−1

as desired.

Logarithm function. Let x = ln(y). This is only defined when y > 0,

which we will assume. First consider the problem of guarantee k absolute

bits in x̃ as an approximation of x.

Lemma 15: Let ky ≥ max{1−µ−(y), k + 2−µ−(y)}. If ỹ has ky absolute

bits as an approximation of y, and x̃ = ln(ỹ, k+1) (i.e, x̃ is ln(ỹ) computed

to k + 1 absolute bits), then x̃ has k absolute bits of precision.

Proof: It is enough to show that | ln(ỹ)− ln(y)| ≤ 2−k−1. Let ỹ = y + δy,

lg |δy| ≤ −ky. Since ky ≥ 1− µ−(y), we have |δy|/y ≤ 1/2. Then

| ln(y + δy)− ln(y)| = | ln(y(1 + δ′y))− ln(y)|, (δ′y = δy/y)

= | ln(1 + δ′y)|
≤ 2|δ′y|, (|δ′y | ≤ 1/2)

≤ 2−ky+1/y

≤ 2−k−1+µ−(y)/y

≤ 2−k−1.

Unfortunately, guaranteeing k relative bits using our usual framework

of propagating relative precision bounds does not seem to work here. Intu-

itively, the reason is that ln(y) vanishes at y = 1.

Remarks.

1. The analysis shows that propagating absolute precision is easier (“more

natural”) for addition and logarithms. Similarly, relative precision is more

natural for multiplication, division and square roots. Exponentiation seems

not to have any preference.

November 5, 2008 16:43 WSPC/Trim Size: 9in x 6in for Review Volume pap

28 C. Yap

2. More importantly, in case of x = y ± z and x = ln y, we could not

propagate relative precision from x to its children without knowledge of

µ−(x) (i.e., lower bounds size on |x|). Similarly, in case of x =
√

y, we

could not propagate absolute precision without knowledge of µ−(x). We

consider these cases difficult, because lower bounds are not easy to compute

in general.

3. In the above analysis, we either propagating absolute bits into absolute

bits or propagating relative bits into relative bits. One could also propagate

absolute bits into relative bits, or vice-versa. For instance, to compute x =

yz to k absolute bits, let ky, kz be the relative bits required for y or z. Then

it is sufficient to choose

ky = max{a + 1 + µ+(x), ry}, kz = max{a + 2 + µ+(x), rz}

where ry + rz = k + 2.

5. Expression Evaluation and Constructive Zero Bounds

Until now, we examine the approximability of individual functions. We now

examine the approximability of composition of functions. This turns out to

be a key problem in guaranteed accuracy computation.

Suppose e is an algebraic expression involving the operators ±,×,÷,
√

with constants Z. We want to approximately compute the value of e (if e is

valid). The considerations in the previous section show that, in the presence

of ± operators, we could not guarantee relative precision in evaluating e.

At least, it is not clear how to do this using only the elementary consider-

ations of that section. Similarly, in the presence of division, we could not

guarantee absolute precision. Some new idea is needed: this is the concept

of constructive zero bounds to be introduced. The problem of approximate

expression evaluation was first treated by Yap and Dubé56.

Let Ω be any set of partial real functions. Each ω ∈ Ω is called an

operator . Let Ω(m) denote all the operators of arity m in Ω. In particular,

the operators in Ω(0) are the constant operators, and these are identified

with elements of R. We call Ω a computational basis if Ω0 ⊆ Ω where

Ω0 = {+,−,×}∪Z. If, in addition, each operator in Ω is absolutely (resp.,

relatively) approximable, then we call Ω a absolute basis (resp., relative

basis).

November 5, 2008 16:43 WSPC/Trim Size: 9in x 6in for Review Volume pap

On Guaranteed Accuracy Computation 29

The evaluation problem. Let Expr(Ω) be the seth of expressions over Ω.

We view expressions in Expr(Ω) as a rooted dags (directed acyclic graphs),

where each node of out-degree m are labeled by operators in Ω(m). So the

leaves are labeled by the constant operators. The dag is ordered in the

sense that the outgoing edges from each node has a total order (so that we

can speak of the first outgoing edge, second outgoing edge, etc). There is a

natural evaluation function, denoted ValΩ (or simply Val),

ValΩ : Expr(Ω)→ R

which is also a partial function. The value Val(e) is defined recursively,

by applying the operators at each node of e to their arguments. For in-

stance, if the root of e has the operator ÷ and its first child is e′ and

second child is e′′ then Val(e) = Val(e′)/Val(e′′). We have the standard

rule that ω(x1, . . . , xm) is undefined if any xi is undefined. We say e is valid

if Val(e) ↓, and invalid otherwise. Unlike some contexts (e.g., IEEE arith-

metic), we do not distinguish among the invalid values. Thus ±1/0 = ±∞
as well as 0/0 = NaN are equally invalid.

The evaluation problem for Ω amounts to computing the function ValΩ.

In general, we want to approximately evaluate this function.

Approximate numerical and semi-numerical problems. The prob-

lem of approximating ValΩ is slightly different from the kinds of functions

discussed in Section 3. There, we defined approximability of “purely” nu-

merical problems, of the form f : Rm → R where m is fixed. One immediate

generalization we need is to allow m to vary and to become unbounded.

For instance, if f is the problem of computing a determinant, then m range

over the set {n2 : n ∈ N}. Hence a “purely numerical problem” is now a

partial function of the form f : R∗ → R∗, where R∗ = ∪m≥0Rm.

But the problem of computing ValΩ is not purely numerical because its

domain is Expr(Ω) and not R∗. So the input to ValΩ has combinatorial

data (namely, a dag with internal operator labels) as well as numerical

data (real numbers at leaves). Following Knuth, we call such problems semi-

numerical . Traditionally, one can continue to pretend that a semi-numerical

problem is purely numerical by encoding its domain in R∗. This is plausible

for simple problems, but we will be granted that trying to encode Expr(Ω)

hFor emphasis, we may call these constant expressions to contrast them to the more
general notion of expression which allow free variables. E.g., x2 + 3y − 1 where x, y are
free variables.

November 5, 2008 16:43 WSPC/Trim Size: 9in x 6in for Review Volume pap

30 C. Yap

in R∗ is not a satisfactory solution. In general, the output is also semi-

numerical (e.g., in convex hulls). Yap55 argued that the semi-numerical

data arising in geometry can generally be modeled as digraphs whose nodes

and edges are labeled with tuples of numbers. The digraphs comprise the

combinatorial data and the numerical labels comprise the numerical data.

In the following, we will assume that all semi-numerical data are of this sort.

We now extend our definition of approximability of numerical problems to

approximability of semi-numerical problems as follows:

• As usual, the input is augmented with a composite precision bound

[a, r].

• The combinatorial data remains exact, for the input as well as

output.

• The numerical data in the input and output are restricted to F.

• The numerical output satisfies the given precision bound [a, r].

This definition of approximate semi-numerical problem is consistent

with the Exact Geometric Computation paradigm, which stipulates that

ouput combinatorial data must be exact55.

The question of approximating ValΩ (relative or absolute) amounts to

this: does the approximability of individual operators in Ω translate into the

approximability of expressions over Ω? The significance of this will become

clear in Section 8. As noted in the introduction, it may not be obvious

that there is an issue here. Consider the composition of two functions,

f(g(x)). The input x in our framework is restricted to representable reals,

but the input to f is now g(x) and this may not be representable. Hence, the

approximability of f and g may not necessarily imply the approximability

of f(g(x)).

Before we go further into the approximability question, let us consider

the associated decision problems VALID(ValΩ), ZERO(ValΩ) and SIGN(ValΩ),

which may simply be denoted by

VALID(Ω), ZERO(Ω), SIGN(Ω).

They are the “fundamental problems” of guaranteed accuracy computation

over Ω. In Section 3, we show that VALID(f), ZERO(f), SIGN(f) may not

be recursively equivalent. But when f = ValΩ, these problems are often

recursively equivalent:

Lemma 16: Let Ω be a basis.

(i) If ÷ ∈ Ω then VALID(Ω) and ZERO(Ω) are recursively equivalent.

(ii) If
√· ∈ Ω then VALID(Ω) and SIGN(Ω) are recursively equivalent.

November 5, 2008 16:43 WSPC/Trim Size: 9in x 6in for Review Volume pap

On Guaranteed Accuracy Computation 31

Proof: (i) It suffices to reduce ZERO(Ω) to VALID(Ω): given an expression

e, Val(e) = 0 iff e is valid and 1/e is invalid.

(ii) Similarly, to reduce SIGN(Ω) to VALID(Ω), note that Val(e) ≥ 0 iff e

and
√

e are both valid.

A hierarchy of computational bases. We first describe a hierarchy of

bases that are important in practice.

• Ω0 = {+,−,×}∪Z. The expressions over Ω0 is the set of constant

integral polynomials. Expressions such as determinants are found

here. By definition, Ω0 is the smallest basis. A useful extension of

Ω0 is Ω+
0 = Ω0 ∪Q, (see Pion and Yap44).

• Ω1 = Ω0 ∪ {÷}. The expressions over Ω1 is the set of constanti

rational functions.

• Ω2 = Ω1 ∪ {
√·}. The expressions over Ω2 are called constructible

expressions , as they evaluate to the so-call constructible reals. The

majority of problems in computational geometry are computable

over this basis. We may extend Ω2 to Ω+
2 if we add k

√
for each

k > 2. This basis defines the radical expressions .

• Ω3 = Ω2 ∪ {RootOf(P, i) : P ∈ Z[X], i ∈ Z}. If i > 0, RootOf(P, i)

denotes the ith largest real root of P (X). E.g., i = 1 refers to the

largest real root. If i < 0, we refer to the |i|th smallest real root

of P (X). If i = 0, we refer to the smallest positive root of P (X),

and we may also write RootOf(P) instead of RootOf(P, 0). Note

that RootOf(P, i) is considered a constant (0-ary) operator. We

could also allow the coefficients of P (X) to be expressions, so that

RootOf(P, i) is a (d + 1)-ary operator that takes d + 1 expressions

as the coefficients of P (X); this more general operator is denoted

⋄(E0, E1, . . . , Ed, i) in Burnikel et al13. Let Ω+
3 be the extension of

Ω3 when we allow the ⋄-operators (diamond-operators).

• Ω4 = Ω3 ∪ {exp(·), ln(·)}. This gives us the class of constant ele-

mentary expressions16.

• Ω5 = Ω3 ∪ H where H is the set of real hypergeometric functions.

The hypergeometric parameters in pFq(a,b; x) ∈ H are assumed

iIt is paradoxical to call a constant expression a “rational function” or an “integral poly-
nomial”. To justify such a view is justified, think of a constant expression as a functional

expression together with input constants. Our approximation algorithms take this view-
point, and evaluate constant expressions as functional expressions with perturbed input
numbers.

November 5, 2008 16:43 WSPC/Trim Size: 9in x 6in for Review Volume pap

32 C. Yap

to be in F. Now, Expr(Ω5) contains the trigonometric and inverse

trigonometric functions.

Lemma 17: Assume F is the set of floating point numbers over some base

B, with the standard representation.

(i) The basis Ωi (i = 0, . . . , 4) is a relative basis.

(ii) The basis Ω5 is an absolute basis.

Proof: (i) It is sufficient to show that Ω4 is a relative basis. It is well-

known that each operator ω ∈ Ω4 is absolutely approximable. If x ∈ Fm

and ω has arity m, we can also determine if ω(x) is defined or not, and

whether ω(x) = 0. It follows that ω is relatively approximable.

(ii) To evaluate pFq(a,b; x) with absolute error bound of ε, it is sufficient

to determine an n = n(a,b, x) such that, if we ignore terms beyond the nth

term, the absolute value of the sum of the neglected terms is at most ε/2.

This was shown in Du et al19. Then it is sufficient to evaluate the sum of

the first n terms with error ε/2, which we can easily do.

REMARKS: Neumaier41 (p. 7) describes a slightly different class

of “elementary operators” that are important in interval analysis. The

RootOf(P, i) operator can be replaced by RootOf(P, I) where I is an iso-

lating interval whose endpoints can be specified by other expressions. If i

is out of bounds, or if I is not isolating interval, then RootOf(P, i) and

RootOf(P, I) are invalid. We could generalize much of this discussion by

viewing the operators of Ω to be be partial functions over C, or some even

more general algebraic structure. When viewed as complex operators, the

trigonometric functions already appear in Expr(Ω4). In the presence of

trigonometric functions, it is natural to admit π as a constant operator of

Ω.

Computable zero bounds. According to Theorem 5, we could achieve

relative approximability by absolute approximability plus a decision proce-

dure for zero. For example, for the class Ω2, one could use a direct method

for deciding zero (indeed, the sign) of expressions, by repeated squaring.

In practice, such an approach is not used. The most effective method for

this seems to be the use of constructive zero bounds. Mignotte38 was the

first to use this, for testing the equality of two algebraic numbers. In the

context of EGC, it was first introduced in the Real/Expr package56. We

November 5, 2008 16:43 WSPC/Trim Size: 9in x 6in for Review Volume pap

On Guaranteed Accuracy Computation 33

callj a function

B : Expr(Ω)→ R>0.

a zero bound function for Ω if for all e ∈ Expr(Ω), whenever e is valid and

Val(e) 6= 0 then

|Val(e)| ≥ B(e).

Such bounds are always “conditional bounds” since it is a bound only when

e is valid and non-zero. A simple example of zero bound function is B(e) =

|Val(e)| (when e is invalid, B(e) can be arbitrary). This is not a useful choice

for B since its main purpose is to help us approximate the value Val(e).

What we need are “easily” computable zero bound functions. If B is a zero

bound function, the function β : Expr(Ω) → R where β(e) := − lg B(e) is

called a zero bit-bound function for Ω. We use B or β interchangeably.

Several such constructive zero bounds are known44. These zero bounds

are not easy to compare because they depend on different parameters. One

of the most effective bounds currently available is the so-called BFMSS

Bound13.

The result of Section 3 shows that ValΩ can relatively approximated by

combining an absolute approximation algorithm, with a decision procedure

for ZERO(Ω). We now give an alternative and more practical approach based

on zero bounds.

In general, we are interested in subsets E ⊆ Expr(Ω). Given e ∈ E and

a ∈ Z, consider three related problems:

• Val(e : a) computes an absolute approximation to Val(e) with a

absolute bits.

• µ+(e): to compute an upper bound on lg(|Val(e)|).
• sign(e): to determine the sign of Val(e),

These problems are intertwined: from Val(e : a), we can obtain µ+(e)

and sometimes deduce sign(e). But to compute Val(e : a), we may need

first determine sign(e′) or µ+(e′) where e′ is a child of e. If e is invalid,

then all three values Val(e, a), µ+(e), sign(e) are undefined.

Let ValE : Expr(Ω)→ R be the problem of evaluating expressions e ∈ E,

with ValE(e) ↑ when e 6∈ E. We need some restrictions on E. In general, for

sets X ⊆ Y , we call X a decidable subset of Y if there is a Turing machine

which, given y ∈ Y , will return 1 or 0, depending on whether y ∈ X or not.

jThese have also been called “root bounds”.

November 5, 2008 16:43 WSPC/Trim Size: 9in x 6in for Review Volume pap

34 C. Yap

A set E ⊆ Expr(Ω) is said to be admissible if (1) Expr(Ω0) ⊆ E, (2) E is

decidable subset of Expr(Ω), and (3) E is closed under subexpressions, i.e.,

if e ∈ E and e′ is a subexpression of e then e′ ∈ E.

Theorem 18: Let E ⊆ Expr(Ω4) be admissible. If β : E → F≥0 is a

computable zero bound function then Val(e : a), µ+(e) and sign(e) are

computable for e ∈ E.

Proof: Let β : E → F≥0 be a computable zero bit-bound function. The

following proof gives a single algorithm to compute all three functions si-

multaneously. Given an expressin e, we consider the “type” of e:

e ∈ Ω(0):

(1) b ← max{a, β(e) + 2}. and v ← Val(e : b). By assumption, we

can compute such a v. Note that the RootOf(P, i) operator falls

under this case.

(2) µ+(e)← ⌈lg |v|+ 1⌉.
(3) If v ≤ 2−β(e)−1, return(ZERO); else sign(e)← sign(v).

e = e1 ± e2:

(1) µ+(e)← 1 + max{µ+(e1), µ
+(e2)}.

(2) v ← Val(e1 : b)±Val(e2 : b). where b← max{a + 1, β(e) + 2}.
(3) If v ≤ 2−β(e)−1, return(ZERO); else sign(e)← sign(v).

e = e1e2:

(1) sign(e)← sign(e1)sign(e2). If sign(e) = 0, return(ZERO).

(2) µ+(e)← µ+(e1) + µ+(e2).

(3) vi ← Val(ei : a + 1 + µ+(e3−i) and v ← v1v2. [cf. Lemma 8]

e = e1/e2:

(1) If sign(e2) = 0, return(INVALID). If sign(e1) = 0, re-

turn(ZERO); else sign(e)← sign(e1)sign(e2).

(2) µ+(e)← µ+(e1)− β(e2).

(3) v1 ← Val(e1 : a+2−β(e2) and v2 ← Val(e2 : max{1−β(e2), k+

4− 2β(e2) + µ + (e1)}). Finally, v ← v1/v2[a + 1] (approximate to

a + 1 absolute bits). [cf. Lemma 11]

e =
√

e1:

(1) If sign(e1) < 1 then return(INVALID). If sign(e1) = 0, re-

turn(ZERO); else sign(e)← 1.

(2) µ+(e)← µ+(e1)/2.

(3) v1 ← Val(e1 : max{a + 1, 1 − β(e1)/2}) and compute v as an

a + 1 absolute bit approximation to
√

v1. [cf. Lemma 12]

e = exp(e1):

November 5, 2008 16:43 WSPC/Trim Size: 9in x 6in for Review Volume pap

On Guaranteed Accuracy Computation 35

(1) sign(e)← 1.

(2) µ+(e)← 4µ+(e1).

(3) v1 ← Val(e1 : a + 2 + 2µ+(y)+1) and v ← exp(v1 : a + 1).

[cf. Lemma 13]

e = ln(e1):

(1) If sign(e1) ≤ 0 then return(INVALID).

(2) µ+(e)← ⌈lg(µ+(e1))⌉.
(3) b0 ← β(e1 − 1), and v1 ← Val(e1 : b0 + 1). Note that e1 − 1 is

a new expression whose conditional zero bound is needed.

(4) If |v1−1| < 2b then return(ZERO); else sign(e)← sign(v1−1).

(5) b1 ← max{1 + β(e1), a + 2 + β(e1)} and v ← Val(e1 : b1).

[cf. Lemma 15]

Normally, the values returned are v = Val(e : a), µ+(e) and sign(e).

But there are two special return statements: INVALID and ZERO, in which

cases these values are determined.

The justification of the various cases comes from the propagation bounds

we derived in the previous section. We just cover the details of the last case,

for logarithms. After checking validity of the expression (Step 1), we can

bound µ+(e) as in step 2. Determining the sign of Val(e) is trickier, since

it amounts to comparing Val(e1) to 1. Hence we need to determine a zero

bound b0 = β(e1 − 1) for a new expression “e1 − 1”. With this in hand,

we evaluate Val(e1) to b0 + 1 absolute bits. This approximation can then

tell us whether Val(e1) is equal to, less than, or greater than 1 (Step 4).

This is the information needed to determine sign(e). Finally in Step 5, we

approximate Val(e) to a absolute bits, following Lemma 15. We could have

combined Steps 3 and 5 for efficiency.

The algorithm in the proof aims at simplicity. In practice, it would

be more efficient to separate the algorithm into three mutually recursive

algorithms. Furthermore, the zero bound β should not be used directly, but

to control an adaptive algorithm.

Corollary 19: Let E ⊆ Expr(Ω4) be admissible. Then E has a computable

zero bound function iff ValE is relatively approximable.

Proof: (⇒) If β : E → R≥0 is a computable zero bit-bound function, then

by the preceding theorem, ValE is absolutely approximable and SIGN(E)

are computable. By Theorem 5, ValE is relatively approximable.

(⇐) If ValE is relatively approximable, then a zero bit-bound for e ∈ E

November 5, 2008 16:43 WSPC/Trim Size: 9in x 6in for Review Volume pap

36 C. Yap

can be computed as

β(e)← 1− lg |Val(e; 1)|.

If Val(e) = 0, we may set β(e) = 0 (or any other value we like).

Algebraic expressions and beyond. The strongest positive result about

the guaranteed accuracy evaluation of expressions from our hierarchy is the

following:

Theorem 20: The function ValΩ+
3

is relatively approximable.

One way to show this result is to invoke a decision procedure for Tarski’s

language of real closed fields. A weaker version of this theorem says that

ValΩ3 is relatively approximable: this follows from Corollary 19, and the

fact13 that Expr(Ω3) has a computable zero bound function.

It is a major open problem whether ZERO(Ω4) is decidable. This ques-

tion is closely related to undecidable questions (by introducing variables

into these expressions). Put another way, it is unknown whether we can

compute with guaranteed precision over the basis Ω4. The main result in

this direction is from Richardson45. It seems to imply the following claim:

ZERO(Ω4) is decidable if Schanuel’s conjecture is true.

Here, Schanuel’s conjecture says if x1, . . . , xn ∈ C are linearly indepen-

dent over Q then the transcendence degree of x1, . . . , xn, ex1, . . . , exn is at

least n. This assertion is highly non-trivial because it implies many known

but deep results in transcendental number theory. Richardson’s result does

not directly this claim. The reason we do not have an immediate result is

because Richardson has a different framework than us. First, he treats the

more general complex case. But he uses a concept of “expressions”, which

is captured as follows. Let Ω−
4 :=Ω4\{÷, ln(·)}. His expressions are systems

of equations (involving free variables) over the operators of Ω−
4 , together

with some additional side restrictions in order to ensure that such a sys-

tem determines a unique number. The advantage of Ω−
4 is that one can

compute absolute approximations for its expressions without zero bounds.

Richardson’s algorithm for deciding zero uses two non-trivial algorithms,

lattice reduction and Wu’s algorithm.

6. The Algebraic Computational Model

Standard complexity theory, based on the Turing model, requires all in-

puts to be encoded as strings. This is unsuitable for some problems in

November 5, 2008 16:43 WSPC/Trim Size: 9in x 6in for Review Volume pap

On Guaranteed Accuracy Computation 37

algebraic computing. An example is the Mandelbrot set comprising those

z ∈ C such that the infinite sequence T (0), T 2(0), T 3(0), . . . is bounded

where T (w) = w2 + z. Is this set computable? This question is not mean-

ingful in the standard theory (see discussion in [BCSS, Section 1.2.1]6). The

most direct way to attack this problem is to consider algebraic models of

computation7,11. In the algebraic model, we postulate an algebraic set D

together with a set Ω of operators on D. For our purposes, we take D = R.

The simplest algebraic model is the straightline program7. By allowing

decision nodes, we get algebraic decision trees . Such models are finite or

non-uniform. The uniform version of such models was first studied by Blum,

Shub and Smale6. The Mandelbrot decision problem above turns out to

be undecidable. The BSS Model achieves uniformity by introducing a bi-

infinite array, indexed by the integers, i ∈ Z. Each machine instruction

transforms the contents of the cell at position 0. To bring other cells into

the 0 position, we use the left- and right-shift operators. Let f : R∗ → R

be a numerical problem; an input w = (w1, . . . , wn) ∈ R∗ is placed into the

array so that wi is in position i (i = 1, . . . , n). To indicate the number n of

arguments, we may place the number n in position 0. Finally, the output

can be placed in position 0.

This model is awkward for modeling semi-numerical problems. Our eval-

uation problem ValΩ is such an example. The BSS Model would require

encoding the input expressions as a linear sequence of array values. To over-

come this, we introduce an algebraic model which supports semi-numerical

objects more naturally. We based it on the elegant Storage Modification

Machines, or Pointer Machines , of Schönhage 47. Similar models were ear-

lier proposed by Kolmogorov and Uspenskĭi, and by Barzdin and Kalnin’sh.

Pointer structures. Like Turing’s model, pointer machines use finite

state control to determine the step-by-step execution of instructions. What

is interesting is that pointer machines manipulated data structures with

changeable neighborhoods, unlike the fixed neighborhoods of Turing ma-

chine tapes. Let ∆ an arbitrary finite set of symbols; each a ∈ ∆ is called a

color . Consider the class of finite, directed graphs with out-degree |∆| but

arbitrary in-degree. Let G be a member of this class. The edges of G are

called pointers, and each edge is labeled (“colored”) by some a ∈ ∆. The

outgoing edges from a node have distinct colors. Thus, for each color a and

each node u, there is a unique a-pointer coming out of u. One of the nodes

is designated the origin. Call G a ∆-structure or pointer structure. Each

word w ∈ ∆∗ is said to access the unique node obtained by following the

November 5, 2008 16:43 WSPC/Trim Size: 9in x 6in for Review Volume pap

38 C. Yap

sequence of pointers labeled by colors in w, starting from the origin. Let

this node be denoted [w]G (or simply [w] when G is understood). The empty

word ǫ accesses the origin, denoted [ǫ]. In general, there will be inaccessible

nodes. For any node u ∈ G, let G|u denote u-accessible structure, namely,

the ∆-structure with origin u and comprising all nodes accessible from u.

If w ∈ ∆∗ then we write G|w instead of G|[w].

Let G∆ denote the class of all ∆-structures, and G denote the union of

G∆ over all ∆. Notice that if ∆ ⊆ ∆′ then there is a natural embedding of

G∆ in G∆′ . For simplicity, we shall just treat G∆ as a subset of G∆′ .

a

b b b

a ab b

a

a

a

b

Fig. 2. Pointer machine ∆-structure (∆ = {a, b}).

As directed labeled graph, each ∆-structure has a standard graphical

representation. This is illustrated in Figure 2. The origin (node 1) is in-

dicated by an unlabeled arrow from nowhere. Node 4 can be accessed by

w = aabb as well as w′ = bab. So 4 = [w] = [w′]. We use two conventions to

reduce clutter: (1) If a pointer is a self-loop (i.e., its target and source are

the same, they are omitted in the diagram. For instance, the self-loop at

node 1 can be omitted. Node 6 has a self-loop with color b that has already

been omitted. (2) If two or more pointers share the same source and target,

then we only draw one arrow and label them with a list of colors for this

arrow. Thus, the two pointers out of node 5 have already been collapsed

into one using this convention.

We define a pointer machine (for any color set ∆) as a finite sequence

of instructions of the following four types:

Type Name Instruction Meaning

(i) Node Assignment w← w′ [w]G′ = [w′]G
(ii) Node Creation w← new [w]G′ is new

(iii) Node Comparison if w ≡ w′ goto L G′ = G

(iv) Halt and Output HALT(w) Output G|w

November 5, 2008 16:43 WSPC/Trim Size: 9in x 6in for Review Volume pap

On Guaranteed Accuracy Computation 39

In this table, w, w′ ∈ ∆∗ and L is a natural number viewed as the label of

instructions. The instructions of the pointer machines are implicitly labeled

by the numbers 1, 2, 3, . . . in sequential order. Normally, instruction i + 1 is

executed after instruction i unless we branch to an instruction after a Type

(iii) instruction. Let us explain the last column of this table (the meaning of

the instructions). Let G be the ∆-structure before executing an instruction;

it is transformed by the instruction to G′.

(i) If w′ accesses the node v in G then after executing this assignment, both

w and w′ access v in G′. In symbols, [w]G′ = [w′]G (= [w′]G′). This

is achieved by modifying a single pointer in G. If w = u.a where

u ∈ ∆∗ and a ∈ ∆, then this instruction makes the a-pointer issuing

from [u] to next point to [w′]G. There is a special case, when w = ǫ.

In this case, no pointer is modified, but the new origin is [w′]G.

(ii) We add a “brand new” node v to G to form G′, and w now accesses

v. Furthermore, each pointer from v points back to itself. As in

(i), the transformation G → G′ is achieved by modifying a single

pointer in G.

(iii) If [w′]G = [w]G then we branch to the Lth statement; otherwise we

execute the next instruction in the normal fashion. The ∆-graph is

unchanged, G = G′.

(iv) The machine halts and outputs the ∆-structure G|w. We also allow a

variant of halt with no output (i.e., w is unspecified). This analo-

gous to a Turing machine halting in state q↑.

Computation and I/O conventions. Each pointer machine M com-

putes a partial function

fM : G∆ → G∆

for some color set ∆: on input G ∈ G∆, the machine will transform G

according to the instruction it is executing. At each step, it is executing

some instruction (numbered) L. At the next step, it normally executes

instruction L + 1 unless a type (iii) instruction succeeds in transferring it

to some other instruction L′. The machine halts iff it executes a type (iv)

instruction. When it halts, it either produces an output f(G) ∈ G∆, or

has no output (equivalent to entering state q↑). It may not halt for one

of two reasons: it executes infinitely many instructions of non-type (iv), or

it tries to execute a non-existent instruction. If it does not halt or halts

with no output, then f(G) is undefined. It is then clear what it means for

M to unconditionally (resp., partially, conditionally) compute a function

November 5, 2008 16:43 WSPC/Trim Size: 9in x 6in for Review Volume pap

40 C. Yap

f : G∆ → G∆.

An arbitrary Turing machine M can be simulated by a pointer machine

P : Suppose M has k work tapes and the set of tape symbols is Σ. Then we

let ∆ = Σ∪{S, L, R, C1, . . . , Ck} where Ci will indicate the current position

of the ith tape head. The colors L, R is used to from a tape cell u to its left

(L) or its right (R) neighbor. The cell u is said to store the symbol σ ∈ Σ

if [u.σ] 6= [u] (we must make sure that there is exactly one such σ). The

states of M will be directly remembered in the states of P (identified with

the instruction numbers of P). Each step of M will only require O(1) steps

of P . We leave the detailed simulation to the reader. When we use a Turing

machine to compute a function f , we have some input/output convention.

This convention is easily transformed into our I/O convention for pointer

machines. In particular, if M enters the special state q↑, we can also ensure

that P enters a corresponding special state (still denoted q↑). If the output

size is k, our pointer machine will take O(k) steps to produce an output.

This extra time does not change the overall time complexity. The following

lemma record these observations:

Theorem 21: A partial function f : Σk → Σ is unconditionally (partially,

conditionally) computed by a Turing machine in time T (n) iff it is uncon-

ditionally (partially, conditionally) computed by a Pointer machine in time

O(T (n)).

In other words, the concept of computability is invariant whether we use

Turing machines or Pointer machines (again confirming Church’s thesis).

Algebraic pointer machines. We now augment the Pointer machines to

support algebraic computation. Let R be any ring and be Ω be a set of

operators (i.e., partial functions of various arity) over R. Such machines

compute over the set of algebraic pointer structures: these are just pointer

structures in which each node u can hold an arbitrary value of R or may

be undefined. Let G∆(R) denote the set of pointer structures with color set

∆ and values taken from R. For G ∈ G∆(R) and w ∈ ∆∗, write ValG(w)

for the value stored at [w]G. Let

G(R) =
⋃

∆

G∆(R)

where ∆ range over all color sets.

We add two new types of instructions:

November 5, 2008 16:43 WSPC/Trim Size: 9in x 6in for Review Volume pap

On Guaranteed Accuracy Computation 41

Type Name Instruction

(v) Value Comparison if (w ◦ w′) goto L

where ◦ ∈ {=, <,≤}
(vi) Value Assignment w := f(w1, . . . , wm)

where f ∈ Ω and w, wi ∈ ∆∗

Let us discuss the meaning of the new instruction types. A type (v)

instruction causes a branch to instruction L if the predicate ValG(w) ◦
ValG(w′) is true, but does not change the pointer structure: G =

G′. The comparison ◦ would be restricted to “=” when R is not or-

dered. A type (vi) instruction changes G to G′ so that ValG′(w) =

f(ValG(w1), . . . , ValG(wm)). The values of other nodes are unchanged. The

pointers in G and G′ are unchanged.

The treatment of undefined values in type (vi) instructions is standard –

they are propagated by assignment. But in the case of type (v) instructions,

there is no standard treatment. We adopt the following convention: viewing

the undefined value ↑ as a special symbol, we assume the undefined value is

equal only to another undefined value but to no other values. This implies

we can test for the undefined value. Also the predicate “↑≤ x” holds iff x

is undefined, and the predicate “↑< x” never hold.

Observek that types (i) and (vi) are analogous: we use w ←
. . . to denote pointer assignment, while w := . . . denotes assigning

f(Val(w1), . . . , Val(wm)) to Val(w). Similarly, (iii) and (v) are analogous:

w ≡ w′ compares the nodes [w] and [w′], while w◦w′ compares their values,

Val(w) and Val(w′).

An algebraic pointer machine over basis Ω (or simply, algebraic Ω-

machine) is a finite sequence of instructions of types (i)-(vi). Computation

by algebraic pointer machines is follows exactly the same conventions as

given by the regular pointer machines. So an algebraic machine M com-

putes a partial function

fM : G∆(R)→ G∆(R). (17)

Given another partial function

F : G∆(R)→ G∆(R), (18)

kHere is a mnemonic device to differentiate “←” from “:=”, and “≡” from “=”. The
arrow in “←” suggests a pointer link, and hence refers to pointer assignment; in contrast,

the symbol := recalls the “=” in comparing algebraic values. Similarly, the symbol ≡
suggests symbolic identity (as in polynomial identity), and hence refers to equality of
nodes; in contrast, the symbol = suggests equality of values in the mathematical domain.

November 5, 2008 16:43 WSPC/Trim Size: 9in x 6in for Review Volume pap

42 C. Yap

we say M to unconditionally computes F if (i) M halts on all inputs and

(ii) F and fM are identical as partial functions. We then say that F is

algebraically computable or Ω-computable. Note that in “algebraically com-

putability”, there is always a computational basis Ω which may be implicit.

REMARK: In any programming model, we expect the identity assign-

ment. In our notation, this amounts to the instruction “w := v” where

w, v ∈ ∆∗. This amounts to assuming that the basis Ω has the identity

function. This assumption is harmless: since R is a ring and Ω contains Ω0,

the identity assignment may be simulated by two instructions “w := v + v0;

w :=w − v0” where [v0] is any node with a defined value.

Real pointer machines. Let us now specialize R to the reals R. Then

algebraic pointer machines will be called real pointer machines and these,

operates on real pointer structures, G(R). Such machines compute partial

functions of the form

F : G(R)→ G(R).

Other semi-numerical structures can easily be embedded in G(R) as in the

next two examples:

EXAMPLE 1. Assume some fixed encoding of R∗ in G∆0(R) where ∆0

is a suitable color set. Then we may speak of a purely numerical problem

F : R∗ → R∗ as being Ω-computed by real pointer machines using any color

set ∆ ⊇ ∆0 (recall our subset embedding convention, G∆0(R) ⊆ G∆(R)).

EXAMPLE 2. Consider the problem of evaluation of expressions over

Ω. We assume that Ω(0) ⊆ R and Ω \ Ω(0) is a finite set. Let ∆ contains

a color op(ω) for each ω ∈ Ω \ Ω(0), and the integers 1, . . . , m∗ where m∗

is the maximum arity in Ω. We describe the encoding e ∈ Expr(Ω) as a

∆-structures G(e). If we restrict G(e) to the pointers colored by numbers

(1, . . . , m∗) and which are not self-loops, then G is isomorphic to the DAG

of e. The i-pointer (i = 1, . . . , m∗) leads to the i-th argument of a node. If

node u in e is an operator ω ∈ Ω(m) m ≥ 1, then the op(ω)-pointer of u

points to the origin; all other operator pointers are self-loops. Finally, if u

is a leaf, then all i-pointers are self-loops and ValG(u) stores a valie Ω(0).

Given such G(e), an algebraic Ω-machine computes ValΩ(e) in the obvious

way: it amounts to a bottom up evaluation of the nodes of the DAG. Finally

we return the value at the root of the DAG.

REMARKS: In terms of computability, the Algebraic Pointer Model is

equivalent to the BSS model. The Algebraic Pointer Model is clearly el-

egant basis for algebraic computation involving combinatorial structures.

November 5, 2008 16:43 WSPC/Trim Size: 9in x 6in for Review Volume pap

On Guaranteed Accuracy Computation 43

But the fundamental reason for preferring the Algebraic Pointer Model is

a complexity-theoretic one: the BSS model can distort the complexity of

problems with low complexity. This has two causes: first, the BSS Model

does not encode combinatorial structures easily (it requires the analogue of

Gödel numberings in recursive function theory). Second, BSS machines are

too slow in accessing new array elements with its shift operator. One pos-

sible solution is to augment the BSS model by introducing special “index

variables” which are restricted to values in Z and can be added and sub-

tracted (or even multiplied). Index variables are to be used as arguments

to the shift operators. In pointer machines, no such facility is needed: the

standard technique of “pointer doubling” can achieve the same effect of

rapid access. Like the Turing model, point machines are capable of many

interesting variations. It is easy to expand the repertoire of instructions in

non-essential ways (e.g., allowing the ability to branch on a general Boolean

combination of equality tests). We may assume these without much warn-

ing.

7. Numerical Model of Computation

The algebraic model is natural and useful for investigating many algebraic

complexity questions. But it is far removed from the real world “computa-

tion modes” described in Section 2. For instance, it does not address two

known criticisms ([Weihrauch, Chapter 9]51) of non-effectiveness in real

algebraic models: (I) Arbitrarily numbers as objects that are directly ma-

nipulated. Such numbers might be uncomputable reals. In the real world,

we need to represent numerical quantities with non-trivial description sizes.

(II) The operators in Ω as perfect oracles. Since the operators can be ap-

plied to values with non-trivial complexity, even “simple” operators such

as + are highly non-trivial.

This section introduces a numerical model of computation which lies

intermediatel between the algebraic model (which is too abstract) and the

Turing model (which is too concrete). Our model restricts numerical inputs

to some representable set F ⊆ R. Second, we consider “approximate oper-

ators” that accepts an auxiliary “precision” parameter p ≥ 0. These steps

remove the above objections (I) and (II).

lWe are aware that the BSS model formally incorporates the Turing model as a special

case, when R = Z2. But it is clear that the development of the BSS theory is novel only
when R is an infinite ring like R = R. It seems more useful for our purposes to view
these as two distinct theories.

November 5, 2008 16:43 WSPC/Trim Size: 9in x 6in for Review Volume pap

44 C. Yap

Numerical pointer machines. These are essentially a special kind of

real pointer machines. Let Ω be a basis of real operators. We need three

changes: First, the value set R is now the set F of representable reals in-

troduced in Section 3. The new computational structures G(F) are called

numerical pointer structures. Second, each f ∈ Ω(m) is replaced by a rel-

ative approximation function f(x1, . . . , xm; p). Third, the instructions of

type (vi) are replaced by the following type (vii) instructions:

Type Name Instruction

(vii) Approximate Assignment w := f(w1, . . . , wm; v)

where f ∈ Ω

Here, w1, . . . , wm, v ∈ ∆∗. The semantics is evident: ValG′(w) will be

assigned a relative approximate value f(ValG(w1), . . . , ValG(wm); Val(v)).

In practice Val(v) will be non-negative and even integers, but there is no

harm allowing it to be unrestricted for this definition.

This modification has one interesting consequence: even constants ω ∈
Ω(0), can become non-trivial functions that takes a precision parameter. For

instance, if π ∈ Ω(0) then the numerical model must provide an operator

π(r) to produce arbitrarily precise approximations to π.

Approximating semi-numerical functions. A sequence of instructions

of types (i)-(v) and type (vii) will be called a numerical Ω-machine (or

numerical pointer machine). Let N be such a machine. Clearly, N computes

a partial function similar to (17), but with R = F. But we want to view N

as approximating some semi-numerical function. We proceed as follows: fix

some standard embedding of G∆(F)×F into G∆(F). Then we can re-interpret

N as computing the following partial function

fN : G∆(F)× F→ G∆(F), (19)

with an extra precision parameter.

We have already clarified what it means to approximate semi-numerical

data (Section 5). Applied to G ∈ G(R), let

G〈p〉

denote the set of G′ ∈ G(R) that approximates G with relative precision

p: this means the underlying pointer structures of G and G′ agree, but at

each node u ∈ G, we have |ValG′(u)− ValG(u)| ≤ 2−p|ValG(u)|. Similarly,

G[p] denotes the approximations to G to absolute precision p.

November 5, 2008 16:43 WSPC/Trim Size: 9in x 6in for Review Volume pap

On Guaranteed Accuracy Computation 45

If

F : G∆(R)→ G∆(R)

is any partial function, we shall say the machine N relatively approximates

F if for all (G, p) ∈ G∆(F)× F, if F (G) is defined then

fN (G, p) ∈ F (G)〈p〉,
and if F (G) is undefined, then N halts with no output. We say the function

F is numerically approximable if F is relatively approximated by some

numerical pointer machine. Note that for a function F to be “numerically

approximable”, there is an implicit basis, Ω. So we say F is Ω-approximable

to make this basis explicit.

It is not hard to see that the results of Section 5 about “relative ap-

proximability” can now be restated as results about “numerical approx-

imability”. For instance, Theorem 18 and its corollary translates into the

following result:

Theorem 22: Let E ⊆ Expr(Ω4) be admissible. Then E has a computable

zero bound iff ValE is numerically Ω4-approximable.

Main result. We give a sufficient condition for when algebraic computabil-

ity implies numerical approximability. More precisely, we want conditions

on Ω such that an (algebraic) Ω-computable function is (numerically) Ω-

approximable. For this we need to make the assumption that

Ω \ F (20)

is a finite set. This is because each operator in this set requires an approx-

imation operator, and our model allows only a finite number of them.

Theorem 23: Let the function F : G(R) → G(R) be Ω-computable. If

ValΩ is Ω-approximable then F is Ω-approximable.

Proof: Let A be an algebraic pointer machine that computes F . We must

describe a numerical pointer machine N to numerically approximate F .

Assume the color set of A is ∆; the color set of N will be some superset ∆′

of ∆. The valid inputsm for N has the form pair (G0, p) ∈ G∆(F)× F. Our

goal is to simulate the computation of A on the input G0, and ultimately

produce an output in F (G0)〈p〉.

mIn particular, if G0 ∈ G∆′ (F) \ G∆(F) then N can halt with no output. Recall our
convention that G∆(F) ⊆ G∆′ (F).

November 5, 2008 16:43 WSPC/Trim Size: 9in x 6in for Review Volume pap

46 C. Yap

The machine N simulates A step-by-step. Suppose at some step, the

algebraic ∆-structure of A is G. Then for machine N , we maintain a cor-

responding numerical ∆′-structure G′. Basically G′ is G with extra embel-

lishments. In particular, for each node u ∈ G the the corresponding node

in G′ (still denoted u) has an associated expression that can be accessed as

u.Expr. Here Expr ∈ ∆′ is a special color for accessing expressions associ-

ated with nodes.

We encode expressions over Ω as in EXAMPLE 2 (Section 6). For each

f ∈ Ω \ F, we have the color op(f) ∈ ∆′ to represent this operator in

expressions. Consider the various types of instructions:

• For instructions of types (i)-(iii), N will execute exactly the same

instructions as A. These instructions manipulate purely combina-

torial data.

• For type (iv) instruction, we halt with output. N must go over

the output ∆′-structure, and for each node u, to evaluate the ex-

pression u.Expr to precision required by the input specification. By

assumption, this is possible.

• Consider a type (vi) instruction of the form “w := f(w1, w2)”. We

assume f is binary here, but it clearly generalizes to any m-ary f .

We execute the following sequence of instructions:

w.Expr :=new;

w.Expr.op(f) := ǫ;

w.Expr.1 :=w1.Expr;

w.Expr.2 :=w2.Expr;

Thus, we simply construct the corresponding expression for the

desired value.

• Consider a type (v) instruction of the form “if (w ◦ w′) goto L”.

Although N has type (v) instructions like A, their semantics are

not the same. In A, when we ask for the comparison w ◦ w′ where

w, w′ ∈ ∆∗, we are comparing the values ValG(w), ValG(w′) ∈ R. In

N , we can only approximate these values. We execute the follow-

ing sequence of instructions to construct a temporary expression

corresponding to [w].Expr− [w′].Expr:

November 5, 2008 16:43 WSPC/Trim Size: 9in x 6in for Review Volume pap

On Guaranteed Accuracy Computation 47

tmp.Expr :=new;

tmp.Expr.op(−) := ǫ;

tmp.Expr.1 :=w.Expr;

tmp.Expr.2 :=w′.Expr;

goto Ltmp;

where tmp ∈ ∆′ is just another color and Ltmp is the beginning of

instructions to evaluate the temporary expression just constructed.

We invoke the relative approximability of ValΩ to achieve this, and

this implies we can get the correct sign and hence jump to the

correct “next instruction” of A. For simplicity, we assume that N

has a special location Ltmp for each branch instruction of A. Then

this segment of code knows the correct next instruction. Clearly,

more general programming techniques can reduce this code bloat

in N .

If we wish to compute F according to the principles of EGC (see intro-

duction), then we can relax the conditions of this theorem: in that case, the

Ω-approximability of ValΩ can replaced by the Ω-computability of SIGN(Ω).

8. Conclusion

This paper outlines a theory of real approximation and introduces a model

of numerical computation. Together, they capture the main features of

“guaranteed precision mode of computation” which is being developed in

the software libraries LEDA Real and Core Library. The practical deploy-

ment of this computational mode will open up many new applications, from

the verification of conjectures to the advancement of reliable computing. We

pose several open problems in this context.

• Guaranteed precision is a very strong requirement, not known to

be possible outside of the algebraic realm. The main open ques-

tion revolves around the decidability of the fundamental problems

ZERO(Ω) where Ω is a basis containing non-algebraic operators.

• We focused on the computability of approximation, to outline the

main features of this theory. Clearly, the complexity theoretic as-

pects ought to be developed. Another extension is to develop non-

determinism and give yet another form of NP -completeness (this

is expected to be different from the known theories).

November 5, 2008 16:43 WSPC/Trim Size: 9in x 6in for Review Volume pap

48 C. Yap

• The expression evaluation problem is central. There are several

open problems here: generalize the Ω-results of this paper by re-

quiring only general conditions on Ω (e.g., conditions on the deriva-

tives). Even simpler: when is f(g(x)) approximable? Another prob-

lem is to give provably optimal algorithms for approximating ValΩ
or for SIGN(Ω). We want here some “precision sensitive”48,1. con-

cept of optimality. This is unclear even for Ω = Ω0.

• In constructive zero bounds, an open question is whether there

is a zero bound for Expr(Ω2) whose zero bit-bound is linear in

the degree. There remains the practical need for stronger and more

adaptive zero bounds. For instance, approximating expressions over

Ω+
3 is currently impractical with known zero bounds.

• Section 2 suggests a programming environment (or language) where

different numerical accuracy requirements can co-exist and inter-

play. This presents many practical as well as theoretical challenges.

Programming environments of the future ought to support such

paradigms. For instance, as Moore’s law predicts an inexorable in-

crease of machine speed. Such an environment can exploit this, to

achieve a trade-off between speed and accuracy (or “robustness”).

• Section 7 gives us a condition when an abstract algebraic algorithm

A can be implemented as a numerical algorithm B. Such A-to-B

type results can provide some theoretical foundation for numerical

analysis (as sought by the BCSS Theory6). Clearly, there are other

A-to-B type results.

Acknowledgments

I am grateful for the support of Kurt Mehlhorn and the facilities of the Max-

Planck Institute of Computer Science in Saarbrücken where this paper was

completed. Thanks is due to Susanne Schmitt for careful reading of this

manuscript and comments.

References

1. T. Asano, D. Kirkpatrick, and C. Yap. Pseudo approximation algorithms,
with applications to optimal motion planning. In ACM Symp. on Compu-
tational Geometry, volume 18, pages 170–178. ACM Press, 2002. Barcelona,
Spain. To appear, Special Conference Issue of J.Discrete & Comp. Geom.

2. D. H. Bailey. Multiprecision translation and execution of Fortran programs.
ACM Trans. on Math. Software, 19(3):288–319, 1993.

3. M. Benouamer, D. Michelucci, and B. Péroche. Boundary evaluation using a

November 5, 2008 16:43 WSPC/Trim Size: 9in x 6in for Review Volume pap

On Guaranteed Accuracy Computation 49

lazy rational arithmetic. In Proceedings of the 2nd ACM/IEEE Symposium
on Solid Modeling and Applications, pages 115–126, Montréal, Canada, 1993.
ACM Press.

4. E. Berberich, A. Eigenwillig, M. Hemmer, S. Hert, K. Mehlhorn, and
E. Schömer. A computational basis for conic arcs and boolean operations
on conic polygons. In Proc. 10th European Symp. on Algorithms (ESA’02),
pages 174–186. Springer, 2002. Lecture Notes in CS, No. 2461.

5. J. Blömer. Simplifying Expressions Involving Radicals. PhD thesis, Free Uni-
versity Berlin, Department of Mathematics, October, 1992.

6. L. Blum, F. Cucker, M. Shub, and S. Smale. Complexity and Real Computa-
tion. Springer-Verlag, New York, 1997.

7. A. Borodin and I. Munro. The Computational Complexity of Algebraic and
Numeric Problems. American Elsevier Publishing Company, Inc., New York,
1975.

8. R. P. Brent. A Fortran multiple-precision arithmetic package. ACM Trans.
on Math. Software, 4:57–70, 1978.

9. H. Brönnimann, C. Burnikel, and S. Pion. Interval arithmetic yields efficient
dynamic filters for computational geometry. Discrete Applied Mathematics,
109(1-2):25–47, 2001.

10. H. Brönnimann and M. Yvinec. Efficient exact evaluation of signs of deter-
minants. Algorithmica, 27:21–56, 2000.

11. P. Bürgisser, M. Clausen, and M. A. Shokrollahi. Algebraic Complexity the-
ory. Series of Comprehensive Studies in Mathematics, Vol.315. Springer,
Berlin, 1997.

12. C. Burnikel, R. Fleischer, K. Mehlhorn, and S. Schirra. Exact geometric
computation made easy. In Proc. 15th ACM Symp. Comp. Geom., pages
341–450, New York, 1999. ACM Press.

13. C. Burnikel, S. Funke, K. Mehlhorn, S. Schirra, and S. Schmitt. A separation
bound for real algebraic expressions. In Lecture Notes in Computer Science,
pages 254–265. Springer, 2001. to appear, Algorithmica.

14. C. Burnikel, J. Könnemann, K. Mehlhorn, S. Näher, S. Schirra, and C. Uhrig.
Exact geometric computation in LEDA. In Proc. 11th ACM Symp. Comp.
Geom., pages C18–C19, 1995.

15. F. Chaitin-Chatelin and V. Frayssé. Lectures on Finite Precision Computa-
tions. Society for Industrial and Applied Mathematics, Philadelphia, 1996.

16. T. Y. Chow. What is a closed-form number? Amer. Math. Monthly,
106(5):440–448, 1999.

17. B. M. Cullough. Assessing the reliability of statistical software: Part II. The
American Statistician, 53:149–159, 1999.

18. M. Dhiflaoui, S. Funke, C. Kwappik, K. Mehlhorn, M. Seel, E. Schmer,
R. Schulte, , and D. Weber. Certifying and repairing solutions to large lps,
how good are lp-solvers? In Proc. SODA 2003 (to appear), 2003.

19. Z. Du, M. Eleftheriou, J. Moreira, and C. Yap. Hypergeometric func-
tions in exact geometric computation. In V.Brattka, M.Schoeder, and
K.Weihrauch, editors, Proc. 5th Workshop on Computability and Com-
plexity in Analysis, pages 55–66, 2002. Malaga, Spain, July 12-13,

November 5, 2008 16:43 WSPC/Trim Size: 9in x 6in for Review Volume pap

50 C. Yap

2002. In Electronic Notes in Theoretical Computer Science, 66:1 (2002),
http://www.elsevier.nl/locate/entcs/volume66.html. Also available as
“Computability and Complexity in Analysis”, Informatik Berichte No.294-
6/2002, Fern University, Hagen, Germany.

20. A. Fabri, G.-J. Giezeman, L. Kettner, S. Schirra, and S. Schoenherr.
The CGAL kernel: a basis for geometric computation. In M. C. Lin and
D. Manocha, editors, Applied Computational Geometry: Towards Geometric
Engineering, pages 191–202, Berlin, 1996. Springer. Lecture Notes in Com-
puter Science No. 1148; Proc. 1st ACM Workshop on Applied Computa-
tional Geometry (WACG), Federated Computing Research Conference 1996,
Philadelphia, USA.

21. S. J. Fortune and C. J. van Wyk. Static analysis yields efficient exact inte-
ger arithmetic for computational geometry. ACM Transactions on Graphics,
15(3):223–248, 1996.

22. A. Frommer. Proving conjectures by use of interval arithmetic. In U. Kulisch,
R. Lohner, and A. Facius, editors, Perspectives on Enclosure Methods.
Springer-Verlag, Vienna, 2001.

23. S. Funke, K. Mehlhorn, and S. Näher. Structural filtering: A paradigm for
efficient and exact geometric programs. In Proc. 11th Canadian Conference
on Computational Geometry, 1999.

24. P. Gowland and D. Lester. A survey of exact arithmetic implementations. In
J. Blank, V. Brattka, and P. Hertling, editors, Computability and Complexity
in Analysis. Springer, 2000. 4th International Workshop, CCA 2000, Swansea,
UK, September 17-19, 2000, Selected Papers, Lecture Notes in Computer
Science, No. 2064.

25. N. J. Higham. Accuracy and stability of numerical algorithms. Society for
Industrial and Applied Mathematics, Philadelphia, 1996.

26. Holt, Matthews, Rosselet, and Cordy. The Turing Programming Language.
Prentice-Hall, Englewood Cliffs, NJ, 1988.

27. CGAL Homepage, 1998. Computational Geometry Algorithms Library
(CGAL) Project. A 7-institution European Community effort. See URL
http://www.cgal.org/.

28. LEDA Homepage, 1998. Library of Efficient Data Structures and Algorithms
(LEDA) Project. From the Max Planck Institute of Computer Science. See
URL http://www.mpi-sb.mpg.de/LEDA/.

29. T. Hull, M. Cohen, J. Sawchuk, and D. Wortman. Exception handling in
scientific computing. ACM Trans. on Math. Software, 14(3):201–217, 1988.

30. V. Karamcheti, C. Li, I. Pechtchanski, and C. Yap. A Core library for ro-
bust numerical and geometric libraries. In 15th ACM Symp. Computational
Geometry, pages 351–359, 1999.

31. K.-I. Ko. Complexity Theory of Real Functions. Progress in Theoretical Com-
puter Science. Birkhäuser, Boston, 1991.

32. S. Krishnan, M. Foskey, T. Culver, J. Keyser, and D. Manocha. PRECISE:
Efficient multiprecision evaluation of algebraic roots and predicates for re-
liable geometric computation. ACM Symp. on Computational Geometry,
17:274–283, 2001.

November 5, 2008 16:43 WSPC/Trim Size: 9in x 6in for Review Volume pap

On Guaranteed Accuracy Computation 51

33. U. Kulisch, R. Lohner, and A. Facius, editors. Perspectives on Enclosure
Methods. Springer-Verlag, Vienna, 2001.

34. K. Lange. Numerical Analysis for Statisticians. Springer, New York, 1999.
35. K. Mehlhorn and S. Schirra. Exact computation with leda real – theory and

geometric application. In G. Alefeld, J. Rohn, S. Rump, and T. Yamamoto,
editors, Symbolic Algebraic Methods and Verification Methods, volume 379,
pages 163–172, Vienna, 2001. Springer-Verlag.

36. N. Metropolis. Methods of significance arithmetic. In D. A. H. Jacobs, editor,
The State of the Art in Numerical Analysis, pages 179–192. Academic Press,
London, 1977.

37. D. Michelucci and J.-M. Moreau. Lazy arithmetic. IEEE Transactions on
Computers, 46(9):961–975, 1997.

38. M. Mignotte. Identification of algebraic numbers. J. of Algorithms, 3:197–
204, 1982.

39. R. E. Moore. Interval Analysis. Series in Automatic Computation. Prentice-
Hall, Englewood Cliffs, N.J., 1966.

40. N. T. Müller. The iRRAM: Exact arithmetic in C++. In J. Blank, V. Brattka,
and P. Hertling, editors, Computability and Complexity in Analysis. Springer,
2000. 4th International Workshop, CCA 2000, Swansea, UK, September 17-
19, 2000, Selected Papers, Lecture Notes in Computer Science, No. 2064.

41. A. Neumaier. Interval Methods for Systems of Equations. Cambridge Univer-
sity Press, Cambridge, 1990.

42. K. Ouchi. Real/Expr: Implementation of an exact computation package. Mas-
ter’s thesis, New York University, Department of Computer Science, Courant
Institute, January 1997. Download from http://cs.nyu.edu/exact/doc/.

43. C. H. Papadimitriou. Computational complexity. Addison-Wesley, Reading,
Massachusetts, 1994.

44. S. Pion and C. Yap. Constructive root bound method for k-ary rational input
numbers. In Proc. 19th ACM Symp. on Comp. Geom., pages 256–263. ACM
Press, 2003. San Diego, California.

45. D. Richardson. How to recognize zero. J. of Symbolic Computation, 24:627–
645, 1997.

46. H. Rogers. Theory of Recursive Functions and Effective Computability.
McGraw-Hill, New York, 1967.

47. A. Schönhage. Storage modification machines. SIAM J. Computing, 9:490–
508, 1980.

48. J. Sellen, J. Choi, and C. Yap. Precision-sensitive Euclidean shortest path in
3-Space. SIAM J. Computing, 29(5):1577–1595, 2000. Also: 11th ACM Symp.
on Comp. Geom., (1995)350–359.

49. The Institute of Electrical and Electronic Engineers, Inc. IEEE Standard
754-1985 for binary floating-point arithmetic, 1985. ANSI/IEEE Std 754-
1985. Reprinted in SIGPLAN 22(2) pp. 9-25.

50. D. Tulone, C. Yap, and C. Li. Randomized zero testing of radical expres-
sions and elementary geometry theorem proving. In J. Richter-Gebert and
D. Wang, editors, Proc. 3rd Int’l. Workshop on Automated Deduction in Ge-
ometry (ADG’00), number 2061 in Lecture Notes in Artificial Intelligence,

November 5, 2008 16:43 WSPC/Trim Size: 9in x 6in for Review Volume pap

52 C. Yap

pages 58–82. Springer, 2001. Zurich, Switzerland.
51. K. Weihrauch. Computable Analysis. Springer, Berlin, 2000.
52. C. Yap. A new number core for robust numerical and geometric libraries.

In 3rd CGC Workshop on Geometric Computing, 1998. Invited Talk. Brown
University, Oct 11–12, 1998.
Abstracts, http://www.cs.brown.edu/cgc/cgc98/home.html.

53. C. Yap, C. Li, and S. Pion. Core Library Tutorial: a library for robust geo-
metric computation, 1999. Released with the Core Library software package,
1999–2003. Download: http://cs.nyu.edu/exact/core/.

54. C. K. Yap. Introduction to the theory of complexity classes, 1987. Book
Manuscript. Preliminary version,
URL ftp://cs.nyu.edu/pub/local/yap/complexity-bk.

55. C. K. Yap. Robust geometric computation. In J. E. Goodman and
J. O’Rourke, editors, Handbook of Discrete and Computational Geometry,
chapter 41. CRC Press LLC, Boca Raton, FL, 2nd edition (revised, expanded)
edition, 2003, to appear.

56. C. K. Yap and T. Dubé. The exact computation paradigm. In D.-Z. Du and
F. K. Hwang, editors, Computing in Euclidean Geometry, pages 452–486.
World Scientific Press, Singapore, 1995. 2nd edition.

