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Abstract

The following fundamental problem is of theoretical interest and has applications in graphics,

computer aided design, and the analysis of polynomial surfaces: Suppose we are given (1) a

function F : Rn → R, (2) an interval formulation of F and ∇F , (3) an axis aligned closed

hypercube B0 ⊂ Rn, and (4) a distance ǫ > 0. Assuming 0 is a regular value of F , and some

additional conditions on F , find a piecewise linear approximation V of {F = 0} in the sense that

it lies within ǫ of and is isotopic to B0 ∩ {F = 0}.

It is often the topological condition which is difficult to ensure. We present a theorem which

introduces a new test for topological accuracy. Making use of this, we develop a family of

algorithms very similar in form to the Vegter-Plantinga algorithm. They are correct for all n

and we implement a variation which is practical when n ≤ 4. This is the first known numeric (as

opposed to algebraic) algorithm which ensures the topological guarantee with n > 3. When n ≤ 3

this algorithm produces a mesh with densities similar to those produced by the Vegter-Plantinga

algorithm. For n = 2 we describe an advancing boxes algorithm which is based on subdivision

followed by an advancing front style progression. It has several unique characteristics, including

an ability to ensure good approximations of surface normals and no requirement for precise sign

determination of F .
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Introduction

Figure 1: Mesh of a tangle cube F (x) = 10 +
∑3

i=1 x4
i − 5x2

i

Consider the general problem of using an algorithm to find a piecewise linear approximation

to an n − 1 dimensional surface defined by {F = 0} ∩ B0 for some F : Rn → R and some finite

axis aligned “box” B0 ⊂ Rn. To formally analyze this problem, we must choose a definition of

approximation and assume some capability to partially evaluate F .

The two popular criteria to be a (good) approximation are ǫ-closeness and topological accu-

racy. ǫ-closeness is the requirement that our approximation lies within a distance ǫ of the actual

surface. That is to say, the Hausdorff distance between the sets is less than ǫ. When {F = 0}

is bounded by B0, topological accuracy is accepted to mean an isotopy between {F = 0} and

the approximation. When {F = 0} is not bounded, the classical literature is often silent. One

obvious strong condition is that there is an isotopy between {F = 0}∩B0 and our approximation

within B0. This thesis will focus on this strong condition, but weaker conditions have also been

proposed [2].

One partial evaluation capability on F is the ability to determine the sign of F at some finite

or countable collection of points. This capability is self-explanatory. However, for many classes

of functions, determining that F is zero at a point is non-trivial. Also, the evaluation of F at a

finite number of points fails to provide information about what happens elsewhere. So it is not
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possible to formally verify many global invariants using this capability. These limitations lead

us to consider another partial evaluation capability.

Interval formulations are a partial evaluation capability. We assume that we have interval

formulations of F and ∇F . To see what this would mean in one dimension, let IR be the set of

closed finite intervals on R. Then an interval formulation of G is a function ¤G : IR → IR with the

property that G([a, b]) ⊆ ¤G([a, b]) where on the left we use G as an exact set function and on the

right we have something easier to understand and compute. This idea has a natural generalization

to higher dimensions. Because of the strong constraints provided by ¤F and ¤∇F , this partial

evaluation capability makes definite statements about the topology of {F = 0} possible.

Chapter 1 contains history regarding non-algebraic meshing techniques, especially those tech-

niques which directly influence this work. Each algorithm assumes one or both of the partial

evaluation capabilities. Each algorithm produces an approximation of a level hyper-surface,

though the definition of approximation varies somewhat.

In Chapter 2 we define formally the partial evaluation capabilities that we will require and

develop some analytic and topological tools used in later chapters. Section 2.1 defines terms like

mesh, k-box, and k-polytope. In Section 2.2 we state what properties our interval formulations

are required to have. Section 2.3 defines some special flows. Using these flows ensures that certain

arguments respect the bounded domain of interest B0. In Section 2.4 we use these flows to prove

Theorem 2.1, our main topological result. In Section 2.5 we give an analytic result. Theorem 2.3

is a finite dimensional mountain pass theorem which respects the flows of Section 2.3.

Chapter 3 discusses several algorithms developed using these concepts. In Section 3.1 we

document a basic algorithm which separates regions where ∇F is zero from regions where F is

zero. This becomes an initial step of our algorithms. In Section 3.2 we provide an algorithm

outline based on subdivision of B0. We show that if code based on this outline terminates, the

resulting mesh is topologically accurate. In Section 3.3 we develop an algorithm based on this

outline. The resulting algorithm solves the following restriction of the general problem:

Given a function F : Rn → R with non-singular level surface {F = 0} and a compact axes

aligned box B0 ⊂ Rn. Assume that ∇F is Lipschitz within B0, that is ||∇F (p) − ∇F (q)|| ≤

k||p − q|| for all p, q ∈ B0 where || · || is the euclidian distance on Rn and k may depend on F ,

B0. Assume that we are provided with ¤F and ¤∇F satisfying certain convergence properties.
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Assume further that we can evaluate the sign of F at points B0. Then construct V ⊂ B0, a

piecewise linear approximation of {F = 0}∩B0, such that there is an isotopy between {F = 0}∩B0

and V within B0.

Vegter and Plantinga [16] solve this problem when n = 2, 3, {F = 0} ⊆ B◦
0 where B◦

0 is the

interior of B0. Our algorithm does not require these additional constraints and seems to be the

first non-algebraic algorithm to solve problems of this form when n > 3.

Section 3.4 presents a two dimensional advancing boxes algorithm. It has two interesting

characteristics. The first is that it does not require exact sign determinations hence it is a purely

interval based approach. The second is that it can ensure that the normal vectors of our output

always lie within some angular range α of ∇F . The angular range restriction can be locally

defined. α need not be a constant across B0.

In Chapter 4 we discuss our implementation. There is focus on both the issues that were

encountered and the techniques and data structures which were selected to deal with them. As

part of this, we document the interface to one of the primary data structures. Chapter 5 discusses

the final performance of our implementation and includes images of the resulting meshes.

3



1

History of Non-Algebraic Meshing

Techniques

We define a mesh within Rn to be a complex of n − 1 dimensional simplexes which together

bound some region, some collection of polytopes. These terms are described in more detail in

Section 2.1. We are interested in methods which use guaranteed computation techniques [22] to

ensure that the resulting mesh approximates a surface of interest.

When F is a polynomial over Z, then there are many algebraic tools which can be applied to

meshing the level surfaces of F [6,3]. Purely algebraic techniques can handle higher dimensional

problems and even singular surfaces. These algorithms however do not scale well with polynomial

degree or with the dimension of the domain. There also exist hybrid algorithms, e.g. interval

arithmetic can be used to replace some portions of an algebraic algorithm [7].

1.1 The Marching Cubes Algorithm

An early approach to this type of problem is Lorensen and Cline’s marching cubes algorithm [13].

Strictly speaking, the algorithm is not a guaranteed computation algorithm. It is described here

because aspects of it are seen in the Vegter-Plantinga algorithm described in Section 1.3.

The algorithm is based on knowing the sign of F on a grid of points which is fixed a priori.

Specifically, we evaluate the sign of each point and then fill in each cube, based on the signs

of the corners of the cube. For each possible corner sign pattern, the algorithm defines a fixed

mesh within the cube. This mesh divides the positive and non-positive corners. These constant

meshes are constructed so that the intersection of the mesh with a face g depends only on the

sign pattern of the corners of g.

For certain types of real problems this approach is invaluable. For example, if a medical

scanning device presents a uniform grid of densities and we wish to visualize density iso-surfaces,

then we have precisely the information which marching cubes uses. Given such a mesh of densities,

and nothing else, this may well be the best solution. Furthermore, the algorithm is both very
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fast and very easy to implement. In fact, the algorithm was considered so simple and obvious

that the now expired patent [4] was sometimes touted as an example demonstrating problems

with software patents. Avoiding this patent issue is one of the justifications sometimes given for

the related marching tetrahedron approach [15].

On the other hand, when F is available in some computable form, this approach tends to be

mathematically unsatisfying. The marching cubes algorithm only evaluates F at a finite number

of points. Formally, this means that the behavior of F is entirely uncharacterized away from

these points. Now, if we do happen to have some sort of bound on the smallest possible feature

size for a particular F and the freedom to select a grid, then we can do so with this feature size in

mind. However, we might be forced to apply a potentially overly-fine grid to the entire problem.

The uniformity of the grid exacerbates the problem of resolution selection.

1.2 Interval Analysis

In order to algorithmically produce information about F at more than a finite number of points,

we need to bring in a different evaluation model. For a wide range of functions F , it is possible to

find interval formulations ¤F which provide the strong constraint F (B) ⊆ ¤F (B) over boxes B,

with the bare F (B) treated as the (potentially non-computable) exact set function. To start with,

if we are given a number system which supports exact computation or controlled rounding, then

it is possible to define interval versions of normal arithmetic operations [20]. Implementations of

this include the Boost interval library [1] and MPFI [18]. The Boost interval library is particularly

flexible because it can be used with a range of number types and uses controlled rounding when

necessary.

There are various ways to extend this further: For example, suppose that we have the first k

terms of a Taylor expansion for F about a point x and an appropriate error term. Then it is a

straightforward exercise to use interval arithmetic primitives to find a formulation of ¤F which

behaves well over intervals which contain x. However when x is not in the interval of interest,

it could be necessary to keep adding terms to ensure that the output interval shrinks. This is

related to the interval formulation convergence properties discussed in Section 2.2.

As another example, if a Taylor series is known and the sign changes of F ′ are well understood,
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then it is possible to define optimal interval functions based on monotonicity. If say −π
2 ≤ a ≤

b ≤ π
2 then

¤ sin[a, b] = [sin−(a), sin+(b)]

where sin+ and sin− are evaluations of a Taylor series of sin with all rounding during the evalu-

ations taken towards +∞ and −∞ respectively.

Whatever formulation is used, the convergence of ¤F is important. The condition F (B) ⊆

¤F (B) can be satisfied trivially, but the interval algorithms mentioned here only terminate when

¤F (B) shrinks as B shrinks.

Several models of interval convergence have been developed. One is Lipschitz interval con-

vergence, which is the requirement that diam¤F (B) < kF · diam B, with kF a constant de-

pending on both F and the initial domain B0. diam is the standard set diameter function.

Another model is quadratic convergence, which, is typically formulated as the requirement that

diam(¤F (B))−diam(F (B)) ≤ kF diam(B)2. This quadratic convergence is available for polyno-

mials and rational functions, and it is based on evaluation of a Taylor series around the center of

B [14,17]. Again, kF may depend on the initial box B0. In Section 2.2 we introduce a convergence

requirement which can be seen as a relaxation of either of these.

Snyder describes techniques which use interval computations to approach several classes of

problems [20]. He applys them to the meshing of implicit curves. The basic idea is that a square

is checked against certain interval conditions, and if it does not satisfy them, then it is split. Next,

each child square is checked and the process is repeated until all squares satisfy the conditions.

Once this is done, some analysis is performed within each square B to approximate the curve

{F = 0} ∩ B. This analysis involves finding the intersections of {F = 0} ∩ B with ∂B and then

determining how they are connected within the square.

This approach requires doing a potentially large amount of computation for each square. In

particular, if the curve makes tangential contact with a square, it is not clear how the algorithm

differentiates this comtact from nearly-tangential contact. Also, the obvious higher-dimensional

generalization involves recursively analyzing every k-face of every n-cube containing part of the

mesh. This makes the potential issue of tangential contact even more troubling.
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1.3 The Plantinga-Vegter Algorithm

Plantinga and Vegter [16] developed an algorithm for the meshing of implicit surfaces. It shares

some characteristics with both Snyder’s algorithm and the marching cubes algorithm. It supports

both two and three dimensions. Initially, it is much like Snyder’s algorithm in that space is

subdivided into smaller and smaller boxes until every box satisfies some interval analysis based

condition. Then, the boxes are tiled with a fixed set of curves or surfaces, much like marching

cubes.

There are several limitations to this algorithm, such as: Since a precomputed table is used,

it requires a balanced tree. That is, neighboring cubes can only differ in size by a single split.

The correctness proof assumes that {F = 0} lies entirely within the initial cube or square B0.

This last limitation can be removed. If the correctness conditions are relaxed somewhat from

homotopy with {F = 0} ∩ B0, it is possible to alter the algorithm to give a correctness result

when {F = 0} 6⊆ B0. The resulting algorithm requires subdivisions similar in size to normal

Vegter-Plantinga [2]. Another limitation of the original Vegter-Plantinga is that it only applies

to square and cubical subdivision, but this too can be removed [12].

A more major and fundamental limitation is that the correctness proof for Vegter-Plantinga

is based on piecewise deformations and manual case analysis. So their proof approach does not

scale well with dimension. Another is that the algorithm requires the ability to evaluate the sign

of F at points which are dyadic relative to B0. By dyadic relative to B0, we mean those points

findable through 2n way splitting of B0. So the dyadic points relative to the unit box [0, 1]n are

points with within [0, 1]n with coordinates expressible as multi-precision floating-point numbers

of the form k · 2−j with k, j ∈ N.
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2

Theory

2.1 Notation

The variable n represents the dimension of our problem statement. It is generally assumed that

n ≥ 2. Unless otherwise stated, this is the only constraint on n. When n = 1 these approaches

tend to collapse to a root finding scheme, and this aspect is not explored here in detail.

We follow and extend the notation used by Edelsbrunner [8] and others in which structures

are characterized by their affine dimension. A k-flat is an affine subspace of dimension k. For

any set s ⊆ Rn the affine dimension of s is the smallest k such that s lies within some k-flat.

Generally, a k-face is the closed convex hull of a collection of points with affine dimension

k. That is, a k-face will allways be a convex set within a k-flat. When a k-face is the convex

hull of k + 1 points we will call it a (non-sigular) k-simplex. The other type of k-face which will

come up often is a k-box. A k-box is a cartesian product of intervals
∏n

i=1[ai, bi] with ai ≤ bi

for all intervals and ai < bi for exactly k intervals. A k-square is a k-box with the additional

constraint that bi − ai = s, 0 where s > 0 is a constant side length. By the definisions already

given, bi − ai will be s for precisely k values of i. Note that unlike a k-simplex, a k-box is axis

aligned by definition.

If an l-box fl =
∏n

i=1[ai, bi] and a k-box, fk =
∏n

i=1[ci, di] have the properties that l ≤ k and

ai, bi ∈ {ci, di} for all i then we say that fl is an l-face of fk. Note that an l-face of a k-square

is an l-square.

For our purposes, a k-polytope V consists of a closed bounded subset V ′ ⊂ Rn within a k-flat

P , along with a finite set of (k− 1)-simplexes {fi} such that ∂P V ′ =
⋃

i fi and {fi} are elements

of some simplicial complex. ∂P denotes boundary relative to the k-flat P .

Occasionally, we might abuse notation somewhat and talk about V as a set. In these cases

we of course mean the set V ′. Whenever it is not made clear, it should be assumed that the faces

{fi} are arbitrarily chosen and fixed for the duration of the discussion. An l-face of a k-polytope

when l ≤ k is an l-simplex within the simplicial complex induced by {fi}.

The unqualified term polytope should be taken to mean an n-polytope. For the most part,
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we will only consider n-polytopes, k-boxes and k-simplexes.

2.2 Interval and Function Requirements

In addition to sometimes having geometric meaning, we also treat n-boxes as n dimensional

intervals. We require that the interval functions ¤F and ¤∇F are defined for F and its gradient.

Both ¤F and ¤∇F take n-boxes as arguments. Note, in particular, that we do not require that

they accept k-boxes with k < n. The reasons for this are discussed in Section 2.2.1. ¤F produces

an interval (1-box) as a result. ¤∇F produces an n-box as a result. We use subscripts to select

an interval from an n-box. For example if ¤∇F (B) = [1, 2]× [2, 3] then (¤∇F (B))1 = [1, 2] and

(¤∇F (B))2 = [2, 3].

We require that limdiam(B)→0 diam(¤∇F (B)) = 0, where diam B = supx,y∈B |x − y| is the

standard set diameter. However, to show termination on a finite volume, we actually need this

property to be uniform. Therefore, we introduce uniform moduli of convergence ωG : R+ →

R+ with limx→0 ωG(x) = 0. We require that ωF and ω∇F exist such that diam(¤F (B)) <

ωF (diam B) and diam(¤∇F (B)) < ω∇F (diam(B)) when B is any axes aligned cube within B0.

An even weaker convergence requirement would be that that when a sequence of boxes B0 ⊃

B1 ⊃ B2 . . . converges to a point in the sense that
⋂

i Bi = x then the sequence G(Bi) converges

to G(x). However, without some uniformity of convergence, termination arguments become

difficult.

Because B0 is compact, such ω exist under standard interval arithmetic systems. As men-

tioned in Section 1.2, the requirement for a modulus of convergence is a milder condition than

several other standards for convergence e.g. if lim supx→0 |ωG(x)/x| = +∞, then our interval

formulation does not have the Lipshitz interval convergence property.

2.2.1 On Computability

In addition to the interval requirements, we assume that the sign of F can be determined at the

corners of our mesh. Corners of our mesh may appear at any point which is dyadic relative to

B0. When F is a polynomial, this is straightforward. We can perform exact computations with

rational numbers or multi-precision floating-point numbers. However, if F is transcendental, and
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if F (x) = 0 for a corner point x, it isn’t clear how to certify this computationally. Certainly there

is no general way to show this using a Taylor expansion. Notice that the Vegter-Plantinga and

marching cubes algorithms require this sort of computability requirement. One of the reasons

that the advancing boxes algorithm described in Section 3.4 is interesting is that it is entirely

based on interval evaluations and never requires exact sign computation.

Related to this is the allowance that ¤F and ¤∇F need only accept k-boxes with k > 0.

Specifically, they are not themselves required to accept points. So long as the input to these

has a non-zero set diameter, this scale can be used as an indicator of how much resolution is

required. If our computations are being done with Taylor series and variable precision floating

point numbers, we can increase the precision, and the number of terms in the Taylor expansion

as the input width decreases.

If we required Lipschitz convergence of our interval functions, more implementation care would

be required. If we were using variable precision floating point arithmetic, it would be necessary

to ensure that the precision selected for all intermediate and final values increased sufficiently

quickly. Similarly, the quadratic convergence of the centered normal forms approach is only

available for certain families of functions. Because we require the more general ω convergence

guarantee, there is more flexibility in our computational model. In addition, this approach makes

easier the argument near the end of Section 3.3.1 regarding termination near boundaries.

Also related to this is the choice of number systems with which we perform our computation.

Fixed precision floating point numbers, for example, can only represent a finite subset of R.

This limits our ability to deal with narrow intervals. For sufficiently simple and well behaved

functions, it might be that machine precision floating point numbers provide enough accuracy for

our algorithms to work. However, in general, to fulfill our convergence requirements as written we

need to switch to a number system which can represent a dense subset of R. The two most obvious

choices are Q and multi-precision floats Z[1/2]. Strictly speaking, multi-precision floats form a

ring, not a field. However, approximate division can be used when necessary and the needed

convergence property can still be ensured. A downside of using dynamically sized number types

is that they tend to require additional heap allocations and this makes them slow, even when the

bit length is small. Section 4.2 mentions some experimental results relating to this.
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2.3 Flows

If we are given a Lipshitz vector field J : Rn → Rn then by the theory of ordinary differential

equations [5] there is a flow Γ : Rn ×R → Rn associated with J such that d
dt

Γ(x, t) = J(Γ(x, t)).

Also, given any x ∈ Rn there is an individual integral curve γ(t) = Γ(x, t).

In the following proofs we make use of flows generated by a vector field. The vector field of

interest is a perturbation of ∇F . Roughly speaking, we modify ∇F to ensure that flows stay

within our initial box B0. Based on B0 and for each small δ > 0 we define a modified vector

field ∇δ,B0
F within B0 as follows: If x is further than δ from ∂B0 then ∇δ,B0

F (x) = ∇F (x).

If x is in a k-face of B0 which is perpendicular to a coordinate axis xi then the i component

of ∇δ,B0
F (x) is defined to be 0. In between we multiply by a smooth positive cutoff function

to reduce (∇δ,B0
F )i. On each k-face of B0, ∇δ,B0

F has at most k non-zero components. For

example, ∇δ,B0
F (x) = 0 when x is a corner of B0. Notice that if x ∈ B◦

0 , the interior of B0

relative to Rn, then ∇δ,B0
F (x) is zero iff ∇F (x) is.

We only consider non-singular hyper-surfaces. In fact, we require that 0 be a regular value of F

with respect to our modified ∇δ,B0
. By this we mean that if F (x) = 0 then ∇δ,B0

F (x) 6= 0. This

condition is independent of δ and requires that {F = 0} does not intersect ∂B0 in a tangential

manner or contain a corner of B0. Should this modified regularity not hold when 0 is a regular

value of F in the global sense, then a perturbation of B0 will make it regular in our local sense.

After F and δ have been fixed, we can talk about the flow Γ(x, t) defined by the field ∇δ,B0
F .

A property of this flow is that it cannot leave B0, which is a key difference when compared to the

flows generated by ∇F . Following our modified definition of regular value, a singular point of F in

B0 is a place where ∇δ,B0
F = 0. To get a sense of the overall effect of this perturbation, consider

Figure 2.1. On the left we have a radial flow away from the center of the square. Globally, the

center of the square is the only singular point. On the right, we see that the majority of the

flows bend as they approach the boundary. We have eight additional singular points created by

our choice of B0.

Another aspect of this modified definition of singular point is that they are still markers for

local minimum and maximum with respect to B0. On a k-face G of B0, ∇δ,B0
F is related to

the k dimensional ∇F found by considering F restricted to the k-dimensional affine subspace

11



Figure 2.1: Flow modification used to support Theorem 2.1. On the left is an unmodified flow.
On the right is the modified flow. Notice that flows which would have escaped B0 are now
stopped at new singular points.

containing G. The only difference is that the missing dimensions are present but zero. So if x is

a local extremum of F on B0 then either ∇F (x) = 0 =⇒ ∇δ,B0
F (x) = 0 or x lies in ∂B0. If x

lies within the interior of a k-face G of B0, then it must be an extremum of F restricted to G so

by the above ∇δ,B0
F (x) = 0.

Next, we consider the behavior of F along the intgral curves defined by ∇δ,B0
F and described

by Γ. F (Γ(x, t)) is a strictly increasing function of t, as long as Γ(x, t) is not a singular point.

By compactness of B0 we see that Γ(x, t) approaches a singular closed set of F in our modified

sense when t → ∞. Using the flows generated by −∇δ,B0
, we can extend Γ(x, t) in the obvious

mmanner include negative values of t.

Because ∇δ,B0
F is still Lipschitz, some classical results from the theory of ordinary differential

equations apply [5]:

1. The flows do not cross: if Γ(x1, t1) = Γ(x2, t2) then Γ(x1, t1−t2) = x2 and Γ(x2, t2−t1) = x1

2. Γ is a continuous function on Rn+1.

2.4 Topology

Our main topological result is Theorem 2.1 which is presented in Section 2.4.1. It assumes

that our domain of interest B0 is an n-box. This situation is the one that we have explored
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V F=0

0
B

Figure 2.2: Schematic of typical inputs to Theorem 2.1

experimentally. As discussed in Section 2.4.2, we can use the same proof techniques to ensure

topological accuracy of an approximation to {F = 0}∩D when D is a much more general domain.

Then in Section 2.4.3 we take this further, and describe a way to find a topologically accurate

intersection of two implicitly-defined surfaces.

2.4.1 n-box Domain

At this point, we begin using V to refer to a closed polytope which lies within B0, our initial n-

box. As per our definition in Section 2.1 we are concerned with both a volume of n-dimensional

space which makes up the polytope, and with a set of (n − 1)-simplexes which make up the

boundary of the polytope.

Furthermore, we are uninterested in those (n− 1)-simplexes which lie within ∂B0. Therefore,

within the following theorem, we consider V to have the relative topology induced on B0 by Rn.

Put another way, V C = B0\V and ∂V = V ∩ V C so that ∂V can not contain an open subset of

a face of B0. An important implication of this is that the none of (n − 1)-simplexes associated

with V lie entirely within ∂B0.

Given B0 and this reduced set of simplexes, a polytope is nearly determined. It is merely

necessary to indicate the inside. The collection of (n − 1)-simplexes is the mesh associated with

the polytope, and this mesh will be the output of our algorithms.

The following theorem is our main topological result. It makes few constraints on the con-

struction of V and perhaps has uses beyond the analysis of our subdivision algorithms. Figure 2.2

gives a schematic of how typical inputs to this theorem might look.
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Theorem 2.1. Suppose that ∇F is Lipschitz and that 0 is a regular value of F in our modified

sense on the finite n-box B0. Further suppose that we have a closed polytope V ⊆ B0 and ∃δ > 0

with the properties that:

1. For each closed face G of V (again, defined relative to B0) with exterior pointing normal

vector n̂G, we have that (n̂G · ∇δ,B0
F ) > 0 on G.

2. If ∇δ,B0
F (x) = 0 and F (x) < 0 then x ∈ V ◦, the interior of V .

3. If ∇δ,B0
F (x) = 0 and F (x) > 0 then x ∈ V C , the complement of V relative to B0.

Then, ∂V is isotopic within B0 to the surface {F = 0} ∩ B0.

Note: Because we consider closed faces, when x is at an edge or vertex of V , there may be

multiple faces G containing x. Condition (1) then places multiple constraints on ∇F at x.

The basic idea of this topological theorem is inspired by Morse theory where a lack of critical

points is used to create a deformation retract. Condition (1) ensures that our approximated

surface is is similar to {F = 0} in that its normal is similar to that of a level surface. Conditions

(2) and (3) ensure a lack of critical points in the closed symmetric difference between the sets

{F ≤ 0} and V . Intuitively, we expect no barrier to deformation, and the proof formalizes this

idea.

Proof. Take any x ∈ ∂V with F (x) < 0. By compactness, as t gets large Γ(x, t) approaches a

closed set where ∇δ,B0
F = 0. By conditions (1) Γ(x, t) stays within V C . So by condition (2) we

have that limt→∞ F (Γ(x, t)) > 0. By the intermediate value theorem, there must be a positive

time T (x) for which F (Γ(x, T (x))) = 0. Similarly, when F (x) > 0 we can find a negative time

T (x) such that F (Γ(x, T (x))) = 0. Of course we define T (x) = 0 when F (x) = 0. Note that

because (∇δ,B0
F · ∇F ) > 0 away from singular points, T (x) is uniquely defined.

Next, we show that T (x) is continuous. First, suppose that x ∈ ∂V has F (x) = 0. By

regularity, there is a ball B(x, ρ) and a c such that (∇δ,B0
F · ∇F ) > c > 0 in B(x, ρ). Let

M = supy∈B(x,ρ) |∇δ,B0
F (y)|. Then choose ǫ > 0 and take any y ∈ ∂V ∩ B(x, ρ/2) which is

sufficiently near to x so that |F (y)| < cǫ and |F (y)| < cρ
2M

.

So long as the curve Γ(y, ·) lies within B(x, ρ) the speed of the curve’s motion is bounded by

M . So in particular, the curve segment Γ(y, [− ρ
2M

, ρ
2M

]) lies within B(x, ρ). By the definition of
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y
x

Figure 2.3: The basic continuity argument in Theorem 2.1 is that when y is sufficiently close to
x then it reaches {F = 0} while staying within a well behaved sphere.

c the derivative of F (Γ(y, ·)) is larger than c in this range, and therefore F (Γ(y, ·)) must change

by at least cρ
2M

before leaving B(x, ρ). This gives

F
(

Γ
(

y,+
ρ

2M

))

> F (y) +
cρ

2M
> 0

and

F
(

Γ
(

y,− ρ

2M

))

< F (y) − cρ

2M
< 0.

Therefore the curve segment between y and Γ(y, T (y)) lies within B(x, ρ). But then the other

constraint |F (y)| < cǫ ensures that |T (y)| < ǫ. Therefore, T is continuous at x when F (x) = 0.

See Figure 2.3 for a schematic of this arrangement.

Now consider when F (x) 6= 0. We can define ∂VT (x) to be the image of ∂V under the

transformation Γ(·, T (x)). By continuity of Γ we have that Γ(y, T (x)) approaches Γ(x, T (x)) as

y approaches x. Then the prior argument with ∂VT (x) in place of ∂V shows that T (y) − T (x) is

small when y is near to x.

This gives us that T is continuous for all x ∈ ∂V and so Γ′(x, s) = Γ(x, sT (x)) defines an

isotopy within B0 between F (x) = 0 and ∂V .

An alternative intuitive proof is that we have a sequence of bijections. There is a bijection

between the points on ∂V and the flows defined by Γ which pass throguh them. There is a

bijection between these same flows and the points of {F = 0}.
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2.4.2 Other Domains

The basic proof concept used in Theorem 2.1 can be extended to handle other shapes of domain.

While our experimental work has focused on the case already proved, we include here a much

more general formulation.

Let D be a bounded region which is equal to the closure of its interior, and assume further

that ∂D is contained in the union of a finite number of smoothly embedded n − 1 dimensional

manifolds {∂D1, . . . , ∂Dk}. Let δ be small enough such that for all i, the following property

holds: if the distance from a point x ∈ D to ∂Di is less than δ, then there is a unique point

pi(x) ∈ ∂Di closest to x.

Lemma 2.1. Assume that D is as above and given F is defined on a neighborhood of D with

∇F Lipschitz, then there exists a modified vector field ∇δ,DF defined on D such that:

1. ∇δ,DF is Lipschitz

2. ∇δ,DF (x) = ∇F (x) when the distance from x to ∂D is greater than δ

3. (∇δ,DF (x) · ∇F (x)) ≥ 0 with equality only when ∇δ,DF (x) = 0.

4. ∇δ,DF (x) = 0 only when either ∇F (x) = 0 or x ∈ Dj for j in some finite collection J and

∇F (x) is in the span generated by the normal vectors to Dj at x.

5. The flows generated by ∇δ,DF never leave D.

Proof. Let P⊥
i,x and P

‖
i,x be the projections which decompose vectors at x into components per-

pendicular and parallel to ∂Di at pi(x). Let φδ(r) be a smooth cutoff function such that φδ(r) = 1

for r ≥ δ and φδ(0) = 0. Then Pi(x, v) = P
‖
i,x(v) + φδ(d(x, p(x)))P⊥

i,x(v) is a partial function

on vector fields within D defined when d(x, pi(x))) ≤ δ. We can define Pi(x, v) = v when

d(x, ∂Di) > δ to extend this to all of D.

Note that properties 1 through 4 are preserved by the application of Pi to a vector field. Also

note that the integral curves of a vector field resulting from Pi cannot leave D by crossing through

Di. This property is preserved by other functions Pj . So we take ∇δ,DF = PkPk−1 . . . P1(∇F ).
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Using ∇δ,D we can update our definition of regular value to mean that {F = 0} ∩ D avoids

points where ∇δ,DF = 0. Then we can update Theorem 2.1 to such a region D as follows. Note

that the proof does not change significantly:

Theorem 2.2. Let D be a region satisfying the conditions required for Lemma 2.1. And assume

that 0 is a regular value of F in our modified sense on D. Suppose that we have a closed polytope

V and a δ > 0 with the properties that:

1. For each closed face G of V such that G ∩ D is non-empty, with exterior pointing normal

vector n̂G, we have that (n̂G · ∇δ,DF ) > 0 on G ∩ D.

2. If ∇δ,DF (x) = 0 and F (x) < 0 then x ∈ V ◦.

3. If ∇δ,DF (x) = 0 and F (x) > 0 then x ∈ V C .

Then, ∂V is isotopic within D to the surface {F = 0} ∩ D.

2.4.3 Intersections

There are several ways to view the effect the modifications made to create ∇δ,B0
or ∇δ,D. One is

that we ensure that the intersections of {F = 0} with the faces of B0 or the boundary components

Di are each correctly approximated by the intersections of ∂V with the corresponding boundaries.

The stated technique can also be used to ensure that {F = 0} has a correct intersection with

other lower dimensional manifolds. For example, suppose that we are working in R4 = (x, y, z, t)

with the intention of making a movie. At certain time slices t = t0 < t1 < · · · < tk, we wish

to ensure that topologically accurate meshes of Fti
(x, y, z) = F (x, y, z, ti) are embedded in our

global result. In this case, we could further modify ∇δ,B0
F to remove the t component of ∇F (x)

when x is near any of the planes t ∈ {t0, t1, . . . , tk}. Then by an argument similar to Theorem 2.1,

or by a simple application of it to each of the boxes of the form B0 ∩ {ti−1 ≤ t ≤ ti}, we have

our result. There is an isotopy of B0 ∩ ∂V ∩ {ti−1 ≤ t ≤ ti} to B0 ∩ {F = 0} ∩ {ti−1 ≤ t ≤ ti}

and the restriction of them gives an isotopy of ∂V ∩ {t = ti} to {F = 0} ∩ {t = ti}.

Another interesting situation arises if instead of F we are given functions F1 and F2 satisfying

the computational requirements. Then a natural question to ask is whether we can find correct

meshes of {Fi = 0} in such a way that the intersection of the meshes is correct. We assume
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that the contact is not tangential. Furthermore, assume that we have a meshing algorithm

which ensures that the normal vectors of the mesh within a box B lie within the angular range

of ¤∇F (B). Note that this condition is not met by Vegter-Plantinga or the normal checking

algorithm of Section 3.3. However, the 2-dimensional advancing boxes algorithm of Section 3.4

does have the necessary property.

Suppose that B0 is subdivided into a set of boxes B that are sufficiently fine so that one of

the following two conditions applies to each B ∈ B:

1. There is an i such that 0 /∈ ¤Fi(B)

2. The ¤∇Fi are angularly disjoint.

Note that the second condition implies that 0 /∈ ¤∇Fi(B) for both i.

Now suppose we find topologically correct meshes Vi of the sets {Fi = 0} subordinate to the

boxes B. Further suppose that the the normal vectors of the mesh within each box B ∈ B are

within the angular range ¤∇F (C) as described above. In this situation, the following argument

holds:

First of all, we deform ∂V2 slightly to make it into a smooth manifold with borders, with

borders only in ∂B0. We call this manifold ∂V ′
2 . Then deform ∂V1 to {F1 = 0} in such a way

that its intersection with ∂V ′
2 is deformed bijectively. Because Condition 2 holds in the region

of interest, and because of the constraint on the normal vectors of V2, using ∂V ′
2 in this way

creates no new singular points. Finally, we can deform ∂V ′
2 to {F2 = 0} in such a way that its

intersection with {F1 = 0} is deformed bijectively.

2.5 Modified Mountain Pass

In the previous section, we used the modified flows of Section 2.3 to make a topological claim.

The modification was only necessary to account for the effects of being constrained to a box

B0. We now shows that the same flows give us an analytic result related to working within the

restricted range B0. We use this result in Section 3.4.4 to separate the components of {F = 0}.

Mountain pass theorems are important and well known in analysis [11], and say something

about the existence of singular points. In Section 2.3 we introduced a modified definition of
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singular points, based on our modified flows. The following is a finite dimensional mountain pass

theorem which is correct using this modified definition:

Theorem 2.3. Assume that F is defined on B0 with ∇F continuous. Suppose further that we

have F (x) = F (y) = 0, a regular value of F in our modified sense, and that x and y are in

different components of {F = 0}. Let Γ = {γ ∈ C([0, 1];B0)|γ(0) = x, γ(1) = y} be the family of

continuous curves from x to y. Then

c = inf
γ∈Γ

max
t∈[0,1]

|F (γ(t))|

is not a regular value of |F |, in our modified sense.

This is useful to us because it means that when x and y are in different components of {F = 0},

then any path between them must pass through a point where |F | is large. By large we mean

larger than something which we can compute using interval arithmetic. Section 3.4.4 discusses

this further. We prove Theorem 2.3 using the basic form of a proof presented by Jabri [11] and

attributed to Courant.

Proof. Find a sequence of paths γi ∈ Γ such that

lim
i

max
t∈[0,1]

|F (γi(t))| = c

and consider the set of accumulation points of γi:

γ =
⋂

m

⋃

i≥m

γi.

Now, γ is an intersection of compact connected sets, and therefore is a compact connected set.

Furthermore, if mi is a point on γi with F (mi) = maxt∈[0,1] |F (γi(t))| then the set {mi} has an

accumulation point m in γ and |F (m)| = c. So c is attained by |F (γ)| and furthermore we have

that maxz∈γ = c.

This tells us that c > 0 because otherwise x and y would be connected by {F = 0}, contra-

dicting the assumption that they lie in different components. Also z = {z ∈ γ : |F (z)| = c}, the
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set where this minimum is attained, is compact and not empty. To prove the theorem, we will

show that z contains a point where F is singular in our modified sense.

We will use contradiction, so suppose that (∇δ,B0
F · ∇F ) > α > 0 on z. Define

zǫ = {z ∈ B0 : ∃w ∈ z with |w − z| < ǫ}

as an ǫ-neighborhood of z and choose ǫ small enough so that (∇δ,B0
F · ∇F ) > α/2 on zǫ and

also so that x, y /∈ zǫ and 0 /∈ F (zǫ).

Let ρ be a smooth cutoff functions with ρ(z) = {1} and supp ρ ⊆ zǫ. Define η : Rn ×R → Rn

to be the flow generated by the vector field − sgn(F ) · ρ · ∇δ,B0
F . Then |F (η(z, ·))| is non-

increasing, and furthermore has a derivative less than −α when both z ∈ z and t ∈ (0, ǫ/M)

where we let M = supz∈zǫ
|∇δ,B0

F |.

Now η(γ, ǫ/M) is a deformation of γ within B0 and is therefore connected and compact. η

does not affect x or y, so there is a γ ∈ Γ which lies within η(γ, ǫ/M). But |F (η(z, ǫ/M))| < c− αǫ
M

and |F (η(z, ·))| is non-increasing everywhere. So

sup
∣

∣

∣
F

(

η
(

γ,
ǫ

M

))∣

∣

∣
< c

contradicting the minimization property which defined γ and z.
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3

Algorithms

Given Theorem 2.1, two natural approaches to our problem come to mind. The first is to

perform spatial subdivision followed by some simple meshing scheme until interval arithmetic

directly confirms that the conditions of Theorem 2.1 are met. The second is to construct a mesh

in such a way that the conditions of Theorem 2.1 are met by construction. This chapter explores

both of these ideas.

Section 3.1 discusses a singularity covering algorithm which is used as an initial step for our

later algorithms. Section 3.2 lays out a normal checking algorithm, or more correctly, a template

for an algorithm. To complete the algorithm a particular “corner cutting” function H must be

chosen, and it must be proved that the algorithm terminates with the chosen H. Correctness

however, comes from following the template. Section 3.3 defines a pair of functions HV and HV ′

and proves that the template does terminate and therefore yields an algorithm when H is either

of these functions. Finally, Section 3.4 presents a two dimensional algorithm which constructs a

mesh through subdivision followed by direct reference to ¤∇F .

In the sequel, we consider a candidate closed polytope V ⊆ B0, which may or may not satisfy

the three conditions of Theorem 2.1. As described previously, such a polytope can be defined by

a mesh of (n − 1)-simplexes which make up ∂V .

At every stage of our algorithm we will have a subdivision of B0 into a collection B of boxes

with disjoint interiors. Suppose that our mesh describing V is subordinate to such a collection

B, in the sense that each face of V lies within some box B ∈ B. Then, with a little special

handling at the borders, there are interval arithmetic conditions based on ¤F (B) and ¤∇F (B)

which when true for all B ∈ B indicate that the three conditions of Theorem 2.1 are met by V

for some δ > 0.

3.1 Singularity Covering

We start by arranging for conditions (2) and (3) of Theorem 2.1 to be met. Because ∇δ,B0
F

is different than ∇F we do not necessarily have the interval formulation inclusion ∇δ,B0
F ⊆
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Table 3.1: Singularity Covering Algorithm

1: initialize U to be a set of boxes, initially {B0}.
2: initialize SV ◦ , S∂V , SV C to be sets of boxes, initially empty.
3: while there is a box B ∈ U do

4: remove B from U
5: if ¤F (B) > 0 then

6: place B in SV C

7: else

8: if ¤F (B) < 0 then

9: place B in SV ◦

10: else

11: if 0 /∈ ¤B∇F (B) then

12: place B in S∂V

13: else

14: split B and place the resulting child boxes into U

¤∇F (B).

We define a modified interval operation ¤B∇F (B) in such a way that ∇δ,B0
F ⊆ ¤B∇F (B)

when δ is sufficiently small. The definition of (¤B∇F )i depends on whether B intersects a k-

face of B0 which is perpendicular to the xi axis. If not, then (¤B∇F )i = (¤∇F )i. If so, then

(¤B∇F )i is equal to the convex hull of (¤∇F )i∪{0}. The result of this is that ∇δ,B0
F ⊆ ¤B∇F

when δ is sufficiently small. Specifically, either δ must be smaller than the distance from B to

∂B0 or δ must be smaller than the side length of B.

With this definition in place, we can subdivide using the Singularity Covering Algorithm of

Table 3.1. This algorithm simply subdivides each box until one of the following three conditions

is met, and places the resulting boxes accordingly:

1. ¤F (B) > 0 If the test on line 5 is true we place B into SV C indicating that later algorithms

should place it in the compliment of V .

2. ¤F (B) < 0 If the test on line 8 is true we place B into SV ◦ indicating that later algorithms

should place it in the interior of V .

3. 0 /∈ ¤B∇F (B) If the test on line 11 is true we place B into S∂V indicating to later

algorithms that it is safe for ∂V to intersect B.

The existence of ωF , ω∇F and the regularity of {F = 0} in our modified sense together imply
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that there is diameter s such that if B ⊂ B0 is a box with diamB < s then 0 ∈ ¤F (B) implies

that 0 /∈ ¤B∇F (B). This ensures termination.

Suppose that after running this algorithm we find a V with the properties that
⋃

SV ◦ ⊆ V ◦

and
⋃

SV C ⊆ V C . Then ∂V ⊆ ⋃

S∂V and we notice the following:

If a box B satisfied condition 1 above then any singularities in B are positioned to satisfy

property 3 of Theorem 2.1. Similarly, If B satisfied condition 2 then any singularities in B are

positioned to satisfy property 2 of Theorem 2.1. No box with a singularity will satisfy condition 3.

So this singularity covering algorithm ensures that V satisfies properties 2 and 3 of Theorem 2.1.

3.2 Normal Checking

At each stage of our subdivision algorithm we will have a division of B0 into boxes B. In this

section, we will assume that we have a function H which given B ∈ B will find a section of mesh

within B.

To understand the input which will be passed to H, we need some terminology regarding the

collection of 1-faces induced by B. When a 1-face is minimal, in the sense that it is not the union

of smaller 1-faces induced by B, then we call it a link. When one end of a link is positive and

the other is non-positive, we call it a crossing.

Once we divide B0 into boxes B, we will use H to construct a candidate V . Specifically, H(B)

will give the closed polytope that will then become B ∩ V . We will consider different versions of

H. All of them will be based on the sign of F at the corners of the subdivision which lie on ∂B.

All of them will give B itself if the corners on ∂B are all non-positive. All of them will give ∅,

the empty set, if all of the corners are positive.

To start with, we will consider H equal to the trivial HI :

HI(B) =











B any corner in ∂B is non-positive

∅ all corners in ∂B are positive

We will make reference to the exterior faces of H(B). More than a direct understanding of

the volume chosen by H, we always need a computational method to identify the faces of H(B)
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Table 3.2: Normal Checking Algorithm

1: begin with SV ◦ , S∂V , and SV C as output by the singularity covering algorithm of Table 3.1
2: while there is a box B in S∂V do

3: remove B from S∂V .
4: if H(B) is undefined then

5: mark B to be split
6: else

7: for all exterior face G of H(B) do

8: if (¤G∇F (B) · n̂G) contains a non-positive value. (normal check) then

9: mark B to be split
10: if B is marked to be split then

11: split B and add its children to SV ◦ , S∂V , or SV C as the singularity covering algorithm
of Table 3.1 in would.

12: for all B′ a neighbor box of B which is bigger than the children of B do

13: if B′ /∈ SV ◦ and B′ /∈ SV C and B′ /∈ S∂V then

14: add B′ to S∂V

15: for all box B with some corners positive and some non-positive do

16: emit the exterior faces of H(B)

which will become the faces of V . We refer to these as the exterior faces of H(B), and being

able to find them is a key requirement on the definition of H. In the case of HI we need to look

at the neighboring boxes across each of the 2n faces of B and call each face an exterior face if

one of the boxes has all positive corners. For all H that we consider, there are no exterior faces

when all the corners in ∂B have the same sign.

When B ∈ B is no larger than any of its neighbors, we call B simple. In this case, ∂B

contains the 2n corners of B, the n2n−1 links connecting them, and no other corners or links.

The definition of HI given above works for all B, but our latter definitions of H might not work

for certain corner sign patterns. That is, H may be a partial function. For each H there must

be a computational method to determine whether H(B) is defined. Also, H must be defined on

all simple boxes, or at the very least all sufficiently small simple boxes.

In order to actually check that condition (1) of Theorem 2.1 is met, we again define a modified

interval function ¤G∇F (B). If G intersects a k-face of B0 which is perpendicular to xi then

(¤G∇F (B))i is the convex hull of (¤∇F (B))i ∪ {0}. Otherwise it is simply (¤∇F (B))i. If

(¤G∇F (B) · n̂G) > 0 then condition (1) is satisfied for G when δ is smaller than the distance

between G and the faces of B0 which it does not intersect. This brings us to the code in Table 3.2.

This template of an algorithm is used in Section 3.3, in which other H are developed. Note
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that some of the tests are trivial when H = HI . For this code, S∂V is a working set of uncertain

boxes. The basic idea is that we take a box out of S∂V and either categorize it, or determine

that it must be split.

The collections SV ◦ and SV C remember boxes which are to be placed in the interior of V or

the compliment of V . At line 11 we reference the logic for this and place newly created child

boxes accordingly.

For some H 6= HI we will have cases where H(B) is not defined. When this happens we need

to split B, and the test at line 4 makes this happen. Similarly, the normal check at line 8 ensures

that condition (1) of Theorem 2.1 is satisfied by the output faces which lie within B. In order

for this template of an algorithm to actually provide an algorithm, we must find an H such that

these tests do not cause splits when B is sufficiently small.

A final complication is that splitting a box B can introduce new corners on the boundaries

of neighbors of B. So even when H = HI , if B′ is a neighbor of B then splitting B might change

H(B′). Starting at line 10, there is code to make sure that if B has a neighbor B′ which which

is larger than the new children of B, then H(B′) is reevaluated.

Drawing it all together, we see that the code terminates and is therefore an algorithm if H is

such that the normal check at line 8 is satisfied when B is a sufficiently small simple box. When

H has this property, then Theorem 2.1 applies and we have a solution to our problem. So we now

focus on the analysis of possible functions H. The primary concern is that we need for normal

vector n̂G of each exterior faces G to eventually satisfy the normal check: (¤G∇F (G) · n̂G) > 0.

This condition is necessary to ensure that the result satisfies property 1 of Theorem 2.1. The

majority of Section 3.3 is dedicated to proving this property for certain H.

3.3 Convexity Based Cutting

In the case of our initial HI it does not seem clear that the computational method terminates.

Consider a sequence of squares with one negative corner oriented as in Figure 3.1. As the squares

shrink the line segment ab remains parallel to ∇F along the bottom face. This means that the

perpendicular to ab remains perpendicular to ∇F . This means that we will continue to have

0 ∈ (¤∇F (B) · n̂ab). So long as this arrangement is preserved, we will not pass the normal check
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a b

∆

F

Figure 3.1: Schematic of situation in which we might not terminate if we use HI . The basic
arrangement could be preserved as the squares shrink in size. The normal to line segment ab
perpendicular to ∇F . Taking a smaller box with the same lower left corner position doesn’t
necessarily fix the problem.

at line 8.

This is actually not a proof that we have a case for which H = HI fails to terminate. It is

unclear whether the arrangement can be preserved for an infinite sequence of boxes. However, the

example illustrates the basic obstruction that we wish to avoid. Certainly, the exact positioning

of the curve relative to the lower left hand corner of the box in the diagram could dramatically

affect the amount of subdivision required.

Intuitively, to rectify the situation, we might “cut off” the corner at b to give an improved

approximation of the surface normal. One way to do this is to define H using convex hulls. Recall

the network N of links in our cubical complex, and that a crossing is a link with a particular sign

change. Let HV (B) to be the convex hull of all non-positive corners in ∂B and the midpoints of

all crossings which lie in ∂B. Figure 3.2 shows a few simple 2-dimensional examples of HV (B).

This H is simple to describe, but as discussed below we do have to be careful that the faces

“match up”.

If B has multiple smaller neighbors {Bi} across a face B then the union of sets HV (Bi) ∩ B

might not be convex, in which case it will be smaller than HV (B) ∩ G. A solution to this

problem is to declare this to be a situation in which HV (B) does not exist. We also declare that

HV (B) is undefined when the midpoints of crossings in B are all on some face of B. Also, using

this definition, we find that a face of HV (B) is exterior iff all of its corners are midpoints. The

splitting required when HV (B) is not defined enforces a certain degree of uniformity of resolution

in regions where the surface is concave. This uniformity does limit the performance benefits of
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Case 1 Case 3Case 2

y

x

Figure 3.2: A few of the possible corner signs in the 2 dimensional case. Filled circles are
non-positive corners, open circles are positive corners.

adaptive subdivision.

In Section 3.3.1 we give a proof that HV works in the 2 dimensional case, along with a sketch

of how to extend the proof to higher dimensions. Then there is a full proof in Section 3.3.3.

This means that the algorithm template in Table 3.2 with H = HV does terminate and is an

algorithm in all dimensions. Note that convex hull finding scales poorly with dimension, and

convexity is not an essential property of HV . Also, the matching condition described in the

previous paragraph forces a uniformity of box size whenever V is concave. For these reasons the

problem of finding a better H is interesting.

3.3.1 2-d Termination

We need to show that the normal check on line 8 of Table 3.2 is eventually successful. We only

need to consider simple boxes. Even if the normal check failed for all non-simple boxes, we would

effectively revert to a uniform mesh. The regularity of the surface and uniform convergence mean

that when B is small, the angular range of ¤∇F is small. This makes the following theorem

useful.

Theorem 3.1. In the 2 dimensional case, if ¤∇F (C) covers a range with angular diameter less

than π/4, and if G is an exterior face of HV (C), then ¤∇F (C) · n̂G > 0.

Proof. The restriction on the angular range ¤∇F means that at least one of (∇F )x and (∇F )y

has well-defined sign.

If they both have well-defined sign, then the signs of the corners of B are constrained by
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y

x∇ F

Figure 3.3: The impossibility of Case 3 when ∇F is sufficiently close to the x axis.

this. If they are both positive and the box has corners (0, 0) and (1, 1) then (0, 0) is necessarily

non-positive and (1, 1) is necessarily positive. Up to symmetry between x and y, this leaves three

possible corner sign patterns. They are shown in Figure 3.2, and it is easy to see that in all cases

we have ¤∇F · n̂G > 0.

If only one component has well defined sign, then we have more possibilities. Suppose that

(∇F )x is a strictly positive interval while (∇F )y has indeterminate sign. In this case we have

more possible corner sign patterns. We have the same cases in Figure 3.2, as well as the top to

bottom reflections of all three cases and reflection along x = y of Case 3 in Figure 3.2.

To handle Cases 1 and 2, and their reflections, notice that the x coordinate axis lies with our

angular constraint. This implies that every value in the interval (∇F )x is strictly larger than

every value in the interval (∇F )y. Therefore, when n̂G is at an angle of π/4 or −π/4 to the x

axis, the (∇F )x interval dominates the dot product.

The x = y reflection of Case 3 is trivial, so what remains is Case 3 and its top-bottom

reflection. For Case 3 to occur the actual curve F = 0 must cross both vertical links. However,

the angular values of ∇F are constrained to a set of diameter less than π/4 and this set includes

the x axis. This constraint on the tangents to the curve constrains the curve itself to a cone of

aperture less than π/4 with orientation that contains the y axis. If we choose any point on one of

the vertical links, and draw a cone with such an aperture and orientation, such as in Figure 3.3,

we find that it does not contain any point of the other vertical link. So the angular constraint

prevents Case 3 from occurring.

The higher-dimensional version follows the same basic form. When the angular range is
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sufficiently small, we can partition the set of dimensions into a set A1 with well-defined sign and

a set A0 which is dominated by any desired fixed factor by every dimension in A1. By making

the factor high enough, we handle all cases where (n̂G)i 6= 0 with some i ∈ A1. Then we once

again use localization of F = 0 to eliminate the possibility of n̂G lying entirely within A0. The

full proof is in Section 3.3.3, but a statement of the theorem when applied to HV is:

Theorem 3.2. There is a ρ > 0 depending only on dimension such that if F (x) = 0, x in a simple

box B, and ¤∇F (B) has angular range with diameter less than ρ then for each (n−1) dimensional

face G of HV (B) with corners that are midpoints of crossings, we have that (¤∇F · n̂G) > 0.

Theorem 3.2 ensures that internal boxes will eventually pass the norm test. To see this notice

that the existence of ω∇F and the fact that 0 6∈ ∇F on {F = 0} implies that there is a size ǫ

such that if diam(D) < ǫ and B intersects {F = 0} then ¤∇F (C) has diameter less that ρ.

To handle boundary points, let G0 be some face of B0. We are going to define a special ¤G0

on the surface of G0 as follows. If CG is a square within G0 then it is a face of some box B which

lies in B0 and contacts G. Define ¤G0
∇F (CG) as the projection of ¤∇F (C) onto the hyperspace

parallel to G.

There is no guarantee that these modified lower-dimensional interval functions have the same

modulus of convergence as our base interval function. However, basic continuity and compactness

of B0 shows that such a modulus exists. We then apply Theorem 3.2 to each lower-dimensional

l-face using these modified interval functions. Then eventually ¤∇F (C)·n̂G > 0 and furthermore

if G crosses a face G0 of B0 then ¤G0
∇F (C ∩G0) · n̂G∩G0

> 0 within the hyperplane parallel to

G0.

So we have that both ¤∇F (C) and the projection of ¤∇F (C) onto G0 lie on the correct side

of the hyperplane parallel to G. The set ¤G∇F is the convex hull of these sets. So ¤G∇F lies

entirely within the correct open half space.

3.3.2 Termination Over Rectangles

We first discussed termination when space is subdivided into squares. Current implementation

work is focused on this square case. However, it is worth noting that only minor changes to the

2-dimensional proof of Theorem 3.1 are required to handle rectangles with a fixed aspect ratio.
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Theorem 3.3. If B is a rectangle with sides sx, sy with sx ≤ sy, and if ¤∇F (C) covers a range

with angular diameter less than α = arctan(sx/sy) and if G is an exterior face of HV (C) then

(¤∇F (C) · n̂G) > 0.

Proof. Very few changes are required from the proof of Theorem 3.1. Because α ≤ π/4 it is

still the case that at least one component of F has well-defined sign, and the constraints on the

corner signs caused by this does not change. The situation is still trivial when (¤∇F (C))x and

(¤∇F (C))y both have well-defined sign.

It also is still the case that (¤∇F (C))x does not have a well-defined sign iff the angular range

of ¤∇F (C) contains the y axis, and similarly for the x axis. What changes is that we must

consider individually the possibility of the angular range of ¤∇F (C) containing each axis.

Consider Case 1 and Case 2 of Figure 3.2. In these cases, we have

(n̂G)x =
sy

√

s2
x + s2

y

and

(n̂G)y =
sx

√

s2
x + s2

y

.

Now, from our angular constraint, when the y axis lies within ¤∇F (C), we see that ¤∇F (C)

lies angularly strictly within arctan(sx/sy) of the y axis, so

(¤∇F (C))x

(¤∇F (C))y

<
sx

sy

,

and so (¤∇F (C) · n̂G) > 0 in Cases 1 and Case 2. When ¤∇F (C) contains the x axis, the

inequality to handle the equivalents of Case 1 and Case 2 is even stronger and easier.

What remains is the elimination of Case 3. Just as in the square case, we argue on geometric

grounds that it is impossible for {F = 0} to intersect both of the lines parallel to the y axis when

∇F lies strictly within an angle of arctan(sx/sy) to the x axis.

Because of this theorem, we can consider the possibility of dividing space into rectangles

instead of squares. We could choose a heuristic for splitting along the x or y direction somewhat
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arbitrarily. All that is required is some limitation to allow a constant bound on the aspect ratio

of the rectangles.

3.3.3 n-d Termination

In this section, we analyze HV and a related HV ′ . We define HV ′(B) as the closure of the

complement of the convex hull of all positive corners in the rectangle B. Alternatively meshing

F with HV ′ gives the same output as meshing −F with HV . We work in terms of the following

properties. We show that if H satisfies all of them when B is simple, then termination occurs.

Property 3.4. Up to rescaling, there are only a finite number of possible H(B). In particular,

there is a finite collection of normal vectors which the faces of H(B) may have.

Property 3.5. H(B) correctly separates the corners of B. If a corner is non-positive, then it is

in H(B). If a corner is positive, then it is not in H(B).

Property 3.6. The corners of any exterior face G of H(B) are all midpoints of crossings of B.

Property 3.7. None of the crossing whose midpoints are corners of a face G lie within the affine

plane containing G.

Property 3.8. Suppose that the corner signs of B are consistent with ∇Fi ≥ 0, that is suppose

that every crossing in B parallel to the i axis goes from a non-positive value to a positive value

as xi increases. Then we require that (n̂G)i ≥ 0. Similarly when the corner signs allow the

possibility that ∇Fi ≤ 0 on B, we require that (n̂G)i ≤ 0.

These properties hold for HV and HV ′ . Property 3.8 is perhaps the least obvious and can be

proved for HV as follows:

Proof. For notational convenience suppose that we have (∇F )i ≥ 0. Further, suppose that B is

positioned at the origin as B = {0 ≤ xi ≤ 1}. Take any any face G of H(B). Let P be the affine

hyperplane containing G. It separates all of the non-positive corners and crossing midpoints from

some of the positive corners of B. That is, it slices off certain positive corners. Furthermore,

because it is the face of a convex hull it does so in a maximal manner, which is to say that
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there is not a plane which slices off the same set of corners, and eliminates more of the points in

B/H(B).

Now, if (n̂P )i is negative, construct an alternative hyperplane P ′ as follows. Take the in-

tersection of P with xi = 0 and then extend it to a hyperplane by parallel translation in the

xi direction. By the sign consistency (∇F )i ≥ 0 the corners in xi = 1 which are above points

excluded by P are positive and safe to exclude. Similarly, the excluded midpoints must also be

safe to exclude. But since (n̂P )i was negative, P ′ actually separates strictly more of the points

in B and we have a contradiction. This proves that Property 3.8 holds for HV . The proof for

HV ′ is similar.

If H is such that Properties 3.4-3.8 hold, then we claim that the following theorem holds

and then Theorem 3.2 becomes a basic application of this. We use ∇̂F (x) to represent the unit

vector associate with ∇F at x. So for example, B(ρ, ∇̂F (x)) is the ball of radius ρ centered at

∇F (x)/|∇F (x)|

Theorem 3.9. There is a ρ > 0 depending only on dimension such that if F (x) = 0, x in a box

B, and ¤∇̂F (B) ⊆ B(ρ, ∇̂F (x)) then for each (n− 1) dimensional exterior face G of H(B), we

have that (¤∇F · n̂G) > 0.

Proof. First, we need a technical lemma based on partitioning the coordinate indices {1, . . . , n}

into sets A0 and A1. Given a point ~y ∈ Rn, we are going to analyze these divisions in term of

the absolute values |~yi| of the individual coordinates of ~y. Given such a partition, a point ~y with

|~y| = 1 and a radius ρ, we define:

α(ρ, ~y,A0, A1) =



























∞ mini∈A1
|~yi| ≤ ρ or A1 empty

0 mini∈A1
|~yi| > ρ and A0 empty

maxi∈A0
|~yi|+ρ

mini∈A1
|~yi|−ρ

otherwise

By choosing cases where α is finite, we force A1 to become those dimensions for which B(ρ, ~y)

has a well-defined sign and large magnitude.

α has a number of important properties. It is of course non-negative. If all other parameters

are fixed but ρ decreases, then α decreases. If all other parameters are fixed, and A0 is not
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empty, then α is a continuous function of ~y onto R0+ ∪ {∞}. Even when A0 is empty, α is an

upper semi-continuous function of ~y.

The following lemma shows that the choice of ~y is in some sense irrelevant.

Lemma 3.1. For any β > 0 there is a ρ > 0 such that for every |~y| = 1 there exists a partition

A0, A1 so that α(ρ, ~y,A0, A1) < β.

Proof. Consider α(ρ, ~y) = minA0,A1
α(ρ, ~y,A0, A1). For fixed ρ this is an upper semi-continuous

function of ~y. For fixed ~y, we see that limρ→0 α(ρ, ~y) = 0. So by compactness of the unit ball,

we find that Lemma 3.1 holds.

To see why this lemma is useful, realize that the condition ¤∇̂F (B) ⊆ B(ρ, ∇̂F (x)) combined

with Lemma 3.1 implies a partition so that (¤∇F )i has well defined sign for all i ∈ A1 and also

that the magnitude of these intervals dominates the intervals when i ∈ A0. Specifically, for any

β we can ensure that:

max
i∈A0

max
x∈B

|∇F (x)i| < β min
i∈A1

min
x∈B

|∇F (x)i|

Continuing the proof of Theorem 3.9, we will take β > 0 to be fixed later, and will take

ρ smaller than that given by Lemma 3.1. Given B and x as in the statement of the theorem,

we find that there is a partition A0, A1 so that α(ρ, ∇̂F (x), A0, A1) ≤ β. With some abuse of

notation we will also use A0 and A1 to represent the associated sets of vectors. Specifically, we

use them as orthogonal subspaces with direct sum Rn.

Notice that α(ρ, ~y) is finite if ρ < 1/
√

n, so A1 is non-empty. Now, for each face G of H(B),

we break things down based on how n̂G projects into A1 and A0.

Using Property 3.8, we see that for each face G of interest, if β is sufficiently small and

(n̂G)i 6= 0 with i ∈ A1, then (n̂G ·¤∇F ) > 0. Because of the finiteness required by Property 3.4,

there is a β small enough to ensure this for all faces of all possible H(B). So, we only need

to consider the possibility that n̂G lies entirely within the span of A0. This is prevented from

happening analogously to how Case 3 was prevented from happening in Section 3.3.1. Consider

the way in which localizing ∇F localizes {F = 0}. In the 2 dimensional case of Section 3.3.1 we

were constrained to a cone; here we view the constraint as being near a particular hyperplane,

as per the following lemma:
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Lemma 3.2. Fix any x ∈ C with F (x) = 0. Then if there is a vector ~f such that the angle

between ~f and ∇F (y) is less than some θ < π/2 for all y ∈ C, then {F = 0} ∩ C lies within

diam(C) tan θ of the affine hyperplane R perpendicular to ~f which passes through x.

Proof. The condition θ < π/2 causes the implicit function theorem to apply. We can find a

function on R which measure how far from R in the ~f direction we must move to reach {F = 0}.

Furthermore, tan θ is a Lipschitz constant for this function.

In order to apply this to the proof of Theorem 3.9, we first argue that by making β and ρ

sufficiently small we can ensure that a suitable vector ~f exists with ~f ∈ A1. Take θ > 0 to be a

small constant to be determined later.

The definition of β implies that the projection of ∇̂F onto A0 has length less than nβ. So we

find that there is an β sufficiently small and depending only on θ so that the angle between ∇̂F

and the projection of ∇̂F onto A1 will be less than θ/2. Similarly, by making ρ small, we can

ensure that the difference in angle between ∇̂F (x) and ∇̂F (y) for other y ∈ C is less than θ/2.

So by Lemma 3.2 we have that {F = 0}∩B lies within a neighborhood of an affine hyperplane

perpendicular to ~f . Furthermore, the width of the neighborhood, measured as a fraction of

diam(B) is basically tan(θ). This can be made as small as necessary by taking β and ρ small.

But if n̂G stays entirely within A0 then it is perpendicular to ~f ∈ A1 and ~f is tangent to

the hyperplane P containing G. Since G is a face, it contains a ball Br with radius r within P .

Notice further that r is depends only on sign pattern of the corners and the choice of face. So

we can take r = cdiam(B) where c > 0 is determined only by dimension.

Now, consider the orthogonal projection of B onto the line spanned by ~f . By Property 3.6,

all of the corners of G must be from crossings, and in fact they must be parallel to A0. Otherwise

G would cut a line parallel to A1 which implies (n̂G)i 6= 0, and we would be in the previous case.

So these crossings collapse to points under this projection. Furthermore Br must project to

a line segment of length r. Also, every crossing contains a point in {F = 0}∩B. So we find that

there are at two points of {F = 0} ∩ B which differ by r under this projection.

But this contradicts the localization of {F = 0} ∩ B caused by Lemma 3.2 when θ is small

enough so that tan θ < c. By making β sufficiently small we can be sure that n̂G does not lie

entirely within A0. This proves Theorem 3.9.
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3.4 Advancing Boxes

We now consider another way to mesh, one that does not require the ability to evaluate signs at

the corners of boxes. We only consider the 2-dimensional problem. Our detailed explanations will

work from the innermost loop to the outermost loop, but a top down overview of the algorithm

is as follows:

1. Cover the singularities of F ∩ B0 with positive and negative regions. Find a band (ǫ−, ǫ+)

of regular values of F . This is detailed in Section 3.4.4.

2. Further refine the covering to have regions containing at most one component of {F =

0}∩B0. This is also detailed in Section 3.4.4 and makes use of the mountain pass theorem

from Section 2.5.

3. Within each region containing a component of {F = 0} ∩ B0 we find a starting point

x ∈ (ǫ−, ǫ+). We then extend this into a chain of line segments. The logic for ensuring

that this becomes either a loop, or a connection between two points on ∂B0 is described in

Section 3.4.3.

4. In order to create the chains of line segments, we use a concept called illumination to analyze

what points are reachable from a particular x. Section 3.4.2 describes the mechanics of

finding another line segment. Section 3.4.1 formally introduces the concept of illumination.

3.4.1 Illumination

The inner core of the algorithm is based on extending our chain of line segments. Given an

endpoint xi we will need to find xi+1 satisfying the following two conditions:

1. A normal of the line segment xixi+1 lies within ¤∇F

2. xi+1 remains in the chosen band of regular values i.e. {ǫ− < F (xi+1) < ǫ+}.
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Condition (1) above helps to ensure that condition (1) of Theorem 2.1 will be satisfied by our

result. Condition (2) above is used to ensure that conditions (2) and (3) of Theorem 2.1 will

be satisfied by our result. Conditions (2) above is also used to ensure termination. Note that

(ǫ−, ǫ+) can be chosen to lie within any neighborhood containing 0, but as we will see, the actual

(ǫ−, ǫ+) used might or might not contain 0.

We develop the concept of illumination as a way to ensure condition (1) above. In this

section, we assume that we have a subdivision B of B0 into boxes. Furthermore, we assume that

this subdivision is the result of something like the Singularity Covering Algorithm of Table 3.1.

Specifically, we require that for any box B of interest in the following, we have 0 /∈ ¤∇F (B).

The exact details are discussed in Section 3.4.4.

Under the conditions above, let x be a point on a link lx, but not on a corner. That is to say

lx is the side of the smallest box containing x. Then y is in the illumination of x (y ∈ illum x) iff

the following conditions hold:

1. y /∈ lx

2. There is a B ∈ B such that x ∈ ∂B and y ∈ ∂B

3. y can be connected to x by a line segment within B which has a normal vector lying within

the angular range of ¤∇F (B)

We use illumB x to represent B ∩ illum x. Figure 3.4 shows examples of illumB . When the cone

generated by the right angles to ¤∇F (B) cuts across lx we say that illumB x is transverse, and

Figure 3.4(a) is a typical example of this. When the interior of the cone contains lx, we say that

illumB x is tangent, and a typical example of this is shown in Figure 3.4(b). When a side of the

cone is coincident with lx we say that illumB x is a singular illumination and this is illustrated

in Figure 3.4(c).

A segment chain γ is a chain of line segments. A segment chain γ has two endpoints. We call

them γ+ and γ− with names chosen them so that F (γ+) ≥ F (γ−). Each segment in a chain will

be a sub-segment of 1-face of a box in B.

In all cases, illumB x has one or two components, each of which is a segment chain within

∂B. This set is the intersection of certain cones with ∂B− lx. We take a moment to consider the
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Figure 3.4: Three cases of illumination within a single square, categorized by the angular range
of ¤∇F compared to the orientation of the side containing x.

regions which are not in these cones of possible surface. If y is in such a region then ¤∇F (C)

tells us that either F (y) < F (x) or F (y) > F (x). In Figure 3.4 regions are marked + or −

depending on which of these conditions must hold. We next consider what this means for the

endpoints of our illumination components.

In Figure 3.4(a), because of the + and − regions we see that α+ is along the top of the box

and F (x) ≤ F (α+) while α− is along the right side of the box and F (x) ≥ F (α−) So, by the

intermediate value theorem, we can find a y ∈ illum x such that F (y) ∈ (ǫ−, ǫ+). Notice that

this never requires an exact calculation of F (y). It only requires a calculation sufficient to certify

that F (y) lies within a particular finite interval. Finding such a y is exactly how we advance our

algorithm when we cross into a box B such that illumB x is transverse. When a component γ of

illum x is such that F (γ−) ≤ F (x) ≤ F (γ+), we say that γ is balanced.

In fact, we can handle singular illuminations such as Figure 3.4(c) in the same way. Because

the top line is at worst perpendicular to ∇F we know that F is non-decreasing as we move left

along lx to α+. So yet again, the component of the illumination in this box is balanced and

there must be a y ∈ illum x such that F (y) ∈ (ǫ−, ǫ+). For the remainder, we treat the upper

left corner of Figure 3.4(c) as containing a zero width region marked +, and do not differentiate

singular illumination from transverse illumination.

To understand the case of tangential illuminations, we must consider what is on the other

side of lx. So we now focus on illumx rather than illumB x. One possibility is that we have

another case of tangential illumination. Tangential illumination occurs when the angular range

of ¤∇F contains a normal vector of lx. Because ¤∇F is a box, if its angular range contains a
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Figure 3.5: When one of the boxes adjacent to lx is tangential, we must merge the two boxes to
find good illumination components.

normal of lx, it cannot contain a parallel of lx. So if B1 and B2 are the boxes on opposite sides

of lx and illumB1
x, illumB2

x are both tangential, then ¤∇F (B1) and ¤∇F (B2) must contain

the same normal to lx. This gives a result like Figure 3.5(a). We see that illumx is made up of

two components, both of which are balanced.

The other case is that we have a tangential illumination on one side of lx and a transverse

illumination on the other side. This gives a merged figure something like Figure 3.5(b). We see

that in this case illum x has two balanced components, α, β and one component φ which is not

balanced.

Finally, let us consider what changes when lx lies between two boxes which are not the same

size. Recall that lx is a side of the smaller box, and part of a side of the larger box. Figure 3.6

contains two typical illumination diagrams. We see that the above arguments are not changed

and illum x continues to contain 2 or 3 components, each of which is a segment chain.

Finally, we note that illum is transitive. Assembling these properties into a lemma, we claim

the following:

Lemma 3.3. Suppose that x lies on the interior of a line segment lx between two boxes C1 and

C2. Suppose further that 0 /∈ ¤∇F (C1) and 0 /∈ ¤∇F (C2). Then illum x has the following

properties:
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Figure 3.6: Two examples of what illumination of x might look like when ¤∇F is near to vertical
and x lies between boxes of differing sizes.

1. illum x ⊆ ∂(C1 ∪ C2)

2. illum x has two or three components γi.

3. Exactly two of the γi are balanced.

4. x ∈ illum y if and only if y ∈ illum x

3.4.2 Box Advancement and One-Sidedness

Using the illumination concept in the previous section, we will create chains of points. Given

xi−1, xi we find xi+1 using the algorithm in Table 3.3. In addition, it might be necessary to

shrink (ǫ−, ǫ+). The reasons for this are discussed in Section 3.4.4.

The last part of the algorithm in Table 3.3 chooses xi+1 ∈ illum xi, so the line segment xixi+1

has a normal which lies within ¤∇F . The logic of the first part is necessary to ensure that the

correct normal of xixi+1 lies within ¤∇F . It must be the normal which lies on the same side of

the chain of segments as the corresponding normal of xi−1xi. In addition to being a requirement

for Theorem 2.1 to apply, this one-sidedness property prevents us from zig zagging back and

forth.

When lx lies between B1 and B2, and both illumB1
x and both illumB2

x are transverse

illuminations, then we have a situation something like the left side of Figure 3.5. We see that

the checks at lines 3 and 6 in Table 3.3 ensure that we move across the boxes. We then have
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Table 3.3: Box Advancement Algorithm

1: Input: 1) the current end of a point sequence xi−1, xi 2) a range constraint (ǫ−, ǫ+) Precon-
ditions: xi−1 ∈ illum xi, F (x), F (xi=1 ∈ (ǫ−, ǫ+)

2: Let γ1, γ2 be the balanced components of illumxi

3: if xi−1 ∈ γ1 then

4: Letγ′ = γ2

5: else

6: if xi−1 ∈ γ2 then

7: let γ′ = γ1

8: else

9: if xi−1 is in the same box as γ1 then

10: let γ′ = γ1

11: else

12: let γ′ = γ2

13: let x′ equal the midpoint of γ′.
14: while F (x′) /∈ (ǫ−, ǫ+) do

15: if F (x′) < ǫ− then

16: reduce γ′ by removing the portion of the segment chain between x′ and γ′
−

17: else

18: reduce γ′ by removing the portion of the segment chain between x′ and γ′
+

19: output x′ as xi+1

a principally horizontal chain of line segments and it is the upward pointing normals which lie

within ¤∇F (B1) and ¤∇F (B2).

Next consider when lx lies between B1 and B2 when both illumB1
x and both illumB2

x are

transverse illuminations, then we have a situation something like the left side of Figure 3.6. We

see that the check at lines 3 and 6 ensure that we move across the boxes. We then have a

principally horizontal chain of line segments and it is the upward pointing normals which lie

within ¤∇F (B1) and ¤∇F (B2).

Next consider when lx lies between B1 and B2 when both illumB1
x and both illumB2

x are

tangential. Then we have something like Figure 3.5(a) and we again see that it is the upward

pointing normals which lie within ¤∇F (B1) and ¤∇F (B2).

Finally, we have the case when illumB1
x is transverse and illumB2

x is tangential. In this

case, illum x has 3 components. When xi−1 is in one of the balanced components, then the tests

and lines 3 and 6 place xi+1 in the other balanced component, and the one sidedness argument

is no different. If xi−1 is in the unbalanced component, then choosing the balanced component

in the same box preserves one sidedness. The test at line 9 makes this happen. In Figure 3.5(b)
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Table 3.4: Component Finding

1: Given: 1) B a subdivision of B0 with associated sets SV ◦ , S∂V , SV C as produced by
the code in Table 3.5 or Table 3.1 2) (ǫ−, ǫ+) such that supB∈SV ◦

¤F (B) < ǫ− and
ǫ+ < supB∈S

V C
¤F (B) 3) x = x1 a point on a link induced by B such that F (x) ∈ (ǫ−, ǫ+)

2: if x1 ∈ ∂B0 then

3: find γ, a balanced component of illumx1.
4: find x2 ∈ γ such that F (x2) ∈ (ǫ−, ǫ+) using the loop at line 14 of the box advancement

routine in Table 3.3
5: output the line segment {x1, x2}
6: initialize i = 2
7: initialize γ′

1 to the empty segment chain
8: else

9: find illumx, call the balanced components γ1 and γ2

10: find γ′
1 ⊆ γ1 such that (F (γ−), F (γ+)) = (ǫ′−, ǫ′+) ⊆ (ǫ−, ǫ+)

11: replace (ǫ−, ǫ+) with (ǫ′−, ǫ′+) for the remainder of this algorithm.
12: choose arbitrary (and temporary) x0 ∈ γ′

1

13: initialize i = 1
14: while xi /∈ γ′

1 and xi /∈ ∂B0 do

15: find xi+1 using the Box Advancement Algorithm in Table 3.3 with
16: output the line segment {xi, xi+1}
17: increase i by 1
18: if xi /∈ γ′

1 and x1 /∈ ∂B0 then

19: output the line segment {xi, x1}
20: else

21: set x0 to x2, set i to 1
22: goto line 14

say, we would have that the upward pointing normal vectors are in ¤∇F of the lower box.

3.4.3 Component Meshing

Suppose that we have an x on a link lx induced by B, such that F (x) ∈ (ǫ−, ǫ+). The basic

operation to find a mesh component containing x is the already described box advancement

algorithm in Table 3.3. However, some logic is required to detect termination and so on. Pseudo-

code for this is component finding algorithm presented in Table 3.4.

The algorithm takes as input a band (ǫ−, ǫ+) and an initial point x. How we start depends

on whether x ∈ ∂B0. If so, then the code following line 2 takes x1 as x and finds x2 in illumx1.

Notice that when x ∈ ∂B0 the fact that x ∈ B ∈ S∂V ensures that illumB x is not tangential.

This means that illumB x has only one component, and it is balanced. Then the loop starting at

line 14 finds additional segments until we reach ∂B0 again.
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Table 3.5: Modified Singularity Covering Algorithm

1: initialize U to be a set of boxes, initially containing B0.
2: initialize SV ◦ , S∂V , SV C to be sets of boxes, initially empty.
3: while there is a box B ∈ U do

4: remove B from U
5: if 0 /∈ ¤C∇F then

6: place B in S∂V

7: else

8: if ¤F (B) > 0 then

9: place B in SV C

10: else

11: if ¤F (B) < 0 then

12: place B in SV ◦

13: else

14: split B and place the resulting child boxes into U

When x /∈ ∂B0 we set up a components γ1 of illumx as a guard. That is, we find a reduced

(ǫ−, ǫ+) and a reduced γ′
1 so that (ǫ−, ǫ+) ⊆ (F (γ1−), F (γ2−)). This ensures that as the algorithm

progresses it will either hit γ′
1 or ∂B0. The the same loop at line 14 finds additional segments

until one of these events occurs. When it finds ∂B0 the test at line 18 notices and run the loop

again working in the other direction.

3.4.4 Algorithm

To start with, we localize the singularities and find an appropriate region for the mesh to be

in. The first part of this is essentially the same as the singularity covering algorithm in Table 3.1.

However, as an optimization, we prefer to have more elements in S∂V at this stage, so we use the

reordered algorithm in Table 3.5. Note also that if we wish to ensure that the normal vectors

of faces of V lie within an angular range α of ∇F we can replace the check at line 5 with the

condition that ¤∇F (C) have angular ranges less than α.

Once this is done we further refine our subdivision according to the component separation

algorithm in Table 3.6. Using the resulting subdivision, we find (ǫ−, ǫ+), a range of regular values

of F . Then we find S∂V such that B ∈ S′
∂V implies that ¤F (B) ⊆ (ǫ−, ǫ+). To do this we must

add additional boxes to SV ◦ and SV C . However, we require that the new boxes not get too close

to zero — we insist that for B ∈ SV C ∪ SV ◦ that ¤F (B) does not intersect (ǫ−/2, ǫ+/2).
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Table 3.6: Component Separation Algorithm

1: find a subdivision B = SV ◦ ∪ S∂V ∪ SV C of B0 using the singularity covering algorithm of
Table 3.5.

2: Find 0 > ǫ− ≥ supB∈SV ◦
¤F (B)

3: Find 0 < ǫ+ ≤ infB∈S
V C

¤F (B)
4: initialize S′

∂V to an empty set of boxes
5: while S∂V is not empty do

6: choose B ∈ S∂V , then remove B from S∂V

7: if ¤F (B) > ǫ+/2 then

8: place B into SV C

9: else

10: if ¤F (B) < ǫ−/2 then

11: place B into SV ◦

12: else

13: if ¤F (B) ⊆ (ǫ−, ǫ+) then

14: place B into S′
∂V

15: else

16: split B and place its children into S∂V

As a result of this, the new subdivision of B0 into B = SV ◦ ∪ S′
∂V ∪ SV C has an additional

property. It is still the case that any component of {F = 0} lies within some connected component

of
⋃

S′
∂V . However we can also show that each connected component of

⋃

S′
∂ contains at most

one connected component of B0 ∩ {F = 0}.

Proof. By contradiction, suppose that F (x) = F (y) = 0 with x and y in different components of

B0 ∩ {F = 0}. Further suppose that x and y lie within a connected component of
⋃

S∂ . Then

by definition there is a path γ from x to y which remains in
⋃

S′
∂V . By the construction of S′

∂V ,

we know that F (γ) ⊆ (ǫ−, ǫ+). However, because γ connects two components of {F = 0} in B0,

we have by Theorem 2.3 that there is a singular point z ∈ B0 such that F (z) ∈ (ǫ−, ǫ+). This

contradicts the inequalities ensured by the choice of ǫ− and ǫ+.

Furthermore, if a connected component of
⋃

S′
∂V contains a component of B0 ∩ {F = 0}

then it must have boxes from both SV ◦ and SV C on its boundary. For if not, we have that the

component contains an extreme value of F , which contradicts the construction of S∂V .

Using these subroutines, the final algorithm is fairly simple and presented in Table 3.7. A

component of
⋃

S′
∂V may be spurious, that is it might not contain a component of {F = 0}.

However, as noted above, when it does contain such a component, it is bordered by at least one
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Table 3.7: Advancing Boxes Algorithm

1: find a subdivision SV ◦ ∪ S′
∂V ∪ SV C of B0 using the component separation algorithm of

Table 3.6.
2: for each connected component s of

⋃

S′
∂V do

3: if ∂s intersects elements of both SV ◦ and SV C then

4: find segment chain γ between SV ◦ and SV C within s

5: find an x along γ such that F (x) ∈ (ǫ−/2, ǫ+/2)
6: using x, the current subdivision, and (ǫ−/2, ǫ+/2) as inputs use the component finding

algorithm in Table 3.4 to find a mesh component within s

box from SV ◦ and one from SV C
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4

Implementation Notes

A goal of this research is the ability to produce actual meshes. Several implementations were

developed over the course of this research. All implementation work was in C++ and heavy use

was made of the Boost Libraries [1], CGAL [?], and the C++ Standard Type Library. Some

early prototypes also used the MPFI library [18].

4.1 Data Structures

Given the pseudo-code in Table 3.2, a surprisingly difficult aspect was the development of a data

structure to manage the n-boxes in the subdivision. It is easy to implement an oct tree (or a

2n-tree) in a naive manner. However, we need certain access methods which seem to demand

additional structure. To begin with, the basic computation of H(B) requires finding all of the

crossings which lie on the boundary of B. Furthermore, if B then does need to be split we will

need to find all of the n-boxes neighboring B. Furthermore, for our purposes, neighboring does

not simply mean the n-boxes which lie across each of the 2n different (n− 1)-faces of B but also

the n-boxes which lie diagonally across each l-face for all 0 < l < n.

It was decided that the data structure requirements for spatial subdivision algorithms are

universal enough to warrant a reusable solution. In light of this, a library was developed following

the basic format of a CGAL module to maintain spatial subdivision tree. It will be submitted

as possible future module to CGAL.

Instead of relying on pointers for navigation, a pointer-free approach was developed. The

basic idea is that each n− box is represented by a sequence of nibbles where each nibble contains

n bits. The length of the sequence is determines the depth of the square. So for example, in

Figure 4.1 on the left we see the four squares at the first level. On the right we see one of

the squares subdivided further. In this way, every possible square within the tree is uniquely

associated with a string of bits. This sort of pointer-free approach has been used for a long time.

According to Samet, “It is difficult to determine the origin of this technique” [19].

To attach data to an n-box, we can place the data in a hash-table keyed by a hash of the string
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Figure 4.1: Pointer free quad-tree approach.

of bits. To find data associated with, say, a neighboring n-box we perform bit manipulations

on the string in order to find the string associated with the neighbor. Then we look up the

neighbor’s data in the hash-table. Furthermore, we can associate each lower dimensional k-box

with a specific n-box. That is, given a k-box Bk, there is exactly one n-box B such that Bk is a

face of B containing the corner (minB x1, . . . ,minB xn). So we can assign Bk the string assigned

to B concatenated with a bit pattern indicating along which k dimensions Bk has non-zero size.

Using this approach, the library supports attaching data to each k-face.

In addition, we arrange things so that the functionality attached to a k-box can access the

functionality attached to a j box. To do this, a curiously recurring template pattern is used

within the implementation.

4.1.1 Instantiation and Navigation

At the top level, the library provides an implementation of the SpatialSubdivisionTree con-

cept:

template <int a_dim , template SpatialSubdivisionDataAdder>
class SpatialSubdivisionTree {

using std : : bitset ;
public :
template <int i_dim> rect ;
template <int i_dim> rect_reference ;
rect_reference<a_dim> root_reference ( ) ;

} ;
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The resulting object contains and maintains the storage of a tree structure. Most interactions

with this structure are through nested classes. Within SpatialSubdivisionTree we have rect

<i_dim> classes. Each represents a single rectangular region of the tree with internal dimension

i_dim. The instantiation of these objects is totally managed by SpatialSubdivisionTree ob-

jects. As described later, through the use of a template parameter, the user of the library can

add data and functionality to the rect objects.

The SpatialSubdivisionTree concept is modeled by the Spatial_subdivision_tree tem-

plate. The first template parameter, a_dim, is an unsigned integer that indicates the ambient,

or maximum dimension. Values of a_dim as high as 8 are supported, though it is not clear how

practical current algorithms would be with such a high splitting factor. The second parameter,

SpatialSubdivisionDataAdder, is a template parameter which adds data to the rect objects.

The primary capability provided is to navigate and access data in the tree structure. The

navigation methods are provided through the RectReference concept:

template <dim_idx i_dim>
class RectReference {
public :

bool is_null ( ) ;
std : : bitset<a_dim> collapsed_bits ( ) ;
template <dim_idx b_dim>
RectReference<b_dim> find_boundary ( bitset<a_dim> positive_sides ,

bitset<a_dim> negative_side ) ;
template <dim_idx b_dim>
RectReference<b_dim> find_boundary ( bitset<b_dim> dummy ,

bitset<a_dim> positive_sides ,
bitset<a_dim> negative_side ) ;

template <dim_idx c_dim>
RectReference<c_dim> find_coboundary ( bitset<a_dim> positive_sides ,

bitset<a_dim> negative_sides ) ;

template <dim_idx c_dim>
RectReference<c_dim> find_coboundary ( bitset<c_dim> dummy ,

bitset<a_dim> positive_sides ,
bitset<a_dim> negative_sides ) ;

bool is_split ( ) ;
void split ( ) ;
RectReference<i_dim> get_parent ( ) ;
RectReference<i_dim> get_child ( bitset<i_dim> loc ) ;
RectReference<i_dim> get_child_raw ( bitset<a_dim> loc ) ;
rect<i_dim> &get_rect ( ) ;
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unsigned int get_depth ( ) ;
template <class Visitor> bool visit_leaves ( Visitor &v ) ;
template <class Visitor>
bool visit_border_leaves ( Visitor &v ,

bitset<i_dim> plus_sides ,
bitset<i_dim> minus_sides ) ;

template <class Visitor , dim_idx b_dim>
bool visit_neighbors ( Visitor &v , bitset<i_dim> plus_sides ,

bitset<i_dim> minus_sides ) ;
template <class Visitor , dim_idx b_dim>
bool visit_neighbors ( bitset<b_dim> dummy ,

Visitor &v ,
bitset<i_dim> plus_sides ,
bitset<i_dim> minus_sides ) ;

} ;

In addition to providing navigation and data access methods, the RectReference classes are

small, copy-able and comparable so that they works with the C++ standard library container

classes. Also, a RectReference may be null. Null references can be returned from certain of the

navigation methods. The isnull() method tells the user if a reference is null. If isnull() is

true, most of the other methods will not work.

When i_dim < a_dim the rectangle associated with a RectReference has zero width in cer-

tain dimensions. We say that it has been collapsed in these dimensions, and the collapsed_bits

method returns a mask which indicates these dimensions.

Starting with any given rectangular cell, we can attempt to navigate in any of the 2n possible

directions, or in some mixture of them. We have two basic types of motion.

If we are moving in a direction in which our current rectangle has width — if we move

in a direction which has not been collapsed — then we collapse those directions and find a

lower dimensional boundary rectangle. The find_boundary method does this. It collapses the

dimensions indicated by positive_sides via positive displacement. It collapses the dimensions

indicated by negative_sides via negative displacements. The dimension of the output rectangle

must be specified as a template parameter. In some circumstances this can be done directly, in

some cases limitations of C++ require the use of the dummy parameter to pass this information

to the compiler. find_boundary never returns a null reference.

Analogous to the find_boundary method, there is a find_coboundary method which finds a
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neighboring rectangle by expanding some set of displacements. The interface is similar, however it

is possible for find_coboundary to return a null reference. Specifically, R.find_coboundary(A,B)

returns S such that S.find_boundary(B,A) returns R, assuming that such an S exists in the current

tree structure. If no such S exits, then R.find_coboundary(A,B) returns a null RectReference.

template <dim_idx a_dim , dim_idx i_dim , class RectBase>
class SpatialSubdivisionDataAdder : public RectBase {
public :
void init_as_child ( rect_top & parent , bitset<a_dim> rawloc ) {

RectBase : : init_as_child ( parent , rawloc ) ;
}
template <dim_idx c_dim>
void init_as_boundary (rect<c_dim> & coboundary ,

bitset<a_dim> positive_dims ,
bitset<a_dim> negative_dims ) {

RectBase : : init_as_boundary ( coboundary , positive_dims ,
negative_dims ) ;

}
void init_as_root ( ) {

RectBase : : init_as_root ( ) ;
}
void do_split ( ) {

RectBase : : do_split ( ) ;
}
void post_init ( ) {

RectBase : : post_init ( ) ;
}

} ;

class RectBase {
public :
typedef SpatialSubdivisionTree outer_top ;
typedef outer_top : : rect<i_dim> rect_top ;
typedef outer_top : : rect_handle<i_dim> rect_reference_top ;
rect_reference_top &get_reference ( ) ;
void init_as_root ( ) ;
void init_as_child ( rect_top & parent , bitset<a_dim> rawloc ) ;
template <dim_idx c_dim>
void init_as_boundary (rect<c_dim> & cbdry ,

bitset<a_dim> positive_dims ,
bitset<a_dim> negative_dims ) ;

void post_init ( ) ;
void do_split ( ) ;

} ;
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When a SpatialSubdivisionTree is instantiated, the second template parameter must itself

be a template which models the SpatialSubdivisionDataAdder concept. When a rect<i_dim

> class is instantiated, this template is passed parameters which to indicate both the ambient and

internal dimensions of the rect which is being created. It is also passed a template parameter

RectBase which will be a model of the RectBase concept. SpatialSubdivisionDataAdder must

produce a subclass of the input RectBase. The RectBase concept provides several public type-

defs to allow SpatialSubdivisionDataAdder to work with the final SpatialSubdivisionTree

class. Specifically, outer_top is the type of the containing SpatialSubdivisionTree. Also

rect_top and rect_reference_type are convenient declarations of outer_top::rect<i_dim>

and outer_top::rect_reference<i_dim>.

Finally, there are a number of methods which SpatialSubdivisionDataAdder may imple-

ment if the user desires notification of certain events. There are three initialization methods.

When a rect is instantiated exactly one of these will be called. If the rect can be seen as the

child of a larger rect of the same dimension, then init_as_child is called. If init_as_child

does not apply, but the rect can be seen as the boundary of some higher dimensional box,

then init_as_boundary is called. Finally, if neither of the previous two apply, init_as_root is

called. Actually, this only happens for the root rect with a_dim = i_dim.

It is intended that the first two init methods propagate data as necessary from the parent or

co-boundary rect object. Until this has been completed for a rect r, data might be missed if

we created a new boundary or child of r. Therefore, the init methods of r should refrain from

accessing boundaries or children of r.

And yet, it might be useful for a rect to access boundaries or even children as part of its

initialization. For example, it might be the case that every time a rect of a certain dimension is

created, then it should either meet some immediately testable condition, or be split. To support

such functionality, after init_as_child or init_as_boundary is called, the method post_init

is called. If initialization code which accesses a child or boundary rect is needed, then the library

user may override this method to do so.

The final method that an implementation may override is do_split. This method is called

to notify the user of the library that the rect in question is being split. In the example section

we increment a counter whenever an init method is called and decrement the counter every time
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this method is called. The result is a count of the number of leaf nodes within the tree structure.

When a SpatialSubdivisionDataAdder implements any of these methods, it should make

an identical call to the same method on the RectBase input parameter and parent class. This

requirement makes it possible to combine multiple SpatialSubdivisionDataAdder templates in

a straightforward manner. Examples of this are shown in Section 4.1.3.

4.1.2 Other Operations

As described in the previous section, the bulk of the navigation capability provided by the library

is through objects which model the RectReference concept. The only method which induces a

change in the underlying geometric structure is RectReference::split(). This method splits a

leaf node. Only leaf nodes may be split, and RectReference::is_split() indicates wither the

node has been split and is now an internal node.

class Visitor{
public :

bool visit ( toVisit v ) ;
}

It is of course possible to create an iterator for an oct-tree or a quad-tree. However, it is

easier to implement and perhaps a bit more natural to use a visitor pattern to loop through the

nodes of a tree. To support this, RectReference provides the template methods visit_leaves

, visit_border_leaves, and visit_neighbors which all take a reference to an object which

models the Visitor concept.

4.1.3 Examples

As an initial example, the following template can be used to count the number of rectangles of

various dimensions:

template <CGAL : : dim_idx a_dim , CGAL : : dim_idx i_dim , class B>
class rect_counter : public B {
public :

stat ic int count ;
stat ic int leaf_count ;
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void do_split ( ) {
B : : do_split ( ) ;
leaf_count−−;

}

void init_as_child (typename B : : rect_top & parent ,
std : : bitset<a_dim> pos ) {

B : : init_as_child ( parent , pos ) ;
count++;
leaf_count++;

}

template <CGAL : : dim_idx c_dim>
void init_as_boundary (

typename B : : outer_top : : template rect<c_dim> & init_by ,
std : : bitset<a_dim> p_dims ,
std : : bitset<a_dim> m_dims ) {

B : : init_as_boundary ( init_by , p_dims , m_dims ) ;
count++;
leaf_count++;

}
void init_as_root ( ) {

B : : init_as_root ( ) ;
count++;
leaf_count++;

}
} ;
template <CGAL : : dim_idx a_dim , CGAL : : dim_idx i_dim , class B>
int rect_counter<a_dim , i_dim , B> : : count = 0 ;
template <CGAL : : dim_idx a_dim , CGAL : : dim_idx i_dim , class B>
int rect_counter<a_dim , i_dim , B> : : leaf_count = 0 ;

We see that this template uses the initialization methods to count the rectangles as they are

instantiated. Because the static variable declarations are within the template, they are templated

and we find a count for each sort of object. One fine point is that we only count the rectangle

objects when they are instantiated, and this is only done when the associated RectReference is

somehow requested. We can do this automatically by implementing the post_init and do_split

methods as follows:

template <CGAL : : dim_idx a_dim , CGAL : : dim_idx i_dim , class B>
class rect_counter_all : public rect_counter<a_dim , i_dim , B> {
public :
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void post_init ( ) {
rect_counter<a_dim , i_dim , B> : : post_init ( ) ;
std : : bitset<a_dim> collapsed =

this−>get_reference ( ) . collapsed_bits ( ) ;
for (unsigned int i=0; i < a_dim ; i++) {

i f ( ! collapsed [ i ] ) {
this−>get_reference ( )

. find_boundary ( std : : bitset<i_dim−1>() ,
std : : bitset<a_dim>(0) ,
std : : bitset<a_dim>(1<<i ) ) ;

this−>get_reference ( )
. find_boundary ( std : : bitset<i_dim−1>() ,

std : : bitset<a_dim>(1<<i ) ,
std : : bitset<a_dim>(0) ) ;

}
}

}
void do_split ( ) {

rect_counter<a_dim , i_dim , B> : : do_split ( ) ;
for (unsigned int i=0; i < (1<< i_dim ) ; i++) {

this−>get_reference ( ) . find_child ( std : : bitset<i_dim>(i ) ) ;
}

}
} ;

template <CGAL : : dim_idx a_dim , class B>
class rect_counter_all<a_dim , 0 , B>

: public rect_counter<a_dim , 0 , B> {
} ;

To see how these two templates actually behave, we can instantiate them and randomly split

rectangles with something like:

typedef CGAL : : Spatial_subdivision_tree<4, rect_counter>
counting_tree ;

typedef CGAL : : Spatial_subdivision_tree<4, rect_counter_all>
counting_all_tree ;

counting_tree t1 ;
counting_all_tree t2 ;
for ( int i=0; i < 5 ; i++) {
counting_tree : : rect_reference<4> h1 = t1 . root_reference ( ) ;
counting_all_tree : : rect_reference<4> h2 = t2 . root_reference ( ) ;
for ( int j=0; j < 50 ; j++) {
std : : bitset<4> loc ( rand ( ) & ((1<<4) − 1) ) ;
i f ( ! h1 . is_split ( ) )
h1 . split ( ) ;
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h1 = h1 . find_child ( std : : bitset<4>(loc ) ) ;
i f ( ! h2 . is_split ( ) )
h2 . split ( ) ;

h2 = h2 . find_child ( std : : bitset<4>(loc ) ) ;
}

}

The resulting counts are:

t1 has 251 rectangles and 5 leaves of dimension 4
t1 has 0 rectangles and 0 leaves of dimension 3
t1 has 0 rectangles and 0 leaves of dimension 2
t1 has 0 rectangles and 0 leaves of dimension 1
t1 has 0 rectangles and 0 leaves of dimension 0
t2 has 3937 rectangles and 3691 leaves of dimension 4
t2 has 23584 rectangles and 21621 leaves of dimension 3
t2 has 52980 rectangles and 47106 leaves of dimension 2
t2 has 52898 rectangles and 45086 leaves of dimension 1
t2 has 15911 rectangles and 15911 leaves of dimension 0

4.2 Number Types and Reference Counting

There is heavy use of the the CGAL geometry primitives in the current code, and in most

of the earlier prototypes. Especially before a system to cache convex hull computations was

implemented, a very large fraction of the running time was spent performing orientation checks

and similar geometric operations. Therefore, it is worthwhile to examine the performance of

these operations.

CGAL supports several number types, and further supports some hybrid filtered kernels. The

d-dimensional kernels do not yet have filtered modes, so the options are to use machine precision

arithmetic, or to use some exact number system.

We need to find convex hulls of points which lie on the boundary of a box. This means that

the positioning is very singular. It might be that many points will lie within an (n − 1)-face. It

was therefore not a surprise to find that the CGAL’s convex hull implementation crashes when

attempting these computations with machine floating point numbers. Several exact number types

were tried, all based on representing rational numbers exactly. The best two are discussed below.

The first exact number type tried was the Gmpq class provided with CGAL. This is a wrapper
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around a rational number representation provided by the GMP [10] library. It uses reference

counting, and always reallocates on assignment. It was expected that the CGAL provided type

would best match the CGAL geometric primitives.

Because of performance issues detailed below, the mpq_class provided directly by the GMP

[10] was tried next. It is not reference-counted; every instance of mpq_class performs its own

allocations. However, an expression template system is provided by the GMP library which

reduces the number of temporaries created when evaluating and assigning expressions. As it

turns out, mpq_class performed slightly better than Gmpq, apparently because of both this

reduced temporary creation and because of the lack of reference count overhead.

While mpq_class was slightly better, profiler results for both codes were similar and showed

serious room for improvement. The callgrind component of the Valgrind system [21] uses an

instrumented processor emulator to give precise information on how much time is spent in in-

dividual calls. Typically in our tests, 20-25% of the running time was spent in calls to malloc

made by the GMP library. Another 20-25% of the running time was spent on calls to free. A

large fraction of the numbers used in these computations were small. In many cases coordinates

values were fractions such as 13/32.

4.3 Convexity Avoidance Experiment

In an attempt to see what could be gained by avoiding convexity computations, an experimental

H was devised which involves connecting the crossing midpoints together in a fairly ad-hoc and

arbitrary manner. Since the exactness of computation was no longer an issue, it was possible to

work in machine doubles. The result worked for all test functions that were produced, and it

was much faster than the convexity-based approach. However, it is not yet clear how to prove

termination with this H.
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5

Results

As discussed in Chapter 4 several convexity-based implementations were developed. Depending

on the shape being meshed, and where the subdivisions lie, the choice between HV and HV ′ does

change the appearance of the result. Figure 5.1 illustrates one example of this.

5.1 Examples in Three Dimensions

Spheres are a nature first function to mesh. Figure 5.1 shows that even for a sphere, HV and

HV ′ produce different results. Figure 5.2 shows the mesh of a tangle cube funtion F (x) =

10 +
∑3

i=1 x4 − 5x2. The code generates .off files which were then rendered by Geomview [9].

Table 5.1 gives some statistics from the examples. Initial Subdivision is the total number

of boxes after the singularity covering algorithm. Final Subdivision is the number of boxes

after the normal checking algorithm. Vertexes is the number of points needed by the faces.

Faces is the number of faces in the result.

5.2 Examples in Four Dimensions

A major question when considering the output of higher-dimensional algorithms is how to visual-

ize the result. Geomview 1.9.4 [9] defines and loads a format for a 4-dimensional .off mesh files.

However, its display options are limited and for even medium sized meshes it is very difficult to

make any confirmation of the mesh’s structure.

One approach is to simplify the problem by taking the intersection of the higher dimensional

mesh with a moving 3 dimensional hyperplanes. By doing this, we can find a sequence of cross

sections. Figure 5.3 shows such a sequence of intersections with the mesh of a 4 dimensional

sphere. Figure 5.4 shows a slice from a more interesting 4-dimensional polynomial.

Name Initial Subdivision Final Subdivision Vertexes Faces

Sphere 80 80 78 152
Tangle Cube 2992 9054 4337 8693

Table 5.1: Statistices from 3-dimensional test functions.
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Figure 5.1: There can be a difference between HV and HV ′ . Here we mesh F = x2
i − 1, starting

with an initial B0 = [−2, 2]3.

Name Initial Subdivision Final Subdivision Vertexes Faces

Sphere 390 390 264 1488
Tangle Tesseract 31824 159008 72576 440024

Table 5.2: Statistices from 4-dimensional test functions.
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Figure 5.2: Mesh of a tangle cube F (x) = 10 +
∑3

i=1 x4
i − 5x2

i
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Figure 5.3: Slices of a 4 dimensional Sphere. Rendered with Geomview [9]
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Figure 5.4: A rendering of a 3-dimensional slice of the 4-dimensional polynomial F (x) = 10 +
∑3

i=1 x4 − 5x2.
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Conclusion

Theorem 2.1 gives a surprisingly simple test of topological accuracy. This test is new, and is

usable to ensure topological accuracy in several different types of meshing algorithms. This

has been demonstrated, and each of the demonstrations has lead to obvious additional projects.

Below, we discuss this in more detail, and list both some open questions and some development

projects related to this.

The convexity-based corner cutting of Section 3.3 requires a similar number of boxes as Vegter-

Plantinga in 2 and 3 dimensions. Obviously, convex hull computation will never be as fast as a

hard-coded table look-up, but if the convex hull computations are cached, a large fraction of that

overhead goes away. Notice also that Theorem 2.1 does not particularly require convexity. It

seems probable that there is an H which depends less on the interactions between the positions

of the crossing midpoints. Open problem: Find an H which is faster to compute than HV and

which is guaranteed to terminate.

Contributing to the above mentioned performance challenges were the available geometry

kernels, number systems, and their memory management. The best way to reduce the time spent

performing memory management may be to switch to using some variation of a copying garbage

collector. However, even without switching languages or trusting a pessimistic C++ collector,

there is significant room for improvement. One could develop a rational number system with the

following features:

1. Stores small numbers without a heap allocation, but dynamically perform such an allocation

when necessary. “Small” could be defined by a template parameter, and operations could

be designed to work between number with different local sizes.

2. Only perform one heap allocation to store a rational. Existing libraries create a multi-

precision rational out of two multi-precision integers, each with its own heap allocation.

3. Share and reference count heap allocated numbers. Copy on write if necessary, but overwrite

on assignment if the target has a count of one.

4. Use expression templates to minimize the number of temporaries created.
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Open Development Project: Devise a C++ number type with most of the above characteristics.

Alternative: Devise a geometry computation system in a high level language with good garbage

collection support.

The Advancing Boxes Algorithm of Section 3.4 seems to have a lot of potential. It is purely an

interval arithmetic algorithm, unlike Marching Cubes and Vegter-Plantinga it does not require

exact computation of the sign of F . It allows us to approximate the normal vectors of {F = 0} to

arbitrary angular precision. Open Development Project: Implement the 2-dimensional Advancing

Boxes Algorithm. Open Problem: Extend Advancing Boxes to work in higher dimensions.
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A

Source Code

This appendix contains the verbatim source code used to generate our tangle tesseract example.

First, we have meshTangleTess.cpp, the top level file for our tangle cube example.

#define CGAL DISABLE ROUNDING MATH CHECK

#include <CGAL/Gmpq. h>
#include <CGAL/gmpxx . h>
#include <CGAL/Quotient . h>
#include <CGAL/MP Float . h>
//Hack to work around cga l ’ s d e c i s i on to d e f i n e a max . . .
// the boos t i n t e r v a l l i b r a r y g e t s upse t wi th Gmpq o therw i s e .
namespace CGAL {

Gmpq max ( const Gmpq &a , const Gmpq &b ) {
return std : : max (a , b ) ;

}
}

#include ” MeshInte r sec t ion . h++”
#include ”CompMeshOutput . h++”
#include ”CGALHullFinder . h++”
#include ”Mesher . h++”
#include ”TestFunct ions . h++”

#include <fstream>
#include <iostream>
#include <iomanip>
#include <sstream>
#include <set>

template <int length>
std : : string intToString ( int value ) {

std : : stringstream buff ;
std : : string r ;

buff << std : : setfill ( ’ 0 ’ ) << std : : setw ( length ) << value ;
buff >> r ;
return r ;

}

#ifndef DIM
#define DIM 4
#endif
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int main ( int argc , char∗∗ argv ) {
typedef mpq_class Numeric ;
typedef CGAL : : Cartesian_d<Numeric> K ;

typedef tangleCubeFunction<DIM , Numeric > fn ;

typedef CGALHullFinder<K , fn , DIM , true> hull_finder ;

fn f ;

Mesher<fn , K , DIM , hull_finder : : info>
mesher (f , Numeric (−4) , Numeric (4 ) ) ;

std : : cout << ’ \n ’ ;
int r = mesher . initialize_unknown ( ) ;

std : : cout << r << ’ \n ’ ;

r = mesher . split_all ( ) ;
std : : cout << r << ’ \n ’ ;

PointMesh<Numeric , DIM> pm ;
mesher . populateMesh (pm ) ;
std : : cout << ”Point : ” << pm . points . size ( ) << ” Faces : ” << pm .

faces . size ( ) << ’ \n ’ ;

#ifndef NO OUTPUT
MeshIntersectionComputer<Numeric , 4> mip (pm ) ;

for ( int i=−4000; i <= 4000 ; i+=20) {
PointMesh<Numeric , 3> slice ;
mip . intersectPlane ( slice , Numeric (i ) /Numeric (1000) ) ;

std : : cout << ”\ nS l i c e number : ” << i+4000 << ”\n” ;
std : : cout << ” D i s t i n c t Corners : ” << slice . points . size ( ) <<”\n” ;
std : : cout << ” D i s t i n c t Faces : ” << slice . faces . size ( ) << ”\n” ;
std : : ofstream file ;
std : : string filename = ”/tmp/ Tang l eTes sS l i c e s /4 Tang l eS l i c e ”+

intToString<5>(i+4000)+” . o f f ” ;
file . open ( filename . c_str ( ) ) ;
writeOff<Numeric>(file , slice ) ;
file . close ( ) ;

}
#endif //NO OUTPUT
}

Mesher.h++ contains the generic top level meshing code:
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#pragma once

#include ”CGAL/ Sp a t i a l s u b d i v i s i o n t r e e . h”
#include ” Ordina l s . h++”
#include ”PointMesh . h++”

template <typename FunctionType ,
typename K ,
dim_ord dim ,
template <dim_ord a_dim_ ,

dim_ord i_dim_ ,
class B_>

class D_>
class Mesher {

typedef typename CGAL : : Spatial_subdivision_tree<dim , D_> tree_type ;
typedef typename tree_type : : template rect<dim> cube ;
typedef typename tree_type : : template rect_reference<dim> cube_ref ;

typedef typename K : : RT Numeric ;

FunctionType &f ;
tree_type tree ;
Numeric low ;
Numeric high ;
LocationInterval<Numeric> inter ;

typedef std : : set<cube_ref> set_type ;
set_type unknown ;
set_type valid ;

class ref_collector {
public :

std : : set<cube_ref> & collection ;
ref_collector ( std : : set<cube_ref > & collection_ ) :

collection ( collection_ ) {
}
bool visit ( cube_ref h ) {

i f (h . get_rect ( ) . getSignInfo ( ) == SK_KNOWN_MIXED_SIGN ) {
collection . insert (h ) ;

}
return fa l se ;

}
} ;

class face_collector {
PointMesh<Numeric , dim> &pm ;
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public :
face_collector ( PointMesh<Numeric , dim> &pm_ ) :

pm ( pm_ ) {
}
void operator ( ) ( const typename cube : : face_desc &f ,

const Point<Numeric , dim> &,
const Point<Numeric , dim> &){

pm . add_face (f . face ) ;
}

} ;

class ref_mover {
public :

std : : set<cube_ref> & destination ;
std : : set<cube_ref> & source ;
ref_mover ( std : : set<cube_ref > & destination_ ,

std : : set<cube_ref > & source_ ) :
destination ( destination_ ) , source ( source_ ) {

}
bool visit ( cube_ref h ) {

i f (h . get_rect ( ) . getSignInfo ( ) == SK_KNOWN_MIXED_SIGN ) {
source . erase (h ) ;
h . get_rect ( ) . clear_hull ( ) ;
destination . insert (h ) ;

}
assert ( source . find (h ) == source . end ( ) ) ;
return fa l se ;

}
} ;

public :
Mesher ( FunctionType &f_ , Numeric low_ , Numeric high_ )

: f (f_ ) , low ( low_ ) , high ( high_ ) , inter (low , high ) {
cube_ref root_ref = tree . root_reference ( ) ;
cube & root = root_ref . get_rect ( ) ;

root . f = &f ;
for (unsigned int i=0; i < dim ; i++) {

root . location [ i ] = &inter ;
}
for (unsigned int i=0; i < dim ; i++) {

root_ref . find_boundary ( std : : bitset<dim−1>() ,
std : : bitset<dim>(1<<i ) ,
std : : bitset<dim>(0) ) . get_rect ( ) . border

= true ;
root_ref . find_boundary ( std : : bitset<dim−1>() ,

std : : bitset<dim>(0) ,
std : : bitset<dim>(1<<i ) ) . get_rect ( ) .
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border = true ;
}
root . post_init ( ) ;

}

int initialize_unknown ( ) {
cube_ref root_ref = tree . root_reference ( ) ;
cube & root = root_ref . get_rect ( ) ;

ref_collector c ( unknown ) ;
root . get_reference ( ) . visit_leaves (c ) ;
return unknown . size ( ) ;

}

void process_one_unknown ( ) {
assert ( unknown . size ( ) > 0) ;
cube_ref r = ∗unknown . begin ( ) ;
unknown . erase ( unknown . begin ( ) ) ;

i f (r . get_rect ( ) . normal_check_ok ( ) ) {
valid . insert (r ) ;

} else {
ref_collector c ( unknown ) ;

r . split ( ) ;
r . visit_leaves (c ) ;

ref_mover m ( unknown , valid ) ;
r . visit_all_neighbors (m ) ;

}
}

inl ine int split_all ( ) {
while ( unknown . size ( ) != 0)

process_one_unknown ( ) ;
return valid . size ( ) ;

}
public :

void populateMesh ( PointMesh<Numeric , dim> &pm ) {
face_collector fc (pm ) ;
for (typename set_type : : iterator

i = valid . begin ( ) ;
i != valid . end ( ) ;
++i ) {

cube_ref r = ∗i ;
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r . get_rect ( ) . visit_ext_faces_s (fc ) ;
}

}
} ;

PointMesh.h++ implements a rather basic sort of triangle soup mesh with shared vertexes. This

sort of mesh maps well to .off files.

#pragma once
#include < l i s t >
#include ”Simplex . h++”

template <class numeric , dim_ord dim>
class PointMesh {
public :

typedef Point<numeric , dim> point_type ;
std : : vector<point_type > points ;
std : : map<point_type , unsigned int> point_idx_map ;
class face_type {
public :

unsigned int indices [ dim ] ;
} ;

std : : list<face_type> faces ;
typedef typename std : : list<face_type > : : const_iterator face_iter ;

unsigned int get_make_point ( const point_type &p ) {
typename std : : map<point_type , unsigned int > : : iterator i =

point_idx_map . find (p ) ;
i f (i != point_idx_map . end ( ) )

return i−>second ;

unsigned int r = points . size ( ) ;
points . push_back (p ) ;
assert ( points [ r ] == p ) ;
point_idx_map . insert ( std : : make_pair (p , r ) ) ;
return r ;

}

void add_face ( Simplex<numeric , dim , dim−1> face ) {
typename std : : list<face_type > : : iterator n = faces . insert ( faces .

end ( ) , face_type ( ) ) ;
for (unsigned int i=0; i < dim ; i++) {

n−>indices [ i ] = get_make_point ( face . getPoint (i ) ) ;
}

}
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template <dim_ord x , dim_ord y>
void rotate ( numeric s ) {

assert (x >=0 && y>=0 && dim > 0 && x != y ) ;
assert (x < dim && y < dim ) ;
assert (s <= numeric (1 ) && s >= numeric (−1) ) ;

numeric c = 1 − s∗s ;
for (unsigned int i = 0 ; i < points . size ( ) ; i++) {

numeric temp [ dim ] ;
point_type p = points [ i ] ;

for (unsigned int j=0 ; j < dim ; j++) {
i f (j==x ) {

temp [ j ] = c ∗ p . getCoord (x ) + s ∗ p . getCoord (y ) ;
}
else i f (j==y ) {

temp [ j ] = c ∗ p . getCoord (y ) − s ∗ p . getCoord (x ) ;
}
else {

temp [ j ] = p . getCoord (j ) ;
}

}
points [ i ] = point_type ( temp ) ;

}
}

} ;

Simplex.h++ implements a simplex data structure. Key points are that it uses reference counting

and has an order making it suitable to use with the C++ standard library containers.

#pragma once

#include <vector>
#include <map>
#include <algor ithm>
#include <iostream>
#include <a s s e r t . h>
#include <set>
#include ”Point . h++”
#include ”Vector . h++”
#include ”FixedLengthSort . h++”

template <class numeric , dim_ord a_dim , dim_ord s_dim>
class Simplex ;

template <class numeric , dim_ord a_dim , dim_ord s_dim>
std : : ostream& operator<<(std : : ostream&,
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const Simplex<numeric , a_dim , s_dim> &) ;

template <class numeric , dim_ord a_dim , dim_ord s_dim>
class Simplex {
public :

typedef Point<numeric , a_dim> point_type ;
private :

class PointSort {
public :

bool operator ( ) ( const Point<numeric , a_dim> &A , const Point<
numeric , a_dim> &B ) {

return A < B ;
}

} ;

class Impl {
private :

point_type points [ s_dim + 1 ] ;
public :

Impl ( const point_type my_points [ s_dim+1] , bool ordered ) {
i f ( ordered ) {

for ( dim_ord i=0; i < s_dim+1; i++) {
points [ i ] = my_points [ i ] ;
i f (i > 0) {

assert ( points [ i−1]<=points [ i ] ) ;
i f ( points [ i−1] == points [ i ] ) {

assert ( fa l se ) ;
}

}
}

} else {
point_type temp_points [ s_dim +1] ;
for ( dim_ord i=0; i < s_dim+1; i++) {

temp_points [ i ] = my_points [ i ] ;
}
FixedLengthSorter<point_type , s_dim+1, PointSort > : :sort (

temp_points , PointSort ( ) ) ;
for ( dim_ord i=0; i < s_dim+1; i++) {

points [ i ] = temp_points [ i ] ;
i f (i > 0) {

assert ( points [ i−1] <= points [ i ] ) ;
i f ( points [ i−1] == points [ i ] ) {

assert ( fa l se ) ;
}

}
}
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}
}
inl ine point_type getPoint ( dim_ord i ) const {

return points [ i ] ;
}
inl ine bool operator==(const Impl &o ) {

for ( dim_ord i=0; i < s_dim+1; i++) {
i f ( points [ i ] != o . points [ i ] ) {

return fa l se ;
}

}
return true ;

}
inl ine bool operator<(const Impl &o ) const {

for ( dim_ord i=0; i < s_dim+1; i++) {
i f ( points [ i ] < o . points [ i ] ) {

return true ;
}
i f (o . points [ i ] < points [ i ] ) {

return fa l se ;
}

}
return fa l se ;

}

inl ine bool contains ( const point_type &p ) const {
for ( dim_ord i=0; i <s_dim+1; i++) {

i f ( points [ i ] == p )
return true ;

}
return fa l se ;

}
} ;

boost : : shared_ptr<Impl> impl ;
#ifndef NDEBUG

bool init ;
#endif

public :
typedef Simplex<numeric , a_dim , s_dim> my_type ;

Simplex ( const point_type my_pts [ s_dim+1] , bool ordered = fa l se ) :
impl (new Impl ( my_pts , ordered ) ) {

#ifndef NDEBUG
init = true ;

#endif

}
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Simplex ( ) {
#ifndef NDEBUG

init = fa l se ;
#endif

}

Simplex ( const Simplex<numeric , a_dim , s_dim − 1> &s ,
const point_type &p ) {

point_type pts [ s_dim+1] ;
for (unsigned int i=0; i < s_dim ; i++) {

pts [ i ] = s . getPoint (i ) ;
}
pts [ s_dim ] = p ;
std : : sort (pts , pts + s_dim + 1 , PointSort ( ) ) ;
boost : : shared_ptr<Impl> impl_ (new Impl (pts , fa l se ) ) ;
impl = impl_ ;

#ifndef NDEBUG
init = true ;

#endif

}

Simplex ( const std : : set<point_type >&s ) {
assert (s . size ( ) == s_dim + 1) ;
point_type pts [ s_dim+1] ;
typename std : : set<point_type > : : const_iterator i = s . begin ( ) ;
for (unsigned int j=0; j < s_dim+1; j++) {

pts [ j ] = ∗i ;
i++;

}
boost : : shared_ptr<Impl> impl_ (new Impl (pts , true ) ) ;
impl = impl_ ;

#ifndef NDEBUG
init = true ;

#endif

}

Simplex ( const my_type &p ) :
impl (p . impl ) {

#ifndef NDEBUG
init = p . init ;

#endif

}

point_type getPoint ( dim_ord i ) const {
#ifndef NDEBUG
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assert ( init ) ;
#endif

assert (i < s_dim +1) ;
return impl−>getPoint (i ) ;

}

bool operator==(const my_type &o ) const {
#ifndef NDEBUG

assert ( init && o . init ) ;
#endif

return impl == o . impl | | ∗impl == ∗impl ;
}

bool operator !=(const my_type &o ) const {
#ifndef NDEBUG

assert ( init && o . init ) ;
#endif

return ! ( ∗ this == o ) ;
}

bool operator<(const my_type &o ) const {
#ifndef NDEBUG

assert ( init && o . init ) ;
#endif

i f ( impl == o . impl ) return fa l se ;
return ∗impl < ∗o . impl ;

}

my_type &operator =(const my_type &o ) {
#ifndef NDEBUG

assert (o . init ) ;
init = true ;

#endif

impl = o . impl ;
return ∗ this ;

}

Simplex<numeric , a_dim , s_dim − 1> boundary ( dim_ord i ) const {
assert (i < s_dim+1) ;
point_type points [ s_dim ] ;
for ( dim_ord j=0; j < i ; j++) {

points [ j ] = getPoint (j ) ;
}
for ( dim_ord j=i ; j < s_dim ; j++) {

points [ j ] = getPoint (j+1) ;
}
return Simplex<numeric , a_dim , s_dim − 1> ( points , true ) ;
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}

bool contains ( const point_type &p ) const {
assert ( init ) ;
return impl−>contains (p ) ;

}

friend std : : ostream& operator<<(std : : ostream& os , const Simplex<
numeric , a_dim , s_dim>& r ) {

os << ”<” << r . impl−>getPoint (0 ) ;

for (unsigned int i=1; i < s_dim+1; i++) {
os << ” , ” << r . impl−>getPoint (i ) ;

}

os<< ”>” ;
return os ;

}

Vector<numeric , a_dim> find_unsigned_normal ( const numeric tolerance

) const {
assert ( s_dim == a_dim −1) ;
Vector<numeric , a_dim> basis [ a_dim ] ;
for ( dim_ord i=1; i < a_dim ; i++) {

basis [ i−1] = Vector<numeric , a_dim> (impl−>getPoint (0 ) , impl−>
getPoint (i ) ) . unit ( ) ;

}
Vector<numeric , a_dim > : : complete_basis ( basis , tolerance ) ;
return basis [ a_dim−1] ;

}

} ;

Point.h++ implements a point data structure. Key aspects are that it uses reference counting

and has an order making it suitable to use with the C++ standard library containers.

#pragma once

#include ” Ordina l s . h++”
#include <boost / shared pt r . hpp>
#include <iostream>
#include <a s s e r t . h>

template <class numeric , dim_ord dim>
class Point ;
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template <class numeric , dim_ord dim>
std : : ostream& operator<<(std : : ostream&,

const Point<numeric , dim> &) ;

template <class numeric , dim_ord dim>
class Point {
private :

class Impl {
private :

numeric coords [ dim ] ;
public :

Impl ( numeric my_coords [ dim ] ) {
for ( dim_ord i=0; i < dim ; i++) {

coords [ i ] = my_coords [ i ] ;
}

}
template<typename iter>
Impl ( iter begin , const iter end ) {

for ( dim_ord i=0; i < dim ; i++){
coords [ i ] = ∗begin ;
begin++;

}
assert ( end == begin ) ;

}
inl ine const numeric &getCoord ( dim_ord i ) const {

return coords [ i ] ;
}
inl ine bool operator==(const Impl &o ) {

for ( dim_ord i=0; i < dim ; i++) {
i f ( coords [ i ] != o . coords [ i ] ) {

return fa l se ;
}

}
return true ;

}
inl ine bool operator<(const Impl &o ) {

for ( dim_ord i=0; i < dim ; i++) {
i f ( coords [ i ] < o . coords [ i ] ) {

return true ;
}
i f ( coords [ i ] > o . coords [ i ] ) {

return fa l se ;
}

}
return fa l se ;

}
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inl ine bool operator>(const Impl &o ) {
for ( dim_ord i=0; i < dim ; i++) {

i f ( coords [ i ] > o . coords [ i ] ) {
return true ;

}
i f ( coords [ i ] < o . coords [ i ] ) {

return fa l se ;
}

}
return fa l se ;

}

} ;

boost : : shared_ptr<Impl> impl ;
#ifndef NDEBUG

bool init ;
#endif

public :

typedef Point<numeric , dim> my_type ;

Point ( numeric my_coords [ dim ] ) :
impl (new Impl ( my_coords ) ) {

#ifndef NDEBUG
init = true ;

#endif

}

template <typename iter>
Point ( iter begin , iter end ) :

impl (new Impl ( begin , end ) ) {
#ifndef NDEBUG

init = true ;
#endif

}

Point ( ) {
#ifndef NDEBUG

init = fa l se ;
#endif

}

Point ( const Point<numeric , dim> &p ) :
impl (p . impl ) {

#ifndef NDEBUG
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init = p . init ;
#endif

}

const numeric &getCoord ( dim_ord i ) const {
#ifndef NDEBUG

assert ( init ) ;
#endif

assert (i < dim ) ;
return impl−>getCoord (i ) ;

}

class coord_iter {
public :

const my_type &p ;
int i ;
coord_iter ( const my_type &p_ , int i_ ) : p (p_ ) , i (i_ ) {
}
coord_iter operator ++(int ) {

i+=1;
return coord_iter (p , i−1) ;

}
coord_iter &operator ++(){

i++;
return ∗ this ;

}
const numeric &operator ∗ ( ) {

return p . getCoord (i ) ;
}
bool operator==(const coord_iter &o ) {

assert (p == o . p ) ;
return i== o . i ;

}
bool operator !=(const coord_iter &o ) {

assert (p == o . p ) ;
return i != o . i ;

}
} ;

coord_iter coord_begin ( ) const {
return coord_iter (∗ this , 0) ;

}
coord_iter coord_end ( ) const {

return coord_iter (∗ this , dim ) ;
}

bool operator==(const my_type &o ) const {
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#ifndef NDEBUG
assert ( init && o . init ) ;

#endif

return impl == o . impl | | (∗ impl ) == (∗o . impl ) ;
}

bool operator !=(const my_type &o ) const {
#ifndef NDEBUG

assert ( init && o . init ) ;
#endif

return ! ( ( ∗ this ) == o ) ;
}

bool operator<(const my_type &o ) const {
#ifndef NDEBUG

assert ( init && o . init ) ;
#endif

i f ( impl == o . impl ) return fa l se ;
return (∗ impl ) < (∗o . impl ) ;

}

bool operator>=(const my_type &o ) const {
return ! ( ∗ this < o ) ;

}

bool operator>(const my_type &o ) const {
#ifndef NDEBUG

assert ( init && o . init ) ;
#endif

i f ( impl == o . impl ) return fa l se ;
return (∗ impl ) > (∗o . impl ) ;

}

bool operator<=(const my_type &o ) const {
return ! ( ∗ this > o ) ;

}

my_type &operator =(const my_type &o ) {
#ifndef NDEBUG

assert (o . init ) ;
init = true ;

#endif

impl = o . impl ;
return ∗ this ;

}

friend std : : ostream& operator<<(std : : ostream& os , const Point<
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numeric , dim>& r ) {
os << ” [ ” << r . impl−>getCoord (0 ) ;

for (unsigned int i=1; i < dim ; i++) {
os << ” , ” << r . impl−>getCoord (i ) ;

}

os<< ” ] ” ;
return os ;

}
} ;

CGALHullFinder.h++ uses the CGAL n-dimensional convex hull routine to find HV or H ′
V

depending on the convexity_flag template parameter. This is the only file that would need to

be changed in order to use a different convex hull algorithm.

#pragma once

#include ” SimpleHul l . h++”
#include ”CrudeHull . h++”

#include <CGAL/ bas i c . h>
#include <CGAL/ Orig in . h>
#include <CGAL/Convex hul l d . h>
#include <CGAL/ Carte s ian d . h>
#include <CGAL/enum . h>

template <typename K , typename FunctionType ,
dim_ord a_dim , bool convexity_flag>

class CGALHullFinder {
typedef typename K : : RT Numeric ;

typedef SimpleHull<K , FunctionType , a_dim , convexity_flag>
simp_hull ;

public :
template <dim_ord a_dim_ , dim_ord i_dim , class B>
class info : public simp_hull : : template data<a_dim_ , i_dim , B> {
} ;

template <class B>
class info <a_dim , a_dim , B> : public simp_hull : : template data<

a_dim , a_dim , B>{
public :

typedef typename simp_hull : : template data<a_dim , a_dim , B> Base ;
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typedef typename Base : : rect_top rt ;
typedef typename Base : : face_desc face_desc ;
typedef CGAL : : Point_d<K> cgal_point_type ;
typedef Point<Numeric , a_dim> point_type ;

// V i s i t s a l l o f the f a c e s o f the convex h u l l o f the c r o s s i n g s .
//Except , when the convex h u l l on ly has dimension n−1, we t r y
// adding an i n t e r i o r corning and t r e a t i n g i t as a c ro s s i n g . We
// re turn t rue i f e v e r y t h in g went f i n e and we found a l l the needed
// faces , f a l s e i f we had t r o u b l e r e s o l v i n g the n−1 dimensiona l
// case .
template <typename visitor>
stat ic bool visit_faces ( const std : : set<point_type> &crossings ,

const std : : set<point_type> &interior_corners ,
const std : : set<point_type> &exterior_corners ,
visitor &v ) {

typedef CGAL : : Convex_hull_d<K> hull_type ;
hull_type hull ( a_dim ) ;

typename std : : set<point_type > : : const_iterator Si ;
for (Si = crossings . begin ( ) ; Si != crossings . end ( ) ; ++Si ) {

hull . insert ( cgal_point_type ( a_dim , Si−>coord_begin ( ) ,Si−>
coord_end ( ) ) ) ;

}

i f ( ( unsigned int ) hull . current_dimension ( ) < a_dim − 1) return

true ;

i f ( hull . current_dimension ( ) == a_dim −1) {
const point_type &p=∗(interior_corners . begin ( ) ) ;
const cgal_point_type p2 = cgal_point_type ( a_dim ,

p . coord_begin ( ) ,
p . coord_end ( ) ) ;

i f ( ! hull . is_dimension_jump (p2 ) ) {
return fa l se ;

}
hull . insert (p2 ) ;

}

typename hull_type : : Facet_iterator i ;

for (i = hull . facets_begin ( ) ; i != hull . facets_end ( ) ; ++i ) {
point_type pts [ a_dim ] ;

for (unsigned int j=0; j < a_dim ; j++) {
CGAL : : Point_d<K> p = hull . point_of_facet (i , j ) ;
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pts [ j ] = point_type (p . cartesian_begin ( ) , p . cartesian_end ( ) )
;

}
v ( face_desc ( hull . hyperplane_supporting (i ) ,

Simplex<Numeric , a_dim , a_dim−1>(pts ) ) ) ;
}
return true ;

}
} ;

} ;

SimpleHull.h++ implements some of the functionality required by Mesher.h++ in a simple way.

#pragma once

#include <CGAL/ bas i c . h>
#include <CGAL/ Orig in . h>
#include <CGAL/ Carte s ian d . h>
#include <CGAL/enum . h>

#include ”Simplex . h++”
#include ”Vector . h++”
#include ” Funct ionInfo . h++”

template <typename K , typename FunctionType ,
dim_ord a_dim , bool convexity_flag>

class SimpleHull {
typedef FunctionInfo<K , FunctionType , a_dim , convexity_flag> fi ;

public :
typedef typename K : : RT Numeric ;
typedef typename K : : FT Num ;

template <dim_ord a_dim_ , dim_ord i_dim , class B>
class data : public fi : : template info <a_dim_ , i_dim , B> {
} ;

template <class B>
class data <a_dim , a_dim , B>

: public fi : : template info <a_dim , a_dim , B> {

public :
typedef typename fi : : template info <a_dim , a_dim , B> Base ;
typedef typename Base : : rect_top rt ;
typedef typename Base : : outer_top ot ;
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typedef typename Base : : rect_reference_top ref_top ;

typedef typename ot : : template rect<0> rect_point ;

typedef typename Base : : face_desc face_descr ;

typedef CGAL : : Point_d<K> cgal_point_type ;
typedef Point<Numeric , a_dim> point_type ;

class point_collector {
public :

std : : set<point_type> & interior_corners ;
std : : set<point_type> & exterior_corners ;
std : : set<point_type> & crossings ;
point_collector ( std : : set<point_type> &interior_corners_ ,

std : : set<point_type> &exterior_corners_ ,
std : : set<point_type> &crossings_ ) :

interior_corners ( interior_corners_ ) ,
exterior_corners ( exterior_corners_ ) ,
crossings ( crossings_ ) {

}
bool visit (typename ot : : template rect_reference<1> &r ) {

std : : bitset<a_dim> un_collapsed = CGAL : : inverse<a_dim>(r .
collapsed_bits ( ) ) ;

rect_point &a=r . find_boundary ( std : : bitset<0>() ,
un_collapsed ,
std : : bitset<a_dim>(0) ) . get_rect

( ) ;

rect_point &b=r . find_boundary ( std : : bitset<0>() ,
std : : bitset<a_dim>(0) ,
un_collapsed ) . get_rect ( ) ;

i f (a . is_positive ( )==convexity_flag ) {
exterior_corners . insert (a . point ) ;

} else {
interior_corners . insert (a . point ) ;

}

i f (b . is_positive ( )==convexity_flag ) {
exterior_corners . insert (b . point ) ;

} else {
interior_corners . insert (b . point ) ;

}

i f (a . is_positive ( ) != b . is_positive ( ) ) {
crossings . insert (r . get_rect ( ) . get_midpoint ( ) ) ;

}
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return fa l se ;
}

bool visit (typename ot : : template rect_reference<a_dim − 1> &r )
{

std : : bitset<a_dim> c = r . collapsed_bits ( ) ;
for (unsigned int i=0; i < a_dim ; i++) {

i f ( ! c [ i ] ) {
std : : bitset<a_dim> to_collapse (c ) ;
to_collapse [ i ] = true ;
to_collapse . flip ( ) ;
CGAL : : partition_lister<a_dim> segments ( to_collapse ) ;
do {

r . find_boundary ( std : : bitset<1>() ,
segments . get_part1 ( ) ,
segments . get_part2 ( ) ) . visit_leaves (∗

this ) ;
} while ( segments . next ( ) ) ;

}
}
return fa l se ;

}
} ;

template <class base_visitor>
class face_checker {

base_visitor &v ;
const std : : list<cgal_point_type> &interior_corners ;
const point_type high ;
const point_type low ;

public :
std : : list<face_descr> faces ;
face_checker ( base_visitor &v_ ,

const std : : list<cgal_point_type> &
interior_corners_ ,

point_type high_ ,
point_type low_ )

: v (v_ ) , interior_corners ( interior_corners_ ) ,
high ( high_ ) , low ( low_ ) {

}
void operator ( ) ( const face_descr &f ) {

f . validate ( ) ;
bool ext_face = true ;
typename std : : list<cgal_point_type > : : const_iterator k ;
for (k=interior_corners . begin ( ) ; k != interior_corners . end ( ) ; k

++) {
i f ( ! f . plane . has_on_negative_side (∗k ) ) {
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ext_face = fa l se ;
break ;

}
}
i f ( ext_face ) {

v (f , high , low ) ;
faces . push_front (f ) ;

}
}

} ;

template <class base_visitor>
class face_collector {

base_visitor &v ;
std : : list<face_descr> & faces ;

public :
face_collector ( base_visitor &v_ ,

std : : list<face_descr> &faces_ )
: v (v_ ) , faces ( faces_ ) {

}
void operator ( ) ( const face_descr &f ) {

faces . push_front (f ) ;
v (f ) ;

}
} ;

typedef typename ot : : template rect_handle<a_dim−1> face_handle ;

template <typename visitor>
bool visit_ext_faces ( const std : : set<point_type> &crossings ,

const std : : set<point_type> &
interior_corners ,

const std : : set<point_type> &
exterior_corners ,

point_type highs ,
point_type lows ,
visitor &v ) {

for (unsigned int i=0; i < a_dim ; i++) {
assert ( highs . getCoord (i ) > lows . getCoord (i ) ) ;

}

typename std : : list<cgal_point_type> interior_list ;

typename std : : set<point_type > : : iterator Si ;
for (Si = interior_corners . begin ( ) ;

Si != interior_corners . end ( ) ;
++Si ) {
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interior_list . push_front ( cgal_point_type ( a_dim ,
Si−>coord_begin ( ) ,
Si−>coord_end ( ) ) ) ;

}

face_checker<visitor> col (v , interior_list , highs , lows ) ;

bool r = rt : : visit_faces ( crossings ,
interior_corners ,
exterior_corners ,
col ) ;

i f ( ! r )
return fa l se ;

for (Si= crossings . begin ( ) ; Si != crossings . end ( ) ; ++Si ) {
bool found_match = fa l se ;
cgal_point_type P ( a_dim , Si−>coord_begin ( ) , Si−>coord_end ( ) )

;
for (typename std : : list<face_descr > : : const_iterator Fi=col .

faces . begin ( ) ;
Fi != col . faces . end ( ) ;
++Fi ) {

i f (Fi−>plane . has_on_boundary (P ) ) {
found_match=true ;
break ;

}
}
i f ( ! found_match ) {

return fa l se ;
}

}
return true ;

} ;

template <typename visitor>
bool visit_ext_faces_s ( visitor &v ) {

std : : set<point_type > exterior_corners ;
std : : set<point_type > interior_corners ;
std : : set<point_type> pts ;

point_collector pc ( interior_corners , exterior_corners , pts ) ;

for (unsigned int i=0; i < a_dim ; i++) {
this−>get_reference ( ) . find_boundary ( std : : bitset<a_dim−1>() ,

std : : bitset<a_dim>(1<<i ) ,
std : : bitset<a_dim>(0) )
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. visit_leaves (pc ) ;

this−>get_reference ( ) . find_boundary ( std : : bitset<a_dim−1>() ,
std : : bitset<a_dim>(0) ,
std : : bitset<a_dim>(1<<i ) )

. visit_leaves (pc ) ;
}

i f ( interior_corners . size ( ) ==0 | |
exterior_corners . size ( ) ==0) {

return true ;
}

return ( static cast< rt& > (∗ this ) )
. visit_ext_faces (pts ,

interior_corners ,
exterior_corners ,
this−>get_reference ( )
. find_boundary ( std : : bitset<0>() ,

std : : bitset<a_dim>((1<<a_dim

)−1) ,
std : : bitset<a_dim>(0) )

. get_rect ( ) . point ,
this−>get_reference ( )
. find_boundary ( std : : bitset<0>() ,

std : : bitset<a_dim>(0) ,
std : : bitset<a_dim>((1<<a_dim

)−1) )
. get_rect ( ) . point ,
v ) ;

}

void clear_hull ( ) {
// e faces known = f a l s e ;
// e f a c e s . c l e a r ( ) ;

}

void init_as_root ( ) {
Base : : init_as_root ( ) ;
// e faces known = f a l s e ;

}

void init_as_child (typename B : : rect_top & parent ,
std : : bitset<a_dim> pos ) {

Base : : init_as_child ( parent , pos ) ;
// e faces known = f a l s e ;

}
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} ;
} ;

FunctionInfo.h++ keeps tract of what information is known about the signs of boxes. In

addition, it contains some of the logic required to perform normal vector checking and other

related logic.

#pragma once

#include <boost /numeric / i n t e r v a l . hpp>
#include ”CGAL/ Sp a t i a l s u b d i v i s i o n t r e e . h”
#include ”CGAL/ Carte s ian d . h”

#include ”LocationData . h++”
#include ”Point . h++”
#include ”Simplex . h++”

//Represents what we know about the s i gn f w i th in a reg ion .
//KNOWN MIXED SIGN doesn ’ t guarantee t ha t f i s a c tua l y mixed , ra the r
// j u s t t h a t the i n t e r v a l e vau l a t i on o f f on the square i s mixed .

enum signKnowledge{ SK_UNKNOWN_SIGN , SK_POSITIVE_SIGN ,
SK_NONPOSITIVE_SIGN , SK_KNOWN_MIXED_SIGN } ;

enum gradKnowledge{ UNKNOWN_GRAD , NONZERO_GRAD , KNOWN_MAYBE_ZERO } ;

inl ine signKnowledge subsetKnowledge ( signKnowledge s ) {
i f (s == SK_KNOWN_MIXED_SIGN )

return SK_UNKNOWN_SIGN ;
return s ;

}

template <dim_ord len>
std : : bitset<len> inverse ( std : : bitset<len> r ) {

r . flip ( ) ;
return r ;

}

template <dim_ord len>
std : : bitset<len> insertZero ( dim_ord loc , std : : bitset<len−1> s ) {

std : : bitset<len> r (s . to_ulong ( ) ) ;
r [ loc ] = fa l se ;
for (unsigned int i=loc+1; i < len ; i++) {

r [ i ] = s [ i−1] ;
}
return r ;
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}

template <typename K , typename FunctionType , dim_ord a_dim , bool

convexity_flag>
class FunctionInfo {
public :

typedef typename K : : RT Numeric ;
typedef typename K : : FT Num ;
typedef LocationData<Numeric> loc_type ;

template <dim_ord a_dim_ , dim_ord i_dim , class B>
class info : public loc_type : : template data <a_dim_ , i_dim , B> {
} ;

template <class B>
class info <a_dim , a_dim , B>

: public loc_type : : template data <a_dim , a_dim , B> {
typedef typename loc_type : : template data <a_dim , a_dim , B> base ;
typedef typename base : : outer_top ot ;

public :
signKnowledge sign ;
gradKnowledge grad ;
FunctionType ∗f ;

class face_desc {
public :

CGAL : : Hyperplane_d<K> plane ;
Simplex<Numeric , a_dim , a_dim−1> face ;
face_desc ( const CGAL : : Hyperplane_d<K > &plane_ ,

const Simplex<Numeric , a_dim , a_dim−1> &face_ ) :
plane ( plane_ ) , face ( face_ ) {

}
face_desc ( ) {
}
void validate ( ) const {

for (unsigned int i=0; i < a_dim ; i++) {
assert ( plane . has_on_boundary ( CGAL : : Point_d<K> ( a_dim , face .

getPoint (i ) . coord_begin ( ) ,
face .

getPoint (
i ) .
coord_end

( ) ) ) ) ;
}

}
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} ;

class norm_check_visitor {

typedef typename boost : : numeric : : interval<Num> b_inter ;
public :

bool found_bad_norm ;
const b_inter ∗grad_comps ;
const Num zero ;
const std : : bitset<a_dim> p_borders ;
const std : : bitset<a_dim> n_borders ;
norm_check_visitor ( const b_inter ∗grad_comps_ ,

std : : bitset<a_dim> p_borders_ ,
std : : bitset<a_dim> n_borders_ )

: found_bad_norm ( fa l se ) ,
grad_comps ( grad_comps_ ) ,
zero (0 ) ,
p_borders ( p_borders_ ) ,
n_borders ( n_borders_ ) {

}
void operator ( ) ( const face_desc&f ,

const Point<Numeric , a_dim> & large ,
const Point<Numeric , a_dim> & small ) {

i f ( ! found_bad_norm ) {
CGAL : : Vector_d<K > norm = convexity_flag ? f . plane .

orthogonal_vector ( )
: − f . plane .

orthogonal_vector

( ) ;
using namespace boost : : numeric ;
using namespace boost : : numeric : : interval_lib ;

b_inter sum ( Num (0 ) ) ;
i f ( p_borders . any ( ) | |

n_borders . any ( ) ) {
Numeric zero (0 ) ;
for (unsigned int j=0; j < a_dim ; j++) {

bool b_hit = fa l se ;
assert ( large . getCoord (j ) > small . getCoord (j ) ) ;
i f (j > 0) {

assert ( ( large . getCoord (j ) − small . getCoord (j ) ) ==
( large . getCoord (j−1) − small . getCoord (j−1) ) )

;
}
for (unsigned int k=0; k < a_dim ; k++) {

assert ( large . getCoord (j ) >= f . face . getPoint (k ) .
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getCoord (j ) ) ;
assert ( small . getCoord (j ) <= f . face . getPoint (k ) .

getCoord (j ) ) ;

i f ( p_borders [ j ] && f . face . getPoint (k ) . getCoord (j ) ==
large . getCoord (j ) )

b_hit = true ;
i f ( n_borders [ j ] && f . face . getPoint (k ) . getCoord (j ) ==

small . getCoord (j ) )
b_hit = true ;

}
i f ( b_hit ) {

sum += ( hull ( grad_comps [ j ] , zero ) ∗ norm . cartesian (j ) )
;

} else {
sum += ( grad_comps [ j ] ∗ norm . cartesian (j ) ) ;

}
}
i f ( ! cergt (sum , zero ) ) {

found_bad_norm = true ;
}

} else {
for (unsigned int j=0; j < a_dim ; j++) {

sum += ( grad_comps [ j ] ∗ norm . cartesian (j ) ) ;
}
i f ( ! cergt (sum , zero ) ) {

found_bad_norm = true ;
}

}
}

}
} ;

bool normal_check_ok ( ) {

using namespace boost : : numeric ;
using namespace boost : : numeric : : interval_lib ;

typedef interval<Num> b_inter ;

b_inter loc [ a_dim ] ;

std : : bitset<a_dim> p_bds (0 ) ;
std : : bitset<a_dim> n_bds (0 ) ;

const std : : bitset<a_dim> zero (0 ) ;
for (unsigned int i=0; i < a_dim ; i++) {
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loc [ i ] = b_inter ( Num ( this−>get_interval (i ) . get_left_coord ( ) ) ,
Num ( this−>get_interval (i ) . get_right_coord ( ) )

) ;
std : : bitset<a_dim> dir(1<<i ) ;
p_bds [ i ] = this−>get_reference ( ) . find_boundary ( std : : bitset<

a_dim−1>() ,
dir , zero )

. get_rect ( ) . border ;
n_bds [ i ] = this−>get_reference ( ) . find_boundary ( std : : bitset<

a_dim−1>() ,
zero , dir )

. get_rect ( ) . border ;
}
b_inter grad_comps [ a_dim ] ;
f−>evalGrad (loc , grad_comps ) ;

norm_check_visitor v ( grad_comps ,
p_bds ,
n_bds ) ;

i f ( ! ( stat ic cast < typename base : : rect_top &> (∗ this ) ) .
visit_ext_faces_s (v ) )

return fa l se ;

return ( ! v . found_bad_norm ) ;
}

signKnowledge getSignInfo ( ) {
i f ( sign != SK_UNKNOWN_SIGN )

return sign ;

assert (f != 0) ;
using namespace boost : : numeric ;
using namespace boost : : numeric : : interval_lib ;

typedef interval<Num> b_inter ;
b_inter loc [ a_dim ] ;
for (unsigned int i=0; i < a_dim ; i++) {

loc [ i ] = b_inter ( this−>get_interval (i ) . get_left_coord ( ) ,
this−>get_interval (i ) . get_right_coord ( ) ) ;

}
const Num zero (0 ) ;
b_inter res = f−>eval ( loc ) ;
i f ( cerle (res , zero ) ) {

sign = SK_NONPOSITIVE_SIGN ;
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return sign ;
}
i f ( cergt (res , zero ) ) {

sign = SK_POSITIVE_SIGN ;
return sign ;

}

sign = SK_KNOWN_MIXED_SIGN ;
return sign ;

}

bool nonZeroGrad ( ) {
assert (f != 0) ;
i f ( grad == UNKNOWN_GRAD ) {

using namespace boost : : numeric ;
using namespace boost : : numeric : : interval_lib ;

typedef interval<Num> b_inter ;

b_inter loc [ a_dim ] ;
for (unsigned int i=0; i < a_dim ; i++) {

loc [ i ] = b_inter ( this−>get_interval (i ) . get_left_coord ( ) ,
this−>get_interval (i ) . get_right_coord ( ) ) ;

}
b_inter grad_comps [ a_dim ] ;
f−>evalGrad (loc , grad_comps ) ;
const std : : bitset<a_dim> zero (0 ) ;
for (unsigned int i=0; i < a_dim ; i++) {

i f ( ! zero_in ( grad_comps [ i ] ) ) {
std : : bitset<a_dim> dir(1<<i ) ;
i f ( ! ( this−>get_reference ( ) . find_boundary ( std : : bitset<

a_dim−1>() ,
dir , zero )

. get_rect ( ) . border
| |
this−>get_reference ( ) . find_boundary ( std : : bitset<

a_dim−1>() ,
zero , dir )

. get_rect ( ) . border ) ) {
grad = NONZERO_GRAD ;
break ;

}
}

}
i f ( grad != NONZERO_GRAD )

grad = KNOWN_MAYBE_ZERO ;
}
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i f ( grad == NONZERO_GRAD ) {
return true ;

}
assert ( grad == KNOWN_MAYBE_ZERO ) ;
return fa l se ;

}

template <typename collector>
void collect_crossings ( collector &c ) {

for (unsigned int i=0; i < a_dim ; i++) {
std : : bitset<a_dim> zero (0 ) ;
std : : bitset<a_dim> dir(1<<i ) ;
this−>get_reference ( ) . find_boundary ( std : : bitset<a_dim−1>() ,

dir , zero )
. get_rect ( ) . collect_crossings (c ) ;

this−>get_reference ( ) . find_boundary ( std : : bitset<a_dim−1>() ,
zero , dir )

. get_rect ( ) . collect_crossings (c ) ;
}

}

void init_as_root ( ) {
base : : init_as_root ( ) ;
f = 0 ;
sign = SK_UNKNOWN_SIGN ;
grad = UNKNOWN_GRAD ;

}

void init_as_child (typename B : : rect_top & parent ,
std : : bitset<a_dim> pos ) {

base : : init_as_child ( parent , pos ) ;

sign = subsetKnowledge ( parent . sign ) ;
f = parent . f ;
assert (f != 0) ;
i f ( parent . grad == NONZERO_GRAD ) {

grad = NONZERO_GRAD ;
} else {

assert ( parent . grad == UNKNOWN_GRAD | |
parent . grad == KNOWN_MAYBE_ZERO ) ;

grad = UNKNOWN_GRAD ;
}

}
void do_split ( ) {

base : : do_split ( ) ;
for (unsigned int i =0; i < (1<< a_dim ) ; i++) {
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this−>get_reference ( ) . find_child ( std : : bitset<a_dim>(i ) ) ;
}

}
void post_init ( ) {

base : : post_init ( ) ;

std : : bitset<a_dim> zero (0 ) ;
CGAL : : nbit_pattern_lister<a_dim> faces (1 ) ;
do {

this−>get_reference ( ) . find_boundary ( std : : bitset<a_dim−1>() ,
faces . current , zero ) ;

this−>get_reference ( ) . find_boundary ( std : : bitset<a_dim−1>() ,
zero , faces . current ) ;

CGAL : : partition_lister<a_dim> segments ( CGAL : : inverse<a_dim>(
faces . current ) ) ;

do {
this−>get_reference ( ) . find_boundary ( std : : bitset<1>() ,

segments . get_part1 ( ) ,
segments . get_part2 ( ) ) ;

} while ( segments . next ( ) ) ;
} while ( faces . next ( ) ) ;

i f ( ! this−>get_reference ( ) . is_split ( ) ) {
signKnowledge s = this−>getSignInfo ( ) ;
i f (s==SK_KNOWN_MIXED_SIGN ) {

i f ( ! this−>nonZeroGrad ( ) ) {
this−>get_reference ( ) . split ( ) ;

}
}

}
}

} ;

template <class B>
class info <a_dim , a_dim −1, B>

: public loc_type : : template data <a_dim , a_dim−1, B> {
typedef typename loc_type : : template data <a_dim , a_dim−1, B> base

;
typedef typename base : : outer_top ot ;

public :

bool border ;
signKnowledge sign ;
FunctionType ∗f ;

template <dim_ord c_dim>
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void init_as_boundary (typename ot : : template rect<c_dim> & init_by

,
std : : bitset<a_dim> p_dims ,
std : : bitset<a_dim> m_dims ) {

base : : init_as_boundary ( init_by , p_dims , m_dims ) ;

sign = subsetKnowledge ( init_by . sign ) ;
f = init_by . f ;
border = fa l se ;
assert (f != 0) ;

}

void init_as_child (typename B : : rect_top & parent ,
std : : bitset<a_dim> pos ) {

base : : init_as_child ( parent , pos ) ;

sign = subsetKnowledge ( parent . sign ) ;
f = parent . f ;
border = parent . border ;
assert (f != 0) ;

}

void do_split ( ) {
base : : do_split ( ) ;
for (unsigned int i=0; i < (1<< ( a_dim−1) ) ; i++) {

this−>get_reference ( ) . find_child ( std : : bitset<a_dim−1>(i ) ) ;
}

}
} ;

template <class B>
class info <a_dim , 1 , B> : public loc_type : : template data <a_dim ,

1 , B> {
public :

signKnowledge sign ;
FunctionType ∗f ;
typedef typename loc_type : : template data <a_dim , 1 , B> base ;
typedef typename base : : outer_top ot ;

bool is_crossing ( ) {
assert ( ! this−>get_reference ( ) . is_split ( ) ) ;

i f ( sign == SK_POSITIVE_SIGN | |
sign == SK_NONPOSITIVE_SIGN )

return fa l se ;

typedef typename ot : : template rect<0> vertex_type ;
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std : : bitset<a_dim> zero (0 ) ;
std : : bitset<a_dim> dir ( this−>get_reference ( ) . collapsed_bits ( )

) ;
dir . flip ( ) ;
vertex_type a = this−>get_reference ( )

. find_boundary ( std : : bitset<0>() , dir , zero ) . get_rect ( ) ;
vertex_type b = this−>get_reference ( )

. find_boundary ( std : : bitset<0>() , zero , dir ) . get_rect ( ) ;

return a . is_positive ( ) != b . is_positive ( ) ;
}

Point <Numeric , a_dim> get_midpoint ( ) {
assert ( ! this−>get_reference ( ) . is_split ( ) ) ;
std : : bitset<a_dim> dir ( this−>get_reference ( ) . collapsed_bits ( ) ) ;
Numeric coords [ a_dim ] ;
for (unsigned int i=0; i < a_dim ; i++) {

coords [ i ] = dir [ i ] ? this−>get_coord (i )
: ( this−>get_interval (i ) . get_midpoint ( ) ) ;

}
return Point <Numeric , a_dim>(coords ) ;

}

template <dim_ord c_dim>
void init_as_boundary (typename ot : : template rect<c_dim> & init_by

,
std : : bitset<a_dim> p_dims ,
std : : bitset<a_dim> m_dims ) {

base : : init_as_boundary ( init_by , p_dims , m_dims ) ;

sign = subsetKnowledge ( init_by . sign ) ;
f = init_by . f ;
assert (f != 0) ;

}

void init_as_child (typename B : : rect_top & parent ,
std : : bitset<a_dim> pos ) {

base : : init_as_child ( parent , pos ) ;

sign = subsetKnowledge ( parent . sign ) ;
f = parent . f ;
assert (f !=0) ;

}

} ;
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template <class B>
class info <a_dim , 0 , B> : public loc_type : : template data <a_dim ,

0 , B> {
public :

signKnowledge sign ;
FunctionType ∗f ;
typedef typename loc_type : : template data <a_dim , 0 , B> base ;
typedef typename base : : outer_top ot ;

bool is_positive ( ) {
switch ( sign ) {
case SK_KNOWN_MIXED_SIGN :

assert ( fa l se ) ;
case SK_POSITIVE_SIGN :

assert (f−>is_positive ( this−>point ) ) ;
return true ;

case SK_NONPOSITIVE_SIGN :
assert ( ! f−>is_positive ( this−>point ) ) ;
return fa l se ;

case SK_UNKNOWN_SIGN :
break ;

}
bool r = f−>is_positive ( this−>point ) ;
sign = r ? SK_POSITIVE_SIGN : SK_NONPOSITIVE_SIGN ;
return r ;

}

template <dim_ord c_dim>
void init_as_boundary (typename ot : : template rect<c_dim> & init_by

,
std : : bitset<a_dim> p_dims ,
std : : bitset<a_dim> m_dims ) {

base : : init_as_boundary ( init_by , p_dims , m_dims ) ;

sign = subsetKnowledge ( init_by . sign ) ;
f = init_by . f ;
assert (f !=0) ;

}
} ;

} ;

LocationData.h++ is used by FunctionInfo.h++ and the other higher layers to keep tract of

the positions of the boxes.

#pragma once

#include ”CGAL/ Sp a t i a l s u b d i v i s i o n t r e e . h”
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#include ”Point . h++”

using CGAL : : dim_idx ;

template <typename Numeric>
class LocationInterval {

Numeric &left ;
Numeric &right ;
Numeric midpoint ;

LocationInterval ∗ left_interval ;
LocationInterval ∗ right_interval ;

public :

LocationInterval ( Numeric &left_ , Numeric &right_ )
: left ( left_ ) , right ( right_ ) , midpoint ( ( left_ + right_ ) / Numeric

(2 ) ) {
left_interval = 0 ;
right_interval =0;

}
˜LocationInterval ( ) {

i f ( left_interval != 0)
delete left_interval ;

i f ( right_interval != 0)
delete right_interval ;

}
LocationInterval<Numeric> &get_left_interval ( ) {
i f ( left_interval == 0)

left_interval = new LocationInterval<Numeric>(left , midpoint ) ;
return ∗left_interval ;

}
LocationInterval<Numeric> &get_right_interval ( ) {
i f ( right_interval == 0)

right_interval = new LocationInterval<Numeric>(midpoint , right )
;

return ∗right_interval ;
}
Numeric &get_left_coord ( ) {

return left ;
}
Numeric &get_right_coord ( ) {

return right ;
}
Numeric &get_midpoint ( ) {

return midpoint ;
}
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} ;

template <typename Numeric>
class LocationData {
public :

typedef LocationInterval<Numeric> inter ;
template <dim_idx a_dim , dim_idx i_dim , class B>

class data : public B {
public :

typedef typename B : : outer_top ot ;
void ∗location [ a_dim ] ;

inter & get_interval ( dim_idx idx ) {
assert ( idx < a_dim ) ;
assert ( ! this−>get_reference ( ) . collapsed_bits ( ) [ idx ] ) ;
assert ( location [ idx ] != 0 ) ;
return ∗( static cast< inter ∗>(location [ idx ] ) ) ;

}

Numeric & get_coord ( dim_idx idx ) {
assert ( idx < a_dim ) ;
assert ( this −>get_reference ( ) . collapsed_bits ( ) [ idx ] ) ;
assert ( location [ idx ] != 0) ;
return ∗( static cast< Numeric ∗>(location [ idx ] ) ) ;

}

void init_as_child (typename B : : rect_top & parent ,
std : : bitset<a_dim> pos ) {

B : : init_as_child ( parent , pos ) ;

std : : bitset<a_dim> collapsed = this−>get_reference ( ) .
collapsed_bits ( ) ;

for (unsigned int i=0; i < a_dim ; i++) {
i f ( collapsed [ i ] ) {

location [ i ] = parent . location [ i ] ;
} else {

location [ i ] = pos [ i ] ? static cast<void ∗> (& parent .
get_interval (i ) . get_right_interval ( ) )

: static cast<void ∗> (& parent .
get_interval (i ) . get_left_interval ( )
) ;

}
}

}
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template <dim_idx c_dim>
void init_as_boundary (typename ot : : template rect<c_dim> & init_by

,
std : : bitset<a_dim> p_dims ,
std : : bitset<a_dim> m_dims ) {

B : : init_as_boundary ( init_by , p_dims , m_dims ) ;

std : : bitset<a_dim> collapsed = this−>get_reference ( ) .
collapsed_bits ( ) ;

std : : bitset<a_dim> c_collapsed = init_by . get_reference ( ) .
collapsed_bits ( ) ;

assert ( ( p_dims . to_ulong ( ) & m_dims . to_ulong ( ) ) ==0) ;
assert ( ( p_dims . to_ulong ( ) & c_collapsed . to_ulong ( ) ) == 0) ;
assert ( ( m_dims . to_ulong ( ) & c_collapsed . to_ulong ( ) ) == 0) ;
assert ( ( m_dims . to_ulong ( ) | p_dims . to_ulong ( ) | c_collapsed .

to_ulong ( ) )
== collapsed . to_ulong ( ) ) ;

for (unsigned int i=0; i < a_dim ; i++) {
i f ( c_collapsed [ i ] ) {

location [ i ] = init_by . location [ i ] ;
} else {

i f ( p_dims [ i ] ) {
assert ( collapsed [ i ] ) ;
location [ i ] = static cast< void ∗> (& init_by .

get_interval (i ) . get_right_coord ( ) ) ;
} else {

i f ( m_dims [ i ] ) {
assert ( collapsed [ i ] ) ;
location [ i ] = static cast< void ∗> (& init_by .

get_interval (i ) . get_left_coord ( ) ) ;
} else {

assert ( ! collapsed [ i ] ) ;
location [ i ] = static cast< void ∗> (& init_by .

get_interval (i ) ) ;
}

}
}

}
}
bool contains ( const Point<Numeric , a_dim> &p ) {

std : : bitset<a_dim> collapsed = this−>get_reference ( ) .
collapsed_bits ( ) ;

for (unsigned int i=0; i < a_dim ; i++) {
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i f ( collapsed [ i ] ) {
i f (p . getCoord (i ) < get_interval (i ) . get_left_coord ( ) | |

p . getCoord (i ) > get_interval (i ) . get_right_coord ( ) )
return fa l se ;

} else {
i f (p . getCoord (i ) != get_coord (i ) )

return fa l se ;
}

}
return true ;

}

} ;

template <dim_idx a_dim , class B>
class data<a_dim , a_dim , B> : public B {
public :

LocationInterval<Numeric> ∗location [ a_dim ] ;

inter & get_interval ( dim_idx idx ) {
assert ( idx < a_dim ) ;
return ∗location [ idx ] ;

}

Numeric get_coord ( dim_idx idx ) {
assert ( fa l se ) ;
return Numeric (0 ) ;

}

void init_as_child (typename B : : rect_top & parent ,
std : : bitset<a_dim> pos ) {

B : : init_as_child ( parent , pos ) ;

for (unsigned int i=0; i < a_dim ; i++) {
location [ i ] = pos [ i ] ? & parent . get_interval (i ) .

get_right_interval ( )
: & parent . get_interval (i ) .

get_left_interval ( ) ;

}
}

bool contains ( const Point<Numeric , a_dim> &p ) {
for (unsigned int i=0; i < a_dim ; i++) {

i f (p . getCoord (i ) < location [ i]−>get_left_coord ( ) | |
p . getCoord (i ) > location [ i]−>get_right_coord ( ) )

return fa l se ;
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}
return true ;

}

} ;

template <dim_idx a_dim , class B>
class data<a_dim , 0 , B> : public B{
public :

Point<Numeric , a_dim> point ;

typedef typename B : : outer_top ot ;

template <dim_idx c_dim>
void init_as_boundary (typename ot : : template rect<c_dim> & init_by

,
std : : bitset<a_dim> p_dims ,
std : : bitset<a_dim> m_dims ) {

B : : init_as_boundary ( init_by , p_dims , m_dims ) ;
std : : bitset<a_dim> c_collapsed = init_by . get_reference ( ) .

collapsed_bits ( ) ;

Numeric coords [ a_dim ] ;
for (unsigned int i=0; i < a_dim ; i++) {

i f ( c_collapsed [ i ] ) {
coords [ i ] = init_by . get_coord (i ) ;

} else {
coords [ i ] = p_dims [ i ] ? init_by . get_interval (i ) .

get_right_coord ( )
: init_by . get_interval (i ) . get_left_coord ( ) ;

}
}
point = Point<Numeric , a_dim> ( coords ) ;

}

bool contains ( const Point<Numeric , a_dim> &p ) {
return p == point ;

}
} ;

} ;
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