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Abstract13

Given a set A of n points in Rd with weight function w : A → R>0, the Fermat distance function14

is φ(x) =
∑

a∈A
w(a)∥x − a∥. A classic problem in facility location dating back to 1643, is to15

find the Fermat point x∗, the point that minimizes the function φ. In general, the Fermat point16

x∗ cannot be computed exactly, so finding fast approximation algorithms has been of particular17

interest. In this work, we present algorithms to compute an ε-approximation of the Fermat point18

x∗, that is, a point x̃
∗ satisfying ∥x̃

∗ − x∗∥ < ε. Our approximation scheme differs from the usual19

φ(x̃∗) ≤ (1 + ε)φ(x∗) approximation considered in the literature, which approximates the distance20

function. Our ε-approximation of the Fermat point directly implies an ε-approximation of the21

distance function, whereas the converse is not possible.22

Our algorithms are based on the subdivision paradigm, which we enhance with Newton methods,23

used for certification, in the sense of interval methods, and for speed-ups. Moreover, we consider the24

problem of constructing n-ellipses, which are the r-level sets φ−1(r). The notion of an n-ellipse is a25

generalization of the classic (2-)ellipse and the circle (1-ellipse). Using the subdivision paradigm, we26

design an ε-isotopic approximation algorithm to compute n-ellipses in R2. We have implemented27

our algorithms and we provide an experimental analysis using different point configurations and28

heuristics for speed-ups. The obtained results suggest the practicality of our approaches especially29

in low dimensions and for small epsilon.30
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49:2 Certified Approximation Algorithms for the Fermat Point and n-Ellipses

(a) (b)

Figure 1 The Fermat point of the 28 EU-capitals (pre-Brexit), highlighted with (x), along with
three 28-ellipses of different radii. (a) The foci (capitals) are unweighted. (b) Each foci has the
weight of the country’s population. The source of the map is https://www.consilium.europa.eu.

1 Introduction38

A classic problem in Facility Location, see e.g., [21, 43], is the placement of a facility to39

serve a given set of demand points or customers so that the total transportation costs are40

minimized. The total cost at any point is interpreted as the sum of the distances to the41

demand points. The point that minimizes this sum is called the Fermat Point; see Fig. 1.42

This is an old geometric problem that has inspired scientists over the last three centuries.43

A weighted foci set is a non-empty finite set of (demand) points A = {a1, . . . , an} in Rd
44

associated with a positive weight function w : A→ R>0. Each a ∈ A is called a focus with45

weight w(a). Let W =
∑

a∈A w(a). The Fermat distance function of A is given by46

φ(x) :=
∑
a∈A

w(a)∥x− a∥,

where ∥ · ∥ is the Euclidean norm in Rd. The global minimum value of φ is called the Fermat47

radius of A and denoted r∗; any point x ∈ Rd that achieves this minimum, φ(x) = r∗, is48

called a Fermat point and denoted x∗ = x∗(A). The Fermat point is not unique if and only49

if A is collinear and n is even. We can check if A is collinear in O(n) time, and in that case,50

the median, which is a Fermat point, can be found in O(n log n) time. So henceforth, we51

assume that A is not collinear, thus φ is a strictly convex function [35, 37], and x∗ is unique.52

We also consider the closely related problem of computing n-ellipses of A. For any53

r > r∗(A), the level set of the Fermat distance function is φ−1(r) :=
{

x ∈ Rd : φ(x) = r
}

.54

If n = 1, the level set is a sphere; and if n = 2 and d = 2, it is the classic ellipse. When55

A has n points, we call φ−1(r) an n-ellipsoid, or an n-ellipse if d = 2; hence the term foci56

set. From an application perspective, an n-ellipse of radius r can be viewed as a curve that57

bounds the candidate area for facility location [46], such that the total transportation cost58

to the demand points is at most some specified r, as in Fig. 1.59

The question of approximating the Fermat point is of great interest as its coordinates60

are the solution of a polynomial with exponentially high degree [3], thus when n > 4 the61

exact solution cannot be found in the general case. We address the problem of computing62

an ε-approximation x̃∗ to the Fermat point x∗, where ε is an arbitrarily small positive real63

number. This can be interpreted in 3 ways:64

(A) Approximate Fermat Point: ∥x̃∗ − x∗∥ ≤ ε;65

(B) Absolute Approximate Fermat Radius: φ(x̃∗) ≤ φ(x∗) + ε;66

(C) Relative Approximate Fermat Radius: φ(x̃∗) ≤ (1 + ε)φ(x∗).67

https://www.consilium.europa.eu
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(a) (b)

Figure 2 The resulting box subdivision of Fig. 1(a) for (a) the n-ellipses and (b) the Fermat point.

We show that senses (B) and (C) can be reduced to (A), whereas the converse is not clear.68

Essentially (B) and (C) are approximations of the Fermat radius, and sense (A) is stronger.69

In this paper we consider approximations in the sense (A); to the best of our knowledge, only70

approximations (B) and (C), have been considered before, see e.g., [8, 16],71

In this work we introduce certified algorithms for approximating the Fermat point and n-72

ellipses, combining a subdivision approach with interval methods (cf. [33, 48]). The approach73

can be formalized in the framework of “soft predicates” [56]. Our certified algorithms are74

fairly easy to implement, and are shown to have good performance experimentally.75

Related Work. The problem we study has a long history, with numerous extensions and76

variations. Out of the 15 names found in the literature, see [23], we call it the Fermat point77

problem. Other common names are the Fermat-Weber problem and the Geometric median78

problem. Apart from the Facility Location application introduced by Weber [57], the problem79

is motivated by applications in diverse fields such as statistics and data mining where it is80

known as the 1-Median problem, and is an instance of the k-median clustering technique [27].81

For d = 2, n = 3, the problem was first stated by P. Fermat (1607 - 1665) and was solved82

by E. Torricelli (1608 - 1647) and Krarup and Vajda [30] using a geometric construction.83

For n = 4, solutions were given by Fagnano [20] and Cieslik [14]. The first general method,84

for arbitrary n, is an iterative scheme proposed by Weiszfeld [58] in 1937. It was later85

corrected and improved by Kuhn [32] and Ostresh [43]; see Beck and Sabach [4] for a review.86

The method which is essentially a gradient descent, implies an iterative algorithm with no87

asymptotic runtime complexity, which can behave quite well in practice.88

A plethora of approximation algorithms for the Fermat point, in senses (B) and (C), can89

be found in the literature using various methods. There are algorithms based on semidefinite90

programming [45], interior point methods [16, 60], sampling [2, 16], geometric data structures91

[8] and coresets [26], among others [13, 22]. Moreover, special configurations of foci have92

been considered [7, 15], a continuous version of the problem [21], and the problem of finding93

the Fermat point of planar convex objects [1, 12, 18].94

The literature on n-ellipses is smaller but equally old: Nagy [38] proved that n-ellipses are95

convex curves, calling them egg curves, and dating them back to Tschirnhaus in 1695 [55,96

p. 183]. Further, he characterized the singular points of the n-ellipses as being either foci or97

the Fermat point. Another early work is by Sturm in 1884 [53]. Sekino [51] showed that the98

Fermat distance function φ is C∞ on R2 \A. So, the n-ellipse is a piecewise smooth curve,99

as it may pass through several foci. Nie et al. [42] showed that the polynomial equation100

defining the n-ellipses has algebraic degree exponential in n.101

ESA 2021
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Our Contributions. In this paper, we design, implement and experimentally evaluate102

algorithms for approximating the Fermat point of a given set of foci in Rd. We also compute103

an ε-approximate n-ellipse; a problem not considered in computational literature before.104

These are the first certified algorithms [36, 54] for these problems. Our contributions are105

summarized as follows:106

We design two certified algorithm for approximate Fermat point: one is based on subdivi-107

sion, the other based on Weiszfeld iteration [58].108

Our notion of ε-approximate Fermat point appears to be new; in contrast, several recent109

works focus on ε-approximation of the Fermat radius. The approximate Fermat radius110

can be reduced to approximate Fermat point; the converse reduction is unclear.111

Based on the PV construction [47, 33], we design an algorithm to compute a regular112

isotopic ε-approximation of an n-ellipse. We also augment the algorithm to compute113

simultaneous contour plots of the distance function φ, resulting in a useful visualization114

tool (see Fig. 1).115

We implement our algorithms and experiment with different datasets and speedups. Each116

method is evaluated based on different values of the input parameters.117

Various details of the interval primitives and proofs can be found in the full arXiv version.118

2 Preliminaries119

Vector variables are written in bold font: thus 0 is the origin of Rd and x = (x1, . . . , xn).120

Let ∂if denote partial differentiation with respect to xi. The gradient ∇f : Rd → Rd of f is121

given by the vector ∇f(x) = (f1(x), . . . , fn(x))T where fi = ∂if . In general, the operator122

∇ is partial, i.e., ∇f(x0) might not be defined at a point x0. A point x0 is a critical point123

of f if ∇f(x) = 0 or ∇f(x) is undefined.124

We consider analytic properties of a scalar function f : Rd → R, mainly from the viewpoint125

of convex analysis [35, 39]. In our case, f is the Fermat distance function for some weighted126

set A. From a general perspective the Fermat point problem (resp., n-ellipsoid problem)127

reduces to computing the critical points of the gradient of f (resp., computing the level sets128

of f). The Fermat point is the only critical point of f in Rd \A assuming A is non-collinear.129

Most of the basic properties regarding the Fermat point are well-known and may be found130

in our references such as [32, 35, 39, 43, 58]. To emphasize the foci set A, we explicitly write131

φA instead of φ. A focus a ∈ A is the Fermat point of A if and only if
∥∥∇φA\a(a)

∥∥ ≤ w(a).132

Testing if the Fermat point x∗ is in A can be done in O(n2d) time. If x∗ is not one of the133

foci, then ∇f(x∗) = 0, and the problem can be reduced to general finding zeros of a system134

of equations (e.g., [59]). The thrust of this paper is to develop direct methods that exploit135

the special properties of the Fermat problem.136

We formally define the two main problems which we consider:137

Approximate Fermat Point: Given a weighted point set A in Rd and ε > 0, compute138

a point x̃∗ within ε distance to the Fermat point x∗ of A.139

Approximate Isotopic n-Ellipses: Given ε > 0, a weighted point set A in R2 of140

size n and a radius r > r∗(A), compute a closed polygonal curve E that is ε-isotopic to141

φ−1(r), i.e., there exists an ambient isotopy1 γ : R2 × [0, 1]→ R2 with γ(E, 1) = φ−1(r)142

and for any point a ∈ φ−1(r), the parametric curve γ(a, ·) has at most length ε. This143

implies a bound of ε on the Hausdorff distance between E and φ−1(r).144

1 That is, a continuous map γ : R2 × [0, 1] → R2 such that γ0 = γ(·, 0) is the identity map, and, for all
t ∈ [0, 1], γt = γ(·, t) is a homeomorphism on R2.
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Approximation notions. We compare the three different notions of ε-approximation for the
Fermat point. We reduce the approximation problem of notion (C) to (B), and (B) to (A).
An ε-approximation x̃∗ of x∗ in the sense

∥∥x̃∗ − x∗
∥∥ ≤ ε is also a (Wε)-approximation in

the sense φ(x̃∗) ≤ φ(x∗) + Wε, which follows directly from the triangle inequality

φ(x̃∗) =
∑
a∈A

w(a)∥x̃∗ − a∥ ≤
∑
a∈A

w(a)(∥x̃∗ − x∗∥+ ∥x∗ − a∥) = Wε + φ(x∗).

An ε-approximation x̃∗ of x∗ in the sense φ(x̃∗) ≤ φ(x∗) + ε is also a 2ε
φ(g) -approximation

in the sense φ(x̃∗) ≤ (1 + 2ε
φ(g) )φ(x∗). The center of gravity g is a 2-approximation of the

Fermat radius r∗ (see [16]), i.e. φ(x∗) ≥ 1
2 φ(g). Hence

φ(x̃∗) ≤ φ(x∗) + ε =
(

1 + ε

φ(x∗)

)
φ(x∗) ≤

(
1 + 2ε

φ(g)

)
φ(x∗)

On the other hand, it is not clear how to derive an ε-approximation of type (A) if an145

approximation algorithm for type (B) and (C) is at hand, as the following 2 examples show.146

Example 1: For any ε > 0 choose c ≤ ε
2

√
2−2 and consider the weighted foci a1 = (1, 0),147

a2 = (0, 1), a3 = (−1, 0), a4 = (0,−1) with w(a1) = w(a3) = 1 and w(a2) = w(a4) = c for148

which the Fermat point is x∗ = (0, 0) for symmetry reasons, see Fig. 3(a). Point p = (1, 0) is149

an ε-approximation of x∗ in the sense (B) and (C), but it has a distance of 1 to x∗.150

Example 2: For any ε > 0 we choose h > 0 small enough such that: 2
√

4 + h2 + 2h ≤151

4
√

1 + h2 + ε. Consider the foci a1 = (0,−h), a2 = (0, h), a3 = (2,−h), a4 = (2, h) with unit152

weights. The Fermat point is x∗ = (1, 0) for symmetry reasons, see Fig. 3(b). Point p = (2, 0)153

is an ε-approximation of x∗ in the sense (B) and (C), but it has a distance of 1 to x∗.154

(a)
x

y

a1 = p

a2

a3

a4

x∗ (b)
x

y

a1

a2

a3

a4

x∗ p
{
{

h

h

︸ ︷︷ ︸
2

Figure 3 Examples that a good approximation of the Fermat point (a) in sense (B) or (b) in
sense (C), does not imply a good approximation in sense (A).

Subdivision Paradigm. The subdivision algorithms presented in this paper take as input an155

initial box B0 ⊂ Rd and recursively split it. We organize the boxes in a generalized quadtree156

data structure [50]. A box can be specified by d intervals as B = I1 × I2 × · · · × Id. Let157

mB denote the center of B, rB the radius of B (distance between mB and a corner), and158

ω(B) the width of B (the maximum length of its defining intervals). The term c ·B denotes159

the box with center mB and radius c · rB. The function split1 takes a box B and returns160

2d congruent subboxes (children), one for each orthant. We use split2 to indicate that we161

do two successive levels of split1 operations (i.e., 1 + 2d split1 operations, resulting in162

(2d)2 = 4d leaves).163

Soft Predicates. Let Rd denote the set of closed d-dimensional boxes (i.e., Cartesian164

products of intervals) in Rd. Let P be a logical predicate on boxes, i.e., P : Rd →165

ESA 2021



49:6 Certified Approximation Algorithms for the Fermat Point and n-Ellipses

{true, false}. For example, the Fermat point predicate is given by PFP(B) = true if and166

only if x∗ ∈ B. Logical predicates are hard to implement, and thus, we may focus on167

tests, which are viewed as “one-sided predicates”. Formally, a test T looks like a predicate:168

T : Rd → {success, failure} and it is always associated to some predicate P : call T a169

test for predicate P if T (B) = success implies P (B) = true. However, we conclude nothing170

if T (B) = failure. Denote this relation by “T ⇒ P”.171

Soft predicates [56] are an intermediate concept between a test and a predicate. Typically,172

they arise from a partial scalar function f : Rd → R ∪ {↑} where f(x) =↑ means f(x) is not173

defined. We then define a partial geometric predicate Pf on boxes B as follows:174

Pf (B) =


↑ if ↑∈ f(B),
+1 if f(B) > 0,

−1 if f(B) < 0,

0 else.

We can now derive various logical predicates P from Pf , by identifying the values in175

the set {−1, 0, +1, ↑} with true or false. For instance, we call P an exclusion predicate176

if we associate the 0- and ↑-value with false and the other values with true. For the177

inclusion predicate, we associate the 0-value with true, others with false. For example,178

a test for the Fermat point predicate PFP is an inclusion predicate based on the partial179

function f(x) =
∑

i(∂if(x))2; the function is partial because f(x) =↑ when x is a focus180

point. Although our box predicates P (B) are defined for full-dimensional boxes B, we181

can extend them to any point x as follows: P (x) has the logical value associated with the182

sign(f(x)) ∈ {↑, +1,−1, 0}.183

▶ Definition 1. Let T be a test for a predicate P . We call T a soft predicate (or soft version184

of P ) if it is convergent in this sense: if (Bi : i = 0, 1, . . .) is a monotone sequence of boxes185

Bi+1 ⊆ Bi that converges to a point a, then P (a) ≡ T (Bi) for i large enough.186

Here, “P (a) ≡ T (Bi)” means P (a) = true iff T (Bi) = success. A soft version of P (B)187

is usually denoted P (B). We note that soft versions of exclusion predicates are generally188

easier to construct than inclusion predicates. The former can be achieved by numerical189

approximation, while the latter requires some deeper principle such as the Brouwer fixed190

point theorem [9].191

Interval arithmetic. We construct soft predicates using functions of the form F : Rd →192

(R ∪ {−∞,∞}) that approximates the scalar function f : D → R with D ⊂ Rd.193

▶ Definition 2. Call F a soft version of f if it is194

i) conservative, i.e. for all B ∈ Rd, F (B) contains f(B) := {f(p) : p ∈ B ∩D}, and195

ii) convergent, i.e. if for monotone sequence (Bi : i ≥ 0) that converges to a point a ∈ D,196

limi→∞ ω(F (Bi)) = 0 holds.197

We shall denote F by f when F is a soft version of f . There are many ways to198

achieve f . E.g., f has an arithmetic expression E, we can simply evaluate E using interval199

arithmetic. More sophisticated methods may be needed for performance. The next lemma200

shows how f leads to soft exclusion predicates based on f :201

▶ Lemma 3. If P is an exclusion predicate based on f , then the test P (B) : 0 /∈ f(B) is202

a soft version of P .203
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Figure 4 Different steps during the the execution of Algorithm 1. The dark red boxes cannot
contain the Fermat point, whereas the light green boxes may contain it.

Below, we need a multivariate generalization, to the case where f : Rd → Rm, and the204

exclusion predicate P (B) is 0 /∈ f(B). If f : Rd → Rm is a soft version of f , then a205

soft version of P (B) is the given by the test T (B) : 0 /∈ f(B). If f = (f1, . . . , fm), then206

this reduces to 0 /∈ fi(B) for some i = 1, . . . , m.207

3 Approximate Fermat points208

We now present three approximation algorithms for the Fermat point x∗. For simplicity, we209

assume in our algorithms that the Fermat point is not a focus, i.e. x∗ /∈ A. This assumption210

can be easily checked in O(n2d) preprocessing time, or with a more elegant approach, in211

O(nd) time during the execution of our subdivision algorithms.212

3.1 Using the Subdivision Paradigm213

The subdivision paradigm requires an initial box B0 to start subdividing. If B0 is not given,214

it is easy to find a box that contains x∗, since x∗ lies in the convex hull of A [32]. We use215

a function Initial-Box(A) which, in O(nd) time, computes an axis-aligned bounding box216

with corners having the minimum and maximum x, y coordinates.217

We define an exclusion and inclusion predicate based on the gradient function ∇φ.218

▶ Definition 4. Given a box B, the gradient exclusion predicate C∇
0 (B) is defined by the219

condition 0 /∈ ∇φ(B). The gradient inclusion predicate C∇
1 (B) is just the complement of220

C∇
0 (B), 0 /∈ ∇φ(B).221

Under our assumptions that x∗ /∈ A, we have C∇
1 (B) holds iff x∗ ∈ B. We obtain a soft222

version of the exclusion predicate C∇
0 (B) by replacing ∇φ in its definition with any soft223

version ∇φ, see Lemma 3. But it is not so easy to get a soft version of C∇
1 (B); we shall224

return to this when we treat the Newton operator below.225

In Algorithm 1, using the exclusion predicate we discard boxes that are guaranteed not226

to contain x∗ (red in Fig. 4) and we split boxes that might contain x∗ (green in Fig. 4).227

While subdividing, we test whether we can already approximate x∗ well enough by putting a228

bounding box around all the (green) boxes that are not excluded yet, using the following229

predicate.230

▶ Definition 5. Given a set of boxes Q that contains the Fermat point, the stopping predicate231

Cε(Q) returns true, if and only if the minimum axis-aligned bounding box containing all232

boxes in Q has a radius at most ε.233
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49:8 Certified Approximation Algorithms for the Fermat Point and n-Ellipses

If Cε returns true, then we can stop. Since the radius of the minimum bounding box is234

at most ε, the center of the box is an ε-approximate Fermat point x̃∗.235

Algorithm 1 Subdivision for the approximate Fermat point (SUB)

Input : Foci set A, constant ε > 0
Output : Point x̃∗

1 B0 ← Initial-Box(A); Q← Queue(); Q.push(B0);
2 while not Cε(Q) do
3 B ← Q.pop();
4 if not C∇

0 (B) then
5 Q.push(split1(B));
6 return x̃∗ ← Center of the bounding box of Q;

Regarding the runtime of Algorithm 1, evaluating ∇φ and its soft version takes linear236

time in n. The subdivision approach induces an exponential dependency on d, as splitting237

a box creates 2d many children. Further, a split1 operation decreases the boxwidth by a238

factor of 2, therefore, Algorithm 1 cannot converge faster than linear in ε.239

3.2 Enhancing the Subdivision Paradigm240

In this section, we augment Algorithm 1 with a speed up based on a Newton operator, which241

will ensure eventual quadratic convergence.242

The Newton operator. Newton-type algorithms have been considered in the past, usually243

independently of other methods, and thus suffer from lack of global convergence. Moreover,244

from a numerical viewpoint, such methods face the precision-control problem. Our algorithm245

integrates subdivision with the Newton operator (an old idea that goes back to Dekker [17]246

in the 1960’s), thus ensuring global convergence.247

We want to find the Fermat point, i.e., the root of f = ∇φ. The Newton-type operators
are well-studied in the interval literature, and they have the form N = Nf : Rd → Rd.
There are three well-known versions of Nf : the simplest version, from Moore [36] and
Nickel [40], is

N(B) = mB − J−1
f (B) · f(mB),

where Jf is the Jacobian matrix of f . Since f = ∇φ, this matrix is actually the Hessian of
φ. The second version by Krawzcyk [31, 52] is:

N(B) = mB −K · f(mB) + (I −K · f(B)) · (B −mB),

where K is any non-singular d×d matrix, usually chosen to be an approximation of J−1
f (mB).248

The third version, from Hansen and Sengupta [25, 24], can be viewed as a sophisticated249

implementation of the Moore-Nickel operator using an iteration reminiscent of the Gauss-250

Seidel algorithm, combined with preconditioning. Below we report on our implementation of251

the first two Newton operators. In general, the Newton operator N(B) does not return a box252

even when B is a box; so we define N(B) to be a box that contains N(B). For simplicity,253

we assume that N(B) is the smallest box containing N(B) with the same aspect ratio as254

B.255

The following properties of Newton box operators are consequences of Brouwer’s Fixed256

Point Theorem [9, 41, 52, 59]:257
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1. (Inclusion Property) If N(B) ⊆ B then x∗ ∈ N(B).258

2. (Exclusion Property) If N(B) ∩B = ∅ then x∗ /∈ B.259

3. (Narrowing Operator) If x∗ ∈ B then x∗ ∈ N(B).260

Based on these properties, we can define two tests and an operator:261

▶ Definition 6. Newton tests for gradient exclusion/inclusion predicates:262

Newton exclusion test:263

T N
0 (B) = success iff N(2B) ∩B = ∅. Thus T N

0 (B)⇒ C∇
0 (B).264

Newton inclusion test:265

T N
1 (B) = success iff N(2B) ⊆ 2B. Thus T N

1 (B) ⇒ C∇
1 (2B). Below we explain266

why we use 2B instead of B.267

Newton narrowing operator:268

N∩(B) returns B ∩N(2B).269

Note that the Newton tests T N
0 (B) and T N

1 (B) are defined using the exact Newton270

opertor N(B). If we replace it by a soft version N(B) in these definitions, they remain as271

inclusion/exclusion tests for C∇
1 (B)/C∇

0 (B); we denote them by C∇
1 (B)/ C∇

0 (B).272

To compute N(B), we use standard interval arithmetic to evaluate the Moore & Nickel273

and Krawzcyk operators. We already noted that if N(B) ⊆ B, then x∗ ∈ N(B). But if x∗
274

is on the boundary of B, then N(B) ⊆ B might not hold, and this issue persists even275

after splitting B. We circumvent this problem by using 2B instead of B in the definition of276

T N
1 (B).277

We enhance Algorithm 1 by the soft inclusion predicate T N
1 (B), as sketched in Algo-278

rithm 2. If T N
1 (B) succeeds, we conclude that x∗ is contained in N(2B). In that case,279

we can discard all other boxes and initialize a new queue Q on N(2B). In subsequent calls280

to T N
1 (B′) for B′ ∈ Q, we conclude that x∗ ∈ 2B′. But to ensure that w(2B′) < w(B) (to281

avoid an infinite loop), we initialize the queue Q with the 4d boxes of split2( N(2B)).282

Algorithm 2 Enhanced subdivision for the approximate Fermat point (ESUB)

As in Algorithm 1 but replace line 5 with the following:
5.1 if T N

1 (B) then
5.2 Q← Queue(); // initialize a new queue
5.3 Q.push(split2( N(2B)); // 2 split operations
5.4 else
5.5 Q.push(split1(B));

With respect to the runtime of Algorithm 2, we observe that once the soft Newton283

inclusion predicate succeeds, then it will also do so for an initial box of the new queue. This,284

essentially, divides the algorithm into two phases. The first phase can be basically seen as285

Algorithm 1. In the second phase, the Newton test guarantees quadratic convergence in ε.286

Getting into the second phase depends on the configuration of the foci set but not on ε,287

hence, our approach is of particular interest for small values of ε.288

The termination of both subdivision algorithms follows from the soft gradient exclusion289

predicate being convergent. The algorithms terminate once the predicate Cε(Q) succeeds,290

yielding an ε-approximate Fermat point, so we summarize as follows.291

▶ Theorem 7. Both Algorithms 1 and 2 terminate and return an ε-approximate Fermat point.292
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3.3 Certifying the Weiszfeld method293

Weiszfeld’s iterative method [32, 43, 58] describes a sequence pi (i = 0, 1, . . .) of points that
converges to the Fermat point x∗, starting from any initial p0. Each pi+1 = T (pi) where
T (x) is defined by

T (x) =
∑

a∈A,a̸=x w(a) a
∥x−a∥∑

a∈A,a̸=x w(a) 1
∥x−a∥

Note that when x is a focus, then T (x) depends just on all other foci.294

This simple iterative method is widely used, and although it converges, it does not solve295

our ε-approximation problem as we do not know when to stop. To see that this is a real296

issue, consider the example in Fig. 5.297

We augment the Weiszfeld iteration by adding Newton tests during the computation,298

turning it into an ε-approximation algorithm. While at the i-th iteration, we define a small299

box B with point pi as center, and map it to the box N(B) using the Newton operator;300

see Fig. 6. If N(B) ⊆ B, then the Fermat point x∗ lies in N(B). On the contrary, if301

N(B) ̸⊆ B we move on to the next point pi+1 and adjust the box size as follows.302

If B
10 ∩ N( B

10 ) = ∅, then the box B
10 does not contain x∗ and we therefore expand B by303

a factor of 10. If B
10 ∩ N( B

10 ) ̸= ∅, then there might be a focus in box B
10 , which hinders304

N(B) ⊆ B to succeed. In that case we shrink B by a factor of 10. If a focus is not in B
10 ,305

shrinking B does not effect the algorithm negatively, as B can expand again.306

Using these tests we augment the point sequence scheme, sketched in Algorithm 3,307

with the property that if the Newton test evaluates to true, then we are guaranteed an308

ε-approximation of x∗. As a starting point, we choose the center of mass p0 of A, i.e.,309

p0 = 1
W

∑
a∈A w(a) a.310

Algorithm 3 Certified Weiszfeld for the approximate Fermat point (CW )

Input : Foci set A, constant ε > 0 Output: Point x̃∗

1 p← p0; l← ε;
2 while True do
3 B ← Box B(mB = p, ω(B) = l);
4 if N(B) ⊆ B then // Fig. 6(a)
5 return x̃∗ ← p;
6 else if N

(
B
10

)
∩ B

10 = ∅ then // Fig. 6(b)
7 l← min{10 · l, ε};
8 else // Fig. 6(c)
9 l← 1

10 · l;
10 p← T (p);

-20 0 20 40 60 80 100 120
-10

-5

0

5

10

x∗

startp207

two clusters of 249 foci

two foci

Figure 5 An example with 500 foci, showing that Weiszfeld’s scheme does not solve the ε-
approximation problem. The scheme stopped when

∥∥pi−1 − pi

∥∥ ≤ 1/10, after 207 steps (blue
points). The distance ∥x∗ − p207∥ can be arbitrarily big (∥x∗ − p207∥ > 15 in this case).
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B B
10

pi
pi(a) (b) (c)

piN( B
10
)

N(B) N( B
10
)

B
10

Figure 6 The three cases of Algorithm 3. (a) N(B) ⊆ B, (b) N(B)∩B = ∅ and (c) N(B)∩B ≠ ∅.

(a) (b)

Figure 7 (a) A 3-ellipse passing through two foci. Components of gray boxes (temporarily)
surround the foci. (b) If a gray component satisfies (B1) - (B3) the two ingoing edges are connected
with an edge (shown dashed).

With respect to the runtime, the point sequence T (x) converges linearly in ε towards311

x∗ [29] but in order for Algorithm 3 to terminate the test N(B) ⊆ B must succeed. Similar312

to other Newton operators, N(B) ⊆ B succeeds for boxes in a neighborhood surrounding313

x∗. This neighborhood depends only on the configuration of A but not on ε. Further,314

evaluating T (x) and N(B) can be done in O(nd2) time. We conclude as follows.315

▶ Theorem 8. Algorithm 3 terminates and returns an ε-approximate Fermat point.316

4 Approximating n-ellipses317

In this section, we describe an algorithm to construct approximate n-ellipses, based on the318

subdivision paradigm. Throughout this work we maintain the subdivision smooth, i.e., the319

width of any two adjacent boxes, which are leaves of the quadtree, may differ at most by a320

factor of 2. Maintaining smoothness is easy to implement and has amortized O(1) cost per321

operation [6]. Without maintaining smoothness, the amortized cost can be Ω(log n) [6].322

The Plantinga and Vegter (PV) construction [47, 33, 34] approximates the zero set of323

a function F : Rd → R where d ∈ {2, 3}. Assuming that S = F −1(0) is regular, i.e., the324

gradient ∇F is non-zero at every point of S, this approximation is isotopic to S. Our goal325

is to use this construction to approximate the n-ellipse defined by F (p) := φ(p) − r with326

r > r∗. For simplicity, we assume all boxes are square; for the construction to succeed, we327

only need an aspect ratio ≤
√

2 (see [33]). We use the notation ⟨·, ·⟩ for the scalar product.328

The following are the key predicates and tests in the PV construction of the n-ellipse F −1(0).329

▶ Definition 9. Fix F (p) = φ(p)− r. Let B be a square box.330

1. The fundamental box predicate is the inclusion predicate CF
1 (B) : 0 ∈ F (B), and its331

complement, the exclusion predicate CF
0 (B) : 0 /∈ F (B).332

2. The (corner) inclusion test Tcor(B) = success iff F , when evaluated at the corners of B,333

admits both negative and positive values. Clearly, Tcor(B) is a test for CF
1 (B). There is334

a standard PV trick whereby any 0-value can be arbitrarily made positive.335

3. The normal variation predicate Cnv(B) is defined by the condition ⟨∇F (B),∇F (B)⟩ > 0.336
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We obtain the soft versions CF
0 (B) and Cnv(B) by by the usual device of replacing337

F (B) in the definition of the predicates by a soft version F (B). But for the inclusion338

predicate CF
1 (B) we have no soft version. Instead, the corner test Tcor(B) is a test for339

CF
1 (B). To supplement the corner test, we need the normal variation predicate Cnv(B). This340

predicate is equivalent to the condition that the angle between the gradient of any two points341

in B is at most 90◦. It implies that the n-ellipse is monotone in either x- or y-direction342

within the box. In Fig. 7, boxes are: red if they pass the CEx
0 test, green if they pass both343

Cnv and Tcor, orange if the pass only Cnv, and gray otherwise. Note that orange boxes344

may, or may not, contain parts of the approximate n-ellipse.345

An n-ellipse is not regular if it passes through some focus [51]; in that case a direct346

PV construction is not possible. To tackle this problem we develop a variation, where we347

simultaneously subdivide boxes and construct pieces of the n-ellipse on the fly, instead of348

doing that in the end. Further, boxes in which the n-ellipse may not be regular are treated349

differently. During the subdivision part of the algorithm, we classify boxes in three categories:350

1. Boxes which satisfy CEx
0 (red): These do not contain any piece of the n-ellipse, so they351

do not need to be further considered and are discarded.352

2. Boxes which satisfy Cnv and have width smaller than ε/2 (green or orange): We353

immediately draw edges in each of these boxes, in contrast to the normal PV construction.354

Note that at a later stage of the algorithm it might happen that we split one of B’s355

neighboring boxes. In that case we need to take into account the sign of F at the new356

vertex on B’s boundary. If necessary, the edges in box B then need to be updated.357

3. The remaining boxes (gray): Such boxes occur near foci and need more careful attention,358

as we cannot apply the standard PV construction. Instead, given a set of gray boxes we359

first distinguish them in connected components, using a DFS algorithm. Then, for each360

connected component of gray boxes Ki, we check if a set of conditions is satisfied:361

(B1) Ki contains exactly one focus.362

(B2) There are exactly two PV-edges leading to Ki.363

(B3) The distance between any two corners of the boxes in Ki is at most ε/2.364

If Ki satisfies all (B1) - (B3), then we connect the 2 PV-edges leading to Ki by a line365

segment and discard boxes of Ki, see Fig. 7(b). Otherwise, the children of the boxes of366

Ki are put back in Q for further classification.367

Algorithm 4 Approximating an n-ellipse

Input : Foci set A, radius r, constant ε, box B0 Output: Curve E

1 Q← Queue(); Q.push(B0);
2 while Q ̸= ∅ do
3 Qnew ← Queue();
4 while Q ̸= ∅ do
5 B ← Q.pop();
6 if not CEx

0 (B) then
7 if Cnv(B) and ω(B) < ε/2 then
8 E∩B ← Online-PV(B);
9 else

10 Qnew.push(split4(B));
11 Q← Connected-Components-Analysis(Qnew);
12 return E;

By controlling the size of the boxes containing parts of the output curve, and by the368
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modification the PV construction we prove the following.369

▶ Theorem 10. Algorithm 4 returns an isotopic ε-approximation of the n-ellipse F −1(0).370

Interpolating edges. The PV construction creates edges within a box B, which start and371

end from midpoints of box edges. One can derive a nicer-looking approximation by using372

linear interpolation on the box edges by taking into account the value of F at B’s corners.373

Contour Plotting. As an application, we can use the above technique in order to produce a374

topologically correct, ε-approximate and visually nice n-elliptic contour plot. To do so, we375

first adapt our algorithm in order to simultaneously plot several n-ellipses inside a bounding376

box, corresponding to the same foci but with different radii. Each n-ellipse is a contour line,377

and we describe how to plot them visually nice, i.e., the contour lines are roughly equally378

distributed in space. See Fig. 8 for two different approaches and their visualization effect.379

5 Experiments380

We implemented our algorithms for R2 and conducted a series of experiments. Our current381

software is written in Matlab (version R2018b), taking advantage of its graphics ability. The382

numerical accuracy is therefore IEEE numerical precision. The platform used was MacOS383

Big Sur v11.2.3, with 2.5 GHz Quad-Core Intel Core i7 and 16 GB 1600MHz DDR3.384

Following, we report on our experiments, discussing some notable points one by one.385

We evaluated our algorithms on both synthetic and real-world datasets. For all algorithms386

approximating the Fermat point we chose a time limit of 600 seconds. Moreover, for most387

experiments we executed 10 different instances for completeness. In the illustrated charts,388

the curves pass through the mean of the 10 running times, and additionally we also marked389

the minimum and maximum running times. All axes in the charts are of logarithmic scale.390

Datasets. We mainly experimented with two different types of synthetic datasets, namely391

Unif-1 and Unif-2. In Unif-1 the n foci are sampled uniformly from a disk of radius 1. In392

Unif-2 again the n foci are sampled uniformly from a disk of radius 1 and then n/2 foci are393

translated by a vector (10, 10), see Fig. 9(a) and Fig. 9(b). Despite their similarity, the two394

datasets present strong differences. As we later see, Unif-2 is significantly more difficult to395

solve in comparison to Unif-1, and further Unif-1 resembles nicely real-world datasets. The396

foci of Unif-2 lie almost all on a common line, which implies that there are many points for397

which the gradient is close to 0. This makes it difficult to find the actual Fermat point, for398

which the gradient is exactly 0. We experimented with more types of synthetics datasets,399

(a) (b)

Figure 8 Two different 3-elliptic contour plots with 10 contour lines, having the same set of foci.
(a) Using radii of equidistant points. (b) Using equidistant radii.

ESA 2021



49:14 Certified Approximation Algorithms for the Fermat Point and n-Ellipses

(a) (b) (c)

Figure 9 A box subdivision for n = 200 foci: (a) Unif-1, (b) Unif-2 and (c) Unif-2 after PCA.

(a) (b) (c) (d)

Figure 10 A comparison of Algorithm 1 (• SUB), Algorithm 2 with the Krawzcyk Newton
operator ( Krawzcyk), and Algorithm 2 with the Nickel and Moore Newton operator (■ Nickel
& Moore). (a),(b) Time as a function of n, with ε = 10−4. (c),(d) Time as a function of ε with
n = 100. (a),(c) Unif-1 datasets. (b),(d) Unif-2 datasets.

such as points in convex position, vertices of a regular n-gon, clusters of points, but we do400

not report on these results, as they are similar to Unif-1 or Unif-2.401

Newton operators. Adding a Newton operator to the subdivision process drastically402

improves the running time. We compared Algorithm 1 with two versions of Algorithm 2,403

where we once use the Newton operator based on Moore and Nickel and also the operator404

by Krawzcyk. The results for various values of n and ε on both Unif-1 and Unif-2 are405

summarized in Fig. 10. Note that Algorithm 2 initially needs to perform simple splitting406

operations until at some point the Newton test succeeds the first time. After that the407

algorithm converges quadratically in ε, which explains why the running time of both versions408

almost do not increase for decreasing ε. Even though the operator by Krawzcyk returns a409

smaller box N(B), i.e. it is more precise, than Moore and Nickel, it performs slower for410

Unif-1 as evaluating the operator takes more time. We conclude that using a Newton operator411

speeds up the computations, and we use the one of by Moore and Nickel in Algorithm 2.412

Principal component analysis. Foci sets like Unif-2 are challenging as all foci are close to413

a common line. In this case, the subdivision algorithms can be slow because there are many414

boxes for which the gradient ∇φ is close to 0. Our approach to tackle this problem is to use415

subdivision with rectangular boxes. In a preprocessing step we do a principal component416

analysis (PCA) of the foci as heuristic. Then, we rotate the coordinate system such that the417

x-direction is the first principal component. In the box subdivision we use rectangular boxes418

with long x-width, see Fig. 9(c). Observe in the following table, that for well distributed foci419

sets like Unif-1, using the PCA adds only a small overhead to the total running time.420



K. Junginger, I. Mantas, E. Papadopoulou, M. Suderland, and C. Yap 49:15

(a) (b) (c) (d)

Figure 11 An overall comparison of Algorithm 1 (• SUB), Algorithm 2 with the PCA ( ESUB),
and Algorithm 3 (■ CW). (a),(b) Time as a function of n, with ε = 10−4. (c),(d) Time as a function
of ε with n = 100. (a),(c) Unif-1 datasets. (b),(d) Unif-2 datasets.

ε = 10−3, n = 10 100 1000 10000
without PCA 0.12 0.31 2.33 23.4
with PCA 0.10 0.30 2.30 23.9

n = 100, ε = 10−1 10−3 10−5 10−7

without PCA 0.20 0.30 0.33 0.34
with PCA 0.18 0.30 0.33 0.35

421

On the contrary, for sets like Unif-2, adding the PCA decreases drastically the running422

time, as shown next. Hence, the PCA preprocessing is a useful addition to Algorithm 2,423

which we will use also in the following experiments.424

ε = 10−3, n = 10 100 1000 10000
without PCA 90.7 48.5 170 timeout
with PCA 0.15 0.40 3.21 32.7

n = 100, ε = 10−1 10−3 10−5 10−7

without PCA 37.1 49.2 49.2 49.5
with PCA 0.36 0.40 0.42 0.43

425

Real Datasets. Inspired by the applications in facility location we chose to experiment426

with instances of the well-known Traveling Salesman Person Library [49] or TSPlib. The427

foci correspond mostly to location of cities in different areas around the world. It appears428

that real-world instances show a similar behavior to Unif-1 datasets; so, Unif-1 are realistic429

datasets for the evaluation of different algorithms. In our experiments illustrated in Fig. 12(a),430

for each TSPlib dataset we created an additional foci set, where we uniformly sampled the431

same number of foci in the axis-aligned bounding box. As ε we chose 10−6 times the width432

of the corresponding bounding box. The similarity of the running time for the two datasets433

is obvious.434

Summary on the Fermat point. We make an overall comparison of Algorithm 1, Algorithm 2435

with the PCA, and Algorithm 3, illustrated in Fig. 11. The running time of all methods436

shows a linear dependency on n, but there are big differences regarding the dependency437

on ε. Overall, Algorithm 3 performs well in all cases, but due to the linear convergence of438

Weiszfeld’s point sequence, it cannot converge faster as ε decreases. In contrast, Algorithm 2439

takes more time in the subdivision phase, but once the Newton tests succeeds, the algorithm440

terminates very quickly. So, it does not exhibit almost any changes in the running time for441

decreasing ε. This makes it favorable when a high precision approximate solution is required.442

It is also very fast in Unif-2 instances and outperforms Algorithm 3. Summarizing, we443

suggest to use Algorithm 2 in small dimensional spaces and for small ε due to its eventual444

quadratic convergence in ε. On the other hand, the subdivision methods take exponential445

time in d, therefore, we suggest to use Algorithm 3 for higher dimensional spaces.446
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n-ellipses. Finally, we evaluated the runtime of n-ellipses algorithm. In Fig. 12(b) we447

evaluate the dependency on n. In order to keep the length of the curve almost constant448

we choose the radii r = (10
√

2+2)n
2 . The bounding box used is [−2, 12]2. In Fig. 12(c) we449

analyze the dependency on the length of the n-ellipse. The bounding box is fixed and we450

experimented with different radii such that the lengths of the curve differ by a factor of451

3/2. The runtime shows a linear dependency on n, as expected, and it also shows a linear452

dependency on the length of curve. This can be justified, as covering an n-ellipse of length l453

with boxes of width ε takes O(l/ε) many boxes.454

(a) (b) (c)

Figure 12 (a) A comparison of TSP data sets (filled shapes) with Unif-1(empty shapes, dashed
curve) for both Algorithm 2 (• ESUB) and Algorithm 3 (■ CW). Fermat point with time as a
function of n. (b)-(c) n-ellipse on Unif-2 with time as a function of (b) n and (c) the length of the
n-ellipse. Two ε approximations with ε = 0.1 (•) and ε = 0.1 (■) have been computed.

6 Concluding Remarks455

In this work, we mainly focused on finding ε-approximate Fermat points, in a strong sense456

∥x̃∗−x∗∥ ≤ ε, which had not been considered before. This approximation can also be used to457

derive an ε-approximation of the Fermat radius. This was done using a simple-to-implement458

subdivision approach. All of our algorithms are certified in the sense of interval arithmetic.459

Moreover, we certified the famous point-sequence algorithm of Weiszfeld [58] to guarantee460

that it does find an ε-approximate Fermat point. We also designed an algorithm to construct461

ε-approximate n-ellipses. The simplicity and efficiency of our algorithms was evaluated462

experimentally.463

There are many directions for further research. One is to derive algorithmic complexity464

bounds. Our intuition regarding the time complexity of our algorithms was affirmed by the465

experimental runtime evaluation. Such bounds are rare for iterative numerical algorithms.466

There has been considerable success in the area of root isolation [10, 11] where the idea of467

“continuous amortization” should also apply here. To improve our Newton operator, we plan468

to implement the Hansen-Sengupta [25, 24] version, and expect to see a speedup.469

Regarding the construction of n-ellipses, it would be interesting to design an alternative470

algorithm based on curve-tracing. This could perform fast once a starting point on the471

n-ellipse is found.472

Another direction is related to Voronoi diagrams. From one perspective, it is interesting473

to approximate the Voronoi diagram, where the sites are n-ellipses; so far only 2-ellipses have474

been studied [19]. From a different perspective, if the sites are sets of foci (each associated475

with a Fermat distance function) it is interesting to compute their Voronoi diagram, defined476

as the minimization diagram of the Fermat distance functions. This is a min-sum diagram477

in the context of cluster Voronoi diagrams, see e.g., [28, 44]. We believe that subdivision478

methods augmented with root boxes, similar to [5], would be applicable to these problems.479
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