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Abstract1

Given a set A of n points in Rd, the sum of distances is φ(x) =
∑

a∈A
∥x − a∥. A classic problem2

in facility location, that dates back to 1643, is to find the Fermat point x∗, the point that minimizes3

the function φ. In general, the Fermat point x∗ cannot be computed exactly, so finding fast4

approximation algorithms has been of particular interest. In this work, we present algorithms to5

compute an ε-approximation of the Fermat point x∗, that is, a point x̃
∗ satisfying ∥x̃

∗ − x∗∥ < ε.6

Our approximation scheme differs from the usual φ(x̃∗) ≤ (1 + ε)φ(x∗) approximation considered in7

the literature, which approximates the distance function. Our ε-approximation of the Fermat point8

directly implies an ε-approximation of the distance function, whereas the converse is not possible.9

Our algorithms are based on the subdivision paradigm, which we enhance with Newton methods,10

used for certification, in the sense of interval methods, and for speed-ups. Moreover, we consider the11

problem of constructing n-ellipses, which are the r-level sets φ−1(r). The notion of an n-ellipse is a12

generalization of the classic (2-)ellipse and the circle (1-ellipse). Using the subdivision paradigm, we13

design an ε-isotopic approximation algorithm to compute n-ellipses in R2. We have implemented14

our algorithms and we provide an experimental analysis using different point configurations and15

heuristics for speed-ups. The obtained results suggest the practicality of our approaches especially16

in low dimensions and for small epsilon.17
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Figure 1 The Fermat point of the 28 EU-capitals (pre-Brexit), highlighted with (×), along with
three 28-ellipses of different radii. (a) Unweighted case. (b) Each capital has the weight of the
country’s population. The map is borrowed from https://www.consilium.europa.eu.
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1 Introduction21

A classic problem in Facility Location, see e.g., [17, 35], is the placement of a facility to22

serve a given set of demand points or customers so that the total transportation costs are23

minimized. The total cost at any point is interpreted as the sum of the distances to the24

demand points. The point that minimizes this sum is called the Fermat Point; see Fig. 1.25

This is an old geometric problem that has inspired scientists over the last three centuries.26

A weighted foci set is a non-empty finite set of (demand) points A = {a1, . . . , an} in Rd
27

associated with a positive weight function w : A→ R>0. Each a ∈ A is called a focus with28

weight w(a). Let W =
∑

a∈A w(a). The Fermat distance function of A is given by29

φ(x) :=
∑
a∈A

w(a)∥x− a∥30

31

32 where ∥x∥ is the Euclidean norm in Rd. The global minimum value of φ is called the Fermat33

radius of A and denoted r∗; any point x ∈ Rd that achieves this minimum, φ(x) = r∗, is34

called a Fermat point and denoted x∗ = x∗(A). The Fermat point is not unique if and only35

if A is collinear and n is even. We can check if A is collinear in O(n) time, and in that case,36

the median, which is a Fermat point, can be found in O(n log n) time. So, henceforth we can37

assume that A is not collinear, and so φ is a strictly convex function [27, 29].38

We also consider the closely related problem of computing n-ellipses of A. For any39

r > r∗(A), the level set of the Fermat distance function is φ−1(r) :=
{

x ∈ Rd : φ(x) = r
}

.40

If n = 1, the level set is a sphere; and if n = 2 and d = 2, it is the classic ellipse. When41

A has n points, we call φ−1(r) an n-ellipsoid, or an n-ellipse if d = 2; hence the term foci42

set. From an application perspective, an n-ellipse of radius r can be viewed as a curve that43

bounds the candidate area, for facility location, such that the total transportation cost to44

the demand points is at most some specified r, as in Fig. 1.45

The question of approximating the Fermat point is of great interest as its coordinates46

are the solution of a polynomial with exponentially high degree [3], thus when n > 4 the47

exact solution cannot be found in the general case. We address the problem of computing48

an ε-approximation x̃∗ to the Fermat point x∗. This can be interpreted in 3 senses: (A)49

∥x̃∗ − x∗∥ ≤ ε, (B) φ(x̃∗) ≤ φ(x∗) + ε, and (C) φ(x̃∗) ≤ (1 + ε)φ(x∗). In Appendix A, we50

show that we can reduce (B) and (C) to (A), whereas the converse is not possible. In this51

paper we consider approximations in the sense (A) that are stronger. To the best of our52

knowledge, only approximations (B) and (C), have been considered in the literature (e.g.,53

[7, 13]), which are essentially approximations of the Fermat radius.54

In this work we introduce certified algorithms for approximating the Fermat point and n-55

ellipses, combining a subdivision approach with interval methods (cf. [26, 38]). The approach56

can be formalized in the framework of “soft predicates” [46]. Our certified algorithms are57

fairly easy to implement, and are shown to have good performance experimentally.58

Related Work. The problem we study has a long history, with numerous extensions and59

variations. Out of the 15 names found in the literature, see [19], we call it the Fermat60

point problem. Other common names are Fermat-Weber problem and Geometric median61

problem. Apart from the Facility Location application introduced by Weber [47], the problem62

is motivated by applications in diverse fields such as statistics and data mining where it is63

known as the 1-Median problem, and is an instance of the k-median clustering technique [21].64

For d = 2, n = 3, the problem was first stated by P. Fermat (1607 - 1665) and was solved65

by E. Torricelli (1608 - 1647) and Krarup and Vajda [23] using a geometric construction.66

For n = 4, solutions were given by Fagnano [16] and Cieslik [11]. The first general method,67

for arbitrary n, is an iterative scheme proposed by Weiszfeld [48] in 1937. It was later68
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(a) (b)

Figure 2 The resulting box subdivision for (a) the n-ellipses and (b) the Fermat point of Fig. 1a.

corrected and improved by Kuhn [25] and Ostresh [35]; see Beck and Sabach [4] for a review.69

The method which is essentially a gradient descent, implies an iterative algorithm with no70

asymptotic runtime complexity, but which can behave quite well in practice.71

A plethora of approximation algorithms for the Fermat point, in senses (B) and (C), can72

be found in the literature using various methods. There are algorithms based on semidefinite73

programming [36], on interior point methods [13, 50], via sampling [2, 13], geometric data74

structures [7] and coresets [20] among others [10, 18]. Moreover, special configurations of75

foci have been considered [6, 12], a continuous version of the problem [17], and the problem76

of finding the Fermat point of planar convex objects [1, 9, 15].77

The literature on n-ellipses is smaller but equally old: Nagy [30] proved that n-ellipses are78

convex curves, dating them back to 1695 [45, p. 183]. Further, he characterizes the singular79

points of the n-ellipses as being either foci or the Fermat point. Another early work is by80

Sturm [43]. Sekino [41] showed that the distance function φ is C∞ on R2 \A. So, the n-ellipse81

is a piecewise smooth curve, as it may pass through several foci. Nie et al. [34] showed that82

the polynomial equation defining the n-ellipses has algebraic degree exponential in n.83

Our Contributions. In this paper, we design, implement and experimentally evaluate84

algorithms for approximating the Fermat point of a given set of foci in Rd. To the best of our85

knowledge, this is the first algorithm to compute an ε-approximation of the actual Fermat86

point and not only of the Fermat radius. We also compute an ε-approximate n-ellipse; a87

problem not considered in computational literature before. Our contributions are summarized88

as follows:89

We introduce the first certified algorithms [28, 44] for approximating the Fermat point90

and n-ellipses.91

Our notion of ε-approximate Fermat point appears to be new; in contrast, several recent92

algorithmic work focuses on ε-approximation of the Fermat radius. Approximate Fermat93

radius can be reduced to approximate Fermat point; the converse reduction is unclear.94

Based on the PV construction [37], we design an algorithm, computing a regular isotopic95

ε-approximation of an n-ellipse. We also augment the algorithm to compute simultaneous96

contour plots of the distance function φ, resulting in a useful visualization tool (see Fig. 1).97

We implement our algorithms and experiment with different datasets and speedups. Each98

method is evaluated based on different values of the input parameters.99

Various details and proofs which are omitted, due to lack of space, may be found in the100

Appendix.101

CVIT 2016
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2 Preliminaries102

Vector variables are written in bold font: thus 0 is the origin of Rd and x = (x1, . . . , xn).103

Let ∂if denote partial differentiation with respect to xi. The gradient ∇f : Rd → Rd of f is104

given by the vector ∇f(x) = (f1(x), . . . , fn(x))T where fi = ∂if . In general, the operator105

∇ is partial, i.e., ∇f(x0) might not be defined at a point x0. A point x0 is a critical point106

of f if ∇f(x) = 0 or ∇f(x) is undefined.107

Our approach is fundamentally analytic rather than algebraic. As such, we consider108

analytic properties of a scalar function f : Rd → R, mainly from the viewpoint of convex109

analysis [31, 27]. Although we are mainly interested in the case where f is the Fermat110

distance function for some weighted set A, it is important to see the general setting of111

our problem. For instance, this shows us that the Fermat point problem (resp., n-ellipsoid112

problem) reduces to computing the critical points of the gradient of f (resp., computing the113

level sets of f). The Fermat point is the only critical point of f in Rd \A, since we assume114

A is non-collinear.115

Most basic properties which we assert regarding the Fermat point are well-known and116

may be found in many of our references such as [25, 27, 31, 35, 48]. To emphasize the foci set117

A, we explicitly write φA instead of φ. A focus a ∈ A is the Fermat point of A if and only if118 ∥∥∇φA\a(a)
∥∥ ≤ w(a). Thus, testing if the Fermat point x∗ is in A can be done in O(n2) time119

(see Appendix H for details). If x∗ is not one of the foci, then ∇f(x∗) = 0, and it can be120

reduced to general finding zeros of a system of equations (e.g., [49]). But the thrust of this121

paper is to develop direct methods that exploit the special properties of the Fermat problem.122

We formally define the two main problems which we consider.123

P1. Approximate Fermat Point: Given a weighted point set A in Rd and ε > 0, compute124

a point x̃∗ within ε distance to the Fermat point x∗ of A.125

P2. Approximate Isotopic n-Ellipses: Given ε > 0, a point set A in R2 of size n and126

a radius r > r∗(A), compute a closed polygonal curve E that is ε-isotopic to φ−1(r),127

i.e., there exists an ambient isotopy1 γ : R2 × [0, 1]→ R2 with γ(E, 1) = φ−1(r) and for128

any point a ∈ φ−1(r), the parametric curve γ(a, ·) has at most length ε. This implies a129

bound of ε on the Hausdorff distance.130

Subdivision Paradigm. The subdivision algorithms presented in this paper take as input an131

initial box B0 ⊂ Rd and recursively split it. We organize the boxes in a generalized quadtree132

data structure [40]. A box can be specified by d intervals as B = I1 × I2 × ...× Id.Let mB133

denote the center of B, rB the radius of B (distance between mB and a corner), and ω(B) the134

width of B (the maximum length of its defining intervals). The term c ·B represents the box135

with center mB and radius c · rB . The function split1 takes a box B and returns 2d boxes136

(children), one for each orthant. We use split2 to indicate that we do two successive levels137

of split1, resuling in (2d)2 = 4d children. Throughout this work we maintain the subdivision138

smooth, i.e., the width of any two adjacent boxes, which are leaves of the quadtree, may differ139

at most by a factor of 2. Maintaining smoothness is easy to implement and has amortized140

O(1) cost per operation [5]. Without maintaining smoothness, the amortized cost can be141

Ω(log n) [5].142

Soft Predicates. Let Rd denote the set of closed d-dimensional boxes (i.e., Cartesian143

products of intervals) in Rd. Let P be a logical predicate on boxes, i.e., P : Rd →144

1 That is, a continuous map γ : R2 × [0, 1] → R2 such that γ0 = γ(·, 0) is the identity map, and, for all
t ∈ [0, 1], γt = γ(·, t) is a homeomorphism on R2.
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{true, false}. For example, the Fermat point predicate is given by PFP(B) = true if and145

only if x∗ ∈ B. Logical predicates are hard to implement, and thus, we may focus on146

tests, which are viewed as “one-sided predicates”. Formally, a test T looks like a predicate:147

T : Rd → {success, failure} and it is always associated to some predicate P : call T148

a test for predicate P if T (B) = success implies P (B) = true. However, we conclude149

nothing if T (B) = failure. Denote this relation by “T ⇒ P”. Soft predicates [46] are an150

intermediate concept between a test and a predicate. Typically, they arise from a partial151

scalar function f : Rd → R ∪ {↑} where f(x) =↑ means f(x) is not defined. We then define152

a partial geometric predicate Pf on boxes B as follows:153

Pf (B) =


↑ if ↑∈ f(B),
+1 if f(B) > 0,

−1 if f(B) < 0,

0 else.

We can now derive various logical predicates P from Pf , by identifying the values in the154

set {−1, 0, +1, ↑} with true or false. For instance, we call P an exclusion predicate if155

we associate the 0- and ↑-value with false and the other values with true. For the156

inclusion predicate, we associate the 0-value with true, others with false. For example,157

a test for the Fermat point predicate PFP is an inclusion predicate based on the partial158

function f(x) =
∑

i(∂if(x))2; the function is partial because f(x) =↑ when x is a focus159

point. Although our box predicates P (B) are defined for full-dimensional boxes B, we160

can extend them to any point x as follows: P (x) has the logical value associated with the161

sign(f(x)) ∈ {↑, +1,−1, 0}.162

▶ Definition 1. Let T be a test for a predicate P . We call T a soft predicate (or soft version163

of P ) if it is convergent in this sense: if (Bi : i = 0, 1, . . .) is a monotone sequence of boxes164

Bi+1 ⊆ Bi that converges to a point a, then P (a) = T (Bi) for i large enough.165

A soft version of P (B) is usually denoted P (B). We note that soft versions of exclusion166

predicates are generally easier to construct than inclusion predicates. The former can be167

achieved by numerical approximation, while the latter usually require some deeper principle168

such as the Brouwer fixed point theorem [8].169

Interval arithmetic. We construct soft predicates using functions of the form F : Rd →170

(R ∪ {−∞,∞}) that approximates the scalar function f : D → R with D ⊂ Rd.171

▶ Definition 2. Call F a soft version of f if it is172

i) conservative, i.e. for all B ∈ Rd, F (B) contains f(B) := {f(p) : p ∈ B ∩D}, and173

ii) convergent, i.e. if for monotone sequence (Bi : i ≥ 0) that converges to a point a ∈ D,174

limi→∞ ω(F (Bi)) = 0 holds.175

We shall denote F by f when F is a soft version of f . There are many ways to176

achieve f . E.g., f has an arithmetic expression E, we can simply evaluate E using interval177

arithmetic. More sophisticated methods may be needed for performance.178

▶ Lemma 3. If P is an exclusion predicate based on f , then the test P (B) : 0 /∈ f(B) is179

a soft version of P .180

Below, we need a multivariate generalization, to the case where f : Rd → Rm, and the181

exclusion predicate P (B) is 0 /∈ f(B). If f : Rd → Rm is a soft version of f , then a182

soft version of P (B) is the given by the test T (B) : 0 /∈ f(B). If f = (f1, . . . , fm), then183

this reduces to 0 /∈ fi(B) for some i = 1, . . . , m.184

CVIT 2016
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Figure 3 Different steps during the the execution of Algorithm 1. The red boxes cannot contain
the Fermat point, whereas the green boxes may contain it.

3 Approximate Fermat points185

We now present three approximation algorithms for the Fermat point x∗. For simplicity, we186

assume in our algorithms that the Fermat point is not a focus, i.e. x∗ /∈ A, see Appendix H.187

3.1 Using the Subdivision Paradigm188

The subdivision paradigm requires an initial box B0 to start subdividing. If B0 is not given,189

it is easy to find a box that contains x∗, since x∗ lies in the convex hull of A [25]. We use a190

function Initial-Box(A) which, in O(n) time, computes an axis-aligned bounding box with191

corners having the minimum and maximum x, y coordinates.192

We define the following exclusion predicate using interval arithmetic and Lemma 3. Refer193

to Appendix E for details on its soft version.194

▶ Definition 4. Given a box B, the gradient exclusion predicate C∇(B) returns true if and195

only if 0 /∈ ∇φ(B).196

▶ Lemma 5. The soft gradient exclusion predicate C∇(B) is convergent, i.e., for any197

monotone sequence of boxes (Bi)i∈N that converges to a point p, the point p is not the Fermat198

point if and only if C∇(Bi) = success for large enough i.199

In Algorithm 1, using the exclusion predicate we discard boxes that are guaranteed not200

to contain x∗ (red in Fig. 3) and we split boxes that might contain x∗ (green in Fig. 3).201

While subdividing, we test whether we can already approximate x∗ well enough by putting a202

bounding box around all the (green) boxes not excluded yet, using the following predicate.203

▶ Definition 6. Given a set of boxes Q which contains the Fermat point, the stopping predicate204

Cε(Q) returns true, if and only if the minimum axis-aligned bounding box containing all205

boxes in Q has a radius at most ε.206

If Cε returns true, then we can stop. Since the radius of the minimum bounding box is207

at most ε, the center of the box is an ε-approximate Fermat point x̃∗.208 Regarding the runtime of Algorithm 1, evaluating ∇φ and its soft version takes linear209

time in n. The subdivision approach induces an exponential dependency on d as splitting210

a box creates 2d many children. Further, a split1 operation decreases the boxwidth by a211

factor of 2, therefore Algorithm 1 cannot converge faster than linear in ε.212

3.2 Enhancing the Subdivision Paradigm213

In this section, we augment Algorithm 1 with a speed up based on a Newton operator, which214

will ensure eventual quadratic convergence.215
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Algorithm 1 Subdivision for the approximate Fermat point (SUB)

Input : Foci set A, constant ε > 0. Output: Point x̃∗.
1 B0 ← Initial-Box(A); Q← Queue(); Q.push(B0);
2 while not Cε(Q) do
3 B ← Q.pop();
4 if not C∇(B) then
5 Q.push(split1(B));
6 return x̃∗ ← Center of the bounding box of Q;

The Newton operator. Newton-type algorithms have been considered in the past but216

usually independently of other methods, thus suffering from lack of global convergence (see217

Appendix B for an example). Numerically, such methods face the precision-control problem.218

Our algorithm integrates subdivision with the Newton operator (an old idea that goes back219

to Dekker [14] in the 1960’s), thus ensuring global convergence.220

We want to find the Fermat point, i.e. the root of f = ∇φ. The Newton-type predicates221

are well-studied in the interval literature, and they have the form N : Rd → Rd.222

There are two well-known versions, the simpler formula by Moore [28] and Nickel [32] is223

N(B) = mB − J−1
f (B) · f(mB), where Jf is the Jacobian matrix of f . Since f = ∇φ,224

this matrix is actually the Hessian of φ. The other formula by Krawzcyk [24, 42] is:225

N(B) = mB −K · f(mB) + (I −K · f(B)) · (B −mB), where K is any non-singular d× d226

matrix, usually chosen to be an approximation of J−1
f (mB).227

These Newton box operators have the following properties, which are consequences of228

Brouwer’s Fixed Point Theorem [8, 33, 42].229

1. N(B) ⊆ B ⇒ x∗ ∈ N(B) 2. x∗ ∈ B ⇒ x∗ ∈ N(B) 3. N(B) ∩ B = ∅ ⇒ x∗ /∈ B230

▶ Definition 7. Given a box B, the Newton inclusion predicate CN (B) returns true if and231

only if N(2B) ⊆ 2B.232

As we work with a soft version of ∇φ, we can only compute a soft Newton inclusion233

predicate CN (B), i.e., N(2B) ⊆ 2B. Observe that we use 2B instead of B; this is234

essential to avoid boundary issues. More precisely, if box B satisfies N(B) ⊆ B, then235

it must contain x∗. But if x∗ is on the boundary of box B, then N(B) ⊆ B does not236

typically hold, and this issue persists even after splitting B.237

We enhance Algorithm 1 by the soft inclusion predicate CN (B), as sketched in Algo-238

rithm 2. If CN (B) succeeds, we conclude that x∗ is contained in N(2B). In that case,239

we can discard all other boxes and initialize a new queue Q. In order to guarantee that boxes240

in the new queue are smaller than B, we do two recursive split operations of box N(2B).241

Algorithm 2 Enhanced subdivision for the approximate Fermat point (ESUB)

As in Algorithm 1 but replace line 5 with the following:
5.1 if CN (B) then
5.2 Q← Queue(); // initialize a new queue
5.3 Q.push(split2( N(2B)); // 2 split operations
5.4 else
5.5 Q.push(split1(B));

With respect to the runtime of Algorithm 2, we observe that once the soft Newton242

inclusion predicate succeeds, then it will also do so for an initial box of the new queue. This,243

CVIT 2016
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Figure 4 Weiszfeld’s scheme on 500 foci, stopped when
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∥∥ ≤ 1/10, after 207 steps (blue
points). The distance ∥x∗ − p207∥ can be arbitrarily big (∥x∗ − p207∥ > 15 in this case).
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essentially, divides the algorithm into two phases. The first phase can be basically seen as244

Algorithm 1. In the second phase, the Newton test guarantees quadratic convergence in ε245

(see Appendix F). Getting into the second phase depends on the configuration of the foci set246

but not on ε, hence, our approach is of particular interest for small values of ε.247

We conclude the discussion on subdivision algorithm with (see Appendix F for details):248

▶ Theorem 8. Algorithm 1 and Algorithm 2 terminate and return an ε-approximate Fermat249

point. (Refer to Appendix F.)250

3.3 Certifying the Weiszfeld method251

Weiszfeld’s iterative method [25, 35, 48] describes a sequence of points that converges to the252

Fermat point x∗, for any starting point. It is defined as follows:253

T (x) =
∑

a∈A,a̸=x w(a) a
∥x−a∥∑

a∈A,a̸=x w(a) 1
∥x−a∥

. (1)254

Note that if x /∈ A, then T (x) is simply T (x) =
∑n

i=1 w(a) ai
∥x−ai∥∑n

i=1 w(a) 1
∥x−ai∥

.255

The above implies an easy algorithm to approximate x∗, by constructing a sequence of256

points pi (i = 0, 1, . . .) where pi+1 = T (pi). This simple method is widely used, and although257

it converges, it does not solve our ε-approximation problem as we do not know when to stop.258

To see that this is a real issue consider the example in Fig. 4 (see also Appendix B).259

We augment this idea by adding Newton tests during the computation, turning it into262

an ε-approximation algorithm. While at the i-th iteration, we define a small box B with263

point pi as center, and map it to the box N(B) using the Newton operator; see Fig. 5. If264

N(B) ⊆ B, then the Fermat point x∗ lies in N(B), see Section 3.2. On the contrary, if265

N(B) ̸⊆ B we move on to the next point pi+1 and adjust the box size as follows.266

If B
10 ∩ N( B

10 ) = ∅, then the box B
10 does not contain x∗ and we therefore expand B by267

a factor of 10 (see Appendix G for the choice of 10). If B
10 ∩ N( B

10 ) ̸= ∅, then there might268

be a focus in box B
10 , which hinders N(B) ⊆ B to succeed. In that case we shrink B by a269

factor of 10. If a focus is not in B
10 , shrinking B does not negatively effect the algorithm, as270

B can expand again.271

Using these tests we augment the point sequence scheme, sketched in Algorithm 3,272

with the property that if the Newton test evaluates to true, then we are guaranteed an273

ε-approximation of x∗. As a starting point, we choose the center of mass p0 of A, i.e.,274

p0 = 1
W

∑
a∈A w(a) a. Note that φ(p0) itself is a 2-approximation of r∗ = φ(x∗) [13].275

▶ Theorem 9. Algorithm 3 terminates and returns an ε-approximate Fermat point. (Refer276

to Appendix G.)277

With respect to the runtime, the point sequence T (x) converges linearly in ε towards279

x∗ [22] but in order for Algorithm 3 to terminate the test N(B) ⊆ B must succeed. Similar280
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Algorithm 3 Certified Weiszfeld (CW )

Input : Foci set A, constant ε > 0. Output: Point x̃∗.
1 p← p0; l← ε;
2 while True do
3 B ← Box B(mB = p, ω(B) = l);
4 if N(B) ⊆ B then // Fig. 5a
5 return x̃∗ ← p;
6 else if N

(
B
10
)
∩ B

10 = ∅ then // Fig. 5b
7 l← min{10 · l, ε};
8 else l← 1

10 · l; // Fig. 5c
9 p← T (p);

B B
10

pi
pi(a) (b) (c)

piN( B
10
)

N(B) N( B
10
)

B
10

Figure 5 The three cases of Algorithm 3. (a) N(B) ⊆ B, (b) N(B)∩B = ∅ and (c) N(B)∩B ≠ ∅.278

to other Newton operators, N(B) ⊆ B succeeds for boxes in a neighborhood surrounding281

x∗. This neighborhood depends only on the configuration of A but not on ε. Further,282

evaluating T (x) and N(B) can be done in O(nd2) time.283

4 Approximating n-ellipses284

In this section, we describe an algorithm to construct approximate n-ellipses, based on the285

subdivision paradigm. The complete algorithm, with all details, can be found in Appendix D.286

The Plantinga and Vegter (PV) construction [37] approximates the zero set of a function287

F : Rd → R where d ∈ {2, 3}. Assuming that the curve S = F −1(0) is regular, i.e., the288

gradient ∇F is non-zero at every point of S, their approximation is isotopic to S. Our goal289

is to use this construction to get an approximation of an n-ellipse by using F (p) = φ(p)− r.290

We assume that the radius r of the n-ellipse is bigger than the Fermat radius r∗. In the next291

definition we use the notation ⟨·, ·⟩ for the scalar product.292

▶ Definition 10. Given a box B we define the following tests:293

1. The exclusion test is defined by CEx
0 (B) = success if and only if 0 /∈ F .294

2. The inclusion test is defined by CIn
0 (B) = success if and only if F evaluated at the295

corners of B admits negative and positive values.296

3. The normal variation test is defined by C1(B) = success if and only if ⟨ ∇F, ∇F ⟩ > 0.297

The success of the test CEx
0 (B) implies that the n-ellipse does not pass through B. The298

success of the test CIn
0 (B) implies that the n-ellipse passes through B. The success of the299

test C1(B) implies that the angle between the gradient of any two points in B is at most 90◦.300

This implies that the n-ellipse does not have a big curvature and F is monotone in either x-301

or y-direction within the box. In Fig. 6a, boxes are: red if they pass the CEx
0 test, green302

if they pass both C1 and CIn
0 , orange if the pass only C1, and gray otherwise. Note that303

orange boxes may, or may not, contain parts of the approximate n-ellipse.304

An n-ellipse is not regular if it passes through some focus [41]; in that case a direct305

PV construction is not possible. To tackle this problem we develop a variation, where we306
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(a) (b)

Figure 6 (a) A 3-ellipse passing through two foci. Components of gray boxes (temporarily)
surround the foci. (b) A 3-elliptic contour plot with 10 contour lines, nicely distributed in space.

subdivide boxes and construct pieces of the n-ellipse on the fly, instead of doing that in the307

end. Further, boxes in which the n-ellipse may not be regular are treated differently. During308

the subdivision part of the algorithm, we classify boxes in three categories:309

1. Boxes which satisfy CEx
0 (red): These do not contain any piece of the n-ellipse, so they310

do not need to be further considered and are discarded.311

2. Boxes which satisfy C1 and have width smaller than ε/2 (green or orange): We312

immediately draw edges in each of these boxes.313

3. The remaining boxes (gray): Such boxes occur near foci and need more careful attention,314

as we cannot apply the standard PV construction. Instead, for each connected component315

of gray boxes, we check if a set of conditions is satisfied. If so, edges are immediately316

drawn, otherwise the boxes are further split for classification.317

Contour Plotting. As an application, we can use the above in order to produce a topologi-318

cally correct, ε-approximate and visually nice n-elliptic contour plot. To do so, we first adapt319

our algorithm in order to simultaneously plot several n-ellipses, corresponding to the same320

foci but with different radii. Each n-ellipse is a contour line, and we describe how to plot321

them visually nice, i.e., the contour lines are roughly equally distributed in space; see Fig. 6b.322

5 Experiments323

We implemented our algorithms for R2 and conducted a series of experiments. Our current324

software is written in Matlab (version R2018b), taking advantage of its graphics ability. The325

numerical accuracy is therefore IEEE numerical precision. The platform used was macOS326

Big Sur v11.2.3, with 2.5 GHz Quad-Core Intel Core i7 and 16 GB 1600MHz DDR3.327

Following, we report on our experiments, discussing some notable points one by one;328

refer to Appendix I for more details. We evaluated our algorithms on both synthetic and329

real-world datasets. For all algorithms approximating the Fermat point we chose a time330

limit of 600 seconds. Moreover, for most experiments we executed 10 different instances for331

completeness. In the illustrated charts, the curves pass through the mean of the 10 running332

times, and additionally we also marked the minimum and maximum running times. All axes333

in the charts are of logarithmic scale.334

Datasets. We mainly experimented with two different types of synthetic datasets, namely335

Unif-1 and Unif-2. In Unif-1 the n foci are sampled uniformly from a disk of radius 1.336

In Unif-2 again the n foci are sampled uniformly from a disk of radius 1 and then n/2337

foci are translated by a vector (10, 10), see Fig. 8(a) and (b). Despite their similarity, the338

two datasets present strong differences. As we later see, Unif-2 is significantly difficult to339
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(a) (b) (c) (d)

Figure 7 Comparing Newton operators: (a)-(b) Time as a function of n, with ε = 10−4. (c)-(d)
Time as a function of ε with n = 100. (a)-(c) Unif-1 datasets. (b)-(d) Unif-2 datasets.

solve, and Unif-1 resembles nicely real-world datasets. We experimented with more types of340

synthetics datasets but the results are similar to Unif-1 or Unif-2; see Appendix I.341

Newton operators. Adding a Newton operator to the subdivision process drastically342

improves the running time. We compared Algorithm 1 with two versions of Algorithm 2,343

where we once use the Newton operator based on Moore and Nickel and also the operator344

by Krawzcyk. The results for various values of n and ε on both Unif-1 and Unif-2 are345

summarized in Fig. 7. Note that Algorithm 2 initially needs to perform simple splitting346

operations until at some point the Newton test succeeds the first time. After that the347

algorithm converges quadratically in ε, which explains why the running time of both versions348

almost do not increase for decreasing ε. Even though the operator by Krawzcyk returns a349

smaller box N(B), i.e. it is more precise, than Moore and Nickel, it performs slower for Unif-1350

as evaluating the operator takes more time. We conclude that using a Newton operator351

speeds up the computations, and we use the one of by Moore and Nickel in Algorithm 2.352

Principal component analysis. Foci sets like Unif-2 are challenging as all foci are close to353

a common line. In this case, the subdivision algorithms can be slow because there are many354

boxes for which the gradient ∇φ is close to 0. Our approach to tackle this problem is to use355

subdivision with rectangular boxes. In a preprocessing step we do a principal component356

analysis (PCA) of the foci as heuristic. Then, we rotate the coordinate system such that the357

x-direction is the first principal component. In the box subdivision we use rectangular boxes358

with long x-width, see Fig. 8(c). Observe in the following table, that for well distributed foci359

sets like Unif-1, using the PCA adds only a small overhead to the total running time.360

ε = 10−3, n = 10 100 1000 10000
without PCA 0.12 0.31 2.33 23.4
with PCA 0.10 0.30 2.30 23.9

n = 100, ε = 10−1 10−3 10−5 10−7

without PCA 0.20 0.30 0.33 0.34
with PCA 0.18 0.30 0.33 0.35

361

On the contrary, for sets like Unif-2, adding the PCA decreases drastically the running362

time, as shown next. Hence, the PCA preprocessing is a useful addition to Algorithm 2.363

ε = 10−3, n = 10 100 1000 10000
without PCA 90.7 48.5 170 timeout
with PCA 0.15 0.40 3.21 32.7

n = 100, ε = 10−1 10−3 10−5 10−7

without PCA 37.1 49.2 49.2 49.5
with PCA 0.36 0.40 0.42 0.43

364

Real Datasets Inspired by the applications in facility location we chose to experiment with365

instances of the well-known Traveling Salesman Person Library [39] or TSPlib. The foci366

correspond mostly to location of cities in different areas around the world. It appears that367

real-world instances show a similar behavior to Unif-1 datasets; so, Unif-1 are realistic368

datasets for the evaluation of different algorithms. In our experiments illustrated in Fig. 10(a),369

for each TSPlib dataset we created an additional foci set, where we uniformly sampled the370

CVIT 2016



23:12 Certified Approximation Algorithms for the Fermat Point and n-Ellipses

same number of foci in the axis-aligned bounding box. As ε we chose 10−6 times the width371

of the corresponding bounding box. The similarity in the two datasets is obvious.372

Summary on the Fermat point. We make an overall comparison of Algorithm 1, Algorithm 2373

with the PCA, and Algorithm 3, illustrated in Fig. 9. The running time of all methods374

shows a linear dependence on n, but there are big differences regarding the dependency375

on ε. Overall, Algorithm 3 performs well in all cases, but due to the linear convergence of376

Weiszfeld’s point sequence, it cannot converge faster. In contrast, Algorithm 2 takes more377

time in the subdivision phase, but once the Newton tests succeeds, the algorithm terminates378

very fast. So, it does not exhibit almost any changes in the running time for decreasing ε.379

This makes it favorable when a high precision approximate solution is required. It is also380

very fast in Unif-2 instances and outperforms Algorithm 3.381

n-ellipses. Finally, we evaluated the runtime of n-ellipses algorithm. It shows a linear382

dependency on n, as expected, and it also shows a linear dependency on the length of curve.383

This can be justified, as covering an n-ellipse of length l with boxes of width ε takes O(l/ε)384

many boxes. We summarize our experiments in the following figure. In Fig. 10(b) we evaluate385

the dependency on n. In order to keep the length of the curve almost constant we choose386

the radii r = (10
√

2+2)n
2 . The bounding box used is [−2, 12]2. In Fig. 10(c) we analyze the387

dependency on the length of the n-ellipse. The bounding box is fixed and we experimented388

with different radii such that the lengths of the curve differ by a factor of 3/2.389

Concluding remarks. In this work, we focused on finding ε-approximate Fermat points,390

in a strong sense ∥x̃∗ − x∗∥ ≤ ε, which had not been considered before. This was done391

using a simple-to-implement subdivision approach. All of our algorithm are certified in the392

sense of interval arithmetic. Moreover, we certified the famous point-sequence algorithm393

of Weiszfeld [48] to guarantee that it finds an ε-approximate Fermat point. Especially for394

difficult instances and very small ε the Newton-based subdivision algorithm is preferable, due395

to its eventual quadratic convergence. For high dimensions, the point-sequence algorithm396

would probably be favourable, due to the dependency of the subdvision methods on d.397

(a) (b) (c)

Figure 8 A box subdivision for n = 200 foci: (a) Unif-1, (b) Unif-2 and (c) Unif-2 after PCA.
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(a) (b) (c) (d)

Figure 9 Comparing the Fermat point algorithms: (a)-(b) Time as a function of n, with ε = 10−4.
(c)-(d) Time as a function of ε with n = 100. (a)-(c) Unif-1 datasets. (b)-(d) Unif-2 datasets.

(a) (b) (c)

Figure 10 (a) Fermat point with time as a function of n, with ε = 10−4. (b)-(c) n-ellipse on
Unif-2 with time as a function of (b) n and (c) the length of the n-ellipse.
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Appendix content504

The appendix is organized as follows.505

A. Notions of ε-approximations of the Fermat point506

B. Problems of two non-subdivision based approaches507

C. Details on our box approximations508

D. Details on the approximation of n-ellipses509

E. Proof of Lemma 5510

F. Termination of Algorithm 2511

G. Termination of Algorithm 3512

H. Fermat point on a focus513

I. More details on the experiments514

A Notions of ε-approximations of the Fermat point515

This section compares the three different notions of ε-approximation of the Fermat point:516

(A)
∥∥x̃

∗ − x∗
∥∥ ≤ ε

(B) φ(x̃∗) ≤ φ(x∗) + ε

(C) φ(x̃∗) ≤ (1 + ε)φ(x∗)
517

The following lemmas show that notion (A) is stronger than notions (B) and (C). There518

is no function f in n, ε and W such that an f(ε, n, W ) approximate Fermat point in sense519

(B) or (C) implies that it is an ε approximate Fermat point in the sense (A).520

▶ Lemma 11. For any ε > 0 there exists an instance of 4 foci such that an ε-approximation521

of the Fermat point in the sense (B) or (C) can have distance 1 to the Fermat point.522

Proof of Lemma 11 (Version 1). Let ε > 0 and choose c ≤ ε
2

√
2−2 . Consider the foci523

a1 = (1, 0) a2 = (0, 1)
a3 = (−1, 0) a4 = (0, −1)

with weights w(a1) = w(a3) = 1 and w(a2) = w(a4) = c for524

which the Fermat point is x∗ = (0, 0) for symmetry reasons, and hence φ(x∗) = 2 + 2c, see525

Figure 11. The point p = (1, 0) is an ε-approximation of x∗ in the sense (B) and (C), see526

Inequalities 2 and 3, but it has a distance of 1 to x∗ = (0, 0).527

φ(p) =
4∑

i=1
w(ai)∥p− ai∥ = 2 + 2

√
2c ≤ 2 + 2c + ε528

≤ φ(x∗) + ε (2)529

≤ (1 + ε)φ(x∗) (3)530
531

The last inequality holds because φ(x∗) = 2 + 2c > 1. ◀532

Proof of Lemma 11 (Version 2). Let ε > 0, and choose h > 0 small enough such that:533

2
√

4 + h2+2h ≤ 4
√

1 + h2+ε. Consider the foci a1 = (0, −h) a2 = (0, h)
a3 = (2, −h) a4 = (2, h)

, with unit weight534

for which the Fermat point is x∗ = (1, 0) for symmetry reasons, and hence φ(x∗) = 4
√

1 + h2.535

See Figure 11. The point p = (2, 0) is an ε-approximation of x∗ in the sense (B) and (C), see536
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Figure 11 A good approximation of the Fermat point in sense (B) or (C) does not imply a good
approximation in sense (A).

Inequalities 4 and 5, but it has a distance of 1 to x∗ = (1, 0).537

φ(p) =
4∑

i=1
∥p− ai∥ = 2

√
4 + h2 + 2h ≤ 4

√
1 + h2 + ε538

≤ φ(x∗) + ε (4)539

≤ (1 + ε)φ(x∗) (5)540
541

The last inequality holds because φ(x∗) = 4
√

1 + h2 > 1. ◀542

▶ Lemma 12. An ε-approximation x̃∗ of x∗ in the sense
∥∥x̃∗ − x∗

∥∥ ≤ ε is also a Wε-543

approximation in the sense φ(x̃∗) ≤ φ(x∗) + Wε.544

Proof. By the triangle inequality we have545

φ(x̃∗) =
∑
a∈A

w(a)∥x̃∗ − a∥ ≤
∑
a∈A

w(a)(∥x̃∗ − x∗∥+ ∥x∗ − a∥) = φ(x∗) + Wε.546

◀547

▶ Lemma 13. An ε-approximation x̃∗ of x∗ in the sense φ(x̃∗) ≤ φ(x∗) + ε is also a548

2ε
φ(g) -approximation in the sense φ(x̃∗) ≤ (1 + 2ε

φ(g) )φ(x∗), where g is the center of gravity of549

the foci.550

Proof. The center of gravity g is a 2-approximation of the Fermat radius r∗ (see [13]), i.e.551

φ(x∗) ≥ 1
2 φ(g).552

φ(x̃∗) ≤ φ(x∗) + ε =
(

1 + ε

φ(x∗)

)
φ(x∗) ≤

(
1 + 2ε

φ(g)

)
φ(x∗)553

◀554

B Problems of two non-subdivision based approaches555

B.1 Pure Newton: Lack of global convergence556

In this section we describe an instance, in which the point Newton method fails to converge557

to the Fermat point. Consider the following 10 foci in R3:558
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a1 = (0.38462, 0.58299, 0.25181)
a2 = (0.29044, 0.61709, 0.26528)
a3 = (0.82438, 0.98266, 0.73025)
a4 = (0.34388, 0.58407, 0.10777)
a5 = (0.90631, 0.87965, 0.81776)
a6 = (0.26073, 0.59436, 0.022513)
a7 = (0.42526, 0.31272, 0.16148)
a8 = (0.17877, 0.42289, 0.094229)
a9 = (0.59852, 0.47092, 0.69595)
a10 = (0.69989, 0.63853, 0.033604)

559

each with a weight of 1. If we start with the center of mass p0 = 1
n

∑
a∈A a then for f = ∇φ560

the pure Newton method pi+1 = pi − J−1
f (pi) · f(pi) does not terminate. In particular, for561

big enough i the sequence keeps revisiting the following 4 points:562

p4i = (0.40089, 0.58085, 0.23502)
p4i+1 = (0.37393, 0.58077, 0.25124)
p4i+2 = (0.43552, 0.58899, 0.24779)
p4i+3 = (0.32493, 0.56753, 0.22338)

563

B.2 Weiszfeld’s point sequence scheme: Weak stopping criterion564

▶ Remark 14. The example in Figure 4 shows 500 foci (black points), two of which have565

coordinates (0, 10) and (0,−10) and the others are two very dense clusters of 249 foci around566

(0, 0) and (100, 0), respectively. This configuration yields a Fermat point x∗ ≃ (0.019, 0)567

(red ’x’), which is very far away from the center of mass ≃ (49.3, 0), used as a start point568

(red point). Setting ε = 1/10 Weiszfeld’s scheme (blue points) was stopped after 207 steps,569

because the step length at iteration i was smaller than ε, i.e.
∥∥pi−1 − pi

∥∥ ≤ 1/10. However,570

the distance ∥x∗ − p207∥ > 15 is still very big. This example shows that a very small current571

step length is no indicator for the Fermat point to be close.572

C Details on box approximations573

In this section we need to introduce a bit more notation. Let ()T denote the transpose574

operation. The Hessian ∇2f : Rd → Rd×d of f is given by the matrix ∇2f(x) = (fij(x))d
i,j=1575

where fij = ∂i∂jf .576

The box approximations described in this section generalize for higher dimensions. For577

simplicity we describe them in R2.578

C.1 Box approximation of the gradient ∇φ579

For any point p = (px, py)T , let sin(p) := px/∥p∥ and cos(p) := py/∥p∥. Clearly,

∇φ(p) =
(∑

a∈A w(a) sin(p− a)∑
a∈A w(a) cos(p− a)

)
.

We want to develop formulas for sin(B − a) and cos(B − a). By symmetry, we consider only

sin(B − a). The four corners of B are given by mB + ω(B)
2

(
±1
±1

)
. Let Corners(B) denote
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this set of four points. Then

sin(B−a) =


[−1, 1] if a ∈ B,

[min(sin(Corners(B)− a)), 1] if a is below B,

[−1, max(sin(Corners(B)− a))] if a is above B,

[min(sin(Corners(B)− a)), max(sin(Corners(B)− a))] else.

In other words, sin(B − a) can be computed from the sinus of at most four angles. Similarly580

for cos(B − a).581

Now, we extend these formulas: for instance,

∇φ(B) =
(∑

a∈A w(a) sin(B − a)∑
a∈A w(a) cos(B − a)

)
.

The following is immediate:582

▶ Lemma 15. ∇φ is a soft predicate, i.e. it is conservative and convergent.583

Evaluating ∇φ as described above gives a very good soft version of ∇φ but takes584

exponential time in d. If the number of dimensions is higher, one can instead directly apply585

interval arithmetic to compute such soft versions in O(nd) time.586

C.2 Box approximation of φ587

We use the concept of a Lipschitz constant in order to derive a box approximation of φ. We588

call L(B) a Lipschitz constant for box B if ∀p, q ∈ B : |φ(p)− φ(q)| ≤ L(B) · ∥p− q∥. A589

trivial Lipschitz constant is W because it bounds the maximum length of the gradient:590

∥∇φ(p)∥ ≤
∑
a∈A

w(a)
∥∥∥∥(sin(p− a)

cos(p− a)

)∥∥∥∥ =
∑
a∈A

w(a) = W591

▶ Definition 16. We use φ(B) as a box approximation of φ(B) where:592

φ(B) = [φ(mB)− L(B) · rB , φ(mB) + L(B) · rB ]593

▶ Lemma 17. φ(B) is a soft predicate, i.e. it is conservative and convergent.594

Proof. The L(B) is a Lipschitz constant of φ on box B, i.e. ∀p ∈ B:595

|φ(p)− φ(mB)| ≤ L(B) · rB596

This implies φ(p) ∈ [φ(mB)− L · rB , φ(mB) + L · rB ] and hence φ(B) is conservative. Let597

Bi be a sequence of boxes, which converges to a point. This implies rBi → 0. The Lipschitz598

constant L can be bounded from above by W . Thus, ω( φ(Bi)) ≤ 2W · rBi
→ 0. ◀599

Using the Lipschitz constant W within all boxes B can result in very bad box approxi-600

mations. Consider boxes near the Fermat point, for which the gradient of φ at every point601

is almost 0. In the rest of this section we compute a better Lipschitz constant for each602

individual box.603

We partition the set of foci A = A1∪̇A2 into foci which are "far" or "close" to box B:604

∀a ∈ A1 :
∥∥∥∥(sin(B − a)

cos(B − a)

)∥∥∥∥ ⊂ [−1, 1] and ∀a ∈ A2 :
∥∥∥∥(sin(B − a)

cos(B − a)

)∥∥∥∥ ⊈ [−1, 1]605

606
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The length of an interval vector I = (Ix, Iy) is computed by ∥I∥ =
√

I2
x + I2

y , where we607

define the square root of an interval J = [J1, J2] by:608

√
J =


[
0,
√

max{|J1| , |J2|}
]

if 0 ∈ J

[√
min{|J1| , |J2|} ,

√
max{|J1| , |J2|}

]
if 0 /∈ J.

609

A box approximation of the length of the gradient of φ can then be achieved by:610

∥∇φ(B)∥ =
∥∥∥∥∑a∈A1

w(a)
(

sin(B − a)
cos(B − a)

)∥∥∥∥+
[
−
∑

a∈A2
w(a),

∑
a∈A2

w(a)
]

611

The maximal length of the gradient within box B is a Lipschitz constant of φ within box B.612

Hence, L(B) = max ∥∇φ(B)∥ can be used as Lipschitz constant for box B.613

C.3 Box approximation of the Hessian ∇2φ614

For any p ∈ R2 \A it holds:615

∇2φ(p) =

 ∑
a∈A w(a) (py−ay)2

∥p−a∥3 −
∑

a∈A w(a) (px−ax)(py−ay)
∥p−a∥3

−
∑

a∈A w(a) (px−ax)(py−ay)
∥p−a∥3

∑
a∈A w(a) (px−ax)2

∥p−a∥3

 .616

▶ Definition 18. We define the box approximation of ∇2φ(B), denoted ∇2φ(B) as follows.617

∇2φ(B) =618 ( ∑
a∈A w(a) (By−ay)2

[∥mB−a∥−r,∥mB−a∥+r]3 −
∑

a∈A w(a) (Bx−ax)(By−ay)
[∥mB−a∥−r,∥mB−a∥+r]3

−
∑

a∈A w(a) (Bx−ax)(By−ay)
[∥mB−a∥−r,∥mB−a∥+r]3

∑
a∈A w(a) (Bx−ax)2

[∥mB−a∥−r,∥mB−a∥+r]3

)
.619

The following lemma is again immediate.620

▶ Lemma 19. ∇2φ is conservative and convergent.621

D Approximating n-ellipses622

D.1 Algorithm description623

Our algorithm is described in Algorithm 4. The details skipped from the main part follow.624

More specifically, we simultaneously subdivide boxes and construct pieces of the n-ellipses.625

In the subdivision part we classify boxes in 3 categories:626

(A1) boxes, which satisfy CEx
0 (shown in red).627

(A2) boxes, which satisfy C1 and are smaller than ε/2 (shown in green or orange).628

(A3) the remaining boxes (shown in gray).629

(A1) boxes. These do not contain any piece of the n-ellipse, so they do not need to be630

further considered and are excluded in line 6.631

(A2) boxes. In contrast to the normal PV construction, where the curve is drawn in the632

end, we immediately start drawing edges in each (A2) box in line 8. In order to draw edges633

in a box B we look at the sign of function F at B’s corners and decide accordingly. Later,634

during the algorithm it might happen that we split one of B’s neighboring boxes. In that case635

we need to take into account the sign of F at the new vertex on B’s boundary. If necessary,636

the edges in box B then need to be updated.637
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Algorithm 4 Approximating an n-ellipse

Input : Foci set A, radius r, constant ε, box B0. Output: Curve E.
1 Q← Queue(); Q.push(B0);
2 while Q ̸= ∅ do
3 Qnew ← Queue();
4 while Q ̸= ∅ do
5 B ← Q.pop();
6 if not CEx

0 (B) then
7 if C1(B) and ω(B) < ε/2 then
8 E∩B ← Online-PV(B);
9 else Qnew.push(split4(B));

10 Q← Connected-Components-Analysis(Qnew);
11 return E;

(a) (b)

Figure 12 (a) A 3-ellipse passing through two foci. A connected component of gray boxes
surrounds these foci. (b) If a component satisfies (B1) - (B3) we connect the two ingoing edges with
an edge.

638

639

640

(A3) boxes. These boxes need more careful attention, as we cannot do the standard PV641

construction within those, and we therefore treat them separately in line 10. First given a642

set of gray boxes we distinguish them in connected components. This can be easily done in643

O(|Qnew|) time using a DFS-type of algorithm. Then, to take a correct decision we want644

each component Ki to satisfy the following properties:645

(B1) Ki contains exactly one focus.646

(B2) There are exactly two PV-edges leading to Ki.647

(B3) The distance between any two corners of the boxes in Ki is at most ε/2.648

If a component Ki satisfies all (B1) - (B3), then we connect the 2 PV-edges leading to Ki by649

a line segment and discard boxes of Ki, see Fig. 12. Otherwise, the children of the boxes of650

Ki are put back in Q and then we start again classifying into (A1), (A2) or (A3) and so on.651

Algorithm 5 Connected component analysis

Input : Queue Qnew, set A, constant ε. Output: Queue Q.
1 Q← ∅; {K1, ..., Kn} ← connected components of Qnew;
2 for i = 1 to n do
3 if Ki does not satisfy (B1)∧(B2)∧(B3) then
4 Q.push(boxes of Ki);
5 else Connect Ki’s boundary vertices;
6 return Q;
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Interpolating edges. The PV construction creates edges within a box B, which start and652

end from midpoints of box edges. One can derive a nicer-looking approximation by using653

linear interpolation on the box edges by taking into account the value of F at B’s corners.654

D.2 Correctness proof655

▶ Theorem 20. Algorithm 4 returns a regular isotopic ε-approximation of the n-ellipse F −1(0).656

Proof. The standard PV construction terminates for regular curves S = F −1(0). This657

implies that boxes of type (A3) can only survive in the neighborhood of foci. As time658

passes those neighborhoods become smaller and the neighborhoods of 2 different foci will659

become disjoint. That means that, eventually, properties (B1) - (B3) will be satisfied for660

each component and no box will be put back to queue Q in line 4 of Algorithm 5.661

The property that the output is a regular isotopic approximation of the k-ellipse is662

inherited from the PV-construction of regular curves. In the following we show that it is also663

an ε-approximation of the k-ellipse.664

Let S = F −1(0) and S∗ its approximation derived by Algorithm 4. We prove that the665

distance from any point on S∗ to S is at most ε. A green or orange box B contains an edge666

of S∗ only if F admits different signs when evaluated at corners on B’s boundary. In that667

case also the k-ellipse has to pass through B. The box radius of B is smaller than ε/2 and668

therefore any point on S∗ in B has at most ε distance to S. Let p be a point on S∗ in a gray669

box of component K. The component K has two ingoing edges and in particular two points670

on its boundary, which are on S, see Fig. 12b. Therefore the distance from p to S can be671

bounded by the diameter of K, which is smaller than ε. None of the red boxes contains a672

part of S∗.673

Finally we prove that the distance from any point on S to S∗ is at most ε. All the boxes,674

which might contain parts of S satisfy the C1 predicate (green and orange) or are part of a675

small component of gray boxes. If a box satisfies the C1 predicate but the function F has the676

same sign at all its corners, then the curve S might possibly enter the box but also has to677

leave the box on the same side of B [37] and any neighboring box on that side has different678

signs for F on its corners. Let p be a point on S in box B and let B1 and B2 be the next679

boxes which are reached by walking from p along S in both directions. Note that B1 and680

B2 might be the same box. If B is a gray box of component K, then the distance from p681

to S∗ can be bounded by the distance between p and the edge of S∗ in K. This distance is682

bounded by the diameter of K which is less than ε/2. If B is a green or orange box, then it683

satisfies the C1 predicate and box B1 and B2 have different signs at their 4 corners. If B1684

or B2 are green or orange then the approximation S∗ passes through them and p is close685

enough to S∗. If both B1 and B2 are gray, then the edge of S∗ through their components is686

close to p. Finally, B cannot be a red box by definition. ◀687

D.3 Elliptic Contour Plotting688

Contour Plots help readers to quickly infer useful information about some parameter, e.g. on689

a map, and are very popular in domains as Cartography, Meteorology and Social Sciences690

among others. In this section, we combine the developed algorithms in order to produce a691

topologically correct, ε-approximate and visually nice n-elliptic contour plot. In our context,692

a contour line is an n-ellipse, a contour plot is a set of n-ellipses with different radii and our693

goal is to compute m many n-ellipses inside a bounding box B0. We consider a contour plot694

to be visually nice when the m contour lines are equally distributed in space.695

CVIT 2016



23:24 Certified Approximation Algorithms for the Fermat Point and n-Ellipses

(a) (b)

Figure 13 A 3-elliptic contour plot with 10 contour lines. The foci are
(0, 0), (1, 0) and (0, 1). (a) Using radii of equidistant points as in Algorithm 6
{1.96, 2.05, 2.22, 2.46, 2.77, 3.13, 3.52, 3.94, 4.38, 4.83}. (b) Using equidistant radii
{2.24, 2.54, 2.85, 3.15, 3.46, 3.76, 4.06, 4.37, 4.67, 4.98}.

696

697

698

699

Ellipses with different radii. Algorithm 4 can be adapted to plot several n-ellipses, corre-700

sponding to the same foci but with different radii, in the same box subdivision. This can be701

done by adding an additional condition to line 8. Within any box B, the exclusion predicate702

CEx
0 (B) should be satisfied for all but one n-ellipse. With this additional condition we make703

sure that the n-ellipses are well separated in the subdivision diagram.704

Contour plotting. We describe an algorithm for visually nice contour plots, see Fig. 13a705

for a sample output. We first approximate x∗ and then compute the point pm+1, which706

maximizes φ in B0. By the convexity of φ this point is a corner of B0, so it suffices to707

evaluate φ in the four corners. Then, we split the segment x∗, pm+1 into m + 1 congruent708

segments obtaining a sequence of points x∗, p1, . . . , pm+1, and for each pi we evaluate φ to709

obtain the radius ri = φ(pi) Finally, we apply the adapted version of Algorithm 4 which710

takes the set of all m radii and simultaneously computes all m ellipses. Refer to Algorithm 6.711

Algorithm 6 Elliptic Contour Plotting

Input : Set A, constant ε > 0, box B0, m ≥ 2. Output: Family of curves E .
1 x∗ ← Algorithm-2(A, ϵ, B0);
2 pm+1 ← Corner of B0 maximizing φ;
3 [x∗, p1, . . . , pm+1]← Sequence of equidistant points;
4 return E ←Algorithm-4(A, {φ(p1), . . . , φ(pm)}, ε, B0);

E Proof of Lemma 5712

▶ Lemma 5. The soft gradient exclusion predicate C∇(B) is convergent, i.e., for any713

monotone sequence of boxes (Bi)i∈N that converges to a point p, the point p is not the Fermat714

point if and only if C∇(Bi) = success for large enough i.715

Proof. First, let us assume that p is not a focus, i.e. ∥∇φ(p)∥ ≠ 0. Then the boxes Bi do716

not contain a focus for big enough i. The box approximation ∇φ(B) is convergent and717

therefore ∇φ(Bi)→ ∇φ(p). Finally, because ∥∇φ(p)∥ ≠ 0 we know that ∃i ∈ N such that718
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0 /∈ ∥ ∇φ(Bi)∥. Hence C∇(Bi) succeeds. The other direction clearly holds true, indeed,719

if C∇(Bi) is true, then p is not the Fermat point x∗, because ∥∇φ(x∗)∥ = 0.720

In the second part we consider the case where p is a focus a ∈ A. If a is not the Fermat721

point, then
∥∥∇φA\a(a)

∥∥ > w(a) by [27]. In this case the norm of the box approximation of722

the gradient is computed by:723

∥∇φ(B)∥ =
∥∥ ∇φA\a(B)

∥∥+ [−w(a), w(a)]724
725

In the previous part we already derived that ∇φA\a(B)→ ∇φA\a(a) for B → a and thus,726

we obtain727

∥∇φ(B)∥ B→a−→
∥∥∇φA\a(a)

∥∥︸ ︷︷ ︸
>w(a)

+[−w(a), w(a)].728

729

Therefore ∃i ∈ N such that 0 /∈ ∥∇φ(Bi)∥ and hence C∇(Bi) succeeds. As above, the730

other direction is clearly true. ◀731

F Termination of Algorithm 2732

▶ Definition 21. An box sequence Bn is called monotone if Bi+1 ⊂ Bi. A monotone box733

sequence is convergent if lim
i→∞

ω(Bi) = 0. A monotone convergent box sequence Bi converges734

quadratically if ω(Bi+1) = O(ω(Bi)2).735

Let xi ∈ Rd be a quadratically convergent sequence of points, where xi+1 = N(xi) and736

N is the standard Newton operator for points. Then the sequence Bi+1 = Bi ∩N(xi, Bi),737

where this time N is the Newton operator from Nickel [33], converges quadratically.738

Let Bi be a box sequence, which converges quadratically to point p, and let qi ∈ Bi be the739

point with maximum distance to p. Then also the sequence ∥qi − p∥ converges quadratically,740

i.e. ∃λ < 1 such that ∥qi+1 − p∥ ≤ λ∥qi − p∥2. In particular, for big enough i we have741

∥qi+1 − p∥ ≤ 1
6∥qi − p∥.742

▶ Definition 22. The Newton zone Z is a neighborhood of the Fermat point x∗ with the743

property:744

∀B ∈ Z : max
p∈N(B)

d(x∗, p) ≤ 1
6 max

p∈B
d(x∗, p). (6)745

▶ Lemma 23. If x∗ ∈ B and B is contained in the Newton zone, then N(2B) ⊂ 2B.746

Proof. Because of the triangle inequality and the property that x∗ ∈ B, we have the following747

two inequalities:748

max
p∈2B

d(p, x∗) ≤ r2B + rB = 3rB (7)749

750

min
p∈∂(2B)

d(p, x∗) ≥ ω2B − ωB = 1√
2

(r2B − rB) >
1
2rB (8)751

Box B is contained in the Newton zone and therefore we get:752

max
p∈N(2B)

d(p, x∗)
(6)
≤ 1

6 max
p∈2B

d(p, x∗)
(7)(8)

< min
p∈∂(2B)

d(p, x∗).753

754

This means that the distance from x∗ to any point in N(2B) is smaller than the minimum755

distance from x∗ to a point on the boundary of 2B and hence the claim follows. ◀756
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▶ Theorem 24. Algorithm 2 terminates and returns an ε-approximation of the Fermat point757

x∗.758

Proof. The test C∇ eventually removes all boxes from the queue Q which are not fully759

contained in the Newton zone. Let B ∈ Q be the box, which contains the Fermat point x∗.760

By Lemma 23 the test CN succeeds for box B. After splitting B, all of its 16 children761

remain in the Newton zone and one of them contains x∗. Hence the algorithm becomes762

a repeated application of the Newton operator, which converges quadratically within the763

Newton zone. ◀764

G Termination of Algorithm 3765

▶ Lemma 25. If B is contained in the Newton zone (see Definition 22) and B ∩N(B) ̸= ∅,766

then x∗ ∈ 3B.767

Proof. We apply two times the triangle inequality to derive:768

d(mB , x∗) ≤ ωB

2 + d(B, x∗)769

≤ ωB

2 + d(B, N(B))︸ ︷︷ ︸
=0

+
√

2ωN(B) + d(N(B), x∗)770

771

The term d(B, N(B)) is 0 because B ∩N(B) ̸= ∅. We know that B is in the Newton zone772

and therefore ωN(B) ≤ 1
6 ωB and d(N(B), x∗) ≤ 1

6 maxp∈B d(x∗, p).773

d(mB , x∗)
(6)
≤ ωB

2 +
√

2
6 ωB + 1

6 max
p∈B

d(x∗, p)774

≤ ωB

2 +
√

2
6 ωB + 1

6

(
d(mB , x∗) +

√
2

2 ωB

)
775

776

Therefore d(mB , x∗) ≤ 3
2 ωB , which means that x∗ is contained in 3B. ◀777

▶ Theorem 9. Algorithm 3 terminates and returns an ε-approximate Fermat point. (Refer778

to Appendix G.)779

Proof. Let li (resp. pi) be the sequence of box sizes (resp. box centers) generated by780

Algorithm 3. For i large enough, the box B with center pi and width li is contained in the781

Newton zone, as the sequence pi converges linearly to the Fermat point [35] [22]. When782

B is contained in the Newton zone and B
10 ∩ N

(
B
10
)
̸= ∅, we derive from Lemma 25 that783

x∗ ∈ 3B
10 ⊂

B
2 and further by Lemma 23 it follows that N(B) ⊂ B. This implies that the784

center of B is an ε approximation of x∗ as the width of the boxes never exceeds ε during the785

algorithm.786

◀787

H Fermat point on a focus788

H.1 Condition for the Fermat point being a focus789

The next theorem was already shown in [48], but we quickly sketch a proof again.790

▶ Theorem 26. A focus a is the Fermat point if and only if
∥∥∇φA\{a}(a)

∥∥ ≤ w(a).791
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Proof. We need to show that a is the minimizer of the convex function φ if
∥∥∇φA\{a}(a)

∥∥ ≤792

w(a). Let v ∈ R2 be any unit vector. The directional derivative of φ in direction v at a is793

lim
h→0

φ(a + hv)− φ(a)
h

= lim
h→0

φA\{a}(a + hv)− φA\{a}(a)
h

+ lim
h→0

φ{a}(a + hv)− φ{a}(a)
h

794

= ⟨v,∇φA\{a}(a)⟩+ w(a)
∥v∥=1
≥ −

∥∥∇φA\{a}(a)
∥∥+ w(a) ≥ 0795796

Recall that ⟨·, ·⟩ denotes the scalar product. This implies that starting from a the function797

φ is non-decreasing in any direction. The minimum of the convex function φ therefore has798

to be a. ◀799

H.2 Time for testing for the Fermat point being a focus800

For simplicity, we had assumed for algorithms 1 to 3 that the Fermat point is not a focus.801

Note that this assumption can be checked in advance by evaluating
∥∥∇φA\{a}(a)

∥∥ ≤ w(a)802

for each focus a, see Theorem 26, which would take (n2d) time. We will explain two reasons,803

why that quadratic testing time in n can be avoided for both subdivision algorithms.804

We added this assumption, because the Newton tests cannot succeed for a box B if805

B contains the Fermat point. This is because ∇2φ(B) has the interval [∥mB − a∥ −806

r, ∥mB − a∥+ r] in its denominator, which contains 0 if a ∈ B. Hence the box N(B) covers807

the whole space if a focus is in B.808

Instead of checking the assumption, one can run algorithms 1 and 2 anyway and rely only809

on the soft gradient exclusion predicate. There is a more elegant solution for this problem,810

described next. Instead of testing all foci in the beginning, if one of them is the Fermat811

point, this can be done during the subdivision process. We keep track of the number of foci,812

which are contained in non-discarded boxes. If that number falls below a constant, then we813

test these few constantly many remaining foci for being the Fermat point. That can now be814

done in O(nd) time.815

I More details on the experiments816

Interval method vs Algorithm 1 We compared our Algorithm 1 with a naive approach,817

called interval method. It is based on the fact that if given two boxes B1 and B2, such that the818

intervals φ(B1) and φ(B2) are disjoint, then the box with bigger function values cannot819

contain the Fermat point. The interval method is a subdivision algorithm like Algorithm 1,820

where at any time we keep track of the smallest upper bound b of intervals φ(B), for821

boxes B visited so far. The interval method replaces the soft gradient exclusion predicate822

in line 4 of Algorithm 1 by the other soft exclusion predicate b < φ(B). We compared823

these two methods for different values of n and ε using the data sets Unif-1. The results824

are summarized in the next two tables. In all tests the soft gradient exclusion predicate825

performed much better. Note, that for boxes B near the Fermat point the value φ(B) is826

very similar. Hence, the interval method needs to do many splitting operations for small ε827

and work with very high internal precision. This explains, why that naive method did not828

terminate within 600 sec for n = 100 and ε = 10−7.829

ε = 10−3, n = 10 100 1000 10000
Interval method 0.99 1.72 9.62 89.3
SUB 0.11 0.29 2.06 21.0

n = 100, ε = 10−1 10−3 10−5 10−7

Interval method 0.74 1.77 2.84 timeout
SUB 0.15 0.31 0.46 0.61

830

We remark that many more types of synthetic datasets were considered, as points in convex831

position, points which are vertices of regular n-gons, points on a grid, etc, see Fig. 14.832
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Most of the useful information about the behavior of the algorithms can be extracted by833

experimenting on Unif-1, Unif-2 and TSPlib, so we chose to mainly experiment and834

analyze only these. As an example, the running times for Algorithm 2 with PCA for fixed835

n = 100 and ε = 10−6 are given in following table.836

n = 100, ε = 10−6 clusters convex position n-gon Unif-1 Unif-2
running times 0.37 0.26 0.33 0.34 0.33

837
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Figure 14 (a) 100 points in convex position (b) points of a regular 100-gon (c) 100 points split
among 10 clusters
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Figure 15 Foci sets of TSPLib used in our experiments. burma14: 14 cities in Burma, bayg29:
29 cities in Bavaria, berlin52: 52 locations in Berlin, bier127: 127 beer gardens in the Augsburg area
(Germany), tsp225: writing of TSP with 225 points, linhp318: 318 cities, ali535: 535 airports around
the globe, nrw1379: Nordrhein-Westfalen (Germany), fnl4461: the five Federal States of Germany
(ex-GDR territory), usa13509: cities in the continental US with at least 500 population
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