
On µ-Symmetric Polynomials and D-plus

Jing Yang1 ? and Chee K. Yap2 ??

1 SMS-HCIC, Guangxi University for Nationalities, China
Email: yangjing0930@gmail.com

2 Courant Institute of Mathematical Sciences
New York University, USA.

Email: yap@cs.nyu.edu

Abstract. We study functions of the roots of a univariate polynomial
of degree n ≥ 1 in which the roots have a given multiplicity structure
µ, denoted by a partition of n. For this purpose, we introduce a the-
ory of µ-symmetric polynomials which generalizes the classic theory of
symmetric polynomials. We designed three algorithms for checking if a
given root function is µ-symmetric: one based on Gröbner bases, another
based on preprocessing and reduction, and the third based on solving
linear equations. Experiments show that the latter two algorithms are
significantly faster. We were originally motivated by a conjecture about
the µ-symmetry of a certain root function D+(µ) called D-plus. This
conjecture is proved to be true. But prior to the proof, we studied the
conjecture experimentally using our algorithms.

1 Introduction

Suppose P (x) ∈ Z[x] is a polynomial with m distinct complex roots r1, . . . , rm
where ri has multiplicity µi. Write µ = (µ1, . . . , µm) where we may assume
µ1 ≥ µ2 ≥ · · · ≥ µm. Thus n =

∑m
i=1 µi is the degree of P (x). Consider the

following function of the roots

D+(P (x)) :=
∏

1≤i<j≤m

(ri − rj)µi+µj .

Call this the D-plus root function. This root function3 was introduced by Becker
et al [2] in their complexity analysis of a root clustering algorithm. The original
motivation of this paper was to try to prove that D+(P (x)) is a rational function
in the coefficients of P (x).

We may write “D+(µ)” instead of D+(P (x)) since the expression in terms
of roots r depends only on the multiplicity structure µ. For example, if µ = (2, 1)
thenD+(µ) = (r1−r2)3 and this turns out to be

[
a31 − (9/2)a0a1a2 + (27/2)a20a3

]
/a30

where P (x) =
∑3
i=0 a3−ix

i. More generally, for any function F (r) = F (r1, . . . , rm),

? Jing’s work is supported by the Special Fund for Guangxi Bagui Scholars (WBS
2014-01) and the Startup Foundation for Advanced Talents in Guangxi University
for Nationalities (2015MDQD018)

?? Chee’s work is supported by Guangxi University for Nationalities and by NSF Grant
CCF-1564132.

3 In [2], the D-plus function was called a generalized discriminant.

2 Yang and Yap

we ask whether evaluating F at the m distinct roots of a polynomial P (x) with
multiplicity structure µ is rational in the coefficients of P (x). In case P (x) has
only simple roots, the Fundamental Theorem of Symmetric Functions tells us the
complete answer: F (r) is rational iff F (r) is a symmetric polynomial. We extend
this theorem to the case of non-simple roots: if the roots of P (x) have multiplic-
ity structure µ, then we define what it means for F (r) to be µ-symmetric. As
expected, this characterizes when F (r) is rational in the coefficients of P (x). It
is non-trivial to check if any given root function F (in particular F = D+(µ))
is µ-symmetric. We will design three algorithms for this task. Although we feel
that µ-symmetry is a natural concept, to our knowledge, this has not been sys-
tematically studied before.

Overview of Paper. In Section 2, we define µ-symmetric polynomials and
show some preliminary properties of such polynomials. Then three algorithms
for checking µ-symmetry are given in Sections 3-5. Section 6 proves the µ-
symmetry of D+(µ). In Section 7, we show experimental results from our Maple
implementation of the three algorithms. We conclude in Section 8.

The full version of this paper includes 3 appendices: A: Maple source code, B:
Description of benchmark polynomials, and C: All the proofs. may be downloaded
from http://cs.nyu.edu/exact/papers/.

2 µ-Symmetric Polynomials

Throughout, assume K is a field of characteristic 0. For our purposes, K = Q
will do. We fix three sequences of variables x = (x1, . . . , xn), z = (z1, . . . , zn)
and r = (r1, . . . , rm) where n ≥ m ≥ 1.

Let µ = (µ1, . . . , µm) be a partition of n where µ1 ≥ µ2 ≥ · · · ≥ µm ≥ 1. We
may denote this relation by µ ` n. We call µ an m-partition if it has exactly
m parts. A specialization σ is any function of the form σ : {x1, . . . , xn} →
{r1, . . . , rm}. We say σ is of type µ if |σ−1(ri)| = µi for i = 1, . . . ,m. We say σ
is canonical if σ(xi) = rj and σ(xi+1) = rk implies j ≤ k. Clearly the canonical
specialization of type µ is unique, and we may denote it by σµ.

Consider the polynomial ringsK[x] andK[r]. Any specialization σ : {x1, . . . , xr} →
{r1, . . . , rm} can be extended naturally into a K-homomorphism σ : K[x] →
K[r] where P = P (x) ∈ K[x] is mapped to σ(P) = P (σ(x1), . . . , σ(xn)). When
σ is understood, we may write “P” for the homomorphic image σ(P).

We denote the i-th elementary symmetric functions (i = 1, . . . , n) in
K[x] by ei = ei(x). E.g., e1 :=

∑n
i=1 xi, e2 :=

∑
1≤i<j≤n xixj , . . ., en :=

∏n
i=1 xi.

Also define e0 := 1. Typically, we write ei for σµ(ei) when µ is understood.

The key definition is the following: a polynomial F ∈ K[r] is said to be µ-

symmetric if there is a symmetric polynomial F̂ ∈ K[x] such that σµ(F̂) = F

where n =
∑m
i=1 µi. We call F̂ the µ-lift (or simply “lift”) of F . If F̊ ∈ K[z]

satisfies F̊ (e1, . . . , en) = F̂ (x) then we call F̊ the µ-kernel of F .

Remarks 1. Note that the µ-lift of F is defined if and only if F is µ-
symmetric.

http://cs.nyu.edu/exact/papers/

On µ-Symmetric Polynomials 3

2. We view the zi’s as symbolic representation of ei(x)’s.

3. Although F̂ and F̊ are mathematically equivalent, the kernel concept lends
itself to direct evaluation based on coefficients of P (x).

The Fundamental Theorem on Symmetric Functions implies the following:

Lemma 1. If f(r) ∈ K[r] is µ-symmetric, then for any P (x) =
∑n
i=1 cix

i ∈
K[x] of degree n, if P has m distinct roots ρ1, . . . , ρm with multiplicity µ =
(µ1, . . . , µm), F (ρ1, . . . , ρm) ∈ K.

We want to study the lift F̂ ∈ K[x] of a µ-symmetric polynomial F ∈
K[r] of total degree δ. If we write F as the sum of its homogeneous parts,

F = F1 + · · · + Fδ, then F̂ = F̂1 + · · · + F̂δ. Hence, we may restrict F to be
homogeneous.

Next consider a polynomialG(z) ∈ K[z]. Suppose there is a weight function

ω : {z1, . . . , zn} → N = {1, 2, . . .}

then for any term t =
∏n
i=1 z

ei
i , its ω-degree is

∑n
i=1 eiω(zi). Normally, ω(zi) =

1 for all i; but in this paper, we are also interested in the weight function where
ω(zi) = i. For short, we simply call this ω-degree of t its weighted degree. E.g.,
the weighted degree of z21z3 is 5. The weighted degree of a polynomial G(z) is just
the maximum weighted degree of terms in its support. A polynomial G(z) is said
to be weight homogeneous if all of its terms have the same weighted degree.
Note that the kernel F̊ of F is not unique: for any kernel F̊ , we can decompose it
as F̊ = F̊0+F̊1 where F̊0 is the weight homogeneous part of F̊ of weighted degree
δ, and F̊1 := F̊ − F̊0. Then F̊ (e1, . . . , en) = F implies that F̊0(e1, . . . , en) = F
and F̊1(e1, . . . , en) = 0. We can always omit F̊1 from the kernel of F . We shall
call any polynomial G(z) ∈ K[z] a µ-constraint if G(e1, . . . , en) = 0. Thus, F̊1

is a µ-constraint. We may check that the set of µ-constraints forms an ideal in
K[z] which we call the µ-ideal.

3 Computing Kernels via Gröbner Bases

In this section, we consider a Gröbner basis algorithm to compute the µ-kernel
of a given polynomial F ∈ K[r], or detect that it is not µ-symmetric. For this
purpose, define the following ideal:

Iµ := 〈v1, . . . , vn〉 (1)

where vi := zi − ei (i = 1, . . . , n). Note that I is an ideal in K[z, r]. Moreover,
we define Gµ to be the Gröbner basis of Iµ relative to the term ordering where
zi ≺ rj for all i and j. The following is a generalization of Proposition 4 in [3,
Chapter 7, Section 1].

Theorem 1. Let R ∈ K[r, z] be the normal form of F ∈ K[r] relative to Gµ ⊆
K[r, z]. Then F is µ-symmetric iff R ∈ K[z]. Moreover, if R ∈ K[z] then R is
the µ-kernel of F .

4 Yang and Yap

Theorem 1 leads to the following algorithm.

G-kern(F,µ):
Input: F ∈ K[r] and µ = (µ1, . . . , µm).

Output: the µ-kernel of F or say “F̊ does not exist”
B ← {z1 − e1(r), . . . , zn − en(r)}
ord← plex(rm, . . . , r1, zn, . . . , z1)
G ← GroebnerBasis(B, ord)
R← NormalForm(F,G, ord)
If deg(R, r) > 0 then

Return “F̊ does not exist”
Return R

4 Checking µ-symmetry via Preprocessing and Reduction

In the previous section, we show how to compute µ-kernels using Gröbner bases.
This algorithm is quite slow when µ 6= (1, 1, . . . , 1). In the next two sections, we
will introduce two methods based on an analysis of the following two K-vector
spaces:

– Kδ
sym[x]: the set of symmetric homogeneous polynomials of degree δ in K[x]

– Kδ
µ[r]: the set of µ-symmetric polynomials of degree δ in K[r]

The first method is based on preprocessing and reduction: we first compute a
basis for Kδ

µ[r], and then use the basis to reduce F (r). The second method
directly computes the µ-kernel of F (r) by solving linear equations.

First considerKδ
sym[x]. By a weak partition of δ, we mean α = (α(1), α(2), . . . , α(δ))

where α(1) ≥ α(2) ≥ · · · ≥ α(δ) ≥ 0 and α =
∑
α(i) = δ. Note that α(i) can be

0 in weak partitions. If α is a weak partition of δ with no part α(i) larger than n,

we will write α ` (δ, n). Let eα :=
∏δ
i=1 eα(i). E.g., if δ = 4, n = 2, α = (2, 1, 1, 0)

then eα = e2e
2
1e0 = e2e

2
1.

Let T (x) denote the set of terms of x, and T δ(x) denote those terms of degree
δ. A typical element of T δ(x) is

∏n
i=1 x

ei
i where e1+· · ·+en = δ. We totally order

the terms in T δ(x) using the lexicographic ordering in which x1 ≺ x2 ≺ · · · ≺ xn.
Given any F ∈ K(x), its support is Supp(F) ⊆ T (x) such that F can be
uniquely written as

F =
∑

p∈Supp(F)

c(p)p (2)

where c : Supp(F) → K \ {0} denote the coefficients of F . Let the leading
term Lt(F) be equal to the p ∈ Supp(F) which is the largest under the lexico-
graphic ordering. For instance, Supp(e1) = {x1, . . . , xn} and Lt(e1) = xn. Also
Supp(e1e2) = {xixjxk : 1 ≤ i 6= j ≤ n, 1 ≤ k ≤ n} and Lt(e1e2) = x2nxn−1. The
coefficient of Lt(F) in F is the leading coefficient of F , denoted by Lc(F).
Call Lm(F) := Lc(F)Lt(F) the leading monomial of F . This is well-known:

Proposition 2 The set Bδn := {eα : α ` (δ, n)} is a K-basis for Kδ
sym[x].

On µ-Symmetric Polynomials 5

Next consider the set Kδ
µ[r] comprising the µ-symmetric functions of degree

δ. The map σµ : Kδ
sym[x] → Kδ

µ[r] is an onto K-homomorphism. Thus Kδ
µ[r] is

a vector space which is generated by the set σµ(Bδn) :=
{
σµ(G) : G ∈ Bδn

}
. It

follows that there is a maximal independent set Bδn ⊆ σµ(Bδn) that is a basis for

Kδ
µ[r]. The set Bδn may be a proper subset of σµ(Bδn).

Now we generate the basis of the vector space Kδ
µ[r] with which one could

easily check whether a given polynomial is in this vector space or not. For this
purpose, we introduce a reduction procedure and its applications. A set B ⊆ K[r]
is linearly independent if any non-trivial K-linear combination over B is non-
zero; otherwise, B is linearly dependent. We say B is canonical if B is linearly
independent and ordered as B = (B1, . . . , B`) with Lt(Bi) ≺ Lt(Bj) for all i < j.

Given a polynomial F ∈ K[r], we say it is reduced relative to B = (B1, . . . , B`)
if Lt(Bi) /∈ Supp(F) for each i = 1, . . . , `. We can reduce F relative to B by sub-
tracting from F a linear combination of elements in B as shown in Figure 1.

reduce(F,B):

Input: F ∈ Kδ[r], B = (B1, . . . , B`) is canonical and each Bi ∈ Kδ[r]

Output: R such that F =
∑`
i=1 ciBi +R with ci ∈ K and

R is reduced relative to B.
Let R← 0, i← `
If B = () then

Return F
While (F 6= 0)

p← Lt(F)
If p = Lt(Bi) then

F ← F − Lc(F)
Lc(Bi)

Bi; i← i− 1

elseif p � Lt(Bi) then
R← R+ Lc(F) · p; F ← F − Lc(F) · p

else
i← i− 1

If i = 0 then Return R+ F
Return R

Fig. 1. The reduce algorithm.

The termination of the reduce algorithm is guaranteed by the following:

Lemma 3. The algorithm reduce(F,B) takes at most #Supp(F)+
∑`
i=1 #Supp(Bi)−

1 loops. Moreover, this bound is tight in the worst case.

It is easy to see that reduce(F,B) = 0 iff B∪{F} is linearly dependent. This
gives rise to the canonize algorithm in Figure 2 for constructing a canonical set
from any set B ⊆ K[r]. Clearly canonize(B) terminates in |B| loops. Finally, we
use reduce and canonize algorithms to construct the isMuSymmetric algorithm
for checking the µ-symmetry of a polynomial.

Lemma 4. The algorithm isMuSymmetric(F,µ) halts. Moreover, it outputs “Yes”
iff F is µ-symmetric.

6 Yang and Yap

canonize(B):
Input: B ⊆ K[r].
Output: a maximal canonical C ⊆ B

Let C ← () (empty sequence)
While B 6= ∅

B ← pop(B)
B′ ← reduce(B, C)
If B′ 6= 0 then

C ← prepend(B′, C)
C ← sort(C)

Return C

isMuSymmetric(F,µ):
Input: F ∈ K[r], µ = (µ1, . . . , µm)
Output: Yes if F is µ-symmetric;

otherwise return No.
δ ← deg(F, r)
n←

∑m
i=1 µi

B ← {eα : α ` (δ, n)}
C ← canonize(B)
If reduce(F, C) = 0 then

Return “Yes”
Return “No”

Fig. 2. The canonize and isMuSymmetric algorithms.

5 Computing Kernels via Solving Linear Systems

We now outline a method to compute the kernel of F (r) by solving a linear
system of equations.

Recall that F ∈ K[r] is µ-symmetric iff there is a F̊ ∈ K[z] such that
F̊ (e1, . . . , en) = F. We propose to first write F̊ (z) as an indeterminate polyno-
mialG(k; z) ∈ K[k][z] which has homogeneous weighted degree δ with indetermi-

nate coefficients k. Each term of weighted degree δ has the form zα :=
∏δ
i=1 zα(i)

where α = (α(1), . . . , α(δ)) is a weak partition of δ with parts at most n, i.e.,
α ` (δ, n). Let the set of all such partitions be denoted Iδn := {α : α ` (δ, n)}
Then G(k; z) can be written as G(k; z) :=

∑
α∈Iδn

kαzα where each kα is an

indeterminate. Here, k := (kα : α ∈ Iδn). Next, we plug in ei’s for the zi’s to get
H(k; r) := G(k; e1, . . . , en) which we view as a polynomial in K[k][r]. We then
set up the equation

H(k; r) = F (r) (3)

to solve for the values of k. Note that total degree of G in k is 1, i.e., deg(G,k) =
1. Therefore, deg(H,k) = 1. Thus (3) amounts to solving a linear system of
equations in k. The above procedure can be summarized as the E-kern algorithm.

6 The µ-symmetry of D+(µ)

Recall the definition of D+ given in Section 1: D+(µ) =
∏

1≤i<j≤m(ri−rj)µi+µj .
We say D+ is injective on an argument µ if for all µ′ 6= µ, D+(µ) 6= D+(µ′).
Clearly, D+ is not injective on any µ of the form µ = (µ1, µ2): in this case,
D+ = (r1 − r2)n for any µ = (µ1, µ2) where µ1 + µ2 = n.

Lemma 5. D+ is injective on any µ = (µ1, . . . , µm) where m > 2.

We next introduce a µ-symmetric function ∆ that is useful in the study of
the µ-symmetry of D+. It is closely related to the notion of subdiscriminants [1,

On µ-Symmetric Polynomials 7

E-kern(F,µ):
Input: F ∈ K[r] and µ = (µ1, . . . , µm)
Output: the kernel of F if F is µ-symmetric;

otherwise, return “F is not µ-symmetric”.
δ ← deg(F, r); n←

∑m
i=1 µi

Construct the index set Iδn.
G←

∑
α∈Iδn

kαzα

H ← G(k; e1, . . . , en)
Extract Coeffs(H, r) and Coeffs(F, r).
Find a solution k = k0 of the linear system

Coeffs(H, r) = Coeffs(F, r).
If k0 is nondefined

Return “F is not µ-symmetric”
Return G(k0; z)

Section 4.1]. First, we need some notations: let [n] := {1, . . . , n}, and
(
[n]
k

)
denote

the set of k-subsets of [n]. For k = 0, . . . , n− 2, we may define the function

Snk = Snk (x) :=
∑

I∈([n]
n−k)

∏
i6=j∈I

(
xi − xj

)2
(4)

called the kth subdiscriminant in n variables. We may also define Snn−1 := 1.

When k = 0, we have Sn0 =
∏
i6=j∈[n]

(
xi − xj

)2
. If the xi’s are roots of a

polynomial P (x) of degree n, then Sn0 is the standard discriminant of P (x).
Clearly Snk is a symmetric polynomial in x.

Lemma 6. Define ∆ :=
∏

1≤i<j≤m(ri − rj)2.

(a) ∆ is µ-symmetric with lift given by ∆̂ = 1∏m
i=1 µi

· Snn−m where Snn−m is the

(n−m)-th subdiscriminant.

(b) When m = 2, we have an explicit formula for the lift of ∆: with n = µ1 +µ2,

∆̂ =
(n− 1)e21 − 2ne2

µ1µ2

.

We now prove the conjecture for special cases for arbitrary n. First, consider
the case where µ = (a, a, . . . , a).

Theorem 2. If all µi’s are equal to a, then D+(µ) is µ-symmetric with lift

given by F̂n(x) =
(

1
am · S

n
n−m

)a
where Snn−m is given by Lemma 6(a).

Another special case of D+(µ) is when m = 2:

Theorem 3. For all µ = (µ1, µ2), D+(µ) has a µ-kernel F̊n where µ ` n:

– n is even: F̊n =
(

(n−1)z21−2nz2
µ1µ2

)n/2

8 Yang and Yap

– n is odd: F̊n =
(

(n−1)z21−2nz2
µ1µ2

)n−3
2
(
k1z

3
1 + k2z1z2 + k3z3

)
where (k1, k2, k3) =

(
−(n−1)(n−2)

d , 3n(n−2)d , −3n
2

d

)
and d = µ1µ2(µ1 − µ2).

Now we prove the µ-symmetry of D+ for general cases.

Theorem 4. D+(µ) is µ-symmetric and D̊+(µ) = 1
cH where

– c = c(µ) = (−1)mn+
n(n−1)

2 +
∑m
i=1 iµi · (n−m)!

∏m
i=1 µ

µi
i

– D = D(P) is the discriminant of P (x) =
∑n
i=0 cn−ix

i with multiplicity
structure µ

– H := ∂n−mD
∂cn−mn

∣∣
ci=(−1)izic0

/
cm+n−2
0 .

The kernel formula tells us that if µ = (µ1, . . . , µm) and µ′ = (µ′1, . . . , µ
′
m′) with

m = m′, then there exists a constant a such that D̊+(µ) = aD̊+(µ′).

7 Experiments

Table 1 shows timings of our algorithms (G-kern, E-kern and isMuSymmetric) for
checking the existence of the µ-kernel of F ∈ K[r], or reporting “No” otherwise.
They are implemented in Maple (see code in Appendix A). These experiments
use Maple 2017 on a Windows laptop with an Intel(R) Core(TM) i7-7660U CPU
(2.50GHz, 8GB RAM). We use a test suite of 12 polynomials of degrees ranging
from 6–20 (see Appendix B), with corresponding µ with n =

∑m
i=1 µi ranging

from 4–6. These polynomials are either D+ polynomials or subdiscriminants, or
their variants to create non-µ-symmetric polynomials.

Table 1. Timing for computing µ-kernel of F of degree δ. Here n =
∑m
i=1 µi, canonize

is a preprocessing step in isMuSymmetric and total= the sum of canonize time and
reduce time.

F δ µ n Y/N
G-kern E-kern speedup isMuSymmetric speedup
Time Time (G-kern/ canonize reduce total (G-kern/
(sec) (sec) E-kern) (sec) (sec) (sec) isMuSymmetric)

F1 12 [1, 1, 1, 1] 4 Y 0.453 0.235 1.9 0.094 0.000 0.094 4.8
F2 8 [2, 1, 1] 4 Y 0.328 0.015 21.9 0.016 0.015 0.031 10.6
F3 20 [1, 1, 1, 1, 1] 5 Y 34.141 187.703 0.2 3.766 0.031 3.797 9.0
F4 15 [2, 1, 1, 1] 5 Y >600.000 1.875 >320.0 0.391 0.015 0.406 >1477.8
F4x 6 [2, 1, 1, 1] 5 N >600.000 0.015 >40000.0 0.000 0.016 0.016 >37500.0
F5 6 [2, 2, 1] 5 Y 68.031 0.032 2126.0 0.000 0.000 0.000 Inf
F5x 6 [2, 2, 1] 5 N 0.078 0.000 Inf 0.000 0.016 0.016 4.9
F6 10 [2, 2, 1] 5 Y 0.438 0.078 5.6 0.031 0.000 0.031 14.1
F6x 10 [2, 2, 1] 5 N 0.406 0.047 8.6 0.031 0.016 0.047 8.6
F7 18 [3, 1, 1, 1] 6 Y >600.000 9.000 >66.7 3.390 0.063 3.453 >173.8
F8 12 [3, 2, 1] 6 Y >600.000 0.360 >1666.7 0.187 0.000 0.187 >3208.6
F9 6 [2, 2, 2] 6 Y 8.734 0.000 Inf 0.000 0.000 0.000 Inf

Table 1 shows that E-kern is significantly faster than G-kern on all but in
this case, µ = (1, . . . , 1), i.e., the ideal Iµ = 〈v1, . . . , vn〉 is symmetric in r. Pos-
sibly, the Gröbner basis algorithm in Maple is highly optimized for such ideals.

On µ-Symmetric Polynomials 9

One may also see that isMuSymmetric is also a very efficient method for check-
ing the µ-symmetry of a polynomial. In particular, the preprocessing procedure
canonize is independent on F , so one can compute the canonical set first and
store it in a database. The actual time to reduce a given F using a canonical
set is relatively small. The speedup of G-kern/isMuSymmetric may be partly at-
tributed to the fact that G-kern outputs more information than isMuSymmetric.
In the full paper, we will extend isMuSymmetric into an algorithm to actually
compute the kernel.

8 Conclusion

We introduced the concept of µ-symmetric polynomials as a generalization of
the classical symmetric polynomial, and designed efficient algorithms to compute
µ-kernel of such polynomials. In particular, we proved the µ-symmetry of the
root function D+(µ); this function played a key role in the complexity analysis of
the root clustering algorithm in [2]. We will continue to explore the application
of the new result in designing efficient root clustering algorithms.

References

1. S. Basu, R. Pollack, and M.-F. Roy. Algorithms in Real Algebraic Geometry (Algo-
rithms and Computation in Mathematics). Springer-Verlag, New York, 2nd edition,
2016.

2. R. Becker, M. Sagraloff, V. Sharma, J. Xu, and C. Yap. Complexity analysis of root
clustering for a complex polynomial. In 41st Proc. ISSAC, pages 71–78, 2016. July
19-22, Waterloo, Canada.

3. D. Cox, J. Little, and D. O’Shea. Ideals, Varieties and Algorithms: An Introduction
to Computational Algebraic Geometry and Commutative Algebra. Springer-Verlag,
New York, 3rd edition, 2007.

10 Yang and Yap

About the Appendices. Appendix A lists our Maple code sources; Ap-
pendix B describes our benchmark polynomials; Appendix C provides all the
proofs. These appendices are provided only for the referees’ convenience. They
will be removed in the proceedings version.

Appendix A. Maple Code for G-kern, E-kern and
isMuSymmetric

restart:

with(Groebner):

with(combinat):

GenmElSym := proc(mu)

Input: mu, multiplicity structure

Output: the n elementary symmetric polynomials in x[1],...,x[n]

where n is the summation of mu[i]

local n,m,i, Q, f;

n := add(mu);

m := nops(mu);

Q := []:

f := collect(product((x+r[i])^(mu[i]), i=1..m)-x^n, x):

for i from 1 to n do

Q := [op(Q), coeff(f, x, n-i)]:

od:

return expand(Q);

end:

Gkern := proc(F, mu)

Input: F, a polynomial in r; mu, multiplicity structure

Output: the kernel of F or "No" when F is not mu-symmetric

local m,n,e,P,B,R;

m := nops(mu):

n := add(mu):

e := GenmElSym(mu):

P := [seq(z[i]-e[i], i=1..n)]:

B := Basis(P, plex(seq(r[m-i+1],i=1..m), seq(z[i], i=1..n))):

R := NormalForm(expand(F), B,

plex(seq(r[m-i+1],i=1..m), seq(z[i], i=1..n)));

if degree(R, {seq(r[i],i=1..m)})>0 then

return "No";

On µ-Symmetric Polynomials 11

else

return R;

fi;

end:

Ekern := proc(F, mu)

Input: F, a polynomial in r; mu, multiplicity structure

Output: the kernel of F or "No" when F is not mu-symmetric

local n, m, delta, P, p, e, N, i,j, G,H, C, sol, ind;

n := add(mu);

m := nops(mu):

delta := degree(F, {seq(r[i], i=1..m)});

if delta>=n then

P := partition(delta, n);

else

P := partition(delta);

fi;

e := GenmElSym(mu);

N := 0;G := 0:

for p in P do

N := N+1;

G := G + k[N]*product(z[p[i]], i=1..nops(p));

od:

H := subs({seq(z[i]=e[i], i=1..n)}, G);

C := {coeffs(collect(H-F, {seq(r[i], i=1..m)},

’distributed’), [seq(r[i], i=1..m)])};

sol := solve(C);

if nops({sol})=0 then

return "No";

else

ind := indets({seq(rhs(sol[i]), i=1..N)});

G := subs({seq(ind[i]=0, i=1..nops(ind))}, subs(sol, G));

return factor(G);

fi;

end:

isMuSymmetric := proc(F, mu)

Input: F, a polynomial in r; mu, multiplicity structure

Output: "Yes" when F is mu-symmetric, and "No" otherwise.

local m, delta, n, S, P, B, p, R, i;

12 Yang and Yap

m := nops(mu):

delta := degree(F, {seq(r[i], i=1..m)}):

n := add(mu);

S := GenmElSym(mu);

if delta>=n then

P := partition(delta,n);

else

P := partition(delta);

fi;

B := []:

for p in P do

B := [op(B), product(S[p[i]], i=1..nops(p))];

od:

B := expand(B):

B := Canonize(B);

R := muReduce(F, B);

if R=0 then

return "Yes";

else

return "No";

fi;

end:

muReduce := proc(F, B)

Compute the reduced polynomial of F w.r.t. B

local m, Bc, l, i, k, q, f, lf, lb;

m := nops(indets(B)):

Bc := [1, op(B)];

l := nops(Bc);

i := l;

q := 0:

f := expand(F):

if l=1 then return f; fi;

while f<>0 do

lf := LeadingTerm(f, plex(seq(r[m-k+1], k=1..m)));

lb := LeadingTerm(Bc[i], plex(seq(r[m-k+1], k=1..m)));

if lf[2]=lb[2] then

f := expand(f-lf[1]/lb[1]*Bc[i]);

i := i-1;

if i=1 then

q := q+f;

On µ-Symmetric Polynomials 13

f := 0;

fi;

elif LeadingTerm(lf[2]-lb[2],

plex(seq(r[m-k+1], k=1..m)))=lf[2] then

q := q + lf[1]*lf[2]:

f := f - lf[1]*lf[2]:

else

i := i-1;

if i=1 then

q := q+f;

f := 0;

fi;

fi;

od:

return q;

end:

Canonize := proc(Fs)

Generate the canonical set of Fs

local m, B, P, b;

m := nops(indets(Fs));

B := [];

P := stack[new](op(Fs)):

while stack[depth](P)>0 do

b := stack[pop](P);

b := muReduce(b, B);

if b<>0 then

B := polyInsert(b, B):

fi;

od;

return B;

end:

polyInsert := proc(b, B)

local m,p,lB,l,i:

m := nops(indets([b, op(B)]));

p := LeadingMonomial(b, plex(seq(r[m-k+1], k=1..m)));

lB := LeadingMonomial(B, plex(seq(r[m-k+1], k=1..m)));

l := nops(B):

if l=0 then return [b]: fi;

14 Yang and Yap

for i from 1 to l do

if LeadingMonomial(p-lB[i],

plex(seq(r[m-k+1], k=1..m))) = lB[i] then

return [op(1..i-1, B), b, op(i..l, B)];

else

if i=l then return [op(B), b]; fi;

fi;

od;

end:

Appendix B. Benchmark Polynomials

We have 9 polynomials Fi (for i = 1, . . . , 9) that are (resp.) µi-symmetric. Also,
F4x, F5x, F6x are variants of Fi (i = 4, 5, 6) which are not µi-symmetric.

F1: Discriminant of polynomial of degree 4 = D+(1,1,1,1)

F1 := (r[1]-r[2])^2*(r[1]-r[3])^2*(r[3]-r[2])^2

(r[1]-r[4])^2(r[2]-r[4])^2*(r[3]-r[4])^2:

mu_1:=[1,1,1,1]:

F2: D+(2,1,1)

F2 := [(r[1]-r[2])^3*(r[1]-r[3])^3*(r[2]-r[3])^2:

mu_2:=[2,1,1]:

F3: D+(1,1,1,1,1)

F3 := (r[1]-r[2])^2*(r[1]-r[3])^2*(r[1]-r[4])^2*(r[1]-r[5])^2

(r[2]-r[3])^2(r[2]-r[4])^2*(r[2]-r[5])^2

(r[3]-r[4])^2(r[3]-r[5])^2*(r[4]-r[5])^2:

mu_3 := [1,1,1,1,1]:

F4: D+(2,1,1,1)

F4 := (r[1]-r[2])^3*(r[1]-r[3])^3*(r[1]-r[4])^3

(r[2]-r[3])^2(r[2]-r[4])^2*(r[3]-r[4])^2:

mu_4 := [2,1,1,1]:

F4x: square free part of F4

F4x := (r[1]-r[2])*(r[1]-r[3])*(r[1]-r[4])

(r[2]-r[3])(r[2]-r[4])*(r[3]-r[4]):

mu_4x := [2,1,1,1]:

F5: Subdiscriminant where n=5, k=2

F5 := (r[1]-r[2])^2*(r[1]-r[3])^2*(r[3]-r[2])^2:

mu_5 := [2,2,1]:

On µ-Symmetric Polynomials 15

F5x: perturbation of F5

F5x := (r[1]-r[2])^2*(r[1]-r[3])^2*(r[3]-r[2])^2 + r[1]^6:

mu_5x := [2,2,1]:

F6: D+(2,2,1)

F6 := (r[1]-r[2])^4*(r[1]-r[3])^3*(r[3]-r[2])^3:

mu_6 := [2,2,1]:

F6x: variant of F6 obtained by permutation of variables

F6x := (r[1]-r[3])^2*(r[1]-r[2])^2*(r[2]-r[3])^2 + r[1]^6:

mu_6x := [2,2,1]:

F7: D+(3,1,1,1)

F7 := (r[1]-r[2])^4*(r[1]-r[3])^4*(r[1]-r[4])^4

(r[2]-r[3])^2(r[2]-r[4])^2*(r[3]-r[4])^2:

mu_7 := [3,1,1,1]:

F8: D+(3,2,1)

F8 := (r[1]-r[2])^5*(r[1]-r[3])^4*(r[2]-r[3])^3:

mu_8 := [3,2,1]:

F9: Subdiscriminant where n=6, k=3

F9 := (r[1]-r[2])^2*(r[1]-r[3])^2*(r[3]-r[2])^2:

mu_9 := [2,2,2]:

Appendix C. All Proofs

• Lemma 1.
Proof. If the polynomial F is µ-symmetric, there is a polynomial F̊ ∈ K[z]
such that F̊ (e1(r), . . . , en(r)) = F (r). Evaluating of the above equation at
r = (ρ1, . . . , ρm) leads to

F (ρ1, . . . , ρm) = F̊ (−c1/c0, . . . , (−1)ncn/c0) ∈ K

by Viete’s formula for roots. Q.E.D.

• Theorem 1.
Proof. (⇐) Since R be the normal form of F w.r.t. Gµ = {G1, . . . , Gt}, F
can be written as

F =

t∑
i=1

AiGi +R,

where Ai ∈ K[z, r].

16 Yang and Yap

First suppose that R ∈ K[z]. Then for each i, substitute ei for zi in the
above formula for F . Then the left side is unchanged and the right hand side
becomes R(e1, . . . , en). Hence, R is the kernel of F .

(⇒) Suppose that F ∈ K[r] is µ-symmetric. Then there exist a polynomial
F̊ ∈ K[z] such that F̊ (e1, . . . , en) = F . Since Gµ is the Gröbner basis of Iµ,
Gµ ∩K[z] is the Gröbner basis of the elimination ideal Iµ ∩K[z]. Assume

R̃ is the normal form of F̊ w.r.t Gµ ∩K[z]. We want to show that R̃ is the
normal form of F w.r.t. Gµ.

To prove this, first note that in K[z, r], a monomial in e1, . . . , en can be
written as follows:

eα1
1 · · · eαnn = (z1 − (z1 − e1))α1 · · · (zn − (zn − en))αn

= zα1
1 · · · zαnn +B1(z1 − e1) + · · ·+Bn(zn − en)

for some B1, . . . , Bn ∈ K[z, r]. Multiplying by an appropriate constant and
adding over the exponents appearing in F̊ , it follows that

F̊ (e1, . . . , en) = F̊ (z1, . . . , zn) + C1(z1 − e1) + · · ·+ Cn(zn − en), (5)

where C1, . . . , Cn ∈ K[z, r]. Meanwhile, the fact that R̃ is the remainder of
F̊ w.r.t. Gµ ∩K[z] implies

F̊ (z1, . . . , zn) = C ′1(z1 − e1) + · · ·+ C ′n(zn − en) + R̃(z1, . . . , zn), (6)

where C ′1, . . . , C
′
n ∈ K[z, r]. Combining (5) and (6) and taking F = F̊ (e1, . . . , en)

into account, we obtain

F = F̊ (e1, . . . , en) = D1(z1 − e1) + · · ·+Dn(zn − en) + R̃(z1, . . . , zn),

where D1, . . . , Dn ∈ K[z, r]. Observe that R̃ ∈ K[z] and no terms of R̃ is

divisible by an element of Gµ\K[z]. Moreover, no terms of R̃ is divisible by an
element of Lt(Gµ∩K[z]) because Gµ∩K[z] is the Gröbner basis of Iµ∩K[z].
This proves that the normal form lies in K[z] when F is µ-symmetric.

The second part of the theorem follows immediately from the above argu-
ments.

Q.E.D.

• Lemma 3.
Proof. In each loop, either i is decreased by 1 (in which case, we used Bi
for reduction) or i is unchanged (in which case, a term in Supp(F)\Lt(B) is
removed from the support of F). Thus the number of loops Nloop will be no
greater than the sum of ` and the number of possible terms in (Supp(F) ∪
Supp(B))\Lt(B). Noting that Lt(B) ⊆ Supp(F) ∪ Supp(B) and Lt(Bi) 6=
Lt(Bj) when i 6= j, we have

((Supp(F) ∪ Supp(B))\Lt(B)) = #(Supp(F) ∪ Supp(B))− `.

On µ-Symmetric Polynomials 17

Therefore,

((Supp(F) ∪ Supp(B))\Lt(B)) =#(Supp(F) ∪ Supp(B))− `

≤#Supp(F) +
∑̀
i=1

#Supp(Bi)− `.

Case 1: “=” holds. In this case, Supp(F), Supp(B1), . . . , Supp(B`) are disjoint
sets. Then we immediately get Supp(F)\Lt(B) = Supp(F) and thus the
number of loops

Nloop ≤ #Supp(F) + #B − 1 ≤ #Supp(F) +
∑̀
i=1

#Supp(Bi)− 1.

Case 2: “=” does not hold. Then

((Supp(F) ∪ Supp(B))\Lt(B)) ≤ #Supp(F) +
∑̀
i=1

#Supp(Bi)− `− 1.

It follows that

Nloop ≤`+ # ((Supp(F) ∪ Supp(B))\Lt(B))− 1

≤#Supp(F) +
∑̀
i=1

#Supp(Bi)− 1.

To prove the bound is tight, consider F = p1 + q1 + · · · + qs and B =
(p1, . . . , p`) with the term ordering p1 ≺ · · · ≺ p` ≺ q1 ≺ · · · qs. In the first s
loops, since Lt(F) � p`, i is unchanged and q1, . . . , qs are removed from F .
In the next ` − 1 loops, since Lt(F) = p1 ≺ p2 ≺ · · · ≺ p`, F is unchanged
and i will drop to 1. In the last loop, since Lt(F) = p1 = Lt(B1), F will
be reduced relative to B1 to 0. So the total number of loops is s + ` =
#Supp(F) +

∑`
i=1 #Supp(Bi)− 1.

Q.E.D.

• Lemma 4
Proof. First, the termination of isMuSymmetric follows from those of canonize
and reduce. We only need to show partial correctness: when the algorithm
halts, then it outputs ‘Yes’ iff F is µ-symmetric. Assume deg(F, r) = δ.
Recall that F ∈ K[r] is µ-symmetric iff there exists a homogeneous sym-

metric polynomial F̂ ∈ K[x] of degree δ such that σµ(F̂) = F (r). By

Proposition 2, F̂ is symmetric and with degree δ iff F̂ ∈ Kδ
sym[x]. Thus

F = σµ(F̂) ∈ Kδ
µ[r] where Kδ

µ[r] is a K-vector space with the basis gen-
erated by C = {eα : α ` (δ, n)}. If B = canonize(C), then B is the basis
we want to obtain. Therefore, if F is µ-symmetric iff reduce(F,B) = 0.

Q.E.D.

18 Yang and Yap

• Lemma 5
Proof. To prove D+ is injective for any µ = (µ1, . . . , µm) where m > 2, we
assume that m > 2 for any µ. Then we need to show that for any µ′ =
(µ′1, . . . , µ

′
m′), if D+(µ) = D+(µ′) then µ = µ′. Suppose D+(µ) = D+(µ′).

We now show that µ = µ′. Clearly, m′ must be equal to m. Our supposition
implies that µi+µj = µ′i+µ′j (1 ≤ i < j ≤ m). Consider the following linear
system:

{µ2 + µ3 = µ′2 + µ′3} ∪ {µ1 + µi = µ′1 + µ′i : i = 2, . . . ,m}.

Solving the last n − 1 equations for µi, we get µi = µ′1 + µ′i − µ1 for all
2 ≤ i ≤ m. Substituting for µi into the first equation yields

µ2 + µ3 = (µ′1 + µ′2 − µ1) + (µ′1 + µ′3 − µ1) = µ′2 + µ′3,

which implies µ1 = µ′1. It follows immediately that µi = µ′i for i = 2, . . . ,m.
Q.E.D.

• Lemma 6.
Proof. Let µ = (µ1, . . . , µm). Consider the m-th subdiscriminant Snm in n
variables. We may verify that

σµ(Snn−m) = ∆ ·
m∏
i=1

µi.

This is equivalent to

σµ

(
1∏m
i=1 µi

· Snn−m
)

= ∆.

Therefore 1∏m
i=1 µi

Snn−m is the the µ-kernel of ∆.

To obtain the explicit formula in case m = 2, consider the symmetric poly-
nomial Q :=

∑
i<j(xi − xj)2. It is easy to check that Q = (n− 1)e21 − 2ne2.

A simple calculation shows that

σµ(Q) = µ1µ2(r1 − r2)2.

Thus, we may choose ∆̂ =
(n−1)e21−2ne2

µ1µ2
. Q.E.D.

• Theorem 2.
Proof. Since µi = a (1 ≤ i ≤ m),

D+(µ) =
∏
i<j

(ri − rj)2a =

∏
i<j

(ri − rj)2
a

.

This expression forD+ is µ-symmetric since
∏
i<j(ri−rj)2 is µ-symmetric by

Lemma 6(a). Moreover, Lemma 6(a) also shows that the lift of
∏
i<j(ri−rj)2

is 1
am · S

n
n−m(x). Thus we may choose F̂n =

(
1
am · S

n
n−m

)a
. Q.E.D.

On µ-Symmetric Polynomials 19

• Theorem 3.
Proof. From Lemma 6(b), we know that (r1 − r2)2 is µ-symmetric for arbi-

trary n and (r1 − r2)2 =
(n−1)e21−2ne2

µ1µ2
.

When n is even,

D+(µ) =
(
(r1 − r2)2

)n
2 =

(
(n− 1)e21 − 2ne2

µ1µ2

)n
2

=

(
(n− 1)e21 − 2ne2

µ1µ2

)n
2

= F̊n(e1, e2).

Thus the case for even n is proved. It remains to prove the case for odd n.
First, it may be verified that

(r1 − r2)3 = k1e
3
1 + k2e1e2 + k3e3,

where

k1 =
−(n− 1)(n− 2)

d
, k2 =

3n(n− 2)

d
, k3 =

−3n2

d
and d = µ1µ2(µ1−µ2).

It follows that

D+(µ) =
(
(r1 − r2)2

)n−3
2 (r1 − r2)3

=

(
(n− 1)e21 − 2ne2

µ1µ2

)n−3
2 (

k1e
3
1 + k2e1e2 + k3e3

)
=

(
(n− 1)e21 − 2ne2

µ1µ2

n
2

)(
k1e

3
1 + k2e1e2 + k3e3

)
= F̊n(e1, e2, e3)

where

k1 =
−(n− 1)(n− 2)

d
, k2 =

3n(n− 2)

d
, k3 =

−3n2

d
and d = µ1µ2(µ1−µ2).

Q.E.D.

• Theorem 4.
Proof. Let P (x) =

∑n
i=0 cn−ix

i and G := ∂n−mD
∂cn−mn

∈ K[c0, . . . , cn]. First we

show that

H = G(c0,−z1c0, . . . , (−1)nznc0)/cm+n−2
0 ∈ K[z]. (7)

By discriminant theory, D is homogeneous of degree 2n − 2 in c0, . . . , cn.
Note that a term in D either becomes zero or has degree 2n − 2 − (n −m)
after taking (n−m)-th derivative for cn. Thus G is homogeneous of degree
m + n − 2 in c0, . . . , cn. It follows that any term in Supp(G) will become

20 Yang and Yap

the product of cm+n−2
0 and a monomial in z after the substitution of ci =

(−1)izic0 (1 ≤ i ≤ n). Therefore,

H = G(c0,−z1c0, . . . , (−1)izic0, . . . , (−1)nznc0)/cm+n−2
0 ∈ K[z]. (8)

In the remaining part, we will show that H(e1, . . . , en) = cD+, i.e.,

G(c0,−e1c0, . . . , (−1)ieic0, . . . , (−1)nenc0)/cm+n−2
0 = cD+. (9)

Since deg(P ′, x) = n − 1, P ′ has n − 1 roots in the closure of K, say
β1, . . . , βn−1. Then the classical discriminant D(P) of P is

D(P) =
(−1)

n(n−1)
2

c0
res(P, P ′, x) ∈ K[c0, . . . , cn]. (10)

Recall

res(P, P ′, x) = (nc0)n
n−1∏
i=1

P (βi) (11)

where βi’s are the roots of P ′(x). Then

D(P) = (−1)
n(n−1)

2 nncn−10

n−1∏
i=1

P (βi). (12)

Note that cn does not appear in P ′. Thus βi is independent with cn. On the

other hand, deg(P, cn) = 1 and Coef(P, cn) = 1, which imply dP (βi)
dcn

= 1.
Therefore,

G = (−1)
n(n−1)

2 cn−10 · nn · (n−m)!
∑

α∈([n−1]
m−1)

∏
i∈α

P (βi). (13)

In that follows, we will evaluate P (βi) for i = 1, . . . ,m− 1 with the assump-
tion that P has the multiplicity structure µ.

With such assumption, evaluating P at ci = (−1)ic0ei leads to P = c0
∏m
i=1(x−

ri)
µi . It is easy to see that P ′ has n−m known roots, i.e., r1, . . . , r1︸ ︷︷ ︸

µ1−1

, . . . , rm, . . . , rm︸ ︷︷ ︸
µm−1

.

Let βm, . . . , βn−1 be these n−m roots. Note that the terms in (13) are prod-
ucts of m− 1 P (βi)’s and P (βi) = 0 if i ≥ m. It follows that only one term

On µ-Symmetric Polynomials 21

does not get vanished in (13), which is
∏m−1
i=1 P (βi). Thus

H(e1, . . . , en) =
1

cm+n−2
0

G(c0,−e1c0, . . . , (−1)nenc0)

=

(−1)
n(n−1)

2 cn−10 nn(n−m)!
∏m−1
i=1 P (βi)

∣∣∣ci=(−1)ic0ei
1≤i≤n

cm+n−2
0

=
(−1)

n(n−1)
2 cn−10 nn(n−m)! · cm−10

∏m−1
i=1

∏m
j=1(βi − rj)µj

cm+n−2
0

=(−1)n(m−1)+
n(n−1)

2 nn(n−m)!

m∏
j=1

m−1∏
i=1

(rj − βi)µj

=(−1)n(m−1)+
n(n−1)

2 (n−m)!

m∏
j=1

[Q(rj)]
µj (14)

where

Q(x) =
P ′

nc0
∏m
i=1(x− ri)µi−1

=
1

n

m∑
i=1

[
µi

∏
1≤k≤m
k 6=i

(x− rk)
]
. (15)

Evaluating Q(x) at x = rj yields Q(rj) = µj
∏

1≤k≤m
k 6=j

(rj − rk). After substi-

tuting Q(rj) into (14), we get

H(e1, . . . , en) =(−1)n(m−1)+
n(n−1)

2 (n−m)!

m∏
j=1

[H(rj)]
µj

=(−1)n(m−1)+
n(n−1)

2 (n−m)!

m∏
j=1

[
µj

∏
1≤k≤m
k 6=j

(rj − rk)
]µj

=(−1)n(m−1)+
n(n−1)

2 (n−m)!

m∏
j=1

µ
µj
j ·

m∏
j=1

[∏
1≤k≤m
k 6=j

(rj − rk)
]µj

=(−1)n(m−1)+
n(n−1)

2 (n−m)!

m∏
j=1

µ
µj
j ·

(−1)
∑m
i=1(i−1)µi

∏
1≤j<k≤m

(rj − rk)µj+µk

=(−1)n(m−2)+
n(n−1)

2 +
∑m
i=1 iµi(n−m)!

m∏
j=1

µ
µj
j D

+ = cD+

where c = (−1)mn+
n(n−1)

2 +
∑m
i=1 iµi(n−m)!

∏m
j=1 µ

µj
j . Q.E.D.

	On bold0mu mumu -Symmetric Polynomials and D-plus
	1 Introduction
	2 bold0mu mumu -Symmetric Polynomials
	3 Computing Kernels via Gröbner Bases
	4 Checking bold0mu mumu -symmetry via Preprocessing and Reduction
	5 Computing Kernels via Solving Linear Systems
	6 The bold0mu mumu -symmetry of D+(bold0mu mumu)
	7 Experiments
	8 Conclusion

