Almost Tight Recursion Tree Bounds for the Descartes Method

Arno Eigenwillig[†] Vikram Sharma^{*} Chee K. Yap^{*}

[†]Max-Planck-Institut für Informatik Saarbrücken, Germany

*Courant Institute Dept. of Computer Science New York University, NY, USA

ISSAC 2006 at Genoa, Italy 11th July 2006

What is the Descartes Method?

Real root isolation by recursive interval bisection using Descartes' Rule of Signs to test for roots.

What makes the Descartes Method interesting?

- It performs very well in practice.
- It is simple to implement.
- It is used a lot.

The Descartes Test for roots in an interval

Descartes Test (classical form) [Jacobi, 1835]

Consider the real polynomial A(X) and an interval (c,d). Let $A^{\star}(X) = \sum_{i=0}^{n} a_i^{\star} X^i = A((cX+d)/(X+1)) \cdot (X+1)^n$ and define DescartesTest $(A, (c,d)) := var(a_0^{\star}, \dots, a_n^{\star}).$

Descartes Test (Bernstein form) [Pólya/Schoenberg, 1958]

Let
$$A(X) = \sum_{i=0}^{n} b_i B_i^n(X)$$
, where $B_i^n(X) = {n \choose i} \frac{(X-c)^i (d-X)^{n-i}}{(d-c)^n}$.
Then
 $DescartesTest(A, (c,d)) = var(b_0, \dots, b_n).$

Eigenwillig, Sharma, Yap (MPII + NYU)

The Descartes Test for roots in an interval

Properties

- Let v = DescartesTest(A, (c, d)).
 - If v = 0, then A(X) has no roots in (c, d).
 - If v = 1, then A(X) has exactly one root in (c, d), which is simple.
 - If v ≥ 2, then A(X) has two or more roots (or a multiple root) in or near (c, d) in the complex plane.

The Descartes Test for roots in an interval

Properties

Let v = DescartesTest(A, (c, d)).

- If v = 0, then A(X) has no roots in (c,d).
- If v = 1, then A(X) has exactly one root in (c, d), which is simple.
- If v ≥ 2, then A(X) has two or more roots (or a multiple root) in or near (c, d) in the complex plane.

From now on, let A(X) be square free.

Eigenwillig, Sharma, Yap (MPII + NYU)

Eigenwillig, Sharma, Yap (MPII + NYU)

Tree Bounds for the Descartes Method

ISSAC 2006 • Genoa, Italy 5 / 17

Eigenwillig, Sharma, Yap (MPII + NYU)

Eigenwillig, Sharma, Yap (MPII + NYU)

Related Work (selection)

Description of the algorithm

- Classical / power basis variant: [Collins/Akritas, 1976]
- Bernstein basis variant: [Lane/Riesenfeld, 1981] (later: e.g., [Mourr./Vrah./Yakoubs., 2002] [Mourr./Rouillier/Roy, 2005])
- Scaled Bernstein variant: [Johnson, 1991] ("dual algorithm")

Related Work (selection)

Description of the algorithm

- Classical / power basis variant: [Collins/Akritas, 1976]
- Bernstein basis variant: [Lane/Riesenfeld, 1981] (later: e.g., [Mourr./Vrah./Yakoubs., 2002] [Mourr./Rouillier/Roy, 2005])
- Scaled Bernstein variant: [Johnson, 1991] ("dual algorithm")

Tools from previous analyses

- [Krandick/Mehlhorn, 2006] used a Theorem of [Ostrowski, 1950] (also mentioned by [Batra, 1999]).
- [Johnson, 1991/98] [Krandick, 1995] applied a bound from [Davenport, 1985].

We use the same tools, but in a more direct way.

Eigenwillig, Sharma, Yap (MPII + NYU)

Two-circle Theorem (contrapositive) ([Ostrowski, 1950], see [Kra./Meh., 2006]) If DescartesTest(A, (c, d)) ≥ 2 , then the two-circles figure in C around interval (c, d)contains two roots α, β of A(X).

Two-circle Theorem (contrapositive) ([Ostrowski, 1950], see [Kra./Meh., 2006]) If DescartesTest(A, (c, d)) ≥ 2 , then the two-circles figure in C around interval (c, d)contains two roots α, β of A(X).

Corollary

We can choose α, β to be complex conjugate or adjacent real roots.

Two-circle Theorem (contrapositive) ([Ostrowski, 1950], see [Kra./Meh., 2006]) If DescartesTest(A, (c, d)) ≥ 2 , then the two-circles figure in C around interval (c, d)contains two roots α, β of A(X).

Corollary

We can choose α, β to be complex conjugate or adjacent real roots.

Two-circle Theorem (contrapositive) ([Ostrowski, 1950], see [Kra./Meh., 2006]) If DescartesTest(A, (c, d)) ≥ 2 , then the two-circles figure in C around interval (c, d)contains two roots α, β of A(X).

Corollary

We can choose α, β to be complex conjugate or adjacent real roots.

Two-circle Theorem (contrapositive) ([Ostrowski, 1950], see [Kra./Meh., 2006]) If DescartesTest(A, (c, d)) ≥ 2 , then the two-circles figure in C around interval (c, d)contains two roots α, β of A(X).

Corollary

We can choose α, β to be complex conjugate or adjacent real roots. It holds that $|\beta - \alpha| < \sqrt{3}(d-c)$; i.e., $(d-c) > |\beta - \alpha|/\sqrt{3}$.

A bound on path length

1 Consider any path in the recursion tree from I_0 to a parent *J* of two leaves.

A bound on path length

- 1 Consider any path in the recursion tree from I_0 to a parent *J* of two leaves.
- 2 At depth *d*, interval width is $2^{-d}|I_0|$. Hence *J* is at depth $d = \log |I_0|/|J|$.

A bound on path length

- 1 Consider any path in the recursion tree from I_0 to a parent *J* of two leaves.
- 2 At depth *d*, interval width is $2^{-d}|I_0|$. Hence *J* is at depth $d = \log |I_0|/|J|$.
- 3 The whole path consists of d+1 internal nodes.

A bound on path length

- 1 Consider any path in the recursion tree from I_0 to a parent *J* of two leaves.
- 2 At depth *d*, interval width is $2^{-d}|I_0|$. Hence *J* is at depth $d = \log |I_0|/|J|$.
- 3 The whole path consists of d+1 internal nodes.
- 4 There is a pair of roots (α_J, β_J) such that $|J| > |\beta_J - \alpha_J| / \sqrt{3}$; hence $d+1 < \log |I_0| - \log |\beta_J - \alpha_J| + 2$.

#(internal nodes on path) <

 $\log|I_0| - \log|\beta_J - \alpha_J| + 2$

Eigenwillig, Sharma, Yap (MPII + NYU)

Tree Bounds for the Descartes Method

ISSAC 2006 • Genoa, Italy 9 / 17

#(internal nodes on path) <
#(internal nodes in tree) <</pre>

 $\frac{\log|I_0| - \log|\beta_J - \alpha_J| + 2}{\sum_J (\log|I_0| - \log|\beta_J - \alpha_J| + 2)}$

#(internal nodes on path) <

 $\log |I_0| - \log |\beta_J - \alpha_J| + 2$ #(internal nodes in tree) < $\sum_{J} (\log |I_0| - \log |\beta_J - \alpha_J| + 2)$ #(all nodes in tree) $< 1 + 2 \cdot \sum_{I} (\log |I_0| - \log |\beta_I - \alpha_I| + 2)$

#(internal nodes on path) <
#(internal nodes in tree) <
#(all nodes in tree) <</pre>

$$\frac{\log |I_0| - \log |\beta_J - \alpha_J| + 2}{\sum_J (\log |I_0| - \log |\beta_J - \alpha_J| + 2)}$$
$$1 + 2 \cdot \sum_J (\log |I_0| - \log |\beta_J - \alpha_J| + 2)$$

#(internal nodes on path) <

 $\log |I_0| - \log |\beta_I - \alpha_I| + 2$ #(internal nodes in tree) < $\sum_{I} (\log |I_0| - \log |\beta_I - \alpha_I| + 2)$ #(all nodes in tree) $< 1 + 2 \cdot \sum_{I} (\log |I_0| - \log |\beta_I - \alpha_I| + 2)$

Tool #2: The Davenport–Mahler bound

Theorem (Davenport–Mahler [Dav., 1985] [Johnson, 1991/98])

Consider a polynomial $A(X) \in C[X]$ of degree n. Let G = (V, E) be a digraph whose node set V consists of the roots $\vartheta_1, \ldots, \vartheta_n$ of A(X). If

(i)
$$(\alpha,\beta) \in E \implies |\alpha| \leq |\beta|$$
,

(ii)
$$\beta \in V \implies \operatorname{indeg}(\beta) \leq 1$$
, and

(iii) G is acyclic,

then

$$\prod_{(\alpha,\beta)\in E} |\beta-\alpha| \geq \frac{\sqrt{|\operatorname{discr}(A)|}}{\operatorname{M}(A)^{n-1}} \cdot 2^{-O(n\log n)},$$

where

discr
$$(A) := a_n^{2n-2} \prod_{i>j} (\vartheta_i - \vartheta_j)^2$$
 and $M(A) := |a_n| \prod_i \max\{1, |\vartheta_i|\}.$

We want to rewrite $\prod_{J} |\beta_{J} - \alpha_{J}| \text{ as} \prod_{(\alpha,\beta) \in E} |\beta - \alpha|.$

We want to rewrite $\prod_{J} |\beta_J - \alpha_J| \text{ as } \prod_{(\alpha,\beta) \in E} |\beta - \alpha|.$

How often does $|\beta_J - \alpha_J|$ appear?

• adjacent real: ≤ 1

We want to rewrite

$$\prod_J |eta_J - lpha_J| \; \; ext{as} \prod_{(lpha,eta)\in E} |eta - lpha|.$$

How often does $|\beta_J - \alpha_J|$ appear?

- adjacent real: ≤ 1
- complex conjugate:

We want to rewrite

$$\prod_J |eta_J - lpha_J| \; \; ext{as} \prod_{(lpha,eta)\in E} |eta - lpha|.$$

How often does $|\beta_J - \alpha_J|$ appear?

- adjacent real: ≤ 1
- complex conjugate:

We want to rewrite

$$\prod_{J} |\beta_J - \alpha_J| \text{ as } \prod_{(\alpha,\beta) \in E} |\beta - \alpha|.$$

How often does $|\beta_J - \alpha_J|$ appear?

- adjacent real: ≤ 1
- complex conjugate: < 2

We need two graphs. (Paper: just 1.)

We want to rewrite

$$\prod_J |eta_J - lpha_J| \; \; ext{as} \prod_{(lpha,eta)\in E} |eta - lpha|.$$

How often does $|\beta_J - \alpha_J|$ appear?

- adjacent real: ≤ 1
- complex conjugate: < 2

We need two graphs. (Paper: just 1.)

Conditions on G = (V, E)

- (i) $(\alpha,\beta) \in E \implies |\alpha| \le |\beta|$
- (ii) $\beta \in V \implies \operatorname{indeg}(\beta) \leq 1$
- (iii) *G* is acyclic

We want to rewrite

$$\prod_J |eta_J - lpha_J| \; \; ext{as} \prod_{(lpha,eta)\in E} |eta - lpha|.$$

How often does $|\beta_J - \alpha_J|$ appear?

- adjacent real: ≤ 1
- complex conjugate: ≤ 2

We need two graphs. (Paper: just 1.)

Conditions on G = (V, E)(i) $(\alpha, \beta) \in E \implies |\alpha| < |\beta| \checkmark$

(ii) $\beta \in V \implies \operatorname{indeg}(\beta) \leq 1$

(iii) *G* is acyclic

We want to rewrite

$$\prod_J |eta_J - lpha_J| \; \; ext{as} \prod_{(lpha,eta)\in E} |eta - lpha|.$$

How often does $|\beta_J - \alpha_J|$ appear?

- adjacent real: ≤ 1
- complex conjugate: < 2

We need two graphs. (Paper: just 1.)

Conditions on G = (V, E)(i) $(\alpha, \beta) \in E \implies |\alpha| \le |\beta| \checkmark$ (ii) $\beta \in V \implies \operatorname{indeg}(\beta) \le 1 \checkmark$ (iii) *G* is acyclic \checkmark

Main Result

Theorem

Let $A(X) \in R[X]$ be a square-free polynomial of degree n. The Descartes Method run on A(X) starting from interval I_0 has a recursion tree \mathcal{T} bounded in size by

$$|\mathcal{T}| = O(\log \frac{1}{|\operatorname{discr}(A)|} + n(\log \operatorname{M}(A) + \log n + \log |I_0|))$$

Main Result

Theorem

Let $A(X) \in \mathbb{R}[X]$ be a square-free polynomial of degree n. The Descartes Method run on A(X) starting from interval I_0 has a recursion tree \mathcal{T} bounded in size by

$$|\mathcal{T}| = O(\log \frac{1}{|\operatorname{discr}(A)|} + n(\log \operatorname{M}(A) + \log n + \log |I_0|))$$

Corollary

If $A(X) \in \mathbb{Z}[X]$ and $|a_i| < 2^L$, then easily $\log |I_0| = O(L)$, and one has $|\mathcal{T}| = O(n(L + \log n)).$

Argument of [Krandick/Mehlhorn, 2006]: $|\mathcal{T}| = O(n \log n (L + \log n)).$

Almost tightness of the bound

Choose integers $n \ge 3$ and $a \ge 3$. Let $h = a^{-n/2-1}$. Consider

$$P(X) = X^n - 2(aX - 1)^2$$
 (irreducible) [Mignotte, 1981]
 $P_2(X) = X^n - (aX - 1)^2$ [Mignotte, 1995]

The interval $(a^{-1} - h, a^{-1} + h)$ contains two roots of P(X) and one root of $P_2(X)$ and thus three roots of $Q(X) = P(X) \cdot P_2(X)$.

Their median has an isolating interval of width less than 2h, but Q(X) has real roots outside (0,1), so $|I_0| > 1$.

Hence recursion depth is more than $\log(1/(2h)) = \Omega(n \log a)$. Q(X) has degree $2n = \Theta(n)$ and coefficient length $L = \Theta(\log a)$.

Lower bound $\Omega(nL)$ matching $O(n(L + \log n))$ if $\log n = O(L)$.

Bit complexity for integer polynomials

Bit complexity depends on...

- the basis chosen to represent polynomials
 - Power basis $(x^{i})_{i} = (1, x, x^{2}, ..., x^{n})$
 - [0,1]-Bernstein basis $\binom{n}{i}x^i(1-x)^{n-i}$
 - scaled [0,1]-Bernstein basis $(x^i(1-x)^{n-i})_i$

(NB: Coefficient length L always refers to power basis.)

• the implementation of basic operations, esp. transformation of A(X) to $A_L(X) = 2^n A(X/2)$ and $A_R(X) = 2^n A((X+1)/2)$.

Bit complexity for integer polynomials

Bit complexity depends on...

- the basis chosen to represent polynomials
 - Power basis $(x^{i})_{i} = (1, x, x^{2}, ..., x^{n})$
 - [0,1]-Bernstein basis $\binom{n}{i}x^i(1-x)^{n-i}$
 - scaled [0,1]-Bernstein basis $(x^i(1-x)^{n-i})_i$

(NB: Coefficient length L always refers to power basis.)

• the implementation of basic operations, esp. transformation of A(X) to $A_L(X) = 2^n A(X/2)$ and $A_R(X) = 2^n A((X+1)/2)$.

Classical subdivision

- Power basis + classical Taylor shift: $O(n^5(L + \log n)^2)$. (Same bound as Johnson/Krandick/Mehlhorn, but simpler proof.)
- Bernstein basis + de Casteljau subdivision: $O(n^5(L + \log n)^2)$.

Bit complexity for integer polynomials

Classical subdivision

- Power basis + classical Taylor shift: $O(n^5(L + \log n)^2)$. (Same bound as Johnson/Krandick/Mehlhorn, but simpler proof.)
- Bernstein basis + de Casteljau subdivision: $O(n^5(L + \log n)^2)$.

Asymptotically fast subdivision

- Power basis + fast Taylor shift [vzGathen/Gerhard, 1997]: $O(n(L + \log n)M(n^3(L + \log n))) = \widetilde{O}(n^4L^2).$ Same bound as [Du/Sharma/Yap, 2005] for Sturm's method.
- Bernstein basis: How to subdivide fast?
- A detour through the scaled Bernstein basis ("dual algorithm" of [Johnson, 1991]) makes it possible to apply a fast Taylor shift. Our tree bound $\rightsquigarrow \widetilde{O}(n^4L^2)$ [Emiris/Mourrain/Tsigaridas, 2006].

Summary

What have we done?

- Our paper gives a basis-free description of the Descartes Method for a uniform treatment of its power and Bernstein basis variants.
- We have recombined
 - tool #1: Ostrowski's partial converse of Descartes' rule
 - tool #2: the Davenport-Mahler bound

in a new and simpler way.

- This gives a new and almost tight bound on the recursion tree.
- Bounds on bit complexity follow directly (some old, some new). Asymptotically fast variant attains $\widetilde{O}(n^4L^2)$ like Sturm's method.
- Replacing A by $A/\operatorname{gcd}(A,A')$ removes squarefreeness condition. Standard arguments show that our bounds remain valid.

Thank you!