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The Descartes Method

What is the Descartes Method?

Real root isolation by recursive interval bisection
using Descartes’ Rule of Signs to test for roots.

What makes the Descartes Method interesting?
e |t performs very well in practice.
e [tis simple to implement.
e |tis used a lot.
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The Descartes Test for roots in an interval

Descartes Test (classical form) [Jacobi, 1835]
Consider the real polynomial A(X) and an interval (c,d).
Let A*(X) =Y @ X' =A((cX+d)/(X+1)) - (X+1)"

and define
DescartesTest(A, (c,d)) := var(ag, ..., ay).

Descartes Test (Bernstein form) [Pélya/Schoenberg, 1958]

Lot A(X) = Ef_obiB(X), where BI(X) = (1) S~

Then
DescartesTest(A, (c,d)) = var(by, ... ,by).
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The Descartes Test for roots in an interval

Properties
Let v = DescartesTest(A, (c,d)).

e If v=0, then A(X) has no roots in (c,d).

e Ifv=1,then A(X)

)

e If v>2,then A(X) has two or more roots (or a multiple root)
in or near (c,d) in the complex plane.

has exactly one root in (c,d), which is simple.
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The Descartes Test for roots in an interval

Properties
Let v = DescartesTest(A, (c,d)).

e If v=0, then A(X) has no roots in (c,d).

e Ifv=1,then A(X)

)

e If v>2,then A(X) has two or more roots (or a multiple root)
in or near (c,d) in the complex plane.

has exactly one root in (c,d), which is simple.

From now on, let A(X) be square free. J
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The Descartes Method
Ol

v\w/\/\// ,

The initial interval I is chosen to enclose all real roots.

v
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The Descartes Method
1404

v\w/\/\// ,

DescartesTest(A, Iy) > 2 — subdivide Ij.

v
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The Descartes Method
14004
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Continue recursively.

v
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The Descartes Method
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Continue recursively.

v
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The Descartes Method
14004

N cAwans

\/\j I

DescartesTest(...) =0 = no roots found, return.

v
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The Descartes Method
1404

0 1
\ﬂd /\I/\ |
I " d I "N

\/\j I

DescartesTest(...) =1 = report isolating interval, return.

v
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The Descartes Method

0 1
\ﬂi /\I/\ I
I " d I "N I

Ny

Continue recursion.

v
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The Descartes Method

od 1@ 3
\qo 10/ \0
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The Descartes Method

4 isolating intervals have been found.

v
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Related Work (selection)

Description of the algorithm
e Classical / power basis variant: [Collins/Akritas, 1976]

e Bernstein basis variant: [Lane/Riesenfeld, 1981]
(later: e.g., [Mourr./Vrah./Yakoubs., 2002] [Mourr./Rouillier/Roy, 2005])

e Scaled Bernstein variant: [Johnson, 1991] (“dual algorithm”)
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Related Work (selection)

Description of the algorithm
e Classical / power basis variant: [Collins/Akritas, 1976]

e Bernstein basis variant: [Lane/Riesenfeld, 1981]
(later: e.g., [Mourr./Vrah./Yakoubs., 2002] [Mourr./Rouillier/Roy, 2005])

e Scaled Bernstein variant: [Johnson, 1991] (“dual algorithm”)

Tools from previous analyses
e [Krandick/Mehlhorn, 2006] used

a Theorem of [Ostrowski, 1950] (also mentioned by [Batra, 1999]).

e [Johnson, 1991/98] [Krandick, 1995] applied
a bound from [Davenport, 1985].

We use the same tools, but in a more direct way.

)
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Tool #1: A partial converse of Descartes’ Rule
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Tool #1: A partial converse of Descartes’ Rule

Two-circle Theorem (contrapositive)
([Ostrowski, 1950], see [Kra./Meh., 2006])
If DescartesTest(A, (c,d)) > 2, then the

two-circles figure in C around interval (c,d)
contains two roots o, 3 of A(X).
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If DescartesTest(A, (c,d)) > 2, then the

two-circles figure in C around interval (c,d)
contains two roots o, 3 of A(X).

Corollary

We can choose a, 3 to be complex conjugate or adjacent real roots.
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Tool #1: A partial converse of Descartes’ Rule

°
o Two-circle Theorem (contrapositive)
([Ostrowski, 1950], see [Kra./Meh., 2006])
If DescartesTest(A, (c,d)) > 2, then the
two-circles figure in C around interval (c,d)
B contains two roots o, 3 of A(X).
[ J

Corollary

We can choose a, B to be complex conjugate or adjacent real roots.
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Tool #1: A partial converse of Descartes’ Rule

Two-circle Theorem (contrapositive)
([Ostrowski, 1950], see [Kra./Meh., 2006])
If DescartesTest(A, (c,d)) > 2, then the

two-circles figure in C around interval (c,d)
contains two roots o, 3 of A(X).

Corollary

We can choose a, 3 to be complex conjugate or adjacent real roots.
It holds that |B — ot| < \/3(d —c¢); i.e, (d—c)>|B—al/V3.
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A tree bound in terms of roots (1)

A bound on path length

Consider any path in the recursion tree
from I to a parent J of two leaves.
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A tree bound in terms of roots (1)

A bound on path length
Consider any path in the recursion tree
from I to a parent J of two leaves.
At depth d, interval width is 27¢|1y|.
Hence J is at depth d = log|ly|/|J]|.
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A tree bound in terms of roots (1)

A bound on path length
Consider any path in the recursion tree
from I to a parent J of two leaves.
At depth d, interval width is 27¢|1y|.
Hence J is at depth d = log|ly|/|J]|.

The whole path consists of d + 1
internal nodes.
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A tree bound in terms of roots (1)

A bound on path length
Consider any path in the recursion tree
from [y to a parent J of two leaves.
At depth d, interval width is 27¢|1y|.
Hence J is at depth d = log|ly|/|J]|.
The whole path consists of d + 1
internal nodes.
J d=3 There is a pair of roots (o, B7)
such that |J| > |B; — ay|/+/3; hence
d+1 < log|ly| —log|Bs — oy | +2.
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A tree bound in terms of roots (2)

lo

#(internal nodes on path) < log|lo| —log|Bs — oy| +2

4
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A tree bound in terms of roots (2)

#(internal nodes on path) < log|lo| —log|Bs — oy| +2
#(internal nodes in tree) < Y ; (log|lp| —log|B; — ay| +2)

4
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A tree bound in terms of roots (2)

#(internal nodes on path) < log|lo| —log|Bs — oy| +2
#(internal nodes in tree) < Y ; (log|lp| —log|B; — ay| +2)
#(all nodes in tree) < 1+2-Y, (log|lp| —log|Bs — o] +2)

4
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A tree bound in terms of roots (2)

S

Proposition
The size of the recursion tree is bounded by

—2log HIBJ — oy| +nlog|lp| +2n+1

F X

#(internal nodes on path) log|lo| —log|B; — oy| +2
#(internal nodes in tree) < Y ; (log|lp| —log|B; — ay| +2)
#(all nodes in tree) < 1+2-Y, (log|lp| —log|Bs — o] +2)
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A tree bound in terms of roots (2)
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Tool #2: The Davenport—Mahler bound

Theorem (Davenport—Mahler [Dav., 1985] [Johnson, 1991/98])

Consider a polynomial A(X) € C[X] of degree n. LetG = (V,E) be a
digraph whose node set V consists of the roots ¥, ..., 9, of A(X). If
() (,B) € E = |a| <|B],
(i) B eV = indeg(B) <1, and
(ii)y G is acyclic,

then :
H |B . OC| > ldlscf,(_Al” . 2—0(nlogn),
(a,B)eE M(A)
where
discr(A) := a?"~ 21_1 (% — ) and M(A):= |an|Hmax{1,|19,-|}.
i>j i
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Turning our product into an admissible graph

We want to rewrite

Hlﬁf—afl as []IB—al

(a,B)EE
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Turning our product into an admissible graph

We want to rewrite

Hlﬁf—afl as []IB—al

(a,B)EE

How often does |B; — a;| appear?

e adjacentreal: <1
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Turning our product into an admissible graph

We want to rewrite

Hlﬁf—afl as []IB—al

(a,B)EE

How often does |B; — a;| appear?

e adjacentreal: <1
e complex conjugate: <2

We need two graphs. (Paper: just 1.)
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Turning our product into an admissible graph

We want to rewrite

Hlﬁf—afl as []IB—al

(a,B)€E
How often does |B; — a;| appear?
e adjacentreal: <1
e complex conjugate: <2

We need two graphs. (Paper: just 1.)

Conditions on G = (V,E)
() (o,B) € E = |a| <|B]
(i) BeV = indeg(B) <1
(i) Gis acyclic

<

A °
o—o o—te ° °
o °
)
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Main Result

Theorem

Let A(X) € R[X] be a square-free polynomial of degree n.

The Descartes Method run on A(X) starting from interval I
has a recursion tree T bounded in size by

1
7| =0(log——— loeM(A) +1 log|/

Eigenwillig, Sharma, Yap (MPII + NYU) Tree Bounds for the Descartes Method

ISSAC 2006 e Genoa, Italy 12/17




Main Result

Theorem

Let A(X) € R[X] be a square-free polynomial of degree n.

The Descartes Method run on A(X) starting from interval I
has a recursion tree 7 bounded in size by

1
7| =0(log——— loeM(A) +1 log| I,

Corollary

IFA(X) € Z[X] and |a;| < 2L, then easily log|ly| = O(L), and one has
|7| = O(n(L+1logn)).

4

Argument of [Krandick/Mehlhorn, 2006]: |7 | = O(nlogn (L+logn)). |
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Almost tightness of the bound

Choose integers n >3 and a > 3. Let h = a—"/*~!. Consider

P(X)=X"—2(aX —1)* (irreducible) [Mignotte, 1981]
Pry(X)=X"—(aX— 1)2 [Mignotte, 1995]
The interval (a~! —h, a~! +h) contains two roots of P(X) and
one root of P>(X) and thus three roots of Q(X) = P(X) - P»(X).

Their median has an isolating interval of width less than 2h,
but Q(X) has real roots outside (0, 1), so |ly| > 1.

Hence recursion depth is more than log(1/(2k)) = Q(nloga).
Q(X) has degree 2n = ®(n) and coefficient length L = @(loga).

w» | ower bound Q(nL) matching O(n(L+logn)) if logn = O(L).

)
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Bit complexity for integer polynomials

Bit complexity depends on...
¢ the basis chosen to represent polynomials
o Power basis (x'); = (1,x,x%,...,x")
« [0,1]-Bernstein basis ((7)x'(1 —x)"");
e scaled [0, 1]-Bernstein basis (x'(1 —x)""");
(NB: Coefficient length L always refers to power basis.)

e the implementation of basic operations, esp. transformation
of A(X) to AL(X) = 2"A(X/2) and Ag(X) = 2"A((X+1)/2).

Eigenwillig, Sharma, Yap (MPII + NYU) Tree Bounds for the Descartes Method ISSAC 2006 e Genoa, ltaly 14 /17



Bit complexity for integer polynomials
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« [0,1]-Bernstein basis ((7)x'(1 —x)"");
e scaled [0, 1]-Bernstein basis (x'(1 —x)""");
(NB: Coefficient length L always refers to power basis.)

e the implementation of basic operations, esp. transformation
of A(X) to AL(X) = 2"A(X/2) and Ag(X) = 2"A((X+1)/2).

Classical subdivision

e Power basis + classical Taylor shift: O(n’(L+1logn)?).
(Same bound as Johnson/Krandick/Mehlhorn, but simpler proof.)

e Bernstein basis + de Casteljau subdivision: O(n>(L+1logn)?).
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Bit complexity for integer polynomials

Classical subdivision

e Power basis + classical Taylor shift: O(n’(L+1logn)?).
(Same bound as Johnson/Krandick/Mehlhorn, but simpler proof.)

e Bernstein basis + de Casteljau subdivision: O(n>(L+1logn)?).

Asymptotically fast subdivision
e Power basis + fast Taylor shift [vzGathen/Gerhard, 1997]:
O(n(L+logn)M(n(L+1logn))) = O(n*L?).
Same bound as [Du/Sharma/Yap, 2005] for Sturm’s method.
e Bernstein basis: How to subdivide fast?

e A detour through the scaled Bernstein basis (“dual algorithm”
of [Johnson, 1991]) makes it possible to apply a fast Taylor shift.
Our tree bound ~» O(n*L?) [Emiris/Mourrain/Tsigaridas, 2006].
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Summary

What have we done?

e Our paper gives a basis-free description of the Descartes Method
for a uniform treatment of its power and Bernstein basis variants.

e We have recombined

o tool #1: Ostrowski’s partial converse of Descartes’ rule
e tool #2: the Davenport—Mahler bound

in a new and simpler way.
e This gives a new and almost tight bound on the recursion tree.

e Bounds on bit complexity follow directly (some old, some new).
Asymptotically fast variant attains O(n*L?) like Sturm’s method.

e Replacing A by A/ gcd(A,A’) removes squarefreeness condition.
Standard arguments show that our bounds remain valid.
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Thank you!
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