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Abstract 

Nonrobustness is a well-known problem in many areas 
of computational science. Until now, robustness tech- 
niques and the construction of robust algorithms have 
been the province of experts in this field of research. We 
describe a new C/C++ library (CORE) for robust numeric 
and geometric computation based on the principles of 
Exact Geometric Computation (EGC). Through our li- 
brary, for the first time, any programmer can write ro- 
bust and efficient algorithms. The Core Library is based 
on a novel numerical core that is powerful enough to 
support EGC for algebraic problems. This is coupled 
with a simple delivery mechanism which transparently 
extends conventional C/C++ programs into robust codes. 
We are currently addressing efficiency issues in our li- 
brary: (a) at the compiler and language level, (b) at the 
level of incorporating EGC techniques, as well as the 
(c) the system integration of both (a) and (b). Pilot 
experimental results are described. The basic library is 
availableathttp://cs.nyu.edu/exact/core/andthe 
C++-to-C compiler is under development. 

1 INTRODUCTION 

Numerical non-robustness is well-known in many areas 
of computational sciences and engineering [7]. Non- 
robustness in this paper1 refers to what is sometimes 
known as “catastrophic errors”: errors that cause pro- 
grams to enter unanticipated states and hence crash. In 
applications areas such as physical simulation and geo- 
metric modeling and design, the underlying geometry 

lWe are only interested in catastrophic errors that arise from nu- 
merical approximations. Th e computing literature often refers to 
preformance issues such as scalability of algorithms as “robustness 
issues”. Such issues are also outside OUT scope. 
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grows increasingly complicated, and non-linear mod- 
els are increasingly used. Both these trends imply an 
acute need ,for solving non-robustness in a systematic 
and scientifically sound way. Although there have been 
many research efforts to create robust algorithms, such 
solutions are rarely used in practice: ad hoc epsilon- 
tweaking rules remain the mainstay of practitioners. 
Without going into the relative merits of the various 
proposed solutions, there is one overriding reason for 
this unfortunate state of affairs: most previous solu- 
tions apparently require programmers to change their 
programming behavior, sometimes in radical ways. It is 
one thing to demonstrate that a technique that can pro- 
duce a robust algorithm for a particular problem. But 
it may be another problem when potential users need 
to (i) modify the technique for their particular require- 
ments, or (ii) extend it to related problems. Robust 
solutions, especially those based2 on “fixed-precision ge- 
ometry”, are particularly resistant to (i) and (ii). See 
[33] for a survey of robustness literature. 

In this paper, we describe the Core Library (CORE 

for short), a new C/C++ library for robust numeric and 
geometric computation. Our library API (“application 
programmer interface”) model, as first proposed in [32], 
is able to deliver powerful robustness techniques in a 
relatively transparent manner. Thus, to construct a 
stand-alone robust algorithm, the CORE API allows the 
programmer to code the algorithm without explicitly 
worrying about robustness. We do require the program- 
mer to design his or her algorithm assuming exact real 
arithmetic in the standard Euclidean geometry. But 
this is almost no requirement at all, as Euclidean geom- 
etry is the default model of most geometric concepts in 
practice. This avoids, for instance, the many highly un- 
intuitive surprises when researchers use fixed-precision 
geometries. The programmer may pay only minimal at- 
tention to our library, only making sure that the final 
C/C++ program contains a short (e.g., 2-line) preamble 

‘These are the “geometries” that researchers need to define to 
approximate the standard Euclidean geometry when they operate in 
fixed-precision arithmetic. 
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to invoke our library. If this program is now compiled 
with a C++ compiler and linked with our library, this 
code will be robust. In general, such a library API 
allows us to convert most stand-alone programs into 
robust programs with minimal effort. 

The reader familiar with object-oriented program- 
ming languages may suspect that our library will re- 
place standard number types (such as int or double) by 
some bigNumber class. This is correct as far as it goes, 
but as we shall see, something fundamentally deeper is 
going on. To give a hint of this, it may be noted that 
the “‘preambled” code is robust even if it involves non- 
rational operations such as square roots. No bigNumber 
package alone can ensure this behavior. 

Our library supports the Exact Geometric Com- 
putation (EGC) approach [34] to robustness (although 
a user is free to ignore EGC and use the CORE API 
and features for other purposes). As the name of the li- 
brary suggests, the heart of our library is indeed a new 
“numerical core”. Just as the floating point package 
(hardware) constitutes the heart of contemporary sci- 
entific computation, our “numerical core” can serve as 
the basis for EGC computing. In the EGC approach 
to robustness, the key efficiency principle is precision- 
sensitivity (cf. [35, 291). An algorithm is “precision- 
sensitive” if its running time scales with the actual pre- 
cision needed for each input instance. Precision sen- 
sitive techniques take many forms. One is “Aoating- 
point filters” which several groups [14, 10, 2, 51 have 
shown to be very effective. Indeed, exploiting precision- 
sensitivity is what distinguishes the current EGC ap- 
proaches [14, 6, 5, 3, 30, 211 from earlier attempts to 
use “exact arithmetic”. These early attempts (e.g., 
[23, 361) inevitably fare badly against worse-case sce- 
narios. Many of these EGC techniques will be available 
through our library. 

The main theme in our current development of CORE 
is code efficiency. We attack this at the level of EGC- 
based techniques (e.g., floating point filters) as well as 
at the level of compiler optimization. The latter aims 
at applying aggressive optimization techniques to auto- 
matically produce robust code whose speed on “most in- 
puts” is within a small constant factor of that achievable 
by hand-coded optimizations. As we will see (Section 
4), this optimization research involves a rich interplay of 
EGC techniques and compiler optimizations (especially 
in the context of an object-oriented language such as 
c++). 

The Core Library sources, with all the examples in 
this paper, are available at our website [19]. 

OVERVIEW OF PAPER. In the next section, we 
first give a user-viewpoint of the Core Library. In Sec- 
tion 3, we describe the internal view. In Section 4, we 
address compiler analysis and optimization issues. The 
preliminary experimental results are shown in Section 

5. We conclude in Section 6. 

2 A NOVEL NUMERICAL CORE 

This section provides a user (API) view of CORE. The 
key ideas from [32] are (a) a novel and deceptively sim- 
ple proposal for a “number core” based on 4 accuracy 
levels, and (b) a transparent “delivery mechanism” to 
bring this core capability to users. First we describe the 
four levels of core (numerical) accuracies: 

LEVEL I: Machine Accuracy. This may be 
identified with the IEEE-standard [26]. 

LEVEL II: Arbitrary Accuracy. Users can 
specify any desired accuracy. E.g., “200 bits” means 
that numerical operations will not cause an over- 
flow or underflow until 200 bits are exceeded. This 
feature is widely available in modern day computer 
algebra systems such as Maple or Mathematics. 

LEVEL III: Guaranteed Accuracy. This is 
the most interesting level: specifying “200 relative 
bits” means that the first 200 significant bits of 
a computed quantity are correct. The Real/Expr 
package [35, 241 is the first to achieve Level III 
accuracy for a non-rational family of expressions. 

LEVEL IV: Mixed Accuracy; The previous 
accuracy levels are intermixed and localized to in- 
dividual variables, allowing finer accuracy control. 
This has not been implemented. 

We next describe the mechanism for delivering these 
core accuracies to the user. A normal C/C++ program 
only have to be preceded by a suitable preamble. The 
simplest preamble is: 

#define Level N /* N=1,2,3 or 4 */ 
#include “CORE. h” 

The program is then compiled in the usual way, al- 
though its behavior now depends on the chosen accu- 
racy level. In other words, a single program can “simul- 
taneously” access the different accuracy levels literally 
at the flip of a switch (viz., setting a variable). Fine 
tuning of accuracy via the setting of precision for indi- 
vidual variables is possible. Our library supports the 
setting of precision in both relative and absolute (or a 
mixture thereof [35]) terms. In the following, we ex- 
plain what our library framework means for the user, 
and how it is can be used to achieve robustness. 

ILLUSTRATIVE EXAMPLES. We currently have 
a prototype of CORE in which the first three accuracy 
levels can be accessed. This is basically achieved by con- 
structing a wrapper around the Real/Expr package For 
brevity, we only discuss Levels I and III in the examples 
here. 
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l We wrote a basic geometry package. This allows 
us to construct a plane P with equation x+ y f .Z = 
1 and to intersect P with the lines Lij (i, j = 

50) through the origin (O,O, 0) and the point 
;i’,‘j,‘;). We then test if the intersection point 
PQ = LQ n P lies on the plane P. When run 
at Level III, the answer is positive in all 2500 
cases. At Level I, the answer is correct in 1538 
cases (62.5%). 

l Consider now the relationship between two lines 
in S-space. We wrote three predicates isSkew, 
isparallel and intersects. Any pair of distinct 
lines ought to make exactly one of these predi- 
cates true. Let LQ (i, j = 1,. . . ,50) be the line 
through the origin and (i, j, 1) and let Lij be the 
line through (1, 1,O) and (i + 1,j + l,l). At Level 
III, these (i, j) line-pairs are parallel in all 2500 
cases, none skew or intersecting. At Level I, we get 
2500 parallel pairs, but it also reported 1201 inter- 
sections and none skew. If we replace i and j by 
sqrt(i) and sqrt(j) in the same experiment, then 
Level III is again perfect while Level I reported 
2116 pairs parallel, 378 skew and 1023 intersect- 
ing. 

l We wrote a matrix package that included a straight- 
forward Gaussian elimination algorithm (without 
pivoting) for computing determinants where the 
basic expression is 

A(j,k) -= A(j ,i)*A(i,k)/A(i,i). 
This program will be further discussed in Section 
4. Consider the following two matrices: 

double AC] = f. 3.0, 0.0, 0.0, 1.0, 
0.0, 3.0, 0.0, 1.0, 
0.0, 0.0, 3.0, 1.0, 
1.0, 1.0, 1.0, 1.0 3; 

long BCI = C 512, 512, 512, 1, 
512, -512, -512, I, 

-512, 512, -512, 1, 
-512, -512, 512, 1 ); 

Level III correctly computes det(A) = 0 and det(B) 
= 231. However, at Level I, det(A) is non-zero 
because the Gaussian algorithm performs division 
by 3.0. Similarly, det(B) in Level I leads to an 
overflow (shows up as a negative number). Gener- 
ally for determinants that vanish, no matter how 
convoluted the matrix entries (which may involve 
nested square roots), Level III never fails to detect 
0. Similar behavior was also observed with Hilbert 
matrices. 

HOW DO ACCURACY LEVELS SUPPORT 
ROBUST COMPUTING? Specifying “1 relative 
bit” in Level III amounts to guaranteeing the correct 

sign of computed values. From EGC theory, this en- 
sures the exactness (and hence consistency) of our geo- 
metric structures. The more efficient Level II may suf- 
fice when we know a’ priori the needed precision, as in 
bounded-degree problems [34]. Even a speed-conscious 
user who cannot afford Level III in actual applications 
may use Level III accuracy to debug the program logic. 
Note that this comes almost for free. Conversely, as 
we have found, Level I is also useful for fast debugging 
of the non-numeric part of a program, even if we are 
ultimately interested in Level III. 

WHAT IS THE DIFFERENCE BETWEEN LEV- 
ELS II AND III? Level III accuracy is the key inno- 
vation of CORE. Its distinction from Level II may not 
be obvious. Computer algebra systems deliver Level II 
accuracy. But specifying “500 bits of accuracy” does 
not mean that all the 500 bits in a quantity are signifi- 
cant - in fact, it is easy to lose every bit of significance. 
One of the authors (C.Y.) relates an experience with 
Maple’s Level II accuracy: as a particular computation 
is repeated with increased accuracy, the answers came 
back in a wildly unpredictable manner (including com- 
plex values when a real was expected). It was unclear 
whether this was a Maple bug or a programming error. 
On closer analysis, it turns out that the computation 
went through a singularity. This is a stroke of luck as 
it is usually tedious or infeasible to carry out such anal- 
ysis. If the same computation could be carried out at 
Level III, this singularity would be automatically de- 
tected. Another qualitative difference is that Level III 
achieves error-free comparisons of any two reals, x 
and y. If x # y, then we could make this comparison in 
Level II, using a loop with increasing precision. But if 
x = y, then Level II is helpless: the loop is infinite. 

HOW IS CORE DIFFERENT FROM OTHER 
ROBUST LIBRARY EFFORTS? The multi- 
institution European Community project CGAL [la, 251, 
and Max-Planck Institute of Computer Science project 
LEDA [22, 6] are two major libraries also committed to 
the EGC paradigm. Both aim at providing a com- 
prehensive suite of efficient data structures and algo- 
rithms. The CGAL and LEDA efforts are very’important 
and address real needs. Our approach is motivated by 
an orthogonal concern. We believe that no single li- 
brary could possibly fulfill all the demands and com- 
plexities of potential applications. Rather, there is al- 
ways a demand for small customized libraries in sup- 
port of specialized applications. It is thus important 
to offer programmers the tools to achieve their robust- 
ness goals, which is precisely what CORE offers. Our 
work stresses the “small”3 numerical core and support- 
ing tools for constructing robust geometric software. 

3Smallness is another quality that the name of our library is in- 
tended to evoke. 
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To support various applications, we prefer to define 
core library extensions (COREX) that embed do- 
main specific knowledge. With our partners, we are 
currently building several such COREXS, including a 
COREX for mesh generation. An additional difference 
is our use of aggressive compiler techniques to mini- 
mize the amount of hand-tuning required for efficient 
implementation. NOTE: a simultaneous submission [4] 
by the CGAL/LEDA group to this conference describes an 
effort called ledareal which has many similarities to 
our work. 

BENEFITS OF OUR APPROACH. Several ben- 
efits accrue to users of our library. (1) We already 
mentioned the advantages of working in an environ- 
ment with access to different accuracy levels for de- 
bugging programming logic. (2) Another advantage 
is automatic technology transfer. As EGC technology 
improves, these improvement will be reflected in our 
libra.ry. Hence users of our library automatically en- 
joy the fruit,s of such advances. (3) Many applications 
must choose a trade-off between robustness and speed. 
Our accuracy levels greatly facilitate making or chang- 
ing such choices. 

3 HOW CORE WORKS 

Since CORE is directly derived from the Real/Expr pack- 
age they share many features. In particular, both use 
“precision-driven mechanisms” [35, 241 for expression 
evaluation, critical because in general, the worst case 
bounds in EGC are not sustainable. Both packages 
currently support the operators +, -, X, +, J;, but in 
principle can be extended to any algebraic operation. 
The main difference between Real/Expr and CORE is 
in their semantics of assignments. In ReaUExpr, the 
assignment “a = b + c” is really asserting a permanent 
relation (i.e., constraint) between three variables. This 
results in highly unintuitive behavior (e.g., subsequent 
assignments to b and c change the value of a). CORE 
removes all such surprises. 

HOW DO THE VARIOUS LEVELS INTERACT? 
We provide more details on the delivery mechanism [32]. 
In the previous section, we have assumed the simplest 
situation, where the program is a standard C/C++ pro- 
gram. We call this a Level I program. Thus, its 
primitive number types are basically int, long, float, 
double. These are the Level I number types. CORE 
defines the new4 number types Real and Expr. These 
are (respectively) Levels II and III number types. Ac- 
tually, Level II number types include bigInt, bigRat, 
or bigFloat. The number type Real is not a particular 
representation of numbers, but a superclass of all the 

4Another Level II number type is Complex which we ignore in this 
paper for simplicity. 

number representations found in the system. There is 
a natural partial ordering 4 among these types: 

int + long -: bigInt + bigRat 4 Real, 

float + double + bigFloat + bigRat 

The automatic promotion or demotion of number types 
may occur during assignments, as in conventional lan- 
guages. E.g., if we assign a bigFloat to an int, the 
value must be demoted before assignment. However, 
promotion and demotion of number types also occur 
when we set CORE accuracy levels. The most interest- 
ing case is when we run a Level I program at Level III: 
then long and double both promote to Expr; however, 
int and float remain unchanged. The motivation is 
that, even at Level III, it is desirable to have machine- 
precision variables for efficiency. As another example, 
if we run a Level III program at level II, then Expr 
demotes to Real. Here are the general principles: 

1. A program is said to be Level C (L=I,II,III) if it 
explicitly declares number types of Level C, but has 
no number types of Levels > e. This definition of e 
is “static”, independent of the preamble which sets 
the “run-time” accuracy Level. Note that there is 
no static Level IV. 

2. Features accessible at run-time level ! are also avail- 
able at run-time Level j (.! < j). 

3. Variables and features of Level C will be demoted 
to corresponding variables and features at Level 
j(j < e) when the program is run at Level j. 

4. ‘At run-time level IV, only assignments force pro- 
motion or demotion of variables. 

WHAT IS IN LEVEL II ACCURACY. Consider 
the program fragment in figure l(a). At Level II accu- 
racy, variables m,p, q are promoted to type Real (in- 
ternally, m would be bigInt while p, q are bigFloat). 
For efficiency, we may prefer to keep p, q as double for 
as long as possible. If so, we need a runtime check for 
overflows (and convert p or q to type bigFloat when it 
happens). 

int n, long m, double p, q; 

p=m+n; 

q=p*n; 

Figure 1: (a) Program Fragment. (b) Expression dags 
for P, q. 
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WHAT REALLY HAPPENS IN LEVEL III. If 
the above program fragment (p = m + n; q = p * n) were 
compiled with Level III accuracy, something completely 
different happens. As in Real/Expr [24], p is actually 
made to point to an expression corresponding to m + n 
and similarly for q. See figure l(b) where expressions 
are represented as directed acyclic graphs (dag’s). That 
is, the dependence of p upon the values of m and n is 
remembered. In turn, the values of m, n may depend 
on other values. The reason for constructing such ex- 
pressions is that we need to propagate the precision of 
p into precisions for m and n. There is a downward 
propagation of precision, upward propagation of errors, 
and this may be iterated until the error is less than 
the requested precision. Note the technical difference 
between precision and error in this mechanism. This 
is the precision-driven mechanism of [35]. We also 
need to maintain bounds on the (algebraic) heights and 
degrees of the algebraic quantities at each node of the 
dag. 

LIBRARY STRUCTURE AND USAGE 
MODELS. The CORE library is written in C++ using 
an object-oriented programming style which encapsu- 
lates underlying numerics from higher-level. library and 
application routines and additionally supports exten- 
sibility. This library and its compilation infrastruc- 
ture can be used in several modes. In Section 1, we 
described the mode of writing stand-alone CORE pro- 
grams. One requirement was that exact real arithmetic 
must be assumed - it implies the programmer should 
avoid the temptation to manipulate bits in their num- 
bers. Because double and long are promoted in Level 
III, they should also be careful in using standard C func- 
tions such as scanf. Note that some of these restrictions 
could be removed by providing CORE substitutions. In 
practice, the stand-alone mode is ill-suited for meeting 
the needs of existing application systems. For instance, 
we are constructing a Meshing COREX for Card3d [17], 
a meshing system for Computational Fluid Dynamics 
(CFD). This system contains both FORTRAN and C code. 
For minimal changes to such systems, we need rewrite 
only a handful of robustness-critical primitive functions. 
Since the CORE library is in C++, it is interoperable 
with languages such as FORTRAN. However, to take full 
advantage of the optimizations described in Section 4, 
the portion of the program that utilizes CORE must be 
recompiled using a special, but portable C++-to-C com- 
piler. The compiler analyzes application usage patterns 
to improve the implementation of internal CORE library 
structures, so its benefits are proportional to the pro- 
gram portion that is recompiled. 

4 EFFICIENT EXECUTION OF EGC PROGRAMS 

The CORE library effectively addresses the robustness 
concerns in geometric computations. However, at higher 
accuracy levels (III and IV), this robustness often comes 
at the cost of efficiency. For example, anecdotal evi- 
dence [12, 201 shows that geometric primitives become 
slower by factors of up to 150 and 10,000, respectively, 
when exact integer computations and exact rational 
number computations are used instead of machine 
floating-point. While improved EGC techniques such 
as floating-point filters and precision-sensitive compu- 
tation are capable of reducing these slowdowns, careful 
hand-tuning of implementations is required to get good 
performance. A novel aspect of our library is that it au- 
tomates this tuning process, relying on an optimizing 
compiler to customize the implementation of internal 
CORE library structures based on an analysis of ap- 
plication usage patterns. In the rest of this section, we 
first identify the primary reasons for implementation in- 
efficiency, and then describe our analysis and optimiza- 
tion approach. The next section describes pilot studies 
showing the performance advantages of this approach.. 

4.1 Sources of Overhead 

To understand the various sources of overhead, let us 
examine the run-time object structures that are created 
for the expression A (j , k) -= A(j,i)*A(i,k)/A(i,i) 
in the Gaussian elimination algorithm. In Figure 2, 
the titles of boxes (e.g., Expr , ExprRep) correspond to 
classes in the CORE library: the container objects and 
multiple levels of indirection encapsulate concrete im- 
plementations of expression tree nodes (such as a bi- 
nary subtraction operation). This encapsulation is con- 
veniently expressed using class inheritance and virtual 
functions in an object-oriented language such as C++. 

Expression evaluation involves a recursive traversal 
of the expression tree, and iterated traversals may be 
necessary because of the precision-driven nature of Level 
III evaluation. Maintaining the expression tree guar- 
antees robustness, but it reduces execution efficiency 
on current-day systems with deep memory hierarchies. 
Level III evaluation suffers from three primary sources 
of overhead absent in Level I: 

l Function-call overhead: The object-oriented pro- 
gramming style used in CORE encourages programs 
with small function (method) bodies that are dy- 
namically dispatched using virtual functions. This 
increases the relative contribution of function call 
costs to overall execution time, and additionally 
reduces the effectiveness of sequential compiler op- 
timizations (such as constant propagation). 

l Memory management overhead: Expression trees 
in Level III are dynamic pointer-based structures 
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Figure 2: Expression tree created in the innermost loop of the Gaussian elimination algorithm. The boxes represent 
classes in the CORE library and cascaded boxes show the inheritance hierarchy. 

consisting of simple small objects. These struc- 
tures incur overheads for memory allocation and 
deallocation, and do not effectively utilize the mem- 
ory hierarchies in current-day machines. Pointer 
structures suffer from cache-line fragmentation, as 
well as poor spatial locality. 

0 Operation overhead: Level III evaluation requires 
several iterations of the downward propagation of 
precision and upward propagation of errors. To 
preserve encapsulation, both these steps are per- 
formed at the granularity of individual operation 
nodes in the expression tree (e.g., a subtraction op- 
eration). The cost of iterations can be significantly 
reduced by exploiting knowledge of a global struc- 
ture such as the subtraction-division-multiplication 
tree in the Gaussian algorithm. 

One source of the high overheads at Level III arise 
from global program structures being constructed in 
an object-oriented style from smaller component ob- 
jects. This fact has been recognized by several other 
researchers leading to the development of packages sup- 
porting large expressions: LN [13], LEDA [6], and 
Real/Expr [35]. 

4.2 Analysis and Optimization Approach 

Our compiler-based approach reduces abstraction over- 
heads using expression-level optimizations that break 
down the encapsulation introduced by the object-oriented 
style. The approach comprises three steps: 

1. Identification of expression structures used by the 
program. 

2. Propagation of precision requirements of a value 
to expressions that produce and consume it. 

3. Customization of expression structure based on 
component operations and its leaf arguments. 

The unifying analysis for the first two steps is a 
context-sensitive global interprocedural flow analysis [27, 
111 which propagates the type information about a value 
to all the places that produce or consume the value. 
In this analysis, type more generally refers to both im- 
plementation type (e.g., int, long, or double) as well 
as the precision requirements of the value [14]. To 
prevent information loss, the analysis creates contexts 
(representing program environments) for differing uses 
of classes (for example, polymorphic containers), and 
methods (for example, differing types for a given argu- 
ment at given call sites). Since expression trees are built 
up from individual expression tree nodes, the same anal- 
ysis also detects expression “skeletons” even when these 
are built across procedure boundaries. Similar to anal- 
yses in object-oriented languages that resolve concrete 
types of method invocation targets [27, 91, our analysis 
helps identify the expression structures that are cre- 
ated at run time (and precision constraints on values 
consumed and produced by them). Identifying the ex- 
pression structure permits its optimization using three 
broad categories of specialization-code, data, and op- 
erational: 
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CODE SPECIALIZATION. Information about the 
expression skeleton (its structure, the types of input and 
output values, and associated precision) enables several 
static and dynamic optimizations that reduce object- 
orientation overheads The most significant benefit is 
the elimination [27, 91 or optimization [16] of dynamic 
method dispatches, which in turns enable other opti- 
mizations such as inlining and cloning [28] that increase 
the effectiveness of traditional sequential optimizations. 

DATA SPECIALIZATION. Knowledge of the ex- 
pression structure also enables memory-efficient layout 
employing optimizations such as object inlining [ll] and, 
in general, grouping of linked data structures. These 
transformations flatten the pointer-based data struc- 
tures resulting in better cache-line utilization, improved 
spatial locality behavior, and more effective prefetching. 
These benefits are particularly important given the in- 
creasing latency (in processor cycles) of accessing off- 
chip memory. Additionally, the cost of dynamic mem- 
ory management can be significantly reduced by cus- 
tomizing memory allocators for expression structures 
instead of relying on a generic memory allocator [15]. 

OPERATION SPECIALIZATION. The expres- 
sion “skeleton” also provides a natural granularity at 
which to perform domain-specific optimizations. As 
discussed earlier, Level III precision and error prop- 
agation may be more effective if performed with re- 
spect to the global expression structure. Additional 
optimizations include partial-evaluation of fixed inputs 
(e.g., loop-invariant values), replacing a number repre- 
sentation with a more efficient one (e.g., automatically 
demoting Level II numbers to Level I numbers when 
the analysis detects no loss in precision), and in gen- 
eral, customizing the implementation for the concrete 
expression structure. 

Figure 3 demonstrates the cumulative effects of these 
different specializations for the expression tree in Fig- 
ure 2. The analysis yields the concrete types of objects 
making up the expression tree: SubRep, DivRep, and 
MultRep. This information enables code specialization 
where function invocations between these objects are 
statically resolved and optionally inlined. Data special- 
ization inline-allocates the storage for the DivRep and 
MultRep objects in the SubRep object, reducing both 
object allocation and method invocation costs. Opera- 
tion specialization constructs a composite sub-div-mult 
operator with an arity of four and customizes evalua- 
tion functions to take advantage of the global expression 
structure. 

We are currently incorporating the techniques de- 
scribed here into a C++-to-C compiler built on top of 
the SUIF/OSUIF National Compiler Infrastructure [l]. 
The choice of C as the output language provides portable 
optimization of application packages built using the 

CORE library. End users can then compile the library 
using platform-specific native C compilers. 

5 PILOT STUDIES 

We conducted some basic experiments using Gaussian 
elimination and 2D Delauney triangulation algorithms 
to first quantify the current performance of CORE EGC 
techniques at different accuracy levels, and then verify 
the performance advantages of the compilation tech- 
niques described in Section 4. For the latter, since our 
compiler is still under development, we manually ap- 
plied the analyses and transformations described in Sec- 
tion 4 to Level III techniques. Specifically, we identified 
a handful of expression tree “skeletons” and optimized 
their implementation by (1) replacing virtual function 
calls to intermediate nodes with statically bound inlined 
function calls, and by (2) providing custom memory al- 
locators (customized to the size of the specialized struc- 
tures). Our prototype implementation of the CORE li- 
brary is layered on top of the Real/Expr package which 
in turn relies on a big-integer package supplied by GNU 
libg++. The implementation of the GNU big-integer 
package was not optimized. All experiments reported 
in this section were conducted on a SUN UltraSparc. 

GAUSSIAN ELIMINATION. Computing deter- 
minants or the sign of determinants is perhaps the sin- 
gle most important primitive in geometric computation. 
We use the algorithm described in Section 2, modifying 
the 4 x 4 matrix B so that its entries have type double 
instead of long. Table 1 reports the execution times 
for 1000 determinant evaluations of matrix B at vari- 
ous levels of accuracy. The column labeled Level III 
(opt) corresponds to the optimization of the expression 
A(j,k) -= A(j ,i)*A(i,k)/A(i,i). 

The results in Table 1 show clearly that there is a 
performance penalty associated with using higher lev- 
els of accuracy, and in particular Level III EGC which 
runs up to 150 times slower than Level I. Of course, this 
penalty must be balanced against the fact that EGC 
is robust, and eliminates all qualitative errors in the 
computation. What is very encouraging is that despite 
applying the transformations described in Section 4 at 
only a few places, performance of Level III evaluation 
improves by as much as a factor of two (for higher pre- 
cision). Since the rest of the CORE library as well as 
the GNU big-integer package lend themselves to sim- 
ilar optimizations, significant additional performance 
improvements are likely. 

2D DELAUNEY TRIANGULATION. We con- 
ducted some basic experiments by “preambling” an O(n4) 
code from Joe O’Rourke’s book. While more efficient 
algorithms exist, our interest here is in understanding 
the relative efficiency of different accuracy levels. Ta- 
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Figure 3: Code, data, and operation specializations for the Gaussian primitive. 

Table 1: Execution times (in seconds) for 1000 determinant evaluations on a SUN UltraSparc at various accuracy 
levels for different amounts of precision (in bits). 

Input Size 11 Level I 1 Level II 1 Level III 11 Level III (opt) 
12 I 0.001 I 0.08 I 0.99 II 0.58 

I 1 

20 1 0.006 1 0.49 7.58 3.55 
28 I 0.022 I 1.79 30.38 15.69 
36 1 0.060 1 9.38 1 88.40 11 44.41 I 

Table 2: Execution times (in seconds) for Delauney triangulation on a SUN UltraSparc at various accuracy levels 
for different numbers of cocircular points. 

ble 2 reports the execution times for four input sizes, 
corresponding to different numbers of (exactly) cocir- 
cular points. Note that cocircular points are the worst 
case for Level III. Level III (opt) corresponds to the 
optimization of expressions in the body of the triply 
nested loop. 

These results show the same trends as the Gaussian 
example: Level II evaluation is up to 150 times slower 
than Level I, and Level III contributes a further slow- 
down of up to 10 times because of its use of expres- 
sion trees. As before, the transformations described 
in Section 4 are very effective, improving performance 
of Level III by as much as a factor of two despite be- 
ing applied on a very small portion of the overall pro- 
gram. Similar techniques applied over the complete pro- 
gram have the potential of approaching the performance 

of hand-coded optimizations. As anecdotal evidence, 
researchers have shown that pure object-oriented lan- 
guages such as Smalltalk [31], SELF [8], Cecil [9], and 
ICC++ [28], which share the same computation struc- 
ture as EGC computations (and whose execution times 
are often two to three orders of magnitude worse than C) 
can, with aggressive compiler technology, achieve per- 
formance within a factor of 2 to 5 of a comparable C 
program. 

6 CONCLUSION 

Our Core Library represents a novel API for robust nu- 
meric and geometric computation. Its most striking 
feature is a nearly transparent integration with conven- 
tional C/C++ programming. We believe such ease of use 
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is a necessary prerequisite for robustness research to im- 
pact progratis in the real world. This paper has also 
demonstrated the efficiency gains possible using several 
automatic optimization techniques. In general, research 
is just beginning in the area of optimizing Exact Ge- 
ometric Computation (EGC) techniques in a context 
that must balance the demands of object-oriented de- 
sign with the need for code efficiency. 
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