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ABSTRACT
We present a new exact subdivision algorithm Ceval for
isolating the complex roots of a square-free polynomial in
any given box. It is a generalization of a previous real root
isolation algorithm called Eval. Under suitable conditions,
our approach is applicable for general analytic functions.
Ceval is based on the simple Bolzano Principle and is easy
to implement exactly. Preliminary experiments have shown
its competitiveness.
We further show that, for the “benchmark problem” of

isolating all roots of a square-free polynomial with integer
coefficients, the asymptotic complexity of both algorithms
Eval and Ceval matches (up a logarithmic term) that of
more sophisticated real root isolation methods which are
based on Descartes’ Rule of Signs, Continued Fraction or
Sturm sequences. In particular, we show that the tree size
of Eval matches that of other algorithms. Our analysis is
based on a novel technique called δ-clusters from which we
expect to see further applications.
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1. INTRODUCTION
Root finding might be called the Fundamental Problem

of Algebra, after the Fundamental Theorem of Algebra [40,
42, 47]. The literature on root finding is extremely rich,
with a large classical literature. The work of Schönhage [40]
marks the beginning of complexity-theoretic approaches to
the Fundamental Problem. Pan [33] provides a history of
root-finding from the complexity view point; see McNamee
[23] for a general bibliography. The root finding problem can
be studied as two distinct problems: root isolation and root
refinement. In the complexity literature, the main focus is on
what we call the benchmark problem, that is, isolating
all the complex roots of a polynomial f of degree n with
integer coefficients of at most L bits. Let T (n, L) denote
the (worst case) bit complexity of this problem. There are
three variations on this benchmark problem:

• We can ask for only the real roots. Special techniques
apply in this important case. E.g., Sturm [12, 21, 36],
Descartes [9, 13, 15, 20, 28, 37], and continued fraction
methods [1, 41, 44].

• We can seek the arithmetic complexity of this problem,
that is, we seek to optimize the number TA(n,L) of
arithmetic operations.

• We can add another parameter p > 0, and instead of
isolation, we may seek to approximate each of the roots
to p relative or absolute bits.

Schönhage achieved a bound of T (n, L) = Õ(n3L) for the

benchmark isolation problem where Õ indicates the omission
of logarithmic factors. This bound has remained intact. Pan
and others [33] gave theoretical improvements in the sense of

achieving TA(n,L) = Õ(n2L) and T (n,L) = TA(n,L)·Õ(n),
thus achieving record bounds simultaneously in both bit
complexity and arithmetic complexity. Theoretical algo-
rithms designed to achieve record bounds for the benchmark
problem have so far not been used in practice. Moreover, the
benchmark problem is inappropriate for some applications.
For instance, we may only be interested in the first positive
root (as in ray shooting in computer graphics), or in the
roots in some specified neighborhood. In the numerical lit-
erature, there are many algorithms that are widely used and
effective in practice but lack a guarantee on the global be-
havior (cf. [33] for discussion). Some “global methods” such
as the Weierstrass or Durant-Kerner method that simulta-
neously approximate all roots seem ideal for the benchmark
problem and work well in practice, but their convergence



and/or complexity analysis are open. Thus, the benchmark
complexity, despite its theoretical usefulness, has limitation
as sole criterion in evaluating the usefulness of root isolation
algorithms.
There are two sub-literature on “practical” root isolation

algorithms: (1) One is the exact computation literature, pro-
viding algorithms used in various algebraic applications and
computer algebra systems. Such exact algorithms have a
well-developed complexity analysis and there is considerable
computational experience especially in the context of cylin-
drical algebraic decomposition. The favored root isolation
algorithms here, applied to the benchmark problem, tend to
lag behind the theoretical algorithms by a factor of nL. Nev-
ertheless, current experimental data justify their use [17, 37].
(2) The other is the numerical literature mentioned above.
Although numerical algorithms traditionally lack any exact-
ness guarantees, they have many advantages that practition-
ers intuitively understand: compared to algebraic methods,
they are easier to implement and their complexity is more
adaptive. Hence, there is a growing interest in constructing
numerical algorithms that are exact and efficient.

§1. The Subdivision Approach.

Among the exact root isolation algorithms, the subdivi-
sion paradigm is widely used. It is a generalization of binary
search in which we search for roots in a given domain (say a
box B0 ⊆ C). Its principle action is a simple subdivision

phase where we keep subdividing boxes into 4 congruent
subboxes until each box B satisfies a predicate Cstop(B).
Typically, Cstop(B) ≡ Cout(B) ∨ Cin(B) where Cout(B) is
an exclusion predicate whose truth implies that B has no
roots, and Cin(B) is an inclusion predicate whose truth
implies that B contains a unique root. Subdivision methods
have the advantage of being “local”: they can restrict com-
putational effort to the given box B0, and may terminate
quickly if there few or no roots in B0.
Exact implementation of Cstop(B) can be based on alge-

braic properties such as generalized Sturm sequences [47,
Chap. 7]. Unfortunately, algebraic predicates are expensive.
Since finding a root is metaphorically like “finding a needle
in a hay stack”, an efficient exclusion predicate Cout can be
highly advantageous. Numerical exclusion predicates have
been used in Dedieu, Yakoubsohn and Taubin [11, 43, 46]
but the inclusion predicate in these papers are inexact, based
on an arbitrary ǫ-cutoff: Cin(B) ≡ size(B) < ǫ. Our paper
will exploit numerical exclusion and inclusion predicates to
yield exact subdivision algorithms.

§2. Three Principles for Subdivision.

We compare three general principles used in subdivision
algorithms for real root isolation: theory of Sturm sequences,
Descartes’ rule of sign, and the Bolzano principle. The lat-
ter principle is simple and intuitive: if a continuous real
function f(x) satisfies f(a)f(b) < 0, then there is a point
c between a and b such that f(c) = 0. Furthermore, if f
is differentiable and f ′ does not vanish on (a, b), then this
root is unique in (a, b). Modern algorithmic treatment of
the Descartes method began with Collins and Akritas [9].
In recent years, algorithms based on the first two princi-
ples have been called (respectively) Sturm method and
the Descartes method. By analogy, algorithms based on
the third principle may be classified under the Bolzano

method [7, 8, 26]. Note that the Bolzano principle is an an-
alytic one, while Sturm is algebraic (Descartes seems to have

an intermediate status). Johnson [17] has shown empirically
that the Descartes method is more efficient than Sturm.
Rouillier and Zimmermann [37] implemented a highly effi-
cient exact real root isolation algorithm based on Descartes
method. Since their theoretical bounds are indistinguish-
able, any practical advantage of Descartes over Sturm must
be derived from the fact that the predicates in the Descartes
method are cheaper. We believe that Bolzano methods have
a similar advantage over Descartes. Such evidence is pro-
vided in a recent empirical study of Kamath [18] where a
version of Ceval is compared with several algorithms, in-
cluding the well-known Mpsolve of Bini and Fiorentini [3,
4]. Bolzano methods also have the advantage of greater gen-
erality: The Bolzano method is applicable to the much larger
class of complex analytic functions. Our Ceval algorithm
can be adapted to such functions under mild conditions.

§3. Complexity Analysis.

All complexity analysis is for the benchmark problem of
isolating all roots of a polynomial f(z). There are two com-
plexity measures for subdivision algorithms: the subdivision
tree size S(n,L) and the bit complexity P (n,L) of the sub-
division predicates. Clearly, T (n, L) ≤ S(n,L)P (n,L). But
the analysis in this paper shows that T (n, L) may be smaller
than S(n,L)P (n,L) by a factor of n. For the Sturm method,
Davenport [10] has shown that for isolating all real roots of
f(x), we have S(n,L) = O(n(L+ log n)). This is optimal if
L ≥ log n [15]. The tree size in the Descartes method was
only recently proven to be O(n(L+log n)) [15] matching the
Sturm bound. In this paper, we will prove that the tree size

in the Bolzano method is Õ(n(L+log n)) for real roots. Fur-
thermore, in our extension of the Bolzano method for com-

plex roots the corresponding tree size is Õ(n2(L + log n)).
Despite this larger tree size, we prove that both real and

complex Bolzano have Õ(n4L2) bit complexity, matching
Descartes and Sturm.

Our complexity analysis of Bolzano methods is novel, and
it opens up the exciting possibility of analysis of similar sub-
division algorithms as in meshing of algebraic surfaces [5,
22, 35]. Perhaps it is no surprise that Bolzano methods
could outperform the more sophisticated algebraic methods
in practice. What seems surprising from our analysis is that
Bolzano methods could also match (up to a logarithmic fac-
tor) the theoretical complexity of algebraic methods as well.

§4. Contributions of this paper.

1. Our complex root isolation algorithm (Ceval) is a contri-
bution to the growing literature on exact algorithms based
on numerical techniques and subdivision. The algorithm
is simple and practical. Preliminary implementation shows
that it is competitive with the highly regarded MPSOLVE.
2. This paper provides a rather sharp complexity analysis of
Eval. Somewhat surprisingly, the worst-case bit-complexity
of this simple algorithm can match (up to logarithmic-factors)
those of sophisticated methods like Sturm or Descartes.
3. We further show that the more generalCeval also achieves
the same bit complexity as Eval (despite the fact that the
tree size of Ceval may be quadratically larger).
4. Our analysis is based on the novel technique of δ-clusters.
We expect to see other applications of cluster analysis. This
is a contribution to the general challenge of analyzing the
complexity of numerical subdivision algorithms.



§5. Overview of Paper.

Section 2 reviews related work. The algorithm is pre-
sented in Section 3. In Section 4, we sketch our approach
of δ-cluster from which we derive the complexity analysis
of Eval and Ceval. In this conference paper, we summa-
rize the most important results and provide sketches of the
main proofs and techniques. Full proofs and further details
on our δ-cluster analysis technique and 8-point test may be
found in the full paper [39] on our homepages. Our original
paper [39] only has the 8-point version of Ceval, not the
simplified version described below.

2. PRIOR WORK
The main distinction among the various subdivision algo-

rithms is the choice1 of tests or predicates. One approach
is based on doing root isolation on the boundary of the
boxes. Pinkert [34] and Wilf [45] (see also [47, Chap. 7])
use Sturm-like sequences, while Collins and Krandick [19]
considered the Descartes method. Such approaches are re-
lated to topological degree methods [29], which go back to
Brouwer (1924). But root isolation on boundary of subdi-
vision boxes and topological degrees computations are rel-
atively expensive and unnecessary: as shown in this paper,
weaker but cheaper predicates may be more effective. This
key motivation for our present work came from subdivision
algorithms for curve approximation where a similar phe-
nomenon occurs [22]. We next review several previous
work that are most closely related to our paper.

§6. Work of Pan, Yakoubsohn, Dedieu and Taubin.

Pan [30, 31, 32, 33] describes a subdivision algorithm with
the current record asymptotic complexity bound. Pan re-
gards his work as a refinement of Weyl’s Exclusion Algo-
rithm (1924). Weyl is also the basis for Henrici and Gar-
gantini (1969) and Renegar (1987) (see [33]). The predicates
are based on estimating the distance from the midpoint of
a box B to the nearest zero of the input polynomial f(z).
Turan (1968) provides such a bound up to a constant fac-
tor, say 5. Pan further reduces this factor to (1 + ǫ) (for
a small ǫ > 0) by applying the Graeffe iteration to f(z).
Finally, he combines the exclusion test with Newton-like ac-
celerations to achieve the bound of O(n2 lnn ln(hn)), where
h is the cut-off depth of subdivision. Pan noted that “there
remains many open problems on the numerical implementa-
tion of Weyl’s algorithm and its modification” [33, p. 216]; in
particular, “proximity tests should be modified substantially
to take into account numerical problems ... and controlling
the precision growth” [33, p. 193].
The approach of Yakoubsohn and Dedieu [11, 46] is much

simpler than Pan’s. Their algorithm keeps subdividing boxes
until each box B satisfies an exclusion predicate Cout(B), or
B is smaller than an arbitrary cut-off ǫ > 0. For any ana-
lytic function f , their predicate Cout(B) is“Mf (z, r

√
2) > 0”

where B is a square centered at z of length 2r, and

Mf (z, t) := |f(z)| −
∑

k≥1

|f (k)(z)|
k!

tk. (1)

It is easy to see that if Cout(B) holds, then B has no roots
of f . Taubin [43] introduce exclusion predicates that can
be viewed as the linearized form of Mf (z, t) or a Newton

1We use the terms “predicate” and “test” interchangeably.

correction term. He shows their effectiveness in approxi-
mating (rasterizing) surfaces. These algorithms are useful
in practice, but the use of ǫ-cutoff does not constitute a true
inclusion predicate in the sense on §1: at termination, we
have a collection of non-excluded ǫ-boxes, none of which is
guaranteed to isolate a root.

§7. The Eval Algorithm.

The starting point for this paper is a simple algorithm for
real root isolation. Suppose we want to isolate the roots of
a real analytic function f : R → R in the interval I0 = [a, b].
Assume f has only simple roots in I0. For any interval I
with center m = m(I) and width w = w(I), we introduce
two interval predicates using the function in (1):

C0(I) ≡ Mf (m,w/2) > 0

C1(I) ≡ Mf ′

(m,w/2) > 0

}
(2)

Clearly, C0(I) is an exclusion predicate. Note that if C1(I)
holds, then f has at most one zero in I. Thus, C1(I) in
combination with the following root confirmation test

f(a)f(b) < 0, where I = [a, b], (3)

constitutes an inclusion predicate. Here is the algorithm:

Eval(I0):
Check the endpoints of I0, and output them if they are zeros of f
Let Q be a queue of intervals, initialized as Q← {I0}
While Q is non-empty:

Remove I from Q.
1. If C0(I) holds, discard I.
2. Else if C1(I) holds,
3. If I passes the confirmation test (3), output I.
4. Else, discard I.
5. Else
6. If f(m) = 0, output [m,m] where m = m(I).
7. Split I at m and put both subintervals into Q.

Termination and correctness are easy to see (e.g., [7]).
Output intervals either have the exact form [m,m] or are
regarded as open intervals (a, b). This algorithm is easy to
implement exactly if we assume that all intervals are repre-
sented by dyadic numbers.

Mitchell [26] seems to be the first to explicitly describe
Eval, but as he assumes approximate floating point arith-
metic, he does not check if f(m) = 0 at the midpoint m.
He attributes ideas to Moore [27]. The second author of
the present paper initiated the complexity investigation of
Eval (and its extension for multiple roots) as the 1-D ana-
logue of the surface meshing algorithm of Plantinga-Vegter
[5, 22, 35]. In [7], we succeeded in obtaining a bound of
O(n3(L + log n)) when Eval is applied to the benchmark
problem. The proof involves several highly technical tools,
but the approach is based on the novel concept of con-

tinuous amortization. The idea is to bound the tree
size in terms of an integral

∫
I

dx
F (x)

where F (x) is a suit-

able “stopping function”. Recently, Burr and Krahmer [6]
simplified the choice of F (x), obtaining a tree size bound
O(n(L + lnn)) for Eval. Such a bound is optimal for L ≥
lnn (see [15]), and matches the bounds in the present pa-
per, as well as those for Descartes and Sturm methods. But
they require f ′ to be square-free. Our present paper uses
a different analysis to obtain a slightly weaker bound of



O(n(L+lnn)(lnL+lnn)), but we do not require the square-
freeness of f ′. Furthermore, our analysis extends to the com-
plex root isolation algorithm Ceval. Our upper bound for
the bit complexity of Ceval matches those of Eval, Sturm
and Descartes method.

3. THE COMPLEX ROOT ALGORITHM
In this section, we describe Ceval, the complex analogue

of Eval. In fact, we describe two versions of Ceval, and
only prove the correctness of the simpler version here. The
algorithm in described in way that allows a straightforward
exact implementation.

Notation. For the rest of this paper, we fix a square-free
polynomial f ∈ C[z] of degree n. For m ∈ C and r > a
real value, we denote Dr(m) the disk of radius r(D) = r
centered at m(D) = m. For ξ, µ ∈ C, we write “ξ ≤ µ” if
Re(ξ) ≤ Re(µ) and Im(ξ) ≤ Im(µ). A subset B ⊆ C is called
a box if B = B(ξ, µ) := {z ∈ C : ξ ≤ z ≤ µ} for some
ξ ≤ µ. We further define m(B) :=(ξ + µ)/2 the midpoint

and w(B) :=max{|Re(µ − ξ)|, |Im(µ − ξ)|} the width of B.
Its radius r(B) is defined as the radius of the smallest disk
centered in m(B) and containing B. Obviously, r̄(B) :=
3w(B)/4 is an upper bound on r(B). We can split a box B
into four congruent subboxes, called the children of B. The
boundary of a region R ⊆ C is denoted ∂R (R is usually a
disk or a box). A connected region R is said to be isolating
if it contains exactly one zero of f(z).

§8. Complex Analogues of C0 and C1 Predicates.

For m ∈ C and K, r > 0, we define the test function

tf (m, r) and the predicate T f
K(m, r) as follows:

tf (m, r) :=
∑

k≥1

∣∣∣∣
f (k)(m)

f(m)

∣∣∣∣
rk

k!
(4)

T f
K(m, r) ≡ tf (m, r) <

1

K
(5)

Since f is fixed in this paper, we simply write TK(m, r)

for T f
K(m, r). When f ′ is used in place of f , we simply

write T ′
K(m, r) for T f ′

K (m, r). Moreover, for a disk D, we
may write TK(D) for TK(m(D), r(D)), etc. We remark that

the success of T f
K(m, r) implies the success of T f

K′(m, r) for

any K′ ≤ K and r′ ≤ r, and T f
K(m, r) is equivalent to

T
f(m+rz/λ)
K (0, λ) with λ ∈ R an arbitrary positive real value.

Lemma 1 (Exclusion-Inclusion Properties).
Consider any disk D = Dr(m):
(i) If T1(D) holds, the closure D of D has no root of f .
(ii) If T1(D) fails, the disc D2nr(m) has some root of f .
(iii) If T ′√

2
(D) holds, D has at most one root of f .

Proof. See [2, 39] for proofs of (i) and (iii). We show the
contrapositive of (ii): let z1, . . . , zn denote the roots of f
and suppose that D2nr(m) contains no root. Then,

∣∣∣∣
f (k)(m)

f(m)

∣∣∣∣ =
∣∣∣∣
∑′

i1,...,ik

1

(m− zi1) . . . (m− zik )

∣∣∣∣

≤ Σk(m) :=

(
n∑

i=1

∣∣∣∣
1

m− zi

∣∣∣∣

)k

≤
(

1

2r

)k

, (6)

where the prime means that the ij ’s (j = 1 . . . k) are chosen
to be distinct. Hence, it follows that

∑

k≥1

∣∣∣∣
f (k)(m)

f(m)

∣∣∣∣
rk

k!
<
∑

k≥1

1

k!

(
1

2

)k

= e
1
2 − 1 < 1

and, thus, T1(D) holds. Q.E.D.

Part (i) of the lemma shows that T1(D), in analogy to
C0(I), is an exclusion predicate for D = Dr(m). Part (ii)
shows that the negation of T1(D) is a root confirmation test
like (3), albeit for the enlarged disc D+ := D2nr(m). Part
(iii) shows that T ′√

2
(D) plays the role of the predicate C1(I).

From (ii) and (iii) we could derive an inclusion predicate.
The next lemma gives lower bounds on the size of discs

that pass our tests. The bounds are in terms of the sepa-

ration σ(ξ) := minj 6=i |zj − ξ| of a root ξ := zi of f , and the
separation σ(f) := mini σ(zi) of f .

Lemma 2. Consider a disk D and a root ξ := zi of f :
(i) If r(D) ≤ σ(f)/(4n2), then T1(D) or T ′√

2
(D) holds.

(ii) If D contains ξ and r ≤ σ(ξ)/(4n2), then T ′√
2
(D) holds.

(iii) If D contains ξ and r ≤ σ(ξ)/(8n3), then D+ is isolat-
ing.

Proof. For (i), suppose that r(D) ≤ σ(f)/(4n2) and both
T1(D) and T ′√

2
(D) do not hold. Then, according to Lemma 1

(ii), D2nr(D)(m) must contain a root z of f . The same result
applied to f ′ shows that D2nr(D(m) also contains a root z′

of f ′. It follows that |z − z′| < 4nr(D) ≤ σ(f)/n ≤ σ(z)/n
contradicting the fact [13, 47] that Dσ(z)/n(z) does not con-
tain any root of the derivative f ′. Part (ii) follows from (i)
since ξ ∈ D implies that T1(D) does not hold. Part (iii) is a
direct consequence of (ii). Q.E.D.

§9. Simplified Complex Root Isolation.

We are ready to present a complex version of Eval. Call
a disk Dr(m) well-isolating if Dr(m) and D2r(m) are both
isolating. The property we exploit is that if D and D′ are
both well-isolating with non-empty intersection, then they
share a common root in D ∩ D′. Our algorithm produces
well-isolated disks:

Simplified Ceval(B0, f):
Input: Box B0, and square-free polynomial f(z) of degree n.
Output: List L of disjoint well-isolating disks, centered in B0.

Q← {B0}. L ← ∅.
While Q is non-empty:

Remove B from Q. Let m = m(B), r̄ = 3
4
w(B) > r(B).

1. If T1(m, r̄) holds, discard B.
2. Else if T ′√

2
(m, 4nr̄) holds:

2.1 If D2nr̄(m) intersects any disk D′ in L,
2.2 replace D′ by the smaller of D2nr̄(m) and D′.
2.3 Else insert D2nr̄(m) into L.
3. Else

Split B into four children and insert them into Q.

Correctness of our algorithm is based on three claims:

Theorem 3 (Correctness).
(i) The algorithm halts: indeed, no box of width less than
σ(f)/(12n3) is subdivided.
(ii) L is a list of well-isolating disks, each centered in B0.
(iii) Every root of f(z) in B0 is isolated by some disk in L.



Proof. Claim (i) is true because Lemma 2(i) implies that
the tests in Steps 1 or 2 must pass when 4nr̄ ≤ σ(f)/(4n2),
and by definition r̄ = 3w(B)/4. To see (ii), observe that the
disc D2nr̄(m) is inserted into L in Steps 2.2 or 2.3. The m
and r̄ in Step 2.1 have the properties that T1(m, r̄) fails and
T ′√

2
(m, 4nr̄) succeeds. Then, Lemma 1(ii,iii) implies that

D2nr̄(m) is well-isolating. To see (iii), observe that boxes
B ⊆ B0 are discarded in Steps 1 or 2.2 of the algorithm:
Step 1 is justified by Lemma 1(i) and Step 2.2 is justified
because of the above-noted property of well-isolating disks.

Q.E.D.

§10. The Eight Point Test.

Instead of relying on Lemma 1(ii) for root confirmation,
we offer another root confirmation test that is closer in spirit
to the sign-change idea in (3), and which could be general-
ized for analytic functions. The idea is to look at the 8
compass points (N,S,E,W, NE, SE, NW, SW) on the disk
D4r(m) as illustrated in Figure 1. These compass points di-
vide the boundary ∂D4r(m) of the disk into 8 arcsA0, . . . , A7

where Aj :={m+ 4reiθ : jπ/4 ≤ θ < (j + 1)π/4}.
We rewrite the function f(z) as f(x + iy) = u(x, y) +

iv(x, y), where z = x+ iy, i =
√
−1 and u and v are the real

and imaginary part of f . So f(x+ iy) = 0 iff u(x, y) = 0 and
v(x, y) = 0. Since the roots are simple, the u- and v-curves
intersect at right angles. We say that there is an arcwise

u-crossing at Aj if u(m+4reijπ/4) ·u(m+4rei(j+1)π/4) < 0

or u(m+ 4reijπ/4) = 0.

SW

W

NE

N

S

E

SE

NW

v(x, y) = 0

u(x, y) = 0

Dr(m)

D4r(m)

m

Figure 1: 8 compass points.

If r is sufficiently
small, then we want to
detect roots in Dr(m)
by arcwise u- and v-
crossings. More pre-
cisely: we say D4r(m)
passes the 8-Point test

if there are exactly two
arcwise u-crossings at
Aj , Ak, (j < k) and
exactly two arcwise v-
crossings atAj′ , Ak′ (j′ <
k′), and these inter-

leave in the sense that
either 0 ≤ j < j′ < k < k′ < 8 or 0 ≤ j′ < j < k′ < k < 8.
We introduce the following novel test to confirm the exis-

tence of ordinary roots.

Theorem 4 (Success of 8-Point Test). Suppose
T ′
6(m, 4r) holds and the 8-point test is applied to D4r(m).

(i) If D4r(m) fails the test, then Dr(m) is non-isolating.
(ii) If D4r(m) passes the test, then D4r(m) is isolating.

Using the 8-point test, we devise an alternative to the sim-
plified Ceval. This 8-point Ceval is described in the full
version [39] of this paper including the proof of Theorem 4
which is non-trivial. The cardinal points (N,S,E,W) are
dyadic assuming the center and radius are dyadic; however
the ordinal points (NE,SE,SW,NW) are irrational. Hence
for exact implementation, we show how the correctness of
the 8-Point test is preserved if we use rational points that
are slightly perturbed versions of ordinal points. The 8-
point test has independent interest: (a) For analytic func-
tions, we no longer have Lemma 1(ii) for root confirmation,
but some kind of 8-point test is applicable. More precisely,

the tests T f
K(m, r) can be considered for arbitrary analytic

function, and the same argumentation as in the case of poly-
nomials shows the correctness of Lemma 1(i),(iii) and The-
orem 4. (b) We can use it to “confirm” the output from
pure-exclusion algorithms such as Yakoubsohn-Dedieu’s in
§6. The asymptotic complexity of these two forms of Ceval
for the benchmark problem are the same. This is due to the
fact that there exists a corresponding result to Lemma 2 for
the 8-point test.

4. COMPLEXITY ANALYSIS
In this section, we analyze the complexity of Eval and the

simplified Ceval. For this purpose, we use the benchmark
problem of isolating all roots of a square-free polynomial of
degree n with L-bit integer coefficients. The initial start
box for Ceval may be assumed to be B0 = B(−2L(1 +
i), 2L(1 + i)). For Eval, we can start with the interval I0 =
(−2−L, 2L). According to Cauchy’s bound [47], B0 contains
all complex roots z1, . . . , zn ∈ C of f (thus, I0 all real roots
of f). Throughout the following considerations, let T CE

and T EV denote the subdivision trees induced by Ceval
and Eval, respectively.

§11. Cluster Analysis and Tree Size.

In (6), we have already seen that Σk(m) := (
∑

i
1

|m−zi| )
k =

(Σ1(m))k constitutes an upper bound on |f(k)(m)|
|f(m)| for all

k ≥ 1. Furthermore, Σ1(m) < ν for a ν > 0 implies that
∑

k≥1

∣∣∣ f
(k)(m)
f(m)

∣∣∣ rk

k!
< eνr − 1 and, thus,

T f
K(m, r) holds if Σ1(m) <

1

r
ln

(
1 +

1

K

)
. (7)

Now let us consider an arbitrary box B of depth h in the
subdivision process, that is, B has width w(B) = wh :=
2L+1−h. Let r̄ = r̄(B) = 3w(B)/4 be the upper bound on
the radius of B used in theCeval algorithm. If the midpoint
m(B) of B fulfills |m(B)−zi| > 2n·r̄ for all i = 1, . . . , n, then
Σ1(m(B)) < 1

2r̄
< ln 2

r̄
, thus T1(m(B), r̄) holds according to

the above consideration and B is discarded. It follows that,
for each root zi, there exist at most O(n2) disjoint boxes B
of the same size with |m(B) − zi| ≤ 2nr̄. Hence, in total,
at most O(n3) boxes are retained at each subdivision level
h. From this straightforward observation we immediately
derive the upper bound O(n3) on the width of T CE . For
Eval, a similar argumentation shows that O(n2) intervals
are retained at each subdivision level. This consideration is
based on a pretty rough estimation of Σ1(m) which assumes
that, from a given point m, the distances to all roots zi are
nearly of the same minimal value. In order to improve the
latter estimate, we introduce the concept of δ-clusters of
roots, where δ is an arbitrary positive real value. We will
show that, outside some“smaller” neighborhood of the roots
of f , the sum Σ1(m) is sufficiently small to guarantee the
success of our exclusion predicate T1:

Theorem 5. For arbitrary δ > 0, there exist disjoint,
axes-parallel, open boxes B1, . . . , Bk ⊂ C (k ≤ n2) such that:
(i) B :=

⋃
i=1,...,k Bi covers all roots z1, . . . , zn.

(ii) B covers an area of less than or equal to 4n2δ2.

(iii) For each point m /∈ B, we have Σ1(m) ≤ 2(1+ln⌈n/2⌉)
δ

.

Proof. We only provide a sketch of the proof and refer
the reader to the full paper [39] for a complete reason-
ing. The roots z1, . . . , zn are first projected onto the real



axes defining a multiset (elements may appear several times)
RRe = {x1, . . . , xn} in R. The latter points are now parti-
tioned into disjoint multisets R1, . . . , Rl such that the fol-
lowing properties are fulfilled:

(a) Each Ri is a so called δ-cluster which is defined as
follows: The corresponding δ-interval

Iδ(Ri) = (cg(Ri)− δ|Ri|, cg(Ri) + δ|Ri|),

with cg(Ri) =
∑

x∈Ri
x

|Ri| the center of gravity of Ri,

contains all elements of Ri. In addition, we can or-
der the elements of Ri in way such that their dis-
tances to the right boundary of Iδ(Ri) are at least
δ, 2δ, . . . , |Ri|δ, respectively, and the same for the left
boundary of Iδ(Ri).

(b) The δ-intervals Iδ(Ri) are pairwise disjoint.

The construction of a partition of RRe with the above prop-
erties is rather simple: We start with the trivial partition
of RRe into n δ-clusters each consisting of one element of
RRe. An easy computation shows that the union of two
δ-clusters for which (b) is not fulfilled is again a δ-cluster.
Thus, we iteratively merge δ-clusters whose corresponding
δ-intervals overlap until (b) is eventually fulfilled. It is now
easy to see that, for each x ∈ R\⋃i Iδ(Ri), the inequality∑

j
1

|x−xj | ≤
2(1+ln⌈n/2⌉)

δ
holds.

In a second step, we project the roots of f onto the imag-
inary axes defining a multiset RIm for which we proceed in
exactly the same manner as for RRe. Let S1, . . . , Sl′ be the
corresponding partition of RIm, then the overlapping of the
stripes Re(z) ∈ Iδ(Ri) and Im(z) ∈ Iδ(Sj) defines k ≤ n2

boxes B1, . . . , Bk covering an area of total size 4n2δ2 or less.
Now, for each m /∈ B =

⋃
i Bi, either Re(m) /∈ ⋃i Iδ(Ri) or

Im(m) /∈ ⋃i Iδ(Si). In the first case, we have

Σ1(m) ≤
n∑

j=1

1

|Re(m)− Re(zj)|
≤ 2(1 + ln ⌈n/2⌉)

δ
.

The case Im(m) /∈
⋃

j Iδ(Sj) is treated in exactly the same
manner. Q.E.D.

We now apply the above theorem to

δ := r · (1 + ln ⌈n/2⌉)
ln 2

=
3w(B)(1 + ln ⌈n/2⌉)

4 ln 2

and use (7). It follows that, for all m outside a union of
boxes covering an area of size w(B)2 ·O((n lnn)2), we have
Σ1(m) < 1

r
ln 2. Thus, at any level in the subdivision pro-

cess, only O((n lnn)2) boxes are retained. For Eval, we can
apply the real counterpart of Theorem 5 which says that
there exist k ≤ n disjoint intervals I1, . . . , Ik that cover the
projections of all zi onto the real axes, the total size of all

intervals is ≤ 2nδ, and Σ1(m) ≤ 2(1+ln⌈n/2⌉)
δ

for each m

located outside all Ij . It follows that the width of T EV

can be bounded by O(n lnn). A more refined argument
even shows that, at a subdivision level h, the width of the
tree adapts itself to the number kh of roots zi with sepa-
ration σ(zi) ≤ 16n3wh = 2L+5−hn3 related to the width
wh = 2L+1−h of the boxes at that level. We refer the reader
to the full paper for the non-trivial proof. We fix this result:

Theorem 6. Let h ∈ N0 be an arbitrary subdivision level
and kh be the number of roots zi with σ(zi) ≤ 16n3wh =

2L+5−hn3. Then, the width of T CE at level h is upper
bounded by

16k2
h−1(17 + ln ⌈kh−1/2⌉) = O(k2

h−1(ln kh−1)
2)

and the width of T EV is upper bounded by

4kh−1(17 + ln ⌈kh−1/2⌉) = O(kh−1 ln kh−1).

In order to translate the above result on the treewidth into
a bound on the treesize in terms of the degree n and the bit-
size L, we have to derive an estimate for kh. The main idea
is to apply the generalized Davenport-Mahler bound [12,
13] to the roots of f . In a first step, we partition the
set R = {z1, . . . , zn} of roots into disjoint sets R1, . . . , Rl

such that |Ri0 | ≥ 2 for each i0 = 1, . . . , n and |zi − zj | ≤
2L+5−hn3 · |Ri0 | ≤ 2L+5−hn4 for all pairs zi, zj ∈ Ri0 : Start-
ing with the set R1 := {z1}, we can iteratively add roots
to R1 that have distance ≤ 2L+5−hn3 to at least one root
within R1. When there is no further root to add, we proceed
with a root zi not contained in R1 and construct a set R2

from {zi} in the same manner, etc; see [39].
In a second step, we consider a directed graph Gi on each

Ri which connects consecutive points of Ri in ascending or-
der of their absolute values. We define G := (R,E) as the
union of all Gi. Then G is a directed graph on R with the
following properties:

1. each edge (α, β) ∈ E satisfies |α| ≤ |β|,

2. G is acyclic, and

3. the in-degree of any node is at most 1.

Now, the generalized Davenport-Mahler bound applies:

∏

(α,β)∈E

|α− β| ≥ 1

((n+ 1)1/22L)n−1
·
(√

3

n

)#E

·
(
1

n

)n/2

As each set Ri contains at least 2 roots, we must have #E ≥
kh/2. Furthermore, for each edge (α, β) ∈ E, we have |α −
β| ≤ 16n4wh = 2L+5−hn4, thus,

(
2L+5−hn4

) kh
2 ≥ 1

((n+1)1/22L)n−1 ·
(√

3
n

)kh ·
(
1
n

)n/2

> 1
(n+1)n2nL ·

(
3
n2

)kh/2
> n−n−kh2−n(L+1).

A simple computation then shows that

kh <
16n(L+ lnn)

h− 2L
∀h > h0 := max(2L, ⌈64 lnn+ L⌉).

(8)

In particular, the bound O(n(L+lnn))) on the depth of the
subdivision tree immediately follows. Namely, if kh+1 < 1,
then kh = 0 and, thus, σ(f) < 2L+4−hn3 < 12whn

3. But
this implies that, at subdivision level h, no box is further
subdivided (Theorem 3). For h ≤ h0, the trivial inequality
kh ≤ n holds. Now, we can derive our bound on the tree
size by summing up the number of nodes over all subdivision
levels, where we use Theorem 6 and the bound (8) for kh. A
similar computation also applies to the tree induced by the
Eval algorithm; see [39] for details.

Theorem 7. Let f be a square-free polynomial of degree
n with integer coefficients of bit-size ≤ L. Then,

(i) the subdivision tree T CE has size Õ(n2L).

(ii) the subdivision tree T EV has size Õ(nL).



§12. Bit Complexity.

For the bit complexity analysis of Ceval, we consider
the computational costs at a node (box B) of depth h. So
B has width w(B) = wh = 2L+1−h. In order to evaluate

T f
1 (m(B), r̄) and T f ′

√
2
(m(B), 2nr̄), where r̄ = 3

4
w(B) bounds

the radius r(B) of B, we compute

fB(z) = f(m(B) + w(B) · z)

and test whether T
fB(z)
1 (0, 3/4) or T

f ′

B(z)√
2

(0, 3n) holds. No-

tice that the latter two tests are equivalent to T f
1 (m(B), r̄)

and T f ′

√
2
(m(B), 4nr̄), respectively. We first bound the costs

for computing fB(z): For a polynomial g(z) :=
∑n

i=0 giz
i

with binary fractions gi = mi · 2−τi , mi ∈ Z and τi ∈ N0,
as coefficients, we say that g has bitsize τ(g) if multi-
plication of g by the common denominator 2maxi τi of all
gi leads to an integer polynomial with coefficients of at
most τ(g) bits. For our starting box B0, the polynomial
fB0(z) = f(2L+1z) has bitsize O(nL) because of the scal-
ing operation z 7→ 2L+1z. We incrementally compute fB′

from fB via the substitution z 7→ (z ± 1 ± i)/2, where B′

is one of the four children of B. Hence, the bitsize of fB′

increases by at most n compared to the bitsize of fB . It fol-
lows that, for a box B at subdivision level h, fB has bitsize
τB = O(n(L+ h)). fB′ is computed from fB by first substi-
tuting z by z/2 followed by a Taylor shift by 1 and then by
i, that is, z 7→ z ± 1± i. A Taylor shift by i can be realized
as a Taylor shift by 1 combined with two scalings by i, using
the identity f(z + i) = f(i(−iz + 1)). The scalings by i are
easy. Using asymptotically fast Taylor shift [16], each shift

by 1 requires Õ(n(n+ τB)) = O(n2(L+ h)) bit operations.

To evaluate the polynomials in the predicates T
fB(z)
1 (0, 3/4)

and T
f ′

B(z)√
2

(0, 3n), we have to compute the value of a poly-

nomial of bitsize O(n(L+h)) at a point of bit size O(1) and

O(log n), respectively. Therefore, Õ(n(L+h)) bit operations
suffice and so the overall bit complexity for a box of depth

h is Õ(n2(L + h)). An analogous argument shows that, for
an interval I at level h (i.e., w(I) = 2L+1−h), Eval requires

Õ(n2(L+h)) bit operations as well. Thus, the bit complexity

at each node is bounded by Õ(n3L) since h = O(n(L+lnn)).

For Eval, the claimed bit complexity of Õ(n4L2) follows

easily by multiplying the bound Õ(nL) from Theorem 7 on

the number of nodes with the bound Õ(n3L) on the bit
operations at each node. Furthermore, a simple computa-
tion (see [39]) combining our results on the width of T CE

and the costs at each node at any subdivision level h leads
to the overall bit complexity of Õ(n4L2) for Ceval. It is
worth noting that the larger tree size of T CE (compared to
T EV ) does not effect the overall bit complexity. Intuitively,
most of the nodes of T CE are at subdivision levels where
the computational costs are considerably smaller than the
worst case bound Õ(n3L).

Theorem 8. For a square-free polynomial f of degree n
with integer coefficients with absolute value bounded by 2L,
the algorithms Ceval and Eval isolate the complex (real)

roots of f with a number of bit operations bounded by Õ(n4L2).

5. CONCLUSION
This paper introduced Ceval, a new complex root isola-

tion algorithm, continuing a line of recent work to develop

exact subdivision algorithms based on the Bolzano principle.
The primitives in such algorithms are simple to implement
and extendible to analytic functions. Our 8-Point Ceval al-
gorithm has been implemented in Kamath’s thesis [18] using
the Core Library [48], and compares favorably to Yakoub-
sohn’s algorithm and Mpsolve [3, 4].

The complexity of Ceval is theoretically competitive with
that of known exact practical algorithms for real root isola-
tion. It is somewhat unexpected that our simple evaluation-
based algorithms can match those based on sophisticated
primitives like Descartes or Sturm methods. Another sur-

prise is that the complex case has (up to Õ-order) the bit
complexity of the real case despite its larger subdivision tree.

Our complexity analysis introduces new ideas including a
technique of root clusters which has proven to have other
applications [24] as well. One open problem is to sharpen
our complexity estimates (only logarithmic improvements
can be expected).

The Descartes method had been successfully extended to
the bitstream model [14, 25] in which the coefficients of the
input polynomial are given by a bitstream on-demand. It
has useful applications in situations where the coefficients
are algebraic numbers (e.g., in cylindrical algebraic decom-
position). Recent work [38] shows that the Ceval algorithm
also extends to bitstream polynomials.
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