
Clustering Complex Zeros of Triangular Systems
of Polynomials?

Remi Imbach1, Marc Pouget2, and Chee Yap1

1 Courant Institute of Mathematical Sciences, New York University, USA
remi.imbach@nyu.edu, yap@cs.nyu.edu

2 Universite de Lorraine, CNRS, Inria, LORIA, F-54000 Nancy, France
marc.pouget@inria.fr

Abstract. This paper gives the first algorithm for finding a set of nat-
ural ε-clusters of complex zeros of a regular triangular system of polyno-
mials within a given polybox in Cn, for any given ε > 0. Our algorithm is
based on a recent near-optimal algorithm of Becker et al (2016) for clus-
tering the complex roots of a univariate polynomial where the coefficients
are represented by number oracles.
Our algorithm is based on recursive subdivision. It is local, numeric,
certified and handles solutions with multiplicity. Our implementation is
compared to with well-known homotopy solvers on various triangular
systems. Our solver always gives correct answers, is often faster than the
homotopy solvers that often give correct answers, and sometimes faster
than the ones that give sometimes correct results.

Keywords: complex root finding · triangular polynomial system · near-
optimal root isolation · certified algorithm · complex root isolation ·
oracle multivariable polynomial · subdivision algorithm · Pellet’s theo-
rem.

1 Introduction1

This paper considers the fundamental problem of finding the complex solutions2

of a system f(z) = 0 of n polynomial equations in n complex variables z =3

(z1, . . . , zn). The system f = (f1, . . . , fn) : Cn → Cn is triangular in the sense4

that fi ∈ C[z1, . . . , zi] for 1 ≤ i ≤ n, where dzi(fi) ≥ 1. As in [7], we assume that5

the system is regular: this means that for each i, if (α1, . . . , αi−1) is a zero of fi−16

and ci(z1, . . . , zi−1) is the leading coefficient of zi in fi, then ci(α1, . . . , αi−1) 6=7

0. Thus f is a 0-dimensional system. But unlike [7], we do not assume that8

the system is square-free: indeed the goal of this paper is to demonstrate new9

techniques that can properly determine the multiplicity of the root clusters of f ,10

up to any ε > 0 resolution.11

? Rémi’s work is supported by the European Union’s Horizon 2020 research and inno-
vation programme No. 676541, NSF Grants # CCF-1563942, # CCF-1564132 and
CCF-1708884. Chee’s work is supported by NSF Grants # CCF-1423228 and
CCF-1564132.

2 R. Imbach et al.

Throughout this paper, we use boldface symbols to denote vectors and tuples;12

for instance 0 stands for (0, . . . , 0).13

We are interested in finding clusters of solutions of triangular systems and in14

counting the total multiplicity of solutions in clusters. Solving triangular systems15

is a fundamental task in polynomial equations solving, since there are many16

algebraic techniques to decompose the original system into triangular systems.17

The problem of isolating the complex solutions of a polynomial system in an18

initial region-of-interest (ROI) is defined as follows: let Zero(B, f) denote the set19

of solutions of f in B, regarded3 as a multiset.20

Local Isolation Problem (LIP):
Given: a polynomial map f : Cn → Cn, a polybox B ⊂ Cn, ε > 0
Output: a set {∆1, . . . ,∆l} of pairwise disjoint polydiscs of radius ≤ ε
where

- Zero(B, f) =
⋃l
j=1 Zero(∆j , f).

- each Zero(∆j , f) is a singleton.

21

This is “local” because we restrict attention to roots in a ROI B. There are22

two issues with (LIP) as formulated above: deciding if Zero(∆j , f) is a singleton,23

and deciding if such a singleton lies in B, are two “zero problems” that require24

exact computation. Generally, this can only be decided if f is algebraic. Even25

in the algebraic case, this may be very expensive. In [27,4] these two issues are26

side-stepped by defining the local clustering problem which is described next.27

Before proceeding, we fix some general notations for this paper. A polydisc28

∆ is a vector (∆1, . . . ,∆n) of complex discs. The center of ∆ is the vector29

of the centers of its components and the radius r(∆) of ∆ is the vector of30

the radii of its components. If δ is any positive real number, we denote by δ∆31

the polydisc (δ∆1, . . . , δ∆n) that has the same center as ∆ and radius δr(∆).32

We also say r(∆) ≤ δ if each component of r(∆) is ≤ δ. A (square complex)33

box B is a complex interval [`1, u1] + i([`2, u2]) where u2 − `2 = u1 − `1 and34

i :=
√
−1; the width w(B) of B is u1 − `1 and the center of B is u1 + w(B)

2 +35

i(u2 + w(B)
2). A polybox B ⊆ Cn is the set

∏n
i=1Bi which is represented by the36

vector (B1, . . . , Bn) of boxes. The center of B is the vector of the centers of its37

components; the width w(B) of B is the max of the widths of its components. If38

δ is any positive real number, we denote by δB the polybox (δB1, . . . , δBn) that39

has the same center than B and width δw(B). It is also convenient to identify40

∆ as the subset
∏n
i=1 ∆i of Cn; a similar remark applies to B.41

We introduce three notions to define the local solution clustering problem.42

Let a ∈ Cn be a solution of f(z) = 0. The multiplicity of a in f , also called the43

3 A multiset S is a pair (S, µ) where S is an ordinary set called the underlying set and
µ : S → N assigns a positive integer µ(x) to each x ∈ S. Call µ(x) the multiplicity
of x in S, and µ(S) :=

∑
x∈S µ(x) the total multiplicity of S. Also, let |S| denote

the cardinality of S. If |S|= 1, then S is called a singleton. We can form the union
S ∪ S′ of two multisets with underlying set S ∪ S′, and the multiplicities add up as
expected.

Clustering Complex Zeros of Triangular Systems of Polynomials 3

intersection multiplicity of a in f is classically defined by localization of rings as44

in [28, Def. 1, p. 61], we denote it by #(a, f). An equivalent definition uses dual45

spaces, see [12, Def. 1, p. 117]. For any set S ⊆ Cn, we denote by Zero(S, f) the46

multiset of zeros (i.e., solutions) of f in S, and #(S, f) the total multiplicity of47

Zero(S, f). If S is a polydisc, we call Zero(S, f) a cluster if it is non-empty, and S48

is an isolator of the cluster. If in addition, we have that Zero(S, f) = Zero(3·S, f),49

we call Zero(S, f) a natural cluster and call S a natural isolator. In the context of50

numerical algorithm, the notion of cluster of solutions is more meaningful than51

that of solution with multiplicity since the perturbation of a multiple solution52

generates a cluster. We thus “soften” the problem of isolating the solutions of a53

triangular system of polynomial equations while counting their multiplicities by54

translating it into the local solution clustering problem defined as follows:55

Local Clustering Problem (LCP):
Given: a polynomial map f : Cn → Cn, a polybox B ⊂ Cn, ε > 0
Output: a set of pairs {(∆1,m1), . . . , (∆l,ml)} where:

- the ∆js are pairwise disjoint polydiscs of radius ≤ ε,
- each mj = #(∆j , f) = #(3∆j , f)

- Zero(B, f) ⊆
⋃l
j=1 Zero(∆j , f) ⊆ Zero(2B, f).

56

In this (LCP) reformulation of (LIP), we have removed the two “zero problems”57

noted above: we output clusters to avoid the first problem, and we allow the58

output to contain zeroes outside the ROI B to avoid the second one. We choose59

2B for simplicity; it is easy to replace the factor of 2 by 1 + δ for any desired60

δ > 0.61

Overview. In the remaining of this section we explain our contribution, summa-62

rize previous work and the local univariate clustering method of [4]. In Sec. 2,63

we define the notion of tower of clusters together with a recursive method to64

compute the sum of multiplicities of the solutions it contains. Sec. 3 analyzes the65

loss of precision induced by approximate specialization. Our algorithm for solv-66

ing the local clustering problem for triangular systems is introduced in Sec. 4.67

The implementation and experimental results are presented in Sec. 5.68

1.1 Our contributions69

We propose an algorithm for solving the complex clustering problem for a tri-70

angular system f(z) = 0 with a zero-dimensional solution set. To this end, we71

propose a formula to count the sum of multiplicities of solutions in a cluster. Our72

formula is derived from a result of [28] that links the intersection multiplicity73

of a solution of a triangular system to multiplicities in fibers. We define towers74

of clusters to encode clusters of solutions of a triangular system in stacks (or75

towers) of clusters of roots of univariate polynomials.76

Our algorithm exploits the triangular form of f = (f1, . . . , fn): the standard77

idea is to recursively find roots of the form (α1, . . . , αn−1) of f1 = · · · = fn−1 =78

0, then substituting them into fn to obtain a univariate polynomial gn(zn) =79

4 R. Imbach et al.

fn(α1, . . . , αn−1, zn). If αn is a root of gn(zn), then we have have extended the80

solution to (α1, . . . , αn) of the original f . The challenge is to extend this idea81

to compute clusters of zeros of f from clusters of zeros of f1 = · · · = fn−1 = 0.82

Moreover, we want to allow the coefficients of each fi to be oracle numbers. The83

use of oracle numbers allows us to treat polynomial systems whose coefficients84

are algebraic numbers and beyond.85

To compute clusters of roots of a univariate polynomial given as an oracle,86

we rely on the recent algorithm described in [4], based on a predicate introduced87

in [5] that combines Pellet’s theorem and Graeffe iterations to determine the88

number of roots counted with multiplicities in a complex disc; this predicate is89

called soft because it only requires the polynomial to be known as approxima-90

tions. It is used in a subdivision framework combined with Newton iterations to91

achieve a near optimal complexity.92

We implemented our algorithm and made it available as the Julia4 package93

Ccluster.jl5. Our experiments show that it advantageously compares to major94

homotopy solvers for solving random dense triangular systems in terms of solving95

times and reliability (i.e. getting the correct number of solutions and the correct96

multiplicity structures). Homotopy solving is more general because it deals with97

any polynomial system. We also propose experiments with triangular systems98

obtained with elimination procedures.99

1.2 Related work100

There is a vast literature on solving polynomial systems and we can only re-101

fer to book surveys and references therein, see for instance [13,25]. On the al-102

gebraic side, symbolic tools like Groebner basis, resultant, rational univariate103

parametrization or triangularization, find an equivalent triangular system or set104

thus reducing the problem to the univariate case. Being symbolic, these meth-105

ods handle all input, in particular with solutions with multiplicities, and are106

certified but at the price of a high complexity that limits their use in practice.107

Implementations of hybrid symbolic-numeric solvers are available for instance in108

Singular6 via solve.lib or in Maple via RootFinding[Isolate].109

On the numerical side, one can find subdivision and homotopy methods. The110

main advantage of subdivision methods is their locality: the practical complexity111

depends on the size of the solving domain and the number of solutions in this112

domain. Their main drawback is that they are only practical for low dimensional113

systems. On the other hand, homotopy methods are efficient for high dimensional114

systems, they are not local but solutions are computed independently from one115

another. Numerical methods only work for restricted classes of systems and116

the certification of the output remains a challenge. Multiprecision arithmetic,117

interval analysis, deflation and α-theory are now classical tools to address this118

certification issue [15,22,6,26].119

4 https://julialang.org/
5 https://github.com/rimbach/Ccluster.jl
6 https://www.singular.uni-kl.de/

 https://julialang.org/
 https://github.com/rimbach/Ccluster.jl
https://www.singular.uni-kl.de/

Clustering Complex Zeros of Triangular Systems of Polynomials 5

In the univariate case, practical certified algorithms are now available for real120

and complex solving that match the best known complexity bounds together with121

efficient implementations [19,17]. For the bivariate case, the problem of solving122

a triangular system can be seen as a univariate isolation in an extension field.123

The most recent contributions in this direction presenting algorithms together124

with complexity analysis are [23,24].125

Only a few work address the specific problem of solving triangular polynomial126

systems. The solving can then be performed coordinate by coordinate by spe-127

cialization and univariate solving in fibers. When the systems only have regular128

solutions, extensions of classical univariate isolation algorithms to polynomial129

with interval coefficients have been proposed [9,14,7]. In the presence of multiple130

solutions, one approach is to use a symbolic preprocessing to further decom-131

pose the system in regular sub-systems. Another approach is the sleeve method132

with separation bounds [8]. The authors of [28] propose a formula to compute133

the multiplicity of a solution of a triangular system: the latter multiplicity is134

the product of the multiplicities of the components of a solution in the fibers.135

Then, by using square free factorization of univariate polynomials specialized in136

fibers, they describe an algorithm to retrieve the real solutions of a triangular137

system with their multiplicities. In [20], the method of Local Generic Position138

is adapted to the special case of triangular systems with the advantage of only139

using resultant computations (instead of Goebner basis), multiplicities are also140

computed.141

1.3 Definitions and Notation142

Convention for Vectors. We introduce some general conventions for vectors143

that will simplify the following development. Vectors are indicated by bold fonts.144

If v = (v1, . . . , vn) is an n-vector, and i = 1, . . . , n, then the i-th component vi is7145

denoted vi and the i-vector (v1, . . . , vi) is denoted v(i). Thus v = (v(n−1),vn),146

and “v = v(n)” is an idiomatic way of saying that v is an n-vector. Because of147

the subscript convention, we will superscripts such as v1,v2, etc, to distinguish148

among a set of related n-vectors.149

Normed Vector Spaces. In order to do error analysis, we need to treat150

C[z] and Cn as normed vector spaces: for f ∈ C[z] and b ∈ Cn, let ‖f‖ and ‖b‖151

denote the infinity norm on polynomials and vectors, respectively. We use the152

following perturbation convention: let δ ≥ 0. Then we will write f ± δ to denote153

some polynomial f̃ ∈ C[z] that satisfies ‖f − f̃‖≤ δ. Similarly, b ± δ denotes154

some vector b̃ ∈ Cn that satisfies ‖b− b̃‖≤ δ. If δ ≤ 2−L then b̃ and f̃ are called155

L-bit approximations of b and f , respectively.156

We define the degree sequence of f ∈ C[z] to be d = d(f) where di is the157

degree of zi in f . If b ∈ Ck (k = 1, . . . , n), let f(b) denote the polynomial158

that results from the substitution zi → bi (for i = 1, . . . , k). The result is a159

polynomial f(b) ∈ C[zk+1, . . . , zn] called the specialization of f by b. Note that160

7 In general, vi 6= vi since v and vi are independent variables. So our bold font
variables v do not entail the existence of non-bold font counterparts such as vi.

6 R. Imbach et al.

f(b) is a polynomial in at most n− k variables. In particular, when n = k, then161

f(b) is a constant (called the evaluation of f at b). For instance, suppose b ∈ Cn,162

then f(b(n−1)) is a polynomial in zn and f(b(n−1))(bn) = f(b).163

If B ⊆ C is a box with center c and width w, we denote by ∆(B) the disc with164

center c and radius 3
4w. Note that ∆(B) contains B. If B ⊂ Cn is a polybox, let165

∆(B) be the polydisc where ∆(B)i = ∆(Bi).166

Oracle Computational Model. We use two kinds of numbers in our al-167

gorithms: an explicit kind which is standard in computing, and an implicit168

kind which we call “oracles”. Our explicit numbers are dyadic numbers (i.e.,169

bigFloats), D := {n2m : n,m ∈ Z}. A pair (n,m) of integers represents the nom-170

inal value of n2m ∈ D. However, we also want this pair to represent the interval171

[(n − 1
2)2m, (n + 1

2)2m]. To distinguish between them, we write (n,m)0 for the172

nominal value, and (n,m)1 for the interval of width 2m. Call (n,m)1 an L-bit173

dyadic interval if m ≤ −L (so the interval has width at most 2−L). Note that174

(2n,m)1 and (n,m+1)1 are different despite having the same nominal value. As175

another example, note that (0,m)1 is the interval [−2m−1, 2m−1]. When we say176

a box, disc, polybox, etc, is dyadic, it means that all its parameters are given177

by dyadic numbers. The set of closed intervals with dyadic endpoints is denoted178

D. Also, let nD denote n-dimensional dyadic boxes.179

The implicit numbers in our algorithms are functions: for any real number180

x ∈ R, an oracle for x is a function O : Z → D such that Ox(L) is an L-bit181

dyadic interval containing x. There is normally no confusion in identifying the182

real number x with any oracle function Ox for x. Moreover, we write (x)L instead183

of Ox(L). E.g., if x is a real algebraic number with defining polynomial p ∈ Z[X]184

and isolating interval I, we may define an oracle Ox = O(p, I) for x in a fairly185

standard way. Next, an oracle Oz for a complex number z = x+ iy is a function186

Oz : Z→ 2D such that Oz(L) = Ox(L) + iOy(L) where Ox,Oy are oracles for187

x and y. Again, we may identify z with any oracle Oz, and write (z)L instead188

of Oz(L). For polynomials f ∈ C[z(n)] in n ≥ 2 variables, we assume a sparse189

representation, f =
∑
α∈Supp(f) fαz

α with fixed support Supp(f) ⊆ Nn, with190

coefficients fα ∈ C \ {0}, and zα :=
∏n
i=1 z

αi
i are power products. An oracle Of191

for f amounts to having oracles for each coefficient fα of f . Moreover Of (L)192

may be written (f)L is the interval polynomial whose coefficients are (fα)L. Call193

(f)L a dyadic interval polynomial.194

1.4 Oracles for Root Cluster of Univariate Polynomials195

The starting point for this paper is the fundamental result that the Local Clus-196

tering Problem (LCP) has been solved in the univariate setting:197

Proposition 1 (See [4,5]) There is an algorithm Cluster(f,B, ε) that solves198

the Local Clustering Problem when f : C→ C is a univariate oracle polynomial.199

In other words, the output of Cluster(f,B, ε) is a set {(∆i,mi) : i = 1, . . . , k}200

such that each ∆i is a natural ε-isolator, and201

Clustering Complex Zeros of Triangular Systems of Polynomials 7

Zero(B, f) ⊆
k⋃
i=1

Zero(∆i, f) ⊆ Zero(2B, f).

To make this result the basis of our multivariate clustering algorithm, we202

need to generalize this result. In particular, we need to be able to further refine203

each output (∆i,mi) of this algorithm. If (∆i,mi) represents the cluster Ci of204

roots, we want to get better approximation of Ci, i.e., we want to treat Ci like205

number oracles. Fortunately, the algorithm in [4,5] already contains the tools to206

do this. What is lacking is a conceptual framework to capture this.207

Our goal is to extend the concept of number oracles to “cluster oracles”. To208

support the several modifications which are needed, we revise our previous view209

of “oracles as functions”. We now think of an oracle O as a computational object210

with state information, and which can transform itself in order to update its state211

information. For any L ∈ Z, recall that O(L) is a dyadic object that is at least212

L-bit accurate. E.g., if O is the oracle for x ∈ R, O(L) is an interval containing213

x of width ≤ 2−L. But now, we say that oracle is transformed to a new oracle214

which we shall denote by “(O)L” whose state information is O(L). In general, let215

σ(O) denote the state information in O. Next, for a cluster C ⊆ C of roots of a216

univariable polynomial p(z) ∈ C[z], its oracle OC has state σ(OC) that is a pair217

(∆,m) where ∆ ⊆ C is a dyadic disc satisfying C = Zero(∆, p) = Zero(3∆, p)218

and m is the total multiplicity of C. Thus C is automatically a natural cluster.219

We say OC is L-bit accurate if the radius of ∆ is at most 2−L. Intuitively, we220

expect (OC)L to be an oracle for C that is L-bit accurate. Unfortunately, this221

may be impossible unless C is a singleton cluster. In general, we may have to222

split C into two or more clusters. We therefore need one more extension: the223

map L 7→ (OC)L returns a set224

{OC1
, . . . ,OCk} , (for some k ≥ 1)

of cluster oracles with the property that C = ∪ki=1Ci (union of multisets), and225

each OCi is L-bit accurate. We generalize Proposition 1 so that it outputs a226

collection of cluster oracles:227

Proposition 2 (See [4,5,17]) Let Of be an oracle for a univariate polynomial228

f : C → C. There is an algorithm ClusterOracle(Of , B, L) that returns a set229

{OCi : i = 1, . . . , k} of cluster oracles such that230

Zero(B, f) ⊆
k⋃
i=1

Ci ⊆ Zero(2B, f).

and each OCi is L-bit accurate.231

2 Sum of multiplicities in clusters of solutions232

We extend in Sec. 2.2 a result of [28] to an inductive formula giving the sum233

of multiplicities of solutions of a triangular system in a cluster. In Sec. 2.3, we234

8 R. Imbach et al.

1 1

2−δ

a4a4

a1 a1

a3a3

a2a2

a6a5

2−δ2−δ
2−δ 2−δ

−1

∆(B2)

∆(B1)

#(a3,g) = 1× 1 #(a2,g) = 1× 1
#(a4,g) = 1× 1 #(a1,g) = 1× 1
#(∆(B1),g) = 2× 1
#(∆(B2),g) = 2× 1

#(a3,h) = 1× 1 #(a2,h) = 2× 1
#(a4,h) = 1× 1 #(a1,h) = 2× 1
#(a5,h) = 1× 2 #(a6,h) = 2× 2
#(∆(B1),h) = 3× 3
#(∆(B2),h) = 3× 1

Fig. 1. On the left (resp. right), the solutions of g(z) = 0 (resp. h(z) = 0) defined in
Eq. 1 (resp. Eq. 2) with δ = 1. B1 (resp. B2) is the polybox of C2 with center (0, 0)
(resp. (0, 1)) and width 2 ∗ 2−δ. The boxes in dashed lines are the real parts of ∆(B1)
and ∆(B2). In the frame, the multiplicities of solutions of each system are computed
with the formula of Zhang (Proposition 3) and Thm. 1.

introduce a representation of clusters of solutions of f called tower representation,235

reflecting the triangular form of f . Sec. 2.1 presents two illustrative examples.236

2.1 Two examples237

Let δ > 0 be an integer. We define the systems g(z) = (g1(z1), g2(z1, z2)) = 0238

and h(z) = (h1(z1), h2(z1, z2)) = 0 as follows:239

(g(z) = 0) :

{
(z1 − 2−δ)(z1 + 2−δ) = 0

(z2 − 22δz21)z2 = 0
(1)

(h(z) = 0) :

{
(z1 − 2−δ)2(z1 + 2−δ) = 0
(z2 + 2δz21)2(z2 − 1)z2 = 0

(2)

g(z) = 0 has 4 solutions: a1 = (2−δ, 0), a2 = (2−δ, 1), a3 = (−2−δ, 1) and240

a4 = (−2−δ, 0). h(z) = 0 has 6 solutions: a1, a2, a3, a4, a5 = (−2−δ,−2−δ) and241

a6 = (2−δ,−2−δ). For 1 ≤ i ≤ 6, let ai = (ai1, a
i
2). The solutions of both g = 0242

and h = 0 are depicted in Fig. 1.243

Clustering Complex Zeros of Triangular Systems of Polynomials 9

2.2 Sum of multiplicities in a cluster244

We recall a theorem of Zhang [28] for counting multiplicities of solutions of245

triangular systems, based multiplicities in fibers. We may rephrase it inductively:246

Proposition 3 ([28]) Let n ≥ 2 and a ∈ Cn be a solution of the triangular247

system f(z) = 0. The multiplicity of a in f is248

#(a, f) = #(an, fn(a(n−1)))×#(a(n−1), f(n−1)).

We extend Proposition 3 to a formula giving the total multiplicity of a cluster249

Zero(∆, f).250

Theorem 1. Let Zero(∆, f) be a cluster of solutions of the triangular system251

f(z) = 0. If there is an integer m ≥ 1 so that for any solution a ∈ Zero(∆, f),252

one has m = #(∆n, fn(a(n−1))), then253

#(∆, f) = m×#(∆(n−1), f(n−1)).

where #(∆(n−1), f(n−1)) = 1 when n = 1.254

Let us apply Proposition 3 to compute the multiplicities of solutions of g(z) =255

0 and h(z) = 0 (see Eq. 1 and Eq. 2). a1 has multiplicity 1 in g: #(a1,g) =256

#(a11, g1)×#(a12, g2(a11)) = 1×1. a1 has multiplicity 2 in h: #(a1,h) = #(a11, h1)×257

#(a12, h2(a11)) = 2× 1. The multiplicities of other solutions are given in fig. 1.258

Let B1 = (B1
1 , B

1
2) be the polybox centered in (0, 0) having width 2 × 2−δ.259

Zero(∆(B1),g) = {a1,a4} and #(∆(B1),g) = 2. Since #(∆(B1
2),gn(a1

(n−1))) =260

#(∆(B1
2),gn(a4

(n−1))) = 1, applying Thm. 1 yields #(∆(B1),g) = 2× 1.261

Zero(∆(B1),h) = {a1,a4,a5,a6} and #(∆(B1),h) = 9. Again, one has262

#(∆(B1
2),hn(a1

(n−1))) = #(∆(B1
2),hn(a4

(n−1))) = 3. Thus applying Thm. 1263

yields #(∆(B1),h) = 3× 3.264

Let B2 be the polybox centered in (0, 1) having width 2×2−δ. One can apply265

Thm. 1 to obtain #(∆(B2),g) = 2×1 and #(∆(B2),h) = 3×1. The real parts266

of ∆(B1) and ∆(B2) are depicted in Fig. 1.267

Proof (of Thm. 1.). Remark that Zero(∆, f) = {a ∈∆|f(a) = 0} can be defined268

in an inductive way as Zero(∆, f) = {(b, c) ∈∆|b ∈ Zero(∆(n−1), f(n−1)) and c ∈269

Zero(∆n, fn(b))}. Using Proposition 3, we may write270

#(∆, f) =
∑

(b,c)∈Zero(∆,f)

#(b, f(n−1))×#(c, fn(b))271

=
∑

b∈Zero(∆(n−1),f(n−1))

(
#(b, f(n−1))×

∑
c∈Zero(∆n,fn(b))

#(c, fn(b))

)
272

=
∑

b∈Zero(∆(n−1),f(n−1))

#(b, f(n−1))×m273

= m×#(∆(n−1), f(n−1)).274

ut

10 R. Imbach et al.

2.3 Tower Representation275

Definition 1 (Tower Representations). Let ∆ ⊆ Cn be a polydisc and m276

a n-vector of positive integers. The pair (∆,m) is a tower (relative to f) if it277

satisfies: if n = 1, then (∆,m) = (∆1,m1) is a cluster representation relative278

to f . Inductively, if n > 1 then:279

(i) (∆(n−1),m(n−1)) is a tower relative to f(n−1)280

(ii) ∀b ∈∆(n−1), (∆n,mn) is a cluster representation relative to fn(b).281

The height of the tower (∆,m) is n.282

If we replace ‘cluster’ by ‘natural cluster’ in the above definition, then (∆,m)283

a natural tower. If B is a polybox, and (∆(B),m) is a tower relative to f , then we284

can also call (B,m) a (polybox) tower relative to f . Below, we will only consider285

natural towers and will omit the word natural.286

Let g,h be defined as in Eqs. 1 and 2 and B1 = (B1
1 , B

1
2), B2 = (B2

1 , B
2
2)287

be as defined in 2.2. The pair (∆(B1
1), 3) is a tower relative to h1. Moreover, if288

δ ≥ 3, (∆(B1), (3, 3)) and (∆(B2), (3, 1)) are towers relative to h. Consider the289

polynomial h2(z1, z2) = (z2+2δz21)2(z2−1)z2. If z2 ∈ 3∆(B1
2) then |z2|< 3×3

16 < 1290

and for any z1 ∈ ∆(B1
1), h2 has 3 roots counted with multiplicity in ∆(B1

2) and291

in 3∆(B1
2). Hence for any b ∈ ∆(B1

1), (∆(B1
2), 3) is a tower relative to h2(b)292

then (∆(B1), (3, 3)) is a tower relative to h. Similarly, (∆(B2), (3, 1)) is a tower293

relative to h. (B1, (3, 3)) and (B2, (3, 1)) are (polybox) towers relative to h.294

In contrast, although (∆(B1
1), 2) is a tower relative to g1, there exist no295

tower relative to g having B1 or B2 as box: −2−δ, 0 and 2−δ are three points of296

B1
1 = B2

1 ; consider the three polynomials g2(−2−δ), g2(0) and g2(2−δ). g2(−2−δ)297

and g2(2−δ) have each 1 root of multiplicity 1 in B1
2 while g2(0) has 1 root of298

multiplicity 2 in B1
2 : there is no m that satisfy condition (ii) of Def. 1. In the299

case of B2, g2(−2−δ) and g2(2−δ) have both 1 root of multiplicity 1 in B2
2 while300

g2(0) has no root in B2
2 .301

An immediate consequence of the previous theorem is302

Corollary 4 Let (∆,m) be a tower relative to f of height n > 1. Then303

#(∆, f) = mn ×#(∆(n−1), f(n−1)).

Inductively, we have #(∆, f) =
∏n
i=1 mi304

Remark finally that if (B,m) is a tower relative to f(n−1) and f is an oracle305

for fn(b) for any b ∈ ∆(B), one can use Cluster, as specified in Prop. 1, to306

compute clusters of fn(b) for any b ∈ ∆(B) in a box B. If this returns a list307

{(Bj ,mj)|1 ≤ j ≤ l}, then for all 1 ≤ j ≤ l, ((∆(B),∆(Bj)), (m,mj)) is a308

tower relative to f , and from corollary 4, #((∆(B),∆(Bj)), f) = mj×
∏n−1
k=1 mk.309

Moreover, Zero((B, B), f) ⊆
⋃l
j=1 Zero((∆(B),∆(Bj)), f) ⊆ Zero((2B, 2B), f).310

In other words, {((∆(B),∆(Bj)),mj ×
∏n−1
k=1 mk)|1 ≤ j ≤ l} is a solution for311

the clustering problem in (B, B).312

We show in Sec. 4 how to setup an oracle for fn(b) for any b ∈ ∆(B). This313

oracle may refine (B,m) and split it into several clusters.314

Clustering Complex Zeros of Triangular Systems of Polynomials 11

3 Error Analysis of Approximate Specializations315

The proofs for this section is found in the Appendix.316

Given f, f̃ ∈ C[z] = C[z(n)] and b, b̃ ∈ Cn, our basic goal is to bound the317

evaluation error318

‖f(b)− f̃(b̃)‖

in terms of δf := ‖f − f̃‖ and δb := ‖b− b̃‖. This will be done by induction on n.319

Our analysis aims not just to produce some error bound, but to express this error320

in terms that are easily understood, and which reveals the underlying inductive321

structure. Towards this end, we introduce the following β-bound function: if d is322

a positive integer and b ∈ C,323

β(d, b) :=

d∑
i=0

|b|i. (3)

Let d = d(f), i.e., di = degzi(f) for each i. The support of f is Supp(f) ⊆ Nn324

where f =
∑
α∈Supp(f) cαz

α where cα ∈ C \ {0}. Here, zα :=
∏n
i=1 z

αi
i . We325

assume that Supp(f̃) ⊆ Supp(f). Our induction variable is k = 1, . . . , n. For α ∈326

Nn, let πk(α) := (0, . . . , 0,αk+1, . . . ,αn). E.g., if k = n then πk(α) = 0. Thusα−327

πk(α) = (α1, . . . ,αk, 0, . . . , 0). Next define Suppk(f) := {πk(α) : α ∈ Supp(f)}.328

With this notation, we can write329

f =
∑

α∈Suppk(f)

fαz
α (4)

where each fα ∈ C[z(k)]. E.g., if k = n then Suppk(f) = {0} and so f0 = f .330

Assume that we are given f, f̃ ∈ C[z] = C[z(n)] and b, b̃ ∈ C. Also the degree331

sequences satisfies d(f̃) ≤ d(f), that is the inequality holds componentwise.332

Then we may define these quantities for k = 1, . . . , n:333

δkb := |bk − b̃k|,
δkf := ‖f(b(k))− f̃(b̃(k))‖ (with δ0f = ‖f − f̃‖),
βk := β(dk, bk)

β̃k := β(dk, |bk|+δkb).

Note that δk is a operator that must attach to some function f or vector b to334

denote the “kth perturbation” of f or b.335

Lemma 5.336

Let n ≥ 1 and k = 1, . . . , n:337

(i) ‖f(b(k))− f(b(k−1))(b̃k)‖ ≤ δkb · ‖∂kf(b(k−1))‖·β̃k.

(ii) ‖f(b(k−1))(b̃k)− f̃(b̃(k))‖ ≤ δk−1f · β̃k.

(iii) δkf ≤
[
δkb · ‖∂kf(b(k−1))‖+δk−1f

]
· β̃k.

338

12 R. Imbach et al.

We now have a recursive bound ‖δnf‖. But we need to convert the bound to339

only depend on the data ‖b‖, ‖f‖, δkb. In particular, we remove any occurrences340

of ∂kfα with the help of the next lemma:341

Lemma 6. For k = 1, . . . , n:342

(i) ‖f(b(k))‖≤ ‖f‖·
∏k
i=1 βi343

(ii) For α ∈ Suppk(f),344 ∥∥∥∂kfα(b(k−1))
∥∥∥ ≤ dk · ‖fα(b(k−1))‖.345

(iii) ‖∂kf(b(k−1))‖≤ dk · ‖f‖·
∏k−1
i=1 βi346

Putting it all together:347

Theorem 2. For k = 1, . . . , n,348

δkf ≤
[
δ0f + ‖f‖·

k∑
i=1

di · δib
]
·
(k∏
i=1

β̃i

)
.

The next lemma answers the question: given δL > 0, how can we ensure that349

δn−1f := ‖f(b(n−1))− f̃(b̃(n−1))‖

is upper bounded by δL?350

Lemma 7.351

Given δL > 0, f, f̃ ∈ C[z] and b, b̃ ∈ Cn−1 where n > 1.
Let d = max(degzi(f)) and M = ‖b‖+1.
If

δf ≤ δL
2((d+1)Md)n−1 (*)

and

δb ≤ min(1, δL
2d‖f‖(n−1)((d+1)Md)n−1), (**)

then
δn−1f ≤ δL.

352

4 Clustering for Triangular Systems353

We now present our algorithm for solving the LCP for a given triple (f ,B0, ε),354

where ε > 0. Instead of ε, we use L := dlog2(1/ε)e. B0 = B0
(n) is the ROI (a355

polybox). f = f(n) is a triangular map with 0-dimensional set of zeros. We give356

our algorithm in the case where each fi is known exactly; it can be generalized357

for oracle polynomials. It is based on the one-dimensional clustering algorithm358

(see Prop. Proposition 2), that proceeds by subdividing the initial ROI. The key359

stone in such a subdivision algorithm is a test that counts the number of roots360

with multiplicity in a disk. In the one-dimensional case, it is done with the so-361

called Pellet’s test. Here we use this test with interval polynomials to compute362

towers. The main objects manipulated in our algorithms are cluster oracles, and363

their generalization when n > 1.364

Clustering Complex Zeros of Triangular Systems of Polynomials 13

Cluster oracles in dimension n ≥ 1. A polybox B ⊆ Cn is called an `-tower if365

there exists an `-vector m(`) such that (B(`),m(`)) is a tower. A cluster oracle366

O in dimension n > 1 is defined to be a triple367

O = 〈`,B,L〉 = 〈level(O), domain(O), precision(O)〉
where ` ∈ {0, . . . , n} is called the level, B is a polybox called the domain and L368

is a vector of integers called the precision. We will guarantee that if level(O) ≥369

1, domain(O) is an `-tower and r(∆(domain(O)i)) ≤ 2−Li . The multiplicity370

information is implicitly carried out by a cluster oracle.371

Cluster oracles at level 1. We generalize the ClusterOracle algorithm in Propo-372

sition 2 to ClusterOracle1(f ,O), which returns a set
{
O1, . . . ,Ok

}
of cluster or-373

acles at level 1. If L = precision(O)1 and Bi is the domain of Oi, then (∆(Bi))1374

has radius at most 2−L, and Bi
j = (domain(O))j for j = 2, . . . , n. Moreover, the375

domains of these Oi’s form a cover for the solution set of f in the domain of O.376

All our oracles are subsequently descended from these Oi’s.377

Pellet test. Our goal is to “lift” a cluster oracle O = 〈`,B,L〉 to one or more378

at level ` + 1 (provided ` < n) arising from subdividing B. The fundamental379

tool for this purpose is the “Pellet test” and its variants (Graeffe-accelerated,380

soft-version, etc. – see [4,5,17]). Without distinguishing among these variants,381

we may describe a generic Pellet test denoted382

T∗(f`+1,B(`),B`+1)

which returns an integerm ≥ −2.m ≥ 0 holds only ifm = #(∆(B`+1), f`+1(B(`))),383

where f`+1(B(`)) is the univariate interval polynomial obtained by evaluating384

f`+1 on B(`). If m ≥ 1, then this implies that B is an (` + 1)-tower. If m = 0385

B does not contain zeros of f . If m = −1 or m = −2, we say that the T∗ test386

failed. These two modes of failure are important to understand for efficiency. In-387

formally8 m = −1 means the disc ∆(B`+1) is not well-isolated (there are zeros388

near its boundary). In this case, the response is to subdivide Bl+1. On the other389

hand, m = −2 means we need more accuracy in the evaluation f`+1(B(`)), which390

requires subdividing components Bi of B with i < `.391

Lift of a natural cluster. The lifting process is performed by a function

ClusterOracleN(f ,O)

that takes in input a triangular map and a cluster oracle and outputs a pair392

(flag, S) where flag ∈ {success, failure} and S is a set of cluster oracles. It is393

8 The two failure modes may be traced to our soft comparison of real numbers x : y
(see [27,17]). It is reduced to the interval comparison (x)L : (y)L for increasing L.
If we can conclude x > y or x < y, it is a success, else it is a failure. There are
two failure modes: if we can conclude 1

2
x < y < 2x, this is a (−1)-failure (it is a

potential ”zero problem”). Otherwise it is a (−2)-failure (we repeat the interval test
with larger L).

14 R. Imbach et al.

Algorithm 1 ClusterTri(f ,B, L)

Input: A triangular map f = f(n), a ROI B0 = B0
(n) and a precision L > 1.

Output: A set of cluster oracles at level n, that solves the LCP for (f ,B0, 2−L).
1: Q.push(〈0,B0, (L, . . . , L)〉) //initial cluster oracle at level 0
2: while Q contains cluster oracles at level less than n do
3: O = 〈`,B,L〉 ← Q.pop() //assume ` < n
4: if ` = 0 then
5: Q.push(ClusterOracle1(f ,O))
6: else
7: {flag, S} ← ClusterOracleN(f ,O)
8: if flag = success then
9: Q.push(S) //S is a set of cluster oracles at level `+ 1

10: else
11: precision(O)← (2L(`),L`+1, . . . ,Ln)
12: level(O)← 0
13: Q.push(O) //O will be refined later

14: return Q

essentially the clustering algorithm depicted in [4]; it uses the T∗-test described394

above with ` = level(O) to count the number of roots in a disc. It returns the pair395

(failure,O) when one T∗-test returns −2. When ClusterOracleN(f ,O) returns396

(success, S), then S is a list of pairwise disjoint cluster oracles at level `+ 1 so397

that any solution in O is in a cluster oracle in S.398

Solving the LCP problem. We are ready to present our main algorithm, called399

ClusterTri(f ,B, L), described in Algo. 1. It uses a queue Q to hold the active400

cluster oracles and lift these clusters level by level to level n. Let O be a cluster401

oracle in Q. If level(O) = 0, O is lifted with ClusterOracle1 which returns a set402

S of cluster oracles at level 1 containing all the solutions in O. If level(O) > 0, O403

is lifted with ClusterOracleN , which may fail; in that case, the asked precision404

for levels less that ` of O is doubled and it’s level is set to 0, this will force its405

refining in later executions of the while loop. When the lift of O succeeds, one406

obtains a set S of cluster oracles at level `+ 1.407

The correctness of ClusterTri is a direct consequence of the correctness of408

ClusterOracle1 (see Prop. 2) and ClusterOracleN , and corollary 4.409

The halting of ClusterTri is a consequence of Lemma 7 (equation (**))410

which shows that as long as the radius of ∆(B(`)) approaches zero, Pellet test411

will eventually succeed; thus so does ClusterOracleN .412

5 Implementation and benchmarks413

We implemented in Julia9 our complex solution clustering algorithm and made414

it available through the package Ccluster.jl10. It is named hereafter tcluster.415

9 https://julialang.org/
10 https://github.com/rimbach/Ccluster.jl

 https://julialang.org/
 https://github.com/rimbach/Ccluster.jl

Clustering Complex Zeros of Triangular Systems of Polynomials 15

It uses, as routine for clustering roots of univariate polynomials given by ap-416

proximations, the univariate solver ccluster described in [17] and available in417

Ccluster.jl. The procedure for approximating a multivariate polynomial spe-418

cialized in a cluster of fibers relies on the ball arithmetic library arb (see [18]),419

interfaced in Julia through the package Nemo11.420

Sec. 5.1 reports how tcluster performs on systems having clusters of solu-421

tions. Sec. 5.2 proposes benchmarks for solving random dense triangular systems422

with only regular solutions, and with solutions with multiplicities; tcluster is423

compared with three homotopy solvers. Sec. 5.3 is about using tcluster to424

cluster solutions of system triangularized with regular chains. Unless specified,425

tcluster is used with ε = 2−53. tcluster global (resp. local) holds for tcluster426

with initial box B centered in 0 with width 106 (resp. 2).427

All the timings given below are sequential times in seconds on a Intel(R)428

Core(TM) i7-7600U CPU @ 2.80GHz machine with linux.429

5.1 Clustering ability430

Consider the triangular systems g = (f, g2) = 0 and h = (f, h2) = 0 where431

f(z1) = zd11 − (2δz1 − 1)c

g2(z1, z2) = zd22 z
d2
1 − 1

h2(z1, z2) = zd22 − z
d2
1

(5)

with d1 = 30, c = 10, δ = 128 and d2 = 10. All the roots of f have multiplicity432

1. A cluster S1 of 10 roots is in a disk centered in 2−δ with radius 2−b =433

2−
d1δ+δ−1

c ' 2−397 (see [21]). Since d1 > c > 1, roots in S1 have modulus434

≤ 2−δ + 2−b ≤ 2−δ+1 = 2−127 = γ̂. S2 denotes the set of d1− c others roots of f ,435

that have a modulus of the order of γ = 2
cδ

d1−c = 264. The d2 roots of g2 are on436

a circle centered in 0 with radius ≥ γ̂−1 when z1 ∈ S1, and of order γ−1 when437

z1 ∈ S2. The d2 roots of h2 are on a circle centered in 0 with radius ≤ γ̂ when438

z1 ∈ S1, and of order γ when z1 ∈ S2. All the solutions of g = 0 and h = 0 are439

included in the box B centered in 0 with width 1040.440

We computed clusters of solutions for the two systems with tcluster in441

B for four values of ε and reported the cluster structure as a sum where c1442

(respectively c2, c3) stands for the number of clusters with sum of multiplicities443

1 (resp. 10, 100). Table. 1 gives this structure in columns #Sols, the solving444

time in columns t and the min and max precision required on clusters of f1 in445

columns M and m (i.e. the log2 of the radius of the disk isolating the clusters).446

(g = 0) has 20 clusters of 10 solutions above each root in S2, where solutions447

have pairwise distance ' 2−64. It has 10 clusters of 10 solutions above the cluster448

S1 where solutions have pairwise distance ≤ 2−b ' 2−397. This structure is found449

by tcluster with ε = 2−53. When ε = 2−106, the 20 clusters above roots in S2450

are split, not the ones above roots in S1. When ε = 2−212, the clusters above451

roots in S1 are split even if the pairwise distances between solutions in these452

11 http://nemocas.org/links.html

http://nemocas.org/links.html

16 R. Imbach et al.

g = 0 h = 0
log2(ε) #Sols t (s) (m,M) #Sols t (s) (m,M)

-53 0 + 30× 10 0.17 (-212,- 424) 200 + 0× 10 + 1× 100 0.54 (-212, -212)
-106 200 + 10× 10 0.64 (-212,- 424) 200 + 0× 10 + 1× 100 0.57 (-212, -424)
-212 300 + 0× 10 3.91 (-424,- 848) 200 + 10× 10 + 0× 100 0.66 (-212, -848)
-424 300 + 0× 10 3.87 (-848,-1696) 300 + 0× 10 + 0× 100 3.78 (-848, -848)

Table 1. Clustering the solutions of systems defined in Sec. 5.1 with d1 = 30, c = 10,
δ = 128, d2 = 10 for four values of ε in box B centered in 0 with width 1040.

clusters are far smaller than 2−212; this is because isolating roots of g2 with453

error less than ε = 2−212 requires more precision on roots of f , as shown is454

column (m,M). When ε = 2−424, all the clusters are split.455

(h = 0) has 200 solutions above roots in S2 and a cluster of 100 simple456

solutions above roots in S1. The first (resp. second) components of the solutions457

in this cluster are in a disc of radius ≤ 2−b ' 2−397 (resp. γ̂ = 2−127). This458

cluster structure is found by tcluster with ε = 2−53 and ε = 2−106. When459

ε = 2−212, the cluster of 100 solutions is split in 10 clusters of 10 solutions.460

When ε = 2−424, the cluster is split in 100 solutions.461

5.2 Benchmarks with random dense systems462

We present benchmarks for randomly generated triangular systems without463

and with multiple solutions. We compare the efficiency and the robustness of464

tcluster and two homotopy solvers.465

Homotopy solvers. Homotopy solving is a two-step process. First, an upper466

bound D (either the Bézout’s bound, or a bound obtained with polyhedral467

homotopy, see [16]) on the number of solutions of the system is computed.468

Then D paths are followed to find the solutions. Among available homotopy469

solvers12, we used in our benchmarks HOM4PS-2.013, Bertini14 (see [2]) and470

HomotopyContinuation.jl15 (hereafter, we denote it HomCont.jl). HOM4PS-2.0471

and HomCont.jl implement polyhedral homotopy, thus follow possibly less paths.472

Bertini and HomCont.jl compute the multiplicity structure of solutions. Bertini473

can use an Adaptive Multi-Precision (AMP) arithmetic; below Bertini AMP474

refers to Bertini with AMP.475

Systems. We follow the approach of [8] to generate triangular systems with and476

without multiple solutions. The type of a triangular system f(z) = 0 with n equa-477

tions is the list (d1, . . . , dn) where di = degzi(fi). A random dense polynomial478

fi ∈ C[z1, . . . , zi] of degree di in zi is generated as follows. If i > 1, fi =
∑di
j=0 gjz

j
i479

12 other major homotopy solvers are NAG4M2 (for Macaulay2), PHCpack and HOM4PS-3.
Bertini2 is still in development.

13 http://www.math.nsysu.edu.tw/∼leetsung/works/HOM4PS soft.htm
14 https://bertini.nd.edu/
15 https://www.juliahomotopycontinuation.org/

http://www.math.nsysu.edu.tw/~leetsung/works/HOM4PS_soft.htm
https://bertini.nd.edu/
https://www.juliahomotopycontinuation.org/

Clustering Complex Zeros of Triangular Systems of Polynomials 17

where gj ∈ C[z1, . . . , zi−1] is a random dense polynomial of degree di− j in zi−1.480

f1 is a random dense polynomial in C[z1] of degree d1. A system f(z) = 0 of type481

(d1, . . . , dn) is obtained by generating successively random dense polynomials482

fi of degrees di in zi. Triangular systems with multiple solutions are obtained483

by taking f1 as above, and for i = 2, . . . , n, fi = a2i (bizi + ci)
b di+1

2 c−b di2 c where484

ai ∈ C[z1, . . . , zi] has degree bdi2 c in zi and bi, ci are in C[z1, . . . , zi−1] and have485

degrees di in zi−1.486

Benchmarks. In Table 2, we compare the three homotopy solvers and tcluster487

global and local on triangular systems with integer coefficients without and488

with multiple solutions. Coefficients of systems without multiple solutions are in489

[−29, 29], while coefficients of systems with multiple solutions are in [−234, 234].490

In both cases, we generated 5 systems of each type. Here tcluster global found491

all the solutions but in general this is not guaranteed. The columns #Sols give492

the average number of solutions counted with multiplicities found by each solver493

and the columns t the average time. The columns #Clus give the average num-494

ber of clusters found by tcluster. The systems we generated have d1× . . .× dn495

solutions which is the Bézout’s bound, and the homotopy solvers have to follow496

this number of paths.497

Systems with only simple solutions. For type (9,9,9,9,9), Bertini AMP has been498

stopped after 1 hour and HOM4PS-2.0 terminates with a segmentation fault.499

Homotopy solvers should find all the solutions. Bertini AMP failed in this task500

for one system of type (9, 9, 9, 9) and two systems of type (2, 2, 2, 2, 2, 2, 2, 2, 2, 2)501

but acknowledged that solutions could be missing. HOM4PS-2.0 returns incorrect502

results without warnings. In contrast, tcluster global always finds the correct503

number of solutions. tcluster global is in general faster than Bertini AMP and504

is faster than HOM4PS-2.0 for systems of types (6, 6, 6, 6, 6) and (9, 9, 9, 9). For505

systems of highest degree polynomials, tcluster global and HomCont.jl present506

similar solving times. The timings for systems of type (2, 2, 2, 2, 2, 2, 2, 2, 2, 2)507

emphasize that the efficiency of our solver is not penalized by high dimensional508

systems since it performs inductively subdivisions in boxes in C. tcluster local509

is significantly faster than the other approaches.510

Systems with multiple solutions. A well isolated multiple solution is reported by511

tcluster in a cluster with its multiplicity. In all cases, the number of clusters512

found by tcluster global is the number of distinct solutions of each systems.513

HOM4PS-2.0 fails in finding all the solutions. Bertini AMP computes correctly514

the multiplicity of solutions. HomCont.jl fails in computing correctly the mul-515

tiplicity structure of solutions. For type (9,9,9), Bertini AMP has been stopped516

after 1 hour. tcluster global is faster than Bertini AMP and HomCont.jl, and517

faster than HOM4PS-2.0 for systems of type (9, 9, 9) and (6, 6, 6, 6).518

5.3 Systems obtained by triangularization519

In this subsection, we report on using tcluster for clustering the solutions of520

triangular systems f(z) = 0 obtained from a non-triangular system g(z) = 0521

18 R. Imbach et al.

tcluster local tcluster global HOM4PS-2.0 Bertini AMP HomCont.jl

type #Sols, #Clus t (s) #Sols, #Clus t (s) #Sols t (s) #Sols t (s) #Sols t (s)
Systems with only simple solutions

(6,6,6) 34.2, 34.2 0.04 216, 216 0.35 216 0.06 216 1.17 216 2.77
(9,9,9) 149, 149 0.24 729, 729 1.43 713 0.47 729 29.3 729 4.21
(6,6,6,6) 63.4, 63.4 0.10 1296, 1296 2.21 1274 1.37 1296 24.2 1296 4.70
(9,9,9,9) 559, 559 1.06 6561, 6561 14.6 6036 111 6560 1605 6561 14.0
(6,6,6,6,6) 155, 155 0.37 7776, 7776 13.8 7730 28.6 7776 318 7776 11.5
(9,9,9,9,9) 1739, 1739 4.83 59049, 59049 130 - - ? >3600 59049 116

(2,2,2,2,2,2,2,2,2,2) 0, 0 0.13 1024, 1024 2.92 1024 2.74 1023 8.63 1024 4.84
Systems with multiple solutions

(6,6) 10.8, 5.40 0.01 36, 18 0.06 36 0.00 18 3.63 17.4 1.74
(9,9) 23.8, 13.6 0.03 81, 45 0.17 67.4 0.06 45 218 33.6 3.27
(6,6,6) 35.2, 8.80 0.05 216, 54 0.26 210 0.16 54 47.9 53.2 2.75
(9,9,9) 113, 37.6 0.22 729, 225 1.10 357 18.9 ? >3600 159 28.4
(6,6,6,6) 81.6, 10.2 0.21 1296, 162 1.29 1010 4.46 162 662 134 8.06

Table 2. Solving random dense triangular systems with tcluster, HOM4PS-2.0,
Bertini AMP and HomCont.jl.

with Regular Chains (RC, see [1,10]). Algorithms for triangularizing systems522

with RC produce a set of triangular systems {f1(z) = 0, . . . , fl(z) = 0} having523

distinct solutions whose union is the set of distinct solutions of f(z) = 0. The524

multiplicities of solutions are not preserved by this process.525

Systems. We consider non-triangular systems g(z) = 0 both classical (coming526

from [7]), and sparse random where g = (g1, . . . , gn) and each gi has the form527

gi(z) = zdii − g′i(z) where g′i is a polynomial in Z[z] having total degree di − 1,528

integers coefficients in [−28, 28] and 5 monomials. The type of such a system529

is the tuple (d1, . . . , dn). The set of all the examples can be found at https:530

//cims.nyu.edu/∼imbach/IPY19/IPY19.txt.531

The benchmark. For several types, we generated a system as described above and532

computed a triangular systems with the Maple function RegularChains[Trian-533

gularize] with option ’probability’=0.9. For the classical systems, we used534

no option. In table 3, column RC gives the time to compute the RCs. We535

solved the triangular systems of the obtained regular chains with tcluster;536

columns tcluster global report the number of solutions and solving time for537

tcluster. We also used the function RootFinding[Isolate] of Maple with op-538

tions digits=15, output=interval, method=’RC’ (i.e. using regular chains)539

to solve our systems; columns Isolate RC report the number of real solutions540

and the solving time for Isolate. We also used Bertini AMP to solve the original541

systems; columns Bertini AMP report the number of paths followed (column542

#Paths), the solving time and the number of solutions with the multiplicity543

structure found by Bertini: c1 + c2 ×m2 + c3 ×m3 means c1 (respectively c2,544

c3) solutions with multiplicity 1 (resp. m2, m3). We also tested HOM4PS-2.0 and545

HomCont.jl for these systems. The running time of HOM4PS-2.0 is always less546

than 0.05s, but the number of solutions reported is wrong. HomCont.jl always547

finds the correct number of solutions but is slower than Bertini AMP except548

https://cims.nyu.edu/~imbach/IPY19/IPY19.txt
https://cims.nyu.edu/~imbach/IPY19/IPY19.txt
https://cims.nyu.edu/~imbach/IPY19/IPY19.txt

Clustering Complex Zeros of Triangular Systems of Polynomials 19

Bertini AMP Isolate RC RC tcluster global
type/name #Sols #Paths t (s) #Sols t (s) t (s) #Sols t (s)

Random systems
(4,4,4) 64 64 0.06 6 7.53 3.82 64 0.80
(5,5,5) 125 125 0.30 ? >1000 24.2 125 6.89
(3,3,3,4) 108 108 0.13 ? >1000 52.4 108 3.42
(3,3,4,4) 144 144 0.26 ? >1000 68.7 144 8.59

Classical systems with only simple solutions
Arnborg-Lazard 20 120 0.80 8 3.09 0.08 20 0.07

Czapor-Geddes-Wang 24 720 28.6 2 1.87 0.17 24 0.38
cyclic-5 70 120 0.35 10 1.92 0.55 70 0.71

Classical systems with multiple solutions
5-body-homog 45 + 2× 3 + 2× 24 224 7.63 11 8.30 0.16 49 0.38

Caprasse 24 + 8× 4 144 0.25 18 1.49 0.24 32 0.12
neural-network 90 + 18× 2 162 0.36 22 5.82 0.13 108 0.56

Table 3. Solving non-triangular systems with regular chains and tcluster, and
Bertini AMP.

for two systems for which polyhedral homotopy allows to reduce the number549

of paths to be followed. HomCont.jl solves Czapor-Geddes-Wang in 3.67 s and550

5-body-homog in 3.44 s.551

Random systems in Table 3. Here the number of solutions is the Bézout’s bound552

and Bertini AMP follows one path per solution. Homotopy solving in these cases553

is much more efficient than triangularizing the system with RC. The RC algo-554

rithm produces a triangular system of type (d, 1, . . . , 1) where d is the Bézout’s555

bound with a huge bitsize: For the type (3, 3, 4, 4), the triangular system has type556

(144, 1, 1, 1) and each equation has bitsize about 738. tcluster has to isolate557

some solutions of the first equation at precision 2−424. Solving the first equation558

with ccluster and ε = 2−424 takes 8.27s: tcluster spends most of the time in559

isolating roots of the first polynomial. Any improvement of ccluster will di-560

rectly benefit to tcluster. For three of these systems, RootFinding[Isolate]561

has been stopped after 1000s.562

Classical systems with only simple solutions in Table 3. These systems have few563

finite solutions compared to their Bézout’s bounds, and Bertini AMP wastes564

time in following paths going to infinity. In contrast, tcluster is sensitive to the565

number of solutions in the initial solving domain. This explains why computing566

triangular systems and solving it with tcluster is faster than Bertini AMP for567

systems Arnborg-Lazard, Czapor-Geddes-Wang.568

Classical systems with multiple solutions in Table 3. For these systems, Bertini569

AMP reports the multiplicity structure of the solutions. The triangularization step570

removes the multiplicity, and the RCs obtained are easier to solve; tcluster571

finds only clusters with one solution counted with multiplicity.572

20 R. Imbach et al.

6 Future work573

We presented an algorithm for computing clusters of complex solutions, together574

with multiplicity information, of triangular systems of polynomial equations. It is575

numerical and certified, it handles solutions with multiplicity and works locally.576

It can deal with systems whose equations are given by oracle polynomials. An577

implementation is publicly available and the experiments we carried out show578

the efficiency and robustness of our approach.579

Our error analysis for the partial specialization of polynomials on algebraic580

numbers represented by oracle numbers is a first step towards a complexity581

analysis of our algorithm, which constitutes our future work. We would like to582

present such an analysis in terms of geometric parameters (e.g. separation of583

solutions) instead of only syntactic parameters (bit-size and degree).584

References585

1. Aubry, P., Lazard, D., Maza, M.M.: On the theories of triangular sets. Journal of586

Symbolic Computation 28(1), 105 – 124 (1999)587

2. Bates, D.J., Hauenstein, J.D., Sommese, A.J., Wampler, C.W.: Bertini: Software588

for numerical algebraic geometry. Available at bertini.nd.edu with permanent doi:589

dx.doi.org/10.7274/R0H41PB5590

3. Batra, P.: Globally convergent, iterative path-following for algebraic equations.591

Math. in Computer Sci. 4(4), 507–537 (2010)592

4. Becker, R., Sagraloff, M., Sharma, V., Xu, J., Yap, C.: Complexity analysis of root593

clustering for a complex polynomial. In: Proceedings of the ACM on International594

Symposium on Symbolic and Algebraic Computation. pp. 71–78. ISSAC ’16, ACM,595

New York, NY, USA (2016)596

5. Becker, R., Sagraloff, M., Sharma, V., Yap, C.: A near-optimal subdivision algo-597

rithm for complex root isolation based on Pellet test and Newton iteration. J.598

Symbolic Computation 86, 51–96 (May-June 2018)599

6. Beltrán, C., Leykin, A.: Certified numerical homotopy tracking. Experimental600

Mathematics 21(1), 69–83 (2012)601

7. Boulier, F., Chen, C., Lemaire, F., Moreno Maza, M.: Real root isolation of regular602

chains. In: Feng, R., Lee, W.s., Sato, Y. (eds.) Computer Mathematics. pp. 33–48.603

Springer Berlin Heidelberg, Berlin, Heidelberg (2014)604

8. Cheng, J.S., Gao, X.S., Yap, C.K.: Complete numerical isolation of real roots in605

zero-dimensional triangular systems. Journal of Symbolic Computation 44(7), 768–606

785 (2009)607

9. Collins, G.E., Johnson, J.R., Krandick, W.: Interval arithmetic in cylindrical alge-608

braic decomposition. Journal of Symbolic Computation 34(2), 145 – 157 (2002)609

10. Dahan, X., Maza, M.M., Schost, E., Wu, W., Xie, Y.: Lifting techniques for tri-610

angular decompositions. In: Proceedings of the 2005 International Symposium on611

Symbolic and Algebraic Computation. pp. 108–115. ISSAC ’05, ACM, New York,612

NY, USA (2005)613

11. Darboux, G.: Sur les développements en série des fonctions d’une seule variable.614

Journal de mathématiques pures et appliquées (Liouville Journal) 3, II:291–312615

(1876)616

Clustering Complex Zeros of Triangular Systems of Polynomials 21

12. Dayton, B.H., Zeng, Z.: Computing the multiplicity structure in solving polynomial617

systems. In: Proceedings of the 2005 international symposium on Symbolic and618

algebraic computation. pp. 116–123. ACM (2005)619

13. Dickenstein, A., Emiris, I. (eds.): Solving Polynomial Equations: Foundations, Al-620

gorithms, and Applications. Springer Berlin Heidelberg (2005)621

14. Eigenwillig, A., Kettner, L., Krandick, W., Mehlhorn, K., Schmitt, S., Wolpert, N.:622

A Descartes Algorithm for Polynomials with Bit-Stream Coefficients. In: Ganzha,623

V., Mayr, E., Vorozhtsov, E. (eds.) CASC. LNCS, vol. 3718, pp. 138–149. Springer624

(2005)625

15. Giusti, M., Lecerf, G., Salvy, B., Yakoubsohn, J.C.: On location and approximation626

of clusters of zeros: Case of embedding dimension one. Foundations of Computa-627

tional Mathematics 7(1), 1–58 (Feb 2007)628

16. Huber, B., Sturmfels, B.: A polyhedral method for solving sparse polynomial sys-629

tems. Mathematics of computation 64(212), 1541–1555 (1995)630

17. Imbach, R., Pan, V.Y., Yap, C.: Implementation of a near-optimal complex root631

clustering algorithm. In: Davenport, J.H., Kauers, M., Labahn, G., Urban, J. (eds.)632

Mathematical Software – ICMS 2018. pp. 235–244. Springer International Publish-633

ing, Cham (2018)634

18. Johansson, F.: Arb: efficient arbitrary-precision midpoint-radius interval arith-635

metic. IEEE Transactions on Computers 66, 1281–1292 (2017)636

19. Kobel, A., Rouillier, F., Sagraloff, M.: Computing real roots of real polynomials637

... and now for real! In: Proceedings of the ACM on International Symposium on638

Symbolic and Algebraic Computation. pp. 303–310. ISSAC ’16, ACM, New York,639

NY, USA (2016)640

20. Li, J., Cheng, J., Tsigaridas, E.: Local Generic Position for Root Isolation of Zero-641

dimensional Triangular Polynomial Systems. In: Koepf, W., E.Vorozhtsov (eds.)642

CASC 2012 - 14th International Workshop on Computer Algebra in Scientific643

Computing. Lecture Notes in Computer Science, vol. 7442, pp. 186–197. Springer,644

Maribor, Slovenia (Sep 2012)645

21. Mignotte, M.: On the distance between the roots of a polynomial. Applicable Al-646

gebra in Engineering, Communication and Computing 6(6), 327–332 (Nov 1995)647

22. Moore, R.E., Kearfott, R.B., Cloud, M.J.: Introduction to interval analysis. Siam648

(2009)649

23. Niang Diatta, D., Diatta, S., Rouillier, F., Roy, M.F., Sagraloff, M.: Bounds for650

polynomials on algebraic numbers and application to curve topology. arXiv e-prints651

arXiv:1807.10622 (Jul 2018)652

24. Strzebonski, A., Tsigaridas, E.: Univariate real root isolation in an extension field653

and applications. Journal of Symbolic Computation 92, 31 – 51 (2019)654

25. Wampler, I.C.W., et al.: The Numerical solution of systems of polynomials arising655

in engineering and science. World Scientific (2005)656

26. Xu, J., Burr, M., Yap, C.: An approach for certifying homotopy continuation paths:657

Univariate case. In: Proceedings of the 2018 ACM International Symposium on658

Symbolic and Algebraic Computation. pp. 399–406. ISSAC ’18, ACM, New York,659

NY, USA (2018)660

27. Yap, C., Sagraloff, M., Sharma, V.: Analytic root clustering: A complete algo-661

rithm using soft zero tests. In: The Nature of Computation. Logic, Algorithms,662

Applications. LNCS, vol. 7921, pp. 434–444. Springer (2013)663

28. Zhang, Z., Fang, T., Xia, B.: Real solution isolation with multiplicity of zero-664

dimensional triangular systems. Science China Information Sciences 54(1), 60–69665

(2011)666

22 R. Imbach et al.

Appendix : Error Analysis667

This Appendix contains all the proofs for our error analysis.
Section 3 is an excerpt.

668

Given f, f̃ ∈ C[z] and b, b̃ ∈ Cn, our basic goal is to bound the evaluation669

error670

‖f(b)− f̃(b̃)‖

in terms of δf := ‖f − f̃‖ and δb := ‖b− b̃‖. This will be done by induction on n.671

Our analysis aims not just to produce some error bound, but to express this error672

in terms that are easily understood, and which reveals the underlying inductive673

structure. Towards this end, we introduce the following β-bound function: if d is674

a positive integer and b ∈ C,675

β(d, b) :=

d∑
i=0

|b|i. (6)

A simple application of this β-bound is:676

Lemma 8. Let b ∈ C and f ∈ C[z]. If d is the degree of f , then677

|f(b)|≤ ‖f‖·β(d, b), |f ′(b)|≤ d‖f‖·β(d− 1, b).

Note that β(d, b) ≤ max
{
d+ 1, |b|

d+1−1
|b|−1

}
. We first treat the case n = 1. It will678

serve as the base for the inductive proof. Its proof requires a complex version679

of the Mean Value Theorem. Since this result is not well-known, we provide a680

statement and proof.681

Theorem 3 (Complex Mean Value Theorem). If f : C → C is holomor-682

phic, then for any a, b ∈ C,683

f(b)− f(a) = ω · (b− a) · f ′(ξ)

for some ξ in the line segment [a, b] and some ω ∈ C with |ω|≤ 1.684

Proof. This is a simple application of a similarly little known theorem of Darboux685

(1876) [11] which gives a finite Taylor expansion of f ; see Bünger’s formulation686

and proof in [3, Appendix]. For any k ≥ 1, the theorem says687

f(b) =

k−1∑
i=0

(b− a)i

i!
f (i)(a) + ω

(b− a)k

k!
f (k)(ξ)

for some ξ in the line segment [a, b] and ω ∈ C with |ω|≤ 1. Choosing k = 1,688

f(b) = f(a) + ω(b− a)f ′(ξ) or f(b)− f(a) = ω(b− a)f ′(ξ). Q.E.D.689

Clustering Complex Zeros of Triangular Systems of Polynomials 23

Corollary 9 (Complex Mean Value Inequality) For all a, b ∈ C, there is690

some ξ ∈ [a, b] such that691

|f(b)− f(a)|≤ |b− a|·|f ′(ξ)|.

Lemma 10 (Case n = 1).692

Let f, f̃ ∈ C[z], b, b̃ ∈ C, and d(f̃) ≤ d(f) ≤ d. If f̃ = f ± δf and b̃ = b ± δb,693

then:694

695

(i) |f(b)− f (̃b)| ≤ δb · ‖f ′‖·β(d, |b|+δb) where f ′ is the differentiation of f .

(ii) |f (̃b)− f̃ (̃b)| ≤ δf · β(d, |b|+δb)
(iii) |f(b)− f̃ (̃b)| ≤

[
δf + δb · ‖f ′‖

]
· β(d, |b|+δb).

696

Proof.697

(i) By the complex mean value inequality (Corollary 9):698

|f(b)− f (̃b)| ≤ |b− b̃|·|f ′(b± δb)|

≤ δb ·
d∑
i=1

∣∣ifi(|b|+δb)i−1∣∣
≤ δb · ‖f ′‖

d−1∑
i=0

∣∣(|b|+δb)i∣∣ .
(ii) Also699

|f (̃b)− f̃ (̃b)| =
∣∣∣ d∑
i=0

(fi − f̃i)̃bi
∣∣∣

≤ δf ·
d∑
i=0

∣∣∣̃bi∣∣∣
≤ δf · β(d, |b|+δb).

(iii) This follows from the triangular inequality700

|f(b)− f̃ (̃b)|≤ |f(b)− f (̃b)|+|f (̃b)− f̃ (̃b)|.

and the bounds in parts (i) and (ii).701

Q.E.D.702

The appearance of ‖f ′‖ in the above bound may be replaced by d‖f‖. Below,703

we develop similar bounds on partial derivatives in the multivariate case. For a704

general n > 1, we need to generalize the notations:705

f, f̃ ∈ C[z], b, b̃ ∈ Cn (7)

24 R. Imbach et al.

satisfying b̃ = b ± δb (i.e., b̃i = bi ± δbi for each i). Let d = d(f) (i.e.,706

di = degzi(f) for each i). The support of f is Supp(f) ⊆ Nn where f =707 ∑
α∈Supp(f) cαz

α where cα ∈ C \ {0}. Here, zα :=
∏n
i=1 z

αi
i . We assume that708

Supp(f̃) ⊆ Supp(f). Our induction variable is k = 1, . . . , n. For α ∈ Nn, let709

πk(α) := (0, . . . , 0,αk+1, . . . ,αn). E.g., if k = n then πk(α) = 0. Thus α −710

πk(α) = (α1, . . . ,αk, 0, . . . , 0). Next define Suppk(f) := {πk(α) : α ∈ Supp(f)}.711

With this notation, we can write712

f =
∑

α∈Suppk(f)

fαz
α (8)

where each fα ∈ C[z(k)]. E.g., if k = n then Suppk(f) = {0} and so f0 = f .713

Running Example. Consider714

f = xy + (x3 − 1)y2z + (x2 − y2)z3 (9)

where z = (x, y, z). Then Supp(f) = {110, 321, 021, 203, 023}. We can represent715

f using the support Supp1(f) = {010, 021, 003, 023} as follows: f = f010 · y +716

f021 · y2z + f003 · z3f023 · y2z3 where f010 = x, f021 = x3 − 1, f003 = x2, f023 =717

−1. Alternatively, using the support Supp2(f) = {000, 001, 003}, we can write718

f = f000 +f001 ·z+f003 ·z3 where f000 = xy, f001 = (x3−1)y2, f003 = (x2−y2).719

Using (8), the partial specialization f(b(k)) ∈ C[zk+1, . . . , zn] may be written720

f(b(k)) =
∑

α∈Suppk(f)

fα(b(k)) · zα

It follows that721

‖f(b(k))‖= max
α∈Suppk(f)

∣∣∣fα(b(k))
∣∣∣. (10)

The k-th partial derivative is ∂kf := ∂f
∂zk

=
∑
α∈Suppk(f)

(∂kfα)zα. Upon evalu-722

ation at b(k), its norm is given by723

‖∂kf(b(k))‖= max
α∈Suppk(f)

∣∣∣∂kfα(b(k))
∣∣∣. (11)

Using our running example (8), let k = 2. Then f = f000 + f001 · z + f003 · z3724

with f001 = xy, f001 = (x3 − 1)y2, f003 = (x2 − y2). Thus ∂2f = x + (x3 −725

1)2y · z − 2y · z3. If b(2) = (−1, 3), then ‖f(b(2))‖= max {3, 18, 8} = 18 and726

‖∂2f(b(2))‖= max {1, 12, 6} = 12.727

We are ready for the generalization of Lemma 10. Assume that we are given728

f, f̃ ∈ C[z] = C[z(n)] and b, b̃ ∈ C. Also the degree sequences satisfies d(f̃) ≤729

d(f), that is the inequality holds componentwise. Then we may define these730

quantities for k = 1, . . . , n:731

δkb := |bk − b̃k|,
δkf := ‖f(b(k))− f̃(b̃(k))‖ (with δ0f = ‖f − f̃‖),
βk := β(dk, bk)

β̃k := β(dk, |bk|+δkb).

Clustering Complex Zeros of Triangular Systems of Polynomials 25

Note that δk is a operator that must attach to some function f or vector b to732

denote the “kth perturbation” of f or b. We may restate Lemma 10(iii) using733

the new notations:734

Corollary 11 For a univariate f ,735

δ1f ≤
[
δ0f + δ1b · d1 · ‖f‖

]
β̃1. (12)

We now address the case of multivariate f :736

Lemma 12 (=Lemma 5 in Text).737

For n ≥ 1 and each k = 1, . . . , n:738

(i) ‖f(b(k))− f(b(k−1))(b̃k)‖ ≤ δkb · ‖∂kf(b(k−1))‖·β̃k.

(ii) ‖f(b(k−1))(b̃k)− f̃(b̃(k))‖ ≤ δk−1f · β̃k.

(iii) δkf ≤
[
δkb · ‖∂kf(b(k−1))‖+δk−1f

]
· β̃k.

739

Proof. We note that (iii) amounts to adding the inequalities of (i) and (ii):740

specifically, δkf ≤ ‖f(b(k))−f(b(k−1))(b̃k)‖+‖f(b(k−1))(b̃k)− f̃(b̃(k))‖. Thus we741

only have to verify (i) and (ii). This will be shown by induction on k.742

Suppose k = 1. This will be an application of Lemma 10(i) and (ii). We use743

the fact that f =
∑
α∈Supp1(f)

fαz
α, and f(b(k−1)) = f(b(0)) = f . Then (i)744

becomes745

‖f(b1)− f(b̃1)‖ = ‖
∑
α∈Supp1(f)

(fα(b1)− fα(b̃1))zα‖
= maxα∈Supp1(f)|fα(b1)− fα(b̃1)|
≤ maxα∈Supp1(f) δ1b · ‖f

′

α‖·β̃1 (by Lemma 10(i))

= maxα∈Supp1(f) δ1b · ‖∂1fα‖·β̃1

= δ1b · ‖∂1f‖·β̃1.

Similarly, (ii) follows from746

‖f(b̃1)− f̃(b̃1)‖ = ‖
∑
α∈Supp1(f)

(fα(b̃1)− f̃α(b̃1))zα‖
= maxα∈Supp1(f)

∣∣∣fα(b̃1)− f̃α(b̃1)
∣∣∣

≤ maxα∈Supp1(f) δfα · β̃1 (by Lemma 10(ii))

= ‖f − f̃‖·β̃1

= δ0f · β̃1.

Suppose k > 1. We now prove (i). The left hand side (LHS) ‖f(b(k)) −747

f(b(k−1))(b̃k)‖ is the maximum of748

|fα(b(k))− fα(b(k−1))(b̃k)| (A)749

26 R. Imbach et al.

where α ranges over Suppk(f). We can rewrite (A) in the form |fα(b(k−1))(bk)−750

fα(b(k−1))(b̃k)|. Applying Lemma 10(i), we can upper bound (A) by “δb·‖f ′‖·β(d, |b|+δb)”751

where “δb” here is |bk − b̃k|= δk, “‖f ′‖” is ‖∂kfα(b(k−1))‖ and “β(d, |b|+δb)”752

is βk. This establishes (i). Finally (ii) is proved by a similar invocation of753

Lemma 10(ii). Q.E.D.754

We now have a recursive bound ‖δnf‖. But we need to convert the bound to755

only depend on the data ‖b‖, ‖f‖, δkb. In particular, we remove any occurrences756

of ∂kfα with the help of the next lemma:757

Lemma 13 (= Lemma 6 in Text). For k = 1, . . . , n:758

(i) ‖f(b(k))‖≤ ‖f‖·
∏k
i=1 βi759

(ii) For α ∈ Suppk(f),760 ∥∥∥∂kfα(b(k−1))
∥∥∥ ≤ dk · ‖fα(b(k−1))‖.761

(iii) ‖∂kf(b(k−1))‖≤ dk · ‖f‖·
∏k−1
i=1 βi762

Proof. (i) The LHS of the inequality is equal to the maximum of |fα(b(k))| where763

α ∈ Suppk(f). First consider k = 1. In this case, fα is a univariate polynomial764

in z1 of degree at most d1, say fα(z1) =
∑d1

i=0 ciz
i
1 where c is a coefficient of f .765

By Lemma 8,766

|fα(b1)|≤ ‖fα‖β1 ≤ ‖f‖β1,

proving the result for k = 1. For k > 1, each fα is a polynomial in z(k),767

and we can write fα(b(k)) as fα(b(k−1))(bk). By induction, the polynomial768

fα(b(k−1))(zk) has norm at most ‖f‖·
∏k−1
i=1 βi. Moreover, its degree is at most769

dk. So evaluating it at bk gives a value of size at most ‖f‖·
∏k
i=1 βi.770

(ii) Write fα(b(k−1)) =
∑dk
i=0 ciz

i
k where ci ∈ C satisfies |ci|≤ ‖fα(b(k−1))‖.771

Thus ∂kfα(b(k−1)) is a polynomial with norm772 ∥∥∥∂kfα(b(k−1))
∥∥∥ ≤ dk‖fα(b(k−1))‖.

773

(iii) Letting α range over Suppk(f),774

‖∂kf(b(k−1))‖ = maxα‖∂kfα(b(k−1))‖
≤ maxα dk · ‖fα(b(k−1))‖ (from part (ii) second formula)
≤ dk ·maxα‖fα(b(k−1))‖
≤ dk · ‖f(b(k−1))‖
≤ dk · ‖f‖·

∏k−1
i=1 βi (from part (i))

Q.E.D.775

Putting it all together:776

Clustering Complex Zeros of Triangular Systems of Polynomials 27

Theorem 4 (=Theorem 2 in Text). For k = 1, . . . , n,777

δkf ≤
[
δ0f + ‖f‖·

k∑
i=1

di · δib
]
·
(k∏
i=1

β̃i

)
.

Proof. When k = 1, our formula is778

δ1f ≤
[
δ0f + ‖f‖·d1 · δ1b

]
β̃1.

follows from the case k = 1 of Lemma 12(iii). For k > 1, we use induction:779

780

δkf ≤
[
δkb · ‖∂kf(b(k−1))‖+δk−1f

]
· β̃k (By Lemma 12(iii)

≤
[
δkb · ‖∂kf(b(k−1))‖+

{
δ0f + ‖f‖·

∑k−1
i=1 di · δib

}
·
(∏k−1

i=1 β̃i

)]
· β̃k (By induction)

≤
[
δkb · dk · ‖f‖·

(∏k−1
i=1 βi

)
+
{
δ0f + ‖f‖·

∑k−1
i=1 di · δib

}
·
(∏k−1

i=1 β̃i

)]
· β̃k (By Lemma 13(iii))

≤
[
δkb · dk · ‖f‖+

{
δ0f + ‖f‖·

∑k−1
i=1 di · δib

}]
·
(∏k

i=1 β̃i

)
(since βi ≤ β̃i)

=
[
δ0f + ‖f‖·

∑k
i=1 di · δib

]
·
(∏k

i=1 β̃i

)
.

781

Q.E.D.782

The next lemma answers the question: given δL > 0, how can we ensure that783

δn−1f := ‖f(b(n−1))− f̃(b̃(n−1))‖

is upper bounded by δL?784

Lemma 14 (=Lemma 7 in Text).785

Given δL > 0, f, f̃ ∈ C[z] and b, b̃ ∈ Cn−1 where n > 1.
Let d = max(degzi(f)) and M = ‖b‖+1.
If

δf ≤ δL
2((d+1)Md)n−1 (*)

and

δb ≤ min(1, δL
2d‖f‖(n−1)((d+1)Md)n−1), (**)

then
δn−1f ≤ δL.

786

Proof. Note that δf := ‖f − f̃‖ in (*) and δb := ‖b− b̃‖ in (**). Since δb ≤ 1,787

we conclude that ‖b̃‖≤M . Using the bounds βk ≤ β̃k ≤ (d+ 1)Md, the bound788

of Theorem 4 for the case k = n− 1 becomes789

δn−1f ≤
(n−1∏
i=1

β̃i

)[
δf + ‖f‖·

n−1∑
i=1

(
di · δib

)]
≤
(

(d+ 1)Md
)n−1[

δf + d‖f‖δb(n− 1)
]
.

The inequalities (*) on δf , and (**) on δb, are designed to ensure that δn−1f ≤790

δL. Q.E.D.791

	Clustering Complex Zeros of Triangular Systems of Polynomials

