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Abstract

Let F(2) be an arbitrary complex polynomial. We introduce theal root clustering problem,
to compute a set of naturalclusters of roots off (2) in some box regioBy in the complex plane.
This may be viewed as an extension of the classical roottieol@roblem. Our contribution is
two-fold: we provide anficient certified subdivision algorithm for this problem, amel provide
a bit-complexity analysis based on the local geometry of tlo¢ clusters.

Our computational model assumes that arbitrarily good@pprations of the cocients of
F are provided by means of an oracle at the cost of reading tef@aents. Our algorithmic
techniques come from a companion paper Becker et al. (2017aee based on the Pellet test,
Gradfe and Newton iterations, and are independent of Schonhagktting circle method. Our
algorithm is relatively simple and promises to Baent in practice.

1. Introduction

The problem of computing the roots of a univariate polyndriidhas a venerable history
that dates back to antiquity. With the advent of modern cainguthe subject received sev-

eral newfound aspects McNamee and Fan (2013); Pan/(199Partitular, the introduction
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of algorithmic rigor and complexity analysis has been ewely fruitful. This development
is usually traced to Schonhage’s 1982 landmark pagamtamental Theorem of Algebra in
Terms of Computational Complexii@chonhage (1982). Algorithms in this tradition are usual
described as “exact andfieient”. Schonhage considers the problem of approximatgnpe
mial factorization, that is, the computation of approximasZ of the rootsz of F such that
IF — Fll. < 272 - ||IF|l1, whereF(2) := Icf(F) - [T,(z-Z) andb is a given positive integer. The
sharpest result for this problem is given by%ﬁ(ﬁﬁzméoﬂém 2.1.1)[(Pah, 1997, p.196).
Hereafter, we refer to the underlying algorithm in this tteso as “Pan’s algorithm”. Under
some mild assumption o (i.e.,|z| < 1 andb > nlogn), Pan’s algorithm uses onf9(nlogb)
arithmetic operations with a precision bounded@®p), and thusO(nb) bit operations. This
result further implies that the complexity of approximatail z'’s to any specifiedb/n bits, with

b > nlogn, is alsoO(nb) 2, Corollary 2.1.2). Her®, means we ignore logarithmic
factors in the displayed parameters. In a model of compmrativhere it is assumed that the
codficients of F are complex numbers for which approximations are given up demanded
precision, the above bound is tight (up to poly-logarithfaictors) for polynomial factorization
as well as for root approximation.

The preceding paragraph is concerned witht approximationi.e., computing; such that
[Z — z| < & for specifieds > 0. Our main focus is the stronger problemrobt isolations i.e.,
computing &, r;) such thatr; < ¢ and the disc&\(z, r;) centered a¥ of radiusr; are pairwise
disjoint and containg. A central focus in exact andficient root approximation research has
been to determine the complexityieblatingall the roots of aintegerpolynomialF (2) of degree
nwith L-bit coeficients. We call this theenchmark problemin|Sagraldf and Yap\(201/1) since
this case is the main theoretical tool for comparing rodsison algorithms. Although this paper
addresses complex root isolation, we will also refer to #latedreal benchmark problem
which concerns real roots for integer polynomials.

Root isolation can be reduced to root approximate. Schgmbhowed that, for a square-free
polynomialF, it suffices to choose b of sizeQ(n(logn + L)) to ensure that the approximations
7 are isolated with 2 taken as the root separation boundrof Together with Pan’s result on
approximate polynomial factorization, this yields a coexity of O(n’L) for the benchmark

roblem. Interestingly, the latter bound was not explycgttated until recentlml.,
, Theorem 3.1).

Mehlhorn et all_ Mehlhorn et all_(2015) extend the latter lteu(not necessarily square-
free) polynomiald= with arbitrary complex coféicients for which the number of distinct roots
is given as an additional input. That is, Pan’s algorithmsedias a blackbox with successively
increasing precisiom to isolate the roots oF. For the benchmark problem, this yields the
boundO(n® + n?L); however, the actual cost adapts to the geometry of thesraoid for most
input polynomials, the complexity is considerably loweartithe worst case bound.

We further remark that it seems likely that the boud@h?L) is also near-optimal for the
benchmark problem because it is generally believed thakRégorithm is near-optimal for
the problem of approximately factorizing a polynomial withmplex coéicients. However,
rigorous arguments for such claims are missing.

Until recently, it had been widely assumed that near-odthnands need the kind of “mus-
cular” divide and conquer techniques such as the splittirglecmethod of Schénhage (which
underlies most of the previous fast algorithms in the comiplditerature). These algorithms
are far from practical (see below). So, also the boOfif(n + L)) achieved by Mehlhorn et al.
Mehlhorn et al.[(2015) is mainly of theoretical interest las algorithm uses Pan’s method as a
blackbox. Instead of these near-optimal algorithms, ifacers interested in a priori root iso-
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lation invariably rely on subdivision methods. The claabgxample is real root isolation based
on Sturm sequences (1829). For complex roots, Weyl (1924)daced the quadtree method for
Two types of subdivision algorithms are actively investigghcurrently: theDescartes Method

LCQﬂms_and_Akﬂlalsl(lg'/th Lane and Riesenfeld (1981);iRenand Zimmermar

(2012) (2015) and tHevaluation Method

(2009 2); Sharma andl Yap (2012); Be¢R012) LS_agr_aldS_a.ndlab
.ZQ:Li) Llsamalh_ei_élL(ZQllJJﬂaln_{,zﬂ)OO) See Sa@frafud Yap [(201/1) for a comparison of
Descartes and Evaluation (or Bolzano) methods.

The development of certain tools, such as the Mahler-Dawgnpot boundm
(1985); Du et al..(2007), have been useful in deriving tighitds on the subdivision tree size for
certain subdivision algorithms Eigenwillig et al. (200Burr and Krahmet (2012); Sharma and iap

). Moreover, most of these analyses can be unified uhdéicontinuous amortization”
framework Burr et al. (2009); Burt (2016) which can even iparate bit-complexity. These
algorithms only use bisection in their subdivision, whieless destined to lag behind the above

“near optimal bounds” by a factor of To overcome this, we need to combine Newton iteration
with bisection, an old idea that goes back to Dekker and Hretite 1960s. I Pan (2000), Pan
showed that theoretically, the near optimal bounds can heaed with subdivision methods.
In recent years, a formulation of Newton iteration due to dioAbbott m) and Sagrdio
) has proven especially useful. This has been adapsszhieve the recent near-
optimal algorithms of Sagrafband Mehlhorn Sagraft(2012); Sagralfi and Mehlhorn|(2015)
for real roots, and Becker etlal. (2017) for complex roots.

The Root Clustering Problem. In this paper, we are interested in root clustering. The
requirements of root clustering represents a simultanstvaagthening of root approximation
(i.e., the output discs must be disjoint) and weakening of rsolation (i.e., the output discs
can have more than one root). Hereafter, “root finding” iefgenerally to any of the tasks of
approximating, isolating or clustering roots.

For an analytic functiorr : C — C and a complex dis& < C, let Z(A; F) denote the
multiset of roots of in A and #Q; F) counts the size of this multiset. We wrii&A) and #{\)
sinceF is usually supplied by the context. Any non-empty set of sadtthe formZ(A) is called
acluster. The discA is called anisolator for F if #(A) = #(3A) > 0. Here kA = k- A denotes
the centrally scaled version &f by a factork > 0. The setZ(A) is called anatural cluster
whenA is an isolator. A set of roots could contai®(n®) clusters, but at most2- 1 of these
are natural. This follows from the fact that any two natulakters are either disjoint or have
a containment relationship. The benchmark problem is aaylptoblem because it concerns
all roots of the polynomiaF(2); we now address local problems where we are interested in
finding only someroots of F(2). For instance, Yakoubson Yakoubso 000) gave a method t
test if Newton iteration from a given point will converge tahster. | I.|_(TQ13), we
introduced the followingdocal root clustering problem: given Hz), abox B ¢ C ande > 0, to
compute a sefi(Aj, m) : i € |} where theA;’s are pairwise disjoint isolators, each of radigse
and m = #(A;) > 1, such that

Z(Bo) < | Z() ¢ Z(@B).

We call the sef = {A; : i € |} (omitting them’s) asolution for the local root clustering instance
(F(2),Bo, ). The roots in By \ By are said to badventitious because we are really only inter-
ested in roots irBy. SUppos&s andS are both solutions for an instande(), Bo, €). If S C S,
then we callS an augmentation @. Thus anyA € S\ S contains only adventitious roots.
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We solved the local root clustering problent in Yap étlal. @dbr any analytic functior,
provided an upper on #8p) is known, but no complexity analysis was given. Let us seg our
formulation is reasonable. It is easy to modify our algaritbo that the adventitious roots in the
output are contained in (£ 6)Bo for any fixeds > 0. We choos@ = 1 for convenience. Some
6 > 0 is necessary because in our computational model wher foximate coficients of
F are available, we cannot decide the implicit “Zero Problafaf) ) necessary to decide if
the input has a root on the boundaryRyf or to decide whethek contains a root of multiplicity
k > 1. Thus, root clustering is the best one can hope for.

1.1. Main Result

In this paper, we describe a local root clustering algoritmd provide an analysis of its bit-
complexity. Standard complexity bounds for root isolatéye based osynthetic parameters
such as degree and bitsizel of the input polynomial. But our computational model fofz)
has no notion of bit size. Moreover, to address “local” coemil/ of roots, we must invoke
geometric parameterssuch as root separation Sagfi[2012); Sagralfi and Mehlhorn (2015).
We will now introduce new geometric parameters arising faaster considerations.

AssumeF(2) hasm distinct complex roots,, . . ., zy where eaclz; has multiplicityn; > 1,
thusn = er‘ll n; is the degree of (2). Let the magnitude of the leading dteient of F be> 1/4,
and the maximum cdicient magnitudéF||., be bounded by for somere.

Letk be the number of roots counted with multiplicities iBg An inputinstancek(2), B, )
is callednormal if k > 1 ande < min{1, !‘%} with wy the width ofBy. For any setJ C C, let
[0g(VU) := max(, logsup(z : z€ U)).

Our algorithm outputs a set of discs, each one contains aalatiuster. We provide a bit
complexity bound of the algorithm in terms of the output.

Theorem A Let S be the solution computed by our algorithm for a normstance(F(2), Bo, €).
Then there is an augmentati@= {D; : i € I} of S such that the bit complexity of the algorithm
is

~ 5

O(n? log(Bo) + N ZDeg Lp) (1)

with
Lo = Ok +n-10g(éo) + ko - (k+log(e™) +log([ [, o ~2z™) )

where lp = #(D), and£p is an arbitrary root in D. Moreover, an L-bit approximation of the
cogficients of F is required with 1 := max, g Lp.

The solutionS in this theorem is called aaugmented solutionfor input (F(2), Bo,¢). Each
naturale-clusterD € S is an isolator of radius . From [1), we deduce:

COROLLARY TO THEOREM A
The bit complexity of the algorithm is bounded by

O(n*(z + k + m) + nklog(z™) + nlog| GenDiscE.)| ™). (3)
In case F is an integer polynomial, this bound becomes
O(r(ze + k + m) + nklog(s ™). (4)
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The bound[(¥) is the sum of two terms: the first is essentiktyrtear-optimal root bound, the
second is linear ik, n and [ogs™1). This suggests that Theorem A is quite sharp.

On strong e-clusters. Actually, the naturak-clusters in théS have some intrinsic property
captured by the following definition. Two roatsz of F ares-equivalent, writtenz < Z, if there
exists a diskA = A(r,m) containingz andz such thatr < 5 and #Q\) = #(114- A). Clearly
A is an isolator; from this, we see thatequivalence is an equivalence relationship. We define
a strong e-cluster to be any suclz-equivalence class. Unlike natural clusters, any two gtron
e-clusters must be disjoint.

Theorem B _
Each natural cluster 3= S is a union of strong-clusters.

This implies that our algorithm will never split any stroagluster. It might appear surprising
that our “soft” techniques can avoid accidentally splgtenstrongs-cluster.

1.2. What is New

Our algorithm and analysis is noteworthy for its wide apgitity: (1) We do not require
square-free polynomials. This is important because weaacompute the square-free part of
F(2) in our computational model where the ¢oeents ofF(2) are only arbitrarily approximated.
Most of the recent fast subdivision algorithms for real s®agraldf (2012)

(2015) require square-free polynomials. (2) We addressoited root problem and provide a
complexity analysis based on the local geometry of roots.nyaractical applications (e.g.,
computational geometry) can exploit locality. The comparpapet Becker et hl, (2017) also
gives a local analysis. However, it is under the conditicat the initial box is not too large or
is centered at the origin, and an additional preprocessenis needed for the latter case. But
our result does not depend on any assumption8gnor require any preprocessing. (3) Our
complexity bound is based on cluster geometry instead dvViohaal roots. To see its benefits,
recall that the bit complexity in Becker et al. (2017) invedva term Tog(z)~* whereo(z) is
the distance to the nearest root(). If z is a multiple rootg-(z) = 0. If square-freeness is not
assumed, we must replagéz) by the distance(z) to the closest roct z (soo*(z) > 0). But

in fact, our bound in[{1) involve$p := 109 [1,¢p l€ — z|™™ which depends only on the inverse
distance from a root within a clusté& to the other roots outside @, which is smaller than
logo*(z)~. So the closeness of roots witiihhas no consequence @8.

Why can’t we just run the algorithm in Becker et al. (2017) byeging the stopping criteria
so that it terminates as soon as a compoReistverified to be a natural-cluster? Yes, indeed
one can. But our previous method of charging the work aststiaith a boxB to a root¢(B)
may now cause a cluster of multiplicityto be charged a total a(k) times, instead 0D(1)
times. Cf. Lemma 11 below wheggB) is directly charged to a cluster.

1.3. Practical Significance

Our algorithm is not only theoreticallyfiécient, but has many potential applications. Local
root isolation is useful in applications where the rootsraérest lie in a known locality, and
this local complexity can be much smaller than that of findiigoots. From this perspective,
focusing on the benchmark problem is misleading for suchiegtfons.

We believe our algorithm is practical, and plan to implemiéntMany recent subdivision
algorithms were implemented, with promising results: Rismiand Zimmermarn (2004) en-
gineered a very fcient Descartes method algorithm which is widely used in@oenputer
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Algebra community, through Maple. THeEVAL algorithm in%ﬂaﬂﬂaﬁ [(2011) was
implemented I@tﬁﬁhf&_&_a Kamath et al. (2011). Be r (2012) gave a Maple
implementation of theREVAL algorithm for isolating real roots of a square-free realypot
mial. Most recently, Kobel, Rouillier and Sagrél@ implemented théaNewDsc algorithm from
Sagraldf and Mehlhorh|(2015), showing its all round superiority; specially shines against
known algorithms when roots are clustered.

Although there are several fast divide-and-conquer algmd Reneghf (1987); Neand Reif
(1996);| Kirrinnis (1998), there is only one reported “praaif principle” implementation by
Xavier ... [WIKI]. Pan notesLL_Bili 02, p. 703)Our algorithms are quite involved, and
their implementation would require a non-trivial work, orporating numerous known imple-
mentation techniques and tricksurther 2, p. 705%ince Schonhage (1982b) already
has 72 pages and Kirrinnis (1998) has 67 pages, this rulecaaelf-contained presentation of
our root-finding algorithr. Our paper Becker et al. (2017) is self-contained with @pages,
and explicit precision bounds for all numerical primitivese use asymptotic bounds only in
complexity analysis (since it has no consequence for impigations) but not in computational
primitives.

2. Preliminary

We review the basic tools from Becker et al. (2017). Theflocients ofF are viewed as an
oracle from which we can request approximations to any désibsolute precision. Approx-
imate complex numbers are represented by a pair of dyadibatsnwhere the set of dyadic
numbers (or BigFloats) may be deno%[c%] ={n2™:n,me Z}. We formaliz8 this as follows:

a complex number € C is anoracular number if it is represented by aoracle function
Z:N - Z[%] with somer > 0 such that for alL € N, [ZL) - Z < 2" andZL) hasO(r + L)
bits. The oracular number is said to beegular in this case. In our computational model, the
algorithm is charged the cost to read th€Xe + L) bits. This cost model is reasonable wien
is an algebraic number because in this cafle) can be computed in tim&(r + L) on a Tur-
ing machine. Following Becker etlal. (2017); Yap et al. (2018 can construct a procedure
SoftCompare(z, z) that takes two non-negative real oracular numbeandz with z, +z > 0,
that returns a value i1, 0, —1} such that ifSoftCompare(z, z) returns O thergzg <z < %Zg;
otherwiseSoftCompare(z, z) returnssign(z; — z) € {+1,-1}. Note thatSoftCompare is
non-deterministic since its output depends on the undeglgracular functions used.

Lemma 1 (seel(Becker et al., 2017, Lemma 4) Mk@zols)).

In evaluatingSoftCompare(z, z):
(a) The absolute precision requested from the oracular renh and z is at most

L = 2(log(max(, z.) ™) + 4).

(b) The time complexity of the evaluatiorOér + L) where g, z arer-regular.

The critical predicate for our algorithm is a test from Pe(E881) (seé Marden (1949)). Let
A = A(m,r) denote a disc with radius> 0 centered an € C. Fork = 0,1,...,nandK > 1,

3 This is essentially the “bit-stream model”, but the termriantunate because it suggests that we are getting succes-
sive bits of an infinite binary representation of a real num¥ée know from Computable Analysis that this representatio
of real numbers is not robust.
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define thePellet testTy(A, K) = Tk(A, K; F) as the predicate

n
R > K- 37 IR
i=0izk

Here F;(m) is defined as the Taylor ctiicient ')(m). Call the testTk(A, K) a successf the
predicate holds; elsefailure. Pellet’'s theorem says that f&r > 1, a success implies &) =

k. Following|Yap et al.|(2013); Becker etlal. (2017), we define tsoft version” of Pellet test
T(A) to mean thaBoftCompare(z,z) > 0 wherez, = |[F(m)r“ andz = X, IFi(mr'.
We need to derive quantitative information in case the seftePtest fails. Contra-positively,
what quantitative information ensures that the soft Pédist will succeed? Roughly, it is that
#(A) = #(rA) = k for a suitably large > 1, as captured by the following theorem:

THEOREM 2.
Let k be an integer witld < k < n = degfF) and K > 1. Let g = 7kK, and1; = 3K(n—K) -
max{1, 4k(n — K)}.
If #(A) = #(c111A) = k, then
Tk(c1A, K, F) holds.

The factorcy A5 is O(n*) in this theorem, an improvementfro@(n5) in|Becker et all.[(2017).
A proof is given in Appendix A. In application, we chooke= 2 and thusc; - 4; < (7Kn) .
(12Kn®) = 18M*. The preceding theorem implies that it¥j(= #(18N*A) thenT(5nA, 3, F)
holds. This translates into the main form for our applicatio

927

COROLLARY

If k = #(&nA) = #(18n°A) then T(A, 2; F) holds.

’21

In other words, under the hypothesis of this Corolla;fg(,ALsucceeds. We need one final
extension: instead of applyinfk(A) directly onF, we applyTk(A(0O, 1)) to the Nth Gradfe

iterations ofF4(2) := F(m + rz). Here,A = A(m,r) andN = [log(1+ logn)] + 4 = OEIOE Io%nz
The result is called thGraeffe-Pellet test denotedTC(A) = TE(A; F). As in l.

(2017) we combin&S(A) for allk = 0,1,..., nto obtain
T

which returns the uniqule€ {0, ..., n} such thafFE(A) succeeds, or else return%. We say that
the testT(A) succeedsff T$(A, K) > 0.
The key property oﬂ'iG(A) is (Becker et dl., 2017, Lemma 6):

Lemma 3 (Soft Gradfe-Pellet Test).
Letps = Z—f ~ 0.943andp; = 2.

(a) If TS(A) succeeds the#(A) = k
(b) If TG(A) fails then#(oaA) > #(p1A).

The bit complexity of the combined teE€(A) is asymptotically the same as any individual

test (Becker et all, 2017, Lemma 7):




Lemma 4. Let
L(A, F):=2- (4 + log(lIF all))-

(&) To evaluatefE(A), it is syficient to have an M-bit approximation of each gasent of F
where M= O(nlog(m.r) + ¢ + L(A, F)). B
(b) The total bit-complexity of computiig(A) is O(nM).

2.1. Box Subdivision

Let A,B ¢ C. Theirseparationis Sepf, B) := inf{la—b| : a € A,b € B}, and radd), the
radius of A, is the smallest radius of a disc containiigAlso, A denotes the boundary éf

We use the terminology of subdivision trees (quadtreesk&eet al. [(2017). All boxes are
closed subsets df with square shape and axes-aligned. Béh, w’) denote the axes-aligned
box centered ain of width w(B) :=w'. As for discs, itk > 0 andB = B(m,w’), thenkB denotes
the boxB(m, kw'). The smallest covering disc &m, w’) is A(m, \/izw’). If B = B(m w) then
we defineA(B) as the discA(m, 2w’). ThusA(m, \/izvv’) is properly contained im\(B). Any
collection S of boxes is called a (box3ubdivision if the interior of any two boxes i are
disjoint. The uniorJ S of these boxes is called tiseipport of S. Two boxesB, B’ areadjacent
if BU B’ is a connected set, equivalentB/n B’ # 0. A subdivisionS is said to beconnected
if its support is connected. BomponentC is the support of some connected subdivisihmne.,
c=yUs.

Thesplit operation on a boB creates a subdivisiasplit(B) = {B, ..., B4} of B compris-
ing four congruent subboxes. EaBhis achild of B, denotedB — B;. Therefore, starting from
any boxBy, we may splitBy and recursively split zero or more of its children. After aitén
number of such splits, we obtairsabdivision treerooted atBy, denoted sundil Bo)-

Theexclusion testfor a boxB(m, w) is TZ(A(m, &) = TE(A(B)). We say thaB(m, w) is
excludedif this test succeeds, andcluded if it fails. The key fact we use is a consequence of
Lemmé3 for the tesTS(A):

CororrLary 5. Consider any box B: B(m, w).
(a) If B is excluded, the#(A(m, 2)) = 0, so#(B) = 0.
(b) If B is included, thed#(A(m, w)) > 0, so#(2B) > 0.

2.2. Component Tree

In traditional subdivision algorithms, we focus on the cdewfiy analysis on the subdivision
tree TsubdiBo). But for our algorithm, it is more natural to work with a trednose nodes are
higher level entities called components above.

Typical of subdivision algorithms, our algorithm consigtseveral while loops, but for now,
we only consider the main loop. This loop is controlled by #utive queueQ;. At the start
of each loop iteration, there is a set of included boxes. Th&imally connected sets in the
union of these boxes constitute our (current) componentsl the boxes in the subdivision of
a componenC are called theconstituent boxesof C.  While Q; is non-empty, we remove
a componen€C from Q, for processing. There are 3 dispositions @r We try to putC to
the output queue Qo Failing this, we try aNewton Step If successful, it produces a single
new componen€’ c C which is placed inQ;. If Newton Step fails, we apply Bisection
Step. In this step, we split each constituent box@fand apply the exclusion test to each of its
four children. The set of included children are again orgediinto maximally connected sets
Ciy,...,Ci (t = 1). Each subcompone@t is either placed irfQ; or Qqis, depending on whether
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C; intersects the initial boBy. The components iQqjs are viewed asliscardedbecause we do
not process them further (but our analysis need to ensutetier components are figiently
separated from them in the main loop). We will use the notafic» C’ or C — C; to indicate
the parent-child relationship. Themponent treeis defined by this parent-child relationship,
and denoted comp In[Becker et al.[(2017), the root of the component treByiswe take3 By as
the root to address boundary issues. So we Writg, = ‘Tcomr(;f’1 Bo) to indicate thaﬁ Bg is the
root. The leaves df compare either discarded (adventitious) or output.

For dficiency, the set of boxes in the subdivision of a compo@ntust maintain links to
adjacent boxes within the subdivision; such links are easydintain because all the boxes in a
component have the same width.

3. Component Properties

Before providing details about the algorithm, we discusaearitical data associated with
each componer@@. Such data is subscripted By We also describe some qualitative properties
so that the algorithm can be intuitively understood. Fidlinmay be an aid in the following
description.

2Bo

Ci

°

[®]

] Td
&

Figure 1: Three componen®, Cy, C3: blue dots indicate roots &f, pink boxes are constituent boxes, and the non-pink
parts of eactBc is colored cyan. OnlZ3 is confined.

(C1) Allthe constituent boxes of a component share a commdthydenoted byvc.

(C2) Our algorithm never discards any bBxf B contains a root irBy; it follows that all the
roots inBy are contained ith ) C whereC ranges over components@p U Q1 U Qo (at
any moment during our algorithm).

(C3) Recall that a zerp of F(2) in 2By \ By is called adventitious. A compone@tis adventi-
tious if C N B is empty (placed iQqis). We say a componeftis confinedif Cn 6(;51 Bo)
is empty; otherwise it is non-confined. Figlite 2 shows thé§erént kinds of components.
Note that after the preprocessing step, all componentsoenfined.

(C4) IfC,C’ are distinct active components, then their separationGS & is at least maywe, We: }.
If Cis an adventitious component, then Sgiy) > wc. If Cis a confined component,
then SepC, d(2By)) > We.



(C5) LetC* be theextended componentlefined as the sét/g.s. 2B. If C andC’ are distinct
components, the@* andC’* are disjoint. Moreover, i€ is confined, then #§) = #(C")
(see Appendix B).

(C6) Define thecomponent boxBc to be any smallest square containi@gubject toBc C
(5/4)By. DefineWc as the width oB¢c and the disa\¢ := A(Bc). DefineR¢ as the radius
of Ac; note thaRs = 3We.

(C7) Each component is associated with a “Newton speed”tédrzyNc with Nc > 4. A key
idea in the Abbot- Sagrafbtechnique for Newton-Bisection is to automatically upddte
if Newton fails, the children o€ have speed mf{xl, \/N_C} else they have speedﬁ.

(C8) Letkc :=#(Ac), the number of roots aZZ(Ac), counted with multiplicity Note thatkc is
not always available, but it is needed for the Newton steptrwo
determinekc before the Newton Step in the main loop.

(C9) A componen€C is compactif We < 3we. Such components have many nice properties,
and we will require output components to be compact.

In recap, each compone@tis associated with the data:

We, We, Mc, Be, Ac, Re, ke, Ne.

(5/4)Bo

Cs

Cy

Cy

Cz

Figure 2: Four types of component€; is not confined, the rest are confingdj andC;, are adventitiousC3 may
contain adventitious root€}4 has no adventitious roots.

4. The Clustering Algorithm

As outlined above, our clustering algorithm is a processctmrstructing and maintaining
components, globally controlled by queues containing camepts. Each compone@trepre-
sents a non-empty set of roots. In addition to the qu€ye®ou, Quis above, we also needuae-
processing queud)y. FurthermoreQ; is a priority queue such that the operator— Q;.pop()
returns the component with the largest witlth.

We first provide a high level description of the two main suliiwes.

10



The Newton StepNewtor(C) is directly taken from Becker etal. (2017). This procedure
takes several argumentdéewtor{C, Nc, k¢,
Xc). The intent is to perform an ordkg Newton step:

F(xc)
Fr(xc)

We then check whetheg (C) is actually contained in the small dia¢ := A(x;,r’) where

Xc — Xc — ke

r’:= max{e, wc/(8Nc)} . (5)

This amounts to checking Whethfkfi (A”) succeeds. If it does, Newton test succeeds, and we

return a new componef that contains\’ n C with speedNc := (N¢)? and constituent width
Wer = Z‘A’T‘i The new componel@’ consists of at most 4 boxes aWg: < 2we. In the original

papel Becker et al. (20117, was simply set tcg”—cc; but (8) ensures that > . This avoids the

overshot of Newton Step and simplifies our complexity araly 'Fki(A') fails, then Newton
test fails, and it returns an empty set. In the following estitwe simply denote this routine as
“Newtor{C)".

TheBisection StepBisec{C) returns a set of components. Since it ifelient from that in
IBecker et al..(2017), we list the modified bisection algaritim Figure[3.

We list the clustering algorithm in Figuié 4.

Remarks on Root Clustering Algorithm:
1. The steps in this algorithm should appear well-motivd&gter Becker et al. (2017)). The
only non-obvious step is the teatVc < 3wc” (colored in red).We may sa§ is compactif this
condition holds. This part is only needed for the analy$is;dorrectness of the algorithm is not
impacted if we simply replace this test by the Boolean camataue (i.e., allowing the output
components to hawdlc > 3wg).
2. We ensure thallc > ¢ before we attempt to do the Newton Step. This is not essebtial
simplifies the complexity analysis.

Based on the stated properties, we prove the correctness afgorithm.

Tueorem 6 (Correctness)The Root Clustering Algorithm halts and outputs a collatt{@dc, kc) : C € Qout}
of pairwise disjointe-isolators such thaZ(Bo) S Uceq,,, <(Ac) S Z(2Bo).

Proof. First we prove halting. By way of contradiction, assuifigm, has an infinite path
%BO =Cp —» C; —» C, — ---. After O(logn) steps, theC;’s are in the main loop and satisfies
#(Ci) = #(C") = 1. Thus theC; converges to a poigtwhich is a root ofF(2). Fori large enough,
Ci satisfiesWe, < 3wg, andwg, < . Moreover, ifC; is small enough, A¢, will not intersect
other components. Under all these conditions, the algaritould have output such@. This
is a contradiction.

Upon halting, we have a set of output components. We needoteeghat they represent
a set of pairwise disjoint naturatclusters. Here, it is important to use the fact tatis a
priority queue that returns componefitin non-increasing width\Vc. Suppose inductively, each
component in th&, is represents a naturaicluster, and they are pairwise disjoint. Consider
the next componer@ that we output: we know thatAd does not intersect any components in
Q1 U Qyis- But we also know that N 4Ac = 0 for anyC’ in Qqy. We claim that this implies that
3Ac NC’ must be empty. To see this, observe Wat< W because of the priority queue nature
of Q;. Draw the disc Ac/, and notice that the center A&t cannot intersect&:. Therefore,

11



Bisec{C)
OUTPUT: a set of components containing all
the non-adventitious roots in C
(but possibly some adventitious ones)
Initialize a Union-Find data structure U
for boxes.
For each constituent box B of C
For each child B’ of B
If (TS(A(B)) fails)

U.add(B’)
For each box B” € U adjacent to B’
U.union(B’, B”)

Initialize Q to be empty.
specialFlage— true
If (U has only one connected component)
specialFlag— false
For each connected component C’ of U
If (C’ intersects Bp) // C’ not adventitious
If (specialFlag

Ne =4
Else
No = max{4, \/N_c}
Q.add(C’)
Else
Quis-add(C’)
Return Q

Figure 3: Bisection Step

3Ac cannot intersech;.. This proves thaC can be added tQ,.: and preserve the inductive
hypothesis.

It is easily verified that the roots represented by the codfammponents belong t%Bo C
2By. But we must argue that we cover all the rootBn How can boxes be discarded? They
might be discarded in the Bisection Step because they stditice@xclusion test, or because they
belong to an adventitious component. Or we might replacendireecomponent by a subcom-
ponent in a Newton Step, but in this case, the subcomponestifged to hold all the original
roots. Thus, no roots iBy are lost. Q.E.D.

We now show some basic properties of the components prodiutied algorithm.

LEMMA 7.

Let C be a component.

(a) If C is confined with k= #(C), then C has at modk constituent boxes. Moreover,c\W&
3k - Wc.

(b) If Z(C) is strictly contained in a box of widthgythen C is compact: W< 3wc.

12



Root CLUSTERING ALGORITHM
Input: Polynomial F(2), box By CC and >0
Output: Components in Quy representing
natural e-clusters of F(2 in 2Bp.
> Initialization
Qout & Q1  Qqis « 0.
Qo < {(5/4)Bo} // initial component
> Preprocessing
While Qp is non-empty
C « Qo.pop)
If (C is confined and Wc < W(Bp)/2)
Q:.add(C)
Else

Qo.add(Bisec{C))
> Main Loop
While Q; is non-empty
C « Qi.pop() // C has the largest We in Qg
If (AAcNC =0 for all C’ € Q1 U Quis)
ke — T8(Ac)
If (kc>0) // Note: kc#0.
If (We > &)
C’ « Newtor{C)
If (C"#0)
Q:.addC’); Continue
Else if (Wg <3wc) // C is compact
Qout-addC); Continue
Q:.add(Bisec{C))

Return Qout

Figure 4: Clustering Algorithm

(c) If there is a non-special pat€; — - -- — C) where G is special, then w < AKIV?.

Proof. Parts (a) and (b) are easy to verify. Part (c) is essentiediyf(Becker et dll, 2017,
Theorem 4) with a slight dlierence: we do not need @ to be equal to the roo}Bo. That is
because our algorithm resets the Newton speed of the specgionen€; to 4. Q.E.D.

The next lemma addresses the question of lower bounds ondittewy: of boxes in compo-
nents. IfC is a leaf, them < &, but how much smaller thancan it be? Moreover, we want to
lower boundac as a function og.

Lemma 8. Denote k= #(2By).

(a) If C is a component in the pre-processing stage, th@mv&%.

(b) Suppose €— - -- — C; is a non-special path with ¥ < &. Then it holds
Wc,
Wc,

< 57k.
13




(c) Let C be a confined leaf iﬁcompthen
g, 1 \k
we > 571
A proof of Lemmd is given in Appendix B.
We will need what we call themall € assumption namelye < min{1, w(Bg)/(96n)}. If this

assumption fails, we can simply replacby £ = min{1, w(Bo)/(96n)} to get a valid bound from
our analysis. This assumption is to ensure that-otuster is split in the preprocessing stage.

5. Bound on Number of Boxes

In this section, we bound the number of boxes produced bylgorithm. All the proofs for
this section are found in Appendix B.

The goal is to bound the number of all the constituent boxeh@tomponents il comp
But, in anticipation of the following complexity analysiae want to consider aaugmented
component tree"fComp instead of7 comp

Let ‘?compbe the extension of compin which, for each confined adventitious components in
T comp We (conceptually) continue to run our algorithm until thigally produce output compo-
nents, i.e., leaves GAFcomp As before, these leaves have at most 9 constituent boxes.

SinceC’ — C denote the parent-child relation, a pattVigmp,may be written

P=(Ci—Cp— o Cy). 6)

We writew;, R;, Ni, etc, instead ofvc,, R, N, etc.

A componen(C is specialif C is the root or a leaf o‘ﬁomp or if #(C) < #(C’) with C’ the
parent ofC in 7comp Otherwise it isnon-special This is a slight variant df Becker etldl. (2017).
We callP anon-special path led byC,, if eachC; (i = 2,..., s) is hon-special, i.e., &) =

#(Ci-1). Thespecial component tree7j,, is obtained frorrf?comp by eliminating any non-
special components while preserving the desceriaecgstor relationship among special nodes.
We now consider the length of an arbitrary non-special paih &). In (Becker et al., 2017,
Lemma 10), it was shown that= O( logn + log(log(W(By)) - 10g(cr (28)‘1))). We provide an
improved bound which is based on local data, namely, the watiws only.
We definesmax to be the maximum length of a non-special patlﬁemp

Tueorem 9. The length of the non-special palB (6) satisfies
s= 0O(loglog M + logn).
Ws

Particularly,
B
Smax = O( logn + log log M)
&

The proof of Theorer9 is found in Appendix B.

Charging function ¢o(B). For each componef, define theoot radius of C to berc :=rad(Z(C)),
that is the radius of the smallest disc enclosing all thesoo€. We are ready to define a charg-
ing functiongg for each boxB in the components 6fcomp Let Cg € Tcomp be the component
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of which B is a constituent box. Ledg be any root in B. There are two cases: (i) Gg is a
confined component, there is a uniqgue maximum patfimp from Cg to a confined leaEg in
T compcontainingeg. Definego(B) to be the first special componedtalong this path such that

rc < 3we. (7)

wherewg is the width ofB. (ii) If Cg is not confined, it means th&t is a component in the
preprocessing stage. In this case, defip@@) to be the largest naturalcluster containings.
Notice thatpo(B) is a special component in (i) but a cluster in (ii).

Lemma 10. The mappy is well-defined.

Proof. Consider the componef@ of which B is a constituent box. There are two cases in
our definition of¢gg:

(i) If Cg is a confined component, it is easy to see that we can find &gooRB, and fix a
unigue maximum path iffcompfrom Cg to a confined leaEg in ‘?Compcontaininxg. It suffices
to prove that we can always find a special compoeimt this path such that: < 3wg. This is
true becauses, < 3wg,; to see this, note thdig is a confined leaf o‘ﬁomp ThusWeg, < 3wg,
(this is the condition for output in the main loop of the Rodusering Algorithm). It follows
rgg < % -3Wg, < 3wg,. Hencerg, < 3wg, < 3wg. we can always find a first special component
along the path fronCg to Eg such that[{l7) is satisfied.

(ii) If Cgis a non confined component, we can also find a #gah 2B, and we can always
chargeB to the largest naturatcluster containings. Q.E.D.

Using this map, we can now bound the number of boxes.
Lemma 11. The total number of boxes in all the componenfﬁ'anpis
O(t - smax) = O(#(2Bo) - Smax)
with t = |{¢o(B) : B is any box irﬁomp}L

This improves the bound In Becker et al. (2017) by a factobghl A proof for LemmdZlL
is found in Appendix B.

6. Bit Complexity

Our goal is to prove the bit-complexity theorem stated inlttieoduction. From the discus-
sion in [Becker et all, 2017, Theorem 7), the total cost off@iT® tests is the main cost of the
whole algorithm. Thus we need to account for the cost ®ftests on all the concerned boxes
and components.

The road map is as follows: we will charge the work of each Baresp., componerg) to
some naturad-cluster denoted(X) (resp.¢(C)). We show that each cluste(X) (X is a box or
a component) is chargéd(1) times. Summing up over these clusters, we obtain ourdhoun

We may assume 1d8,) = O(rg) since Cauchy’s root bound implies that any ractatisfies
|z] < 1+4-27, thus we can repladgy by Bo N B(0,2+ 8- 27).

Cost of T®-tests and Charging functiong(X): Our algorithm performs 3 kinds f°-tests:

TS(Ac), TE(), T(A(B) 8)
15



respectively appearing in the main loop, the Newton Stepth@disection Step. We define the
costof processing componefit to be the costs in doing the first 2 tests[ih (8), andabst of
processing a boB to be the cost of doing the last test. Note that the first 2 wstsot apply
to the non-confined components (which appear in the prepsatg stage only), so there is no
corresponding cost.

We next “charge” the above costs to natuwallusters. More precisely, X is a confined
component or any box produced in the algorithm, we will cledtg cost to a natural-cluster
denoteds(X): (a) For a special compone@t let ¢(C) be the naturat-clusterZ(C’) whereC’ is
the confined leaf of ¢, ,,,belowC which minimizes the length of path fro@to C” in 7o, (b)
For a non-special componet we definep(C) to be equal ta(C’) whereC’ is the first special
component below. (c) For a boxB, we had previously definggh(B) (see Section 5). There are
two possibilities: Ifgo(B) is defined as a special component, thiépo(B)) was already defined
in (a) above, so we lei(B) :=¢(¢0(B)). Otherwisego(B) is defined as a naturalcluster, and
we lety(B) = ¢o(B).

Lemma 12. The mapp is well-defined.

Proof.For a special compone@} to definep(C) we first conside€’, defined as the confined
leaf such that pathQ — --- — C’) is the shortest i7,,,, This path has length at most log
since there exists a path of length at mostridg which we choose the special node with the
least #C;) at each branching (this was the path chosen in Becker ¢Gil7}). Henceg(C) is
well-defined. The map for a non-special component and a box are defined based ofottzat
special component, it is easy to check that they are welkdédfi

It remains to prove that in the case wheigB) is a naturals-cluster, the map is well-
defined. This follows from Lemniall0. Q.E.D.

DefineS to be the range af, so it is a set of natural- clusters. The clusters i are of
two types: those defined by the confined Ieaveﬁe;]p and those largestclusters of the form
#(B) with B in non-confined components.

We use the notatio®(1) to refer to a quantity that ©((Iog(nr log(s1)))') for some constant
i. To indicate the complexity parameters explicitly, we ablidve written 5n,T,@(8_1)(1)”.

Lemma 13. Each naturals-cluster inS is charged Gsnaxlogn) times, i.e.O(1) times.

Proof. First consider the number of components mapped to a sameahatciuster. From
the definition ofg(C) for a special component, it is easy to see that the numbegrexfial com-
ponents mapped to a same naturaluster is at most log. Thus the number of non-special
components mapped to a same natereluster is bounded b§(snaxlogn). Hence the number
of components mapped to a same natereluster is bounded b§(smaxlogn).

Then we consider the number of boxes mapped to a same natcliadter. By Lemmall,
the number of boxes charged to a same special componeftibypounded bYD(snax), and the
number of special components mapped to a same natatabkter is bounded b@(logn), thus
the number of boxes mapped to a same natexalster is bounded b@(snaxlogn) = O(1).
Also by LemmdIlL, the number of boxes charged to a same natetaster byg, is bounded
by O(logn)O(1).

In summary, each naturaicluster is mappe®(smaxlogn) = O(1) times. Q.E.D.

Based on the charging mapwe can derive a bound for the cost of processing each compo-

nent and box.
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Lemma 14. Denote k= #(2By).
(a) Let B be a box produced in the algorithm. The cost of prsiogsB is bounded by

O(n- [r¢ +nlog(B) + ko - (1og(™) + k) + To]) 9)
with D = ¢(B), ko = #(D) and
To:=log| | o —zI™. (10)

ZiQD

whereép is an arbitrary root contained in D.
(b) Let C be a component produced in the main-loop, and §eb&the last special component
above C, then the cost of processing a component C is bouryded b

5(n~ [¢ + nlog(C) + nlog(we,) + ko - (10g(s ™) + k) + TD]) (11)
where D is an arbitrary cluster contained in Cp k= #(D) and Tp is as defined if{C]2).

A proof of LemmdT#4 is found in Appendix C.
We are almost ready to prove the theorems announced in 8dcfioTheorem A is easier to
prove if we assume that the initial b@®g is nice in the following sense:

MaXe2g, 100(2) = O(Ming2g, 100(2)). (12)

Here we only prove the case where the initial box is nice, acohaplete proof of Theorem A is
provided in the end of Appendix C.

In the nice case, the following lemma bounds the cost of msingX whereX is a box or a
component.

Lemma 15. If the initial box is nice, the cost of processing X (where & [®0x or a component)
is bounded by _
O (n : LD)

bit operations with D= ¢(X) and with Lp defined in[(R). Moreover, ang:-bit approximation of
F is required.

Proof. Note that if the initial box satisfie§ (]L2), then it holds th@g(B) = O(log(¢)) and
10g(C) = O(log(¢)) for any boxB and component and any root € 2By;. And we know that
#(C) cC. Q.E.D.

Thus this Lemma is a direct result form Lemid 14. Using thisnte, we could prove
Theorem A of Section 1.1 under the assumption Byas nice.

Before we prove the Theorem A in Section 1.1, we want to addadsivial case excluded
by the statement in that theorem. In Theorem A, we assumedithaumber of rootk in 2By
is at least 1. Ik = 0, then the algorithm makes only one te‘ﬁ?,(%Bo). We want to bound the
complexity of this test. Denoting the center Bf as My, the distance froniMg to any root is
at least?®2. Thus|F(Mo)| > |Icf(F)| - (“B)". Thus by [(Becker et all, 2017, Lemma 7), the
cost of thisTC test is bounded b@ (nr + n? Iog(Bo) + nogW(Bo)™)). Now we return to the
Theorem A in the introduction.

Theorem A Let S be the solution computed by our algorithm for a normsteince(F(2), Bo, ¢).
Then there is an augmentatié@= {D; : i € I} of S such that the bit complexity of the algorithm
17



6(n ZDE§ LD)

Lo = O(rr +n-10(¢p) + ko - (0(k + ™)) +loa(] [, 160 ~z™)

where lp = #(D), and£p is an arbitrary root in D. Moreover, an L-bit approximation of the
cogficients of F is required with ;= max, s Lp.

with

The setS in this theorem is precisely the range of our charge funatioas defined in the
text.

Lemma 16. If By satisfies[(I2), then the Theorem A holds.

Proof. Recall that the number of components and that of boxes majgpady naturalk-
cluster is bounded by lag Smax. Thus from LemmB5, the cost of processing all the compenent
and boxes mapped to a natural cluddee Sis bounded bﬁ(log N- Smax- NLp). Butlogn - Smax
is negligible in the sense of beir@(1). Thus the total cost of all th&® tests in the algorithm

can be bounded by B
O(n ZD€§ LD)

with Lp defined in[(2) an® is the range op. And it is easy to see thﬁ(n DS LD) is bounded

by (1).
There is another issue concerning total cost (as in (Bedka!, 22017, Theorem 7)): There

is a non-constant complexity operation in the main loop:aateiteration, we check if&: N C’

is empty. This cost i©(n) sinceC’ has at most@boxes. ThigO(n) is already bounded by the

cost of the iteration, and so may be ignored. Q.E.D.

The appendix will prove Theorem A holds everBif is not nice.

In|Becker et al.|(2017), the complexity bound for global risolation is reduced to the case
whereBy is centered at the origin. This requires a global pre-prsingsstep. It is unclear that
we can adapt that pre-processing to our local complexitlyaisa

The bit complexity in Theorem A is based on geometric paransetve can also write it in
terms of synthetic parameters, although the the latter h@unot as sharper as the former one.

CoOROLLARY TO THEOREM A
The bit complexity of the algorithm is bounded by

O(n*(z¢ + k + m) + nklog(s ™) + nlog| GenDiscF) ).
In case F is an integer polynomial, this bound becomes

O(n(ze + k + m) + nklog(s ™).

The proofis found in Appendix C. _
Theorem A gives a bit complexity bound in terms $f We now investigate the natural
e-clusters inS. From the definition o5, we could write

S=sus (13)
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whereS is the set of naturai-clusters defined by the confined leaveSa§n, andS’ is the set

of all the naturak-clusterg(B) with B being any constituent box of any non-confined component
in the preprocessing stage. Now we want to show an intrinrsipgrty of the output components
and also of the s&3, using the concept of strorgclusters as is defined in the introduction.

Theorem B Each naturals-cluster inS is a union of strong-clusters.

The proof of Theorem B is found in Appendix C.

7. Conclusion

This paper initiates the investigation of the local comfilerf root clustering. It modifies
the basic analysis and techniques of Becker let al. (201 ®hi@ee this. Moreover, it solves a
problem left open in Becker etlal. (2017), which is to showt thar complexity bounds can be
achieved without adding a preprocessing step to searchice boxes” containing roots.

We mention some open problems. Our Theorem A expressestfi@edty in terms of local
geometric parameters; how tight is this? Another challéage extend our complexity analysis
to analytic root clusterinmmm).
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We have omitted the three appendices which may be found ifiulysaper: Appendix A
contain proofs for Section 2. Similarly, Appendix B and C fmeSections 5 and 6.

Appendix A. Root Bounds

To prove Theorem 2, we follow Becker et &l. (2017) by provihgee lemmas. We then
use these bounds to convert the bound in our Theorem A intauadm terms of algebraic
parameters as il(3) in Section 1.1.

Appendix A.1. LEMMA Al
In the following, we will define5G(z) andH(2) relative to anyA as follows:

F(2 = G@H(@ (A1)

whereG(2) = []i.1(z—z) such thaZg (A) = Zero(G) = {z, ..., z} andZero(H) = {z.1, ..., Z}.
Note that the leading céigcients ofF(2) andH(2) are the same. By induction @pwe may verify
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that -
FO(@) = Z (;)G(ij)(Z)H(i)(z)
j=0
and 0
" '|(Z) - Z H(Z_Zj)'
R ORE

Lemma A1l LetA = A(m,r) andA = 2p:=4k(n - K).
If #(A) = #(1- A) = k > Othen for all ze A

F9@)
’k! Al

For z=m, the lower bound can be improved to half.
Proof. Using the notatior{(A]1), we see that

FOQ) _ g Ta-2)
kK'H(2) g [Ti12(z - 2)

Je(

First supposay = 0, i.e.,k = 0 ork = n. If k = n, thenH(2) is the constant polynomiah where
FO0) _

ap is the leading co@cient of F(2), and clearly,m = 1. If k = 0, thenF(2) = H(2) and again
%8 = 1. In either case the lemma is verified.

Hence we next assumig > 0. We partition anyl € (rEE]k) intoJ :=Jn[klandJ”’:=J\ [K].
Thenj’ :=|J| ranges from 0 to mik{ n— k). Also, j’ =0iff J={k+1,...,n}.

FR(2) _ [Tjes(z—27)
KHE@ ~ 4, Tha@-2)
min(k,n—k)

[Tirey (2= 2) [Tives (2— z)
Hin=k+l(z_ Zi)

i’=0 J,E([jk,]) J,,E(r[:]lgy?/)

min(k,n—k)

Mooy @ 2) Tyren @~ 2)
DD D M o e

=1 J/e([l;l)ye(gw_]l\([_kj])

We next show that the absolute value of the summation on tH&iR kit mos%) which completes
the proof. Since, z, € A, andz, ¢ 4k(n—Kk)A it follows that|z—z| < 2r and|z—Zz~| > 3k(n—K)r.
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From these inequalities, we get

min(k,n—k)

[Tiey 12= 2| TTivey 12— 2]
[Tk 12— 2l

j=1 J/E(IIFI)J,,E([r]ql\([kJ])

E O b

j=1

min(k,n—k) kj n—K 2 i
< 2 ﬂ( j )(Sk(n—k))

Forz = m, the term is upper bounded k§* - 1 < 3.
Q.E.D.

Since for allze A, F®(2) # 0, we get the following:

CoroLLARY Al Letd = A :=4k(n —K). If #(A) = #(1A) = k > 0then F¥ has no zeros in.

Appendix A.2. Lemma A2
Lemma A2 LetA = A(m,r), 2 = 4k(n - k) and g = 7kK.

If #(A) = #(1A) = K then
FOmIK o 1
2w @ < 5

Proof. The result is trivial ifk = 0. We may assume th&at> 1. With the notation of [(All), we
may write '
GO

K\
< D, ﬂlm—zﬂf(i)fk‘“
. ‘]E(IEE]i) ied

sincez; € A. Similarly, we obtain
’H(i)(m) 1 (n - k) 1
< <

iH(m) |~ sy €3 Im-z| ~\ i (/lr)i'.

From these two results, we derive that
G(i‘i)(m)H(i)(m)

k )k(, D (n k) 1
(= yrtHm) - J (ar))

<,
()
=[5
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Thus we get

ST IFOmIK
24 FF® (it )
k-1 ()|G(' DMHO (M| -
< ; j=0 —IF(k)(m)l ( 1r)
k-1 i—k
[H(m)| n-k\klc
<2, |F<k>(m)|( )( j ) u

i=
= -k
k n—k\c;
=2 0(k—i+j)'( j )T (by Lemma A1 forz = m)

I
o

=~
[uN

(KK -k o
(k—i+j)!. i (4k(n-K)]

L1
2141

IA
N

I
o
-
<)

Il
N
x
iR
Fos
T
O:
x

Iy
o
=
|
==

Kol pokei ok

< 264(e ™ 1)

1
2el/4
<2y
1 1
<2ett = <« —.
T

Appendix A.3. Lemma A3

Lemma A3 LetA; = 3K(n—K) - max{1, 4k(n — kK)} = 3K(n— 1) - max{1, Ap}.

If #(A) = #(1 - A) =

k > Othen

FOmri-kki
FO(m)i!

- 1
2K”

i=k+1

whereA = A(m, r).

Proof. First, assume = 4k(n — k) > 0 (i.e., 0< k < n). LetZero(F®) = {z(lk), ..

the roots ofF®. Since

#(3K (N — K)A) = #(3K (N — K) - 10A),
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Corollary Al implies thaF® has no roots in B(n - k) - A. Thus,|m— zgk)l > 3K(n-Kk)r and
’F(k+i)(m) <l 1
T |y i

()

< — 7
(BK(n=K)r)

(n-K)
~ (BK(n-=K)r)i
1
< —_—
~ (3Kr)!
It follows that
z”: FO) (myri-*ki
4 TFOm)jr
n-k
Fok(m)| rf _ ke _1
<
K= F(k)(m) (smce(k )| = )
n-k i
< Z 1 r
|1 (3Kr)i it
n-k
1.1
<) (37
i=1
<e_1< ! !

3K-1 2K

It remains to consider the cake= 0 ork = n. The lemma is trivial fok = n. Whenk = 0,
we havel; = 3Kn and the rootg are the roots oF. Thenm-— Z(-k)l > 3Knr follows from our
assumption that #¢A) = #(A) = 0. The preceding derivation remains valid. Q.E.D.

CororLary A3 Letg > 1. If #(A) = #(c141 - A) = k> O then

)

i=k+1

FO(m)(cor)—*k!
FO(m)i!

1

2K”

whereA = A(m, r).

Proof.Let A; = ciA. Then #{\;) = #(11A1) = k, and the previous lemma yields our conclu-
sion (replacing by c;r). Q.E.D.
Appendix A.4. Theorem 2
Tueorem 2 Letk be an integer with < k < n=degfF) and K> 1.

Let g = 7kK, andA; = 3K(n — k) - max {4k(n — K)}.
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#(A) = #(C]_/l]_A) =k,

then
Tk(c1A, K, F) holds.

Proof.
By definition, Ty(c1A, K, F) holds it

[FOM(cr)*kt 1
2 FRm <K

ik

But the LHS is equal té\ + B where

Zm%mmww

A FO(m)
. FOM)(car) K
DV

By Corollary A3,A s at mostﬁ and by Lemma A2B is at mostﬁ. This proves our theorem.
Q.E.D.

Appendix A.5. Bound onplin the Theorem A
We will need the following result to derive the bound.

Lemma A4 Let gX) be a complex polynomial of degree n with distinct raets. . ., am Where
;i has multiplicity . Thus n= ¥, ni. Let I € [m] andv = min{n; : i € 1}. Then

[ Tion (@)l = | GenDiscg)l (jigin™ Mea@)™*) .
iel

where en
GenDiscg) := Icf(g)™ ]_[ (@i —aj)

I<i<j<m
and gy (a) := g™ (er) /.

Proof. From the observation that

On(en) =lef(@) [ ] (ai—ey)™

1<j<m, j#i
we obtain the following relation:

1_[ On (@i) = Icf(g)™ 1_[ (o - a,—)ni+nj = GenDisc().
=1

1<i<j<m
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From this it follows that

-1
[ Tion et = |GenDisco)|{ [ lon (ai)|] : (A.2)

i€l ie[m)\I

We next derive an upper bound {mR, (ai)|. Letg(x) = rj‘zo bjx!. By standard arguments we

know that .
j =i
On (@) = ) (ni)b;ai' "

j=ni

Taking the absolute value and applying triangular inedyalie get

MO ( r{_)max{l, sl

j=n VY

Applying Cauchy-Schwarz inequality to the RHS we obtain

N, 02\ ( n 1
On (@) < gl [Z (rjn) ] [Z max{1, |ai|}2(jni)) .

j=ni j=ni

The second term in brackets on the RHS is smaller than{ax|}" "+, and the first is bounded
by 3", (r{) - (”*fr‘;”) < n"*1 Thus we obtain

|G, ()] < l1glleen™* max{d, a; [} *L .

Taking the product over aile [m] \ |, we get that

[ ] lon (@)l < g™ Mea(gy-mne .
ie[k]\I

Substituting this upper bound in.(A.2) yields us the desbednd. Q.E.D.

Letl ¢ [m]. We next derive an upper bound 9fy, g Tp, where

To=log| [ i -zI™,
z;¢D

hereé; is a representative root in the natugatlusterD. In this section, we use the convenient
shorthand’p to denote the representative for clusberandkp the number of roots iD. More-
over, we choose the representatigeas a root that has the smallest absolute value among all
roots inD. Let D denote a set of disjoimatural e-clusters ofF such that the union of these
clusters contains all the roots &f DefineF. as the polynomial obtained by replacing each
naturale-clusterD of F by its representativ&, with multiplicity kp, i.e.,

Fo(2) = Ief(F)[ [2- o)
DeD
More importantly, the choice of the representative ensthiesthe Mahler measure does not
increase, i.e., Mea(r < Mea(F). Since&p is a root of multiplicitykp, it can be verified that

Fi)(¢p) >
ot =l [ E-eo)

D'eD,D'#D
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We first relate the produgi,.p I¢p — z|™ appearing irT; with the term on the RHS above. The
two are not the same, since we have replaced all nattohisters with their representative, and
hence for another clusté®’ the distanceép — zjl, for z; € D’, is not the same dgp — ép/|.
Nevertheless, for an isolatar of D’, we have

2minlép —wl > max|ép — W
weA/ weA’

and hence
eo-2z> o _2§D’|.
From this inequality, we obtain that
L WFe)
H Iéo — zj|M > 2*”T.

Zi§ED

So to derive an upper bound dh, s To, it suffices to derive a lower bound di,_s IF X (¢p)1/K!.
Applying the bound in Lemma A4 above ,, along with the observations thfF,|l., <
2"Mea(F,), and Mea(k) < Mea(F), we get the following result:

TueorEM AD _
Z To = O(log| GenDiscF,)|™* + nm+ nlogMea(F))
DeS

Note, however, that )

| GenDiscF)|

SZDsg k%
If we assume that < 1, i.e.,| GenDiscF,)| is larger thanGenDiscF)|, then the termy{,, s k3) loge <

0 and so we can repla¢&enDiscE,)| ! by | GenDiscF)|~! in Theorem A5 to obtain a larger
bound. Moreover, if is an integer polynomial, not necessarily square-fremmgl.,
2015, p. 52) we know that IdgsenDiscE)|™* = O(nrr + nlogn) Hence we obtain the following
bound (using Landau’s inequality MégY < ||F||2 < n27F):

| GenDiscE,)| >

CoroLrLary A6 Let{Dj;i € | < [m]} be any set of disjoint nature-clusters of an integer
polynomial F with m distinct roots. Then

Z Tp, = O(nre + nm).

i€l

Appendix B. Bound on Number of Boxes

Appendix B.1. Lemma 8

Lemma 8 Denote k= #(2By).
(a) If C is a component in the pre-processing stage, th@mv&%.
(b) Suppose €— --- — C, is a non-special path with ¥ < ¢. Then it holds

Wc,

< 57k.
Wc,
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(c) Let C be a confined leaf iﬁcompthen

k
W > g(mk) .

Proof. (a) By way of contradiction, assumg: < "‘Ql(—gf). Then the parent compone@t
satisfiesne < % sinceC is obtained fronC’ in a Bisection Step. TheWe < 3kwe < @.
ThusC’ N By is empty orC’ is confined. In either case, we would not bis€ttin the pre-
processing stage, contradicting the existendg.of

(b) In this proof and in the proof of part (c) of this Lemma, waterw;, R;, N;, etc, instead
of we,, Re,, N¢,, etc. By way of contradiction, assume tfﬁgt > 57k. SinceW; < g, from the
algorithm, we know that each step in the p&th— --- — C, is a Bisection step. Thus there
exists a componer@€’ such that 8- w, < wg < 6k - w,. The following argument shows that
C’ is a leaf of‘ﬁomp By Lemma¥(a), we havé\, < 3kwe, thusW, < we. Thus the roots
in C’ are contained in a square of width less thgpn. By Lemmd¥(b), we conclude théY is
compact. To show thal’ is a leaf, it remains to show thatnd has no intersection with other
components. We haveRd, = 4- %Wcr < 9w . Meanwhile, sinc€’ is compact, it is easy to see
that the distance from the center&d to C’ is at most%wcr. Thus the separation betweén
and any pointin Ac is less than @ + swe = Pwe < 32 -6k-w, < -6k 32 = wy. By
Property (C3) in Section 3, we know th@t is separated from other components by at least
thus ¢ has no intersection with other components. We can conchat€t is a leaf o1r‘?comp
Contradiction.

(c) Let Cy be the first component abo@such thatwvg < . From the algorithm, we have
Wo > 5. Consider the pat? = Co — --- — C. There exists a consecutive sequence of
special components belo@y, denoted a¢Cy, . .., C;} with C; = C. Split P into a concatenation
P = Po; P1;--- ; P_1 of t subpaths where subpa#h = (C; — ---Cj,q) fori € {0,...,t — 1}. Let
C! be the parent of; in ‘iA'compfor i €{1,...,t}. Consider the subpath & where we drop the

last special configuration{ — --- — C/,,). By part (b) of this lemma, we have

We,
Wy

i+1

< 57k

fori € {0,...,t—1}. The stegC/,, — Ci,1 is evidently a Bisection step and so

’
i+1
Wi
Wit1

<114k
Henceg? < (1144~ It follows we > §(575)". Q.E.D.

Appendix B.2. Lemma 9

Before proving Theorefl 9, we state the following lemma, \nliscan adaptation al.,
2017, Lemma 8), giving a $licient condition for the success of the Newton step.

Lemma B1. Let C be a confined component witie W ¢. Then NewtofC) succeeds provided
that
28



(i) #(Ac) = #((2°- n? - Nc) - Ac).
(i) rad(Z(C)) < (22°-n)*. ,;&C.

Tueorem 9 The length of the non-special palfi (6) satisfies
s= 0O(loglog M + logn).
Ws

Particularly,
Smax = O( logn + log log @)

Proof.From Lemm&B(a), we can see that the length of path in the pcepsing stage is bounded
by O(logn). From Lemm&B(b), the length of non-special path is boutged(log n) if the width

of components is smaller than Hence it remains to bound the length of non-special pathen t
main loop such that any componddtin the path satisfie8\c > . Lemma B2 gives us the
suficient conditions to perform Newton step in this path.

As in|Becker et al.[(2017), the basic idea is to divide the fath (C; — --- — Cs) (using
the notation off(B)) into 2 subpaty = (C; —» --- — C;,) andP; = (Ci, — --- — Cg) such
that the performance of the Newton stepsPincan be controlled by Lemnia B1. This lemma
has two requirements ((i) and (ii)): we show that the comptsén P, automatically satisfies
requirement (i). Thus if compone®} in P, satisfies requirement (ii), we know th@t — Cj,1
is a Newton step. This allows us to bound the lengttPpiising the Abbot-SagrafbLemma
(Becker et all, 2017, Lemma 9).

We writew;, R, N;, etc, instead ofvc,, Re,, N¢,, etc.

Definei; as to be the first index satisfyirg, - wi, < 2724. n=3. w;. If no such index exists,
takei; ass.

First we show that the length &f; is O(logn). Note thatN; - w; decreases by a factor of at
least 2 in each stdp_B_e_C.KeLet é.L_(Z017). There are two cdss#spC; — Cj,; is a Bisection
step,wir2 = w;/2 andN; does not increase; if it is a Newton step, then = % andN;; = Niz,
SONi1 - W1 = N2 - 5 = 3 - Ni - wi. It follows that at most log(2 - n®) steps are performed to
reach ari’ such thatN; - wy < 2724.n"3. Ny - wy. This proves’ < 1+ log(2?*- n®). SinceC;
is a special component, our algorithm rellet= 4 (cf. proof of Lemmd&17). So it takes 2 further
steps fromi’ to satisfy the condition aif,.. Thusi; < 3 + log(2%* - n®) = O(logn). Note that this
bound holds automatically if = s.

We now show that requirement (i) of Lemma B2 is satisfie®infrom the definition ofi4,
foranyi > iy, 220-n?- N -1 <2%.n2-N; - 2. 9n-w; < wj, and the separation @; from any
other component is at least, so (2°- n? - N;) - A; contains only the roots i@ (C;), fulfilling
requirement (i).

Next consider the pathR,. Each step either takes a bisection step or a Newton stepevéow
it is guaranteed to take the Newton step if requirement ¢ljis (note that it may take a Newton
step even if requirement (ii) fails). Let#£() = k. If componenC; satisfies

% >2%0.n.R;, (B.1)
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the requirement (ii) is satisfied. BR; < % -9n-ws < 2*-n-wsandR > w; so if
% > (220 1)- (2% 1) - Ws = 224 1% - W (B.2)
i

holds, it would imply [B:1). On the other hanfl_(B.2) is pesty/ the requirement that allows us
to invoke (Becker et al., 20117, Lemma 9). Applying that lemmands the length d?, by
A:=(loglogN;, +2loglogfwm, - (224-n?)~1. WLCS)+2)+(2 logn+24). SinceN;, < WWi we conclude
thatA = O(log Iogwwis1 + logn). This concludes our proof.

The second part of this theorem is a direct result from thegast. Q.E.D.

Appendix B.3. Lemma 11
We first prove two lemmas that is useful for later proof.

Lemma B2. Let G be the parent of €in 7¢,,, then
re, <3V2n-we,

Proof. SupposeC), is the parent oC; in the component tre‘é:comp Then all the roots itC;
remain inCj, meaning thatc, = rc,. Itis easy to see that the st€3 — C; is a Bisection
Step, thusnve, = 2we,. By Lemmal¥(a), we haviVc, < 3n-wg, = 6n-wc,. It follows

re, < % . «/iwc/z < 3\/§n-wcz. Hencerc, =rc, < 3vV2n- We, - Q.E.D.

Lemma B3.
(a) For any box B produced in the preprocessing stageg(B) is a naturale-cluster, then we
have w > 2 rad@o(B)). (b) For any B# 2By produced in the algorithmo(B) < 2Bs.

Proof.(a)

wg > % (by LemmdB(a))
> 2-¢ (by smalle assumption)
> 2-rad@o(B)) (by definition ofe-cluster)

(b) If ¢o(B) is a special component, it is easy to see théB) C 2By.

We now discuss the case wheigB) is a naturak-cluster. To show thagg(B) < 2By, note
that sinceB is a proper subbox o?Bo, it follows that B C l§5Bo. Thus there is a gap d?‘%‘))
between the boundaries oBaandl—g’Bo. Sincepo(B) is ae-cluster, thus radp(B)) < € < %,
andg¢o(B) N 2B is non-empty, we conclude thag(B) is properly contained inBy. Q.E.D.

Lemma 11 The total number of boxes in all the componenfﬁ'anpis
O(t - Smax) = O(#(2Bo) - Smax)

with t = |{¢o(B) : B is any box in’fcomp}|.

Proof. By the discussion above, we charge each Baa ¢o(B) which can be a special com-
ponent or a cluster.
First consider the case whepg(B) is special component. Note th%o(g) < wg. We claim
that the number of boxes congruent wiglthat are charged t@y(B) is at most 64: to see this,
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note that B N Z(¢o(B)). If A is the minimum disc containing (¢o(B)), then 2B must intersect
A. By some simple calculations, we see that at most 64 aligoeeddcongruent t® can be
charged tapo(B).

We now analyze the number offtérent sizes of the boxes that are charged to the same
special componer.

Denote the parent & in the special component trég,,,asC’. Let B be a box such that
¢o(B) = C and suppos® is the constituent boxes of the compon€ai evidently,wg = wc,.
From the definition o, B satisfies one of the two following conditions: @G} is an component
in the pathC’ — - — C andwg > irc; (ii) Cg is @ component abov@ andire > wg > irc.

It is easy to see that there number of compon@atsatisfying condition (i) is bounded bshax
from TheoreniP. It remains to count the number of compon€gtthat satisfy condition(ii).
By LemmaB2, we havec < 3V2n-we. SinceBis charged tcC but notC’, we havews <

% ‘Te < V2n-we. The boxB is constitute an ancestor 6f thuswe < wg. Therefore, we have
We < Wg < V2n-we, and note thatvs decreases by a factor of at least 2 at each stepgsnay
take log(V2n) different values. Hence, the number of boxes charged to eaclalspEmponent
is bounded by 6gax.

Now consider the case where a box is charged to a nattaiaister, this case only happens
in preprocessing step where the number of steps is bound®&dldgn). On the other hand, by
LemmaB3(a), we have 2ragi(B)) < wg if ¢o(B) is as-cluster. Thus the number of boxes of
the same size charged to a naturaluster bygg is at most 9. Therefore, the number of boxes
charged to a naturalcluster bygo is bounded byO(logn).

Thus we can conclude that the total number of boxes is boubgédt - Snax) with t =

l{¢o(B) : Bis any box inTcompl- Q.E.D.

Appendix C. Bit Complexity

Appendix C.1. Lemma 14
We first prove two lemmas for later use.

Lemma C1. LetA = A(MR) andA = KA for some K> 1. Let D be any subset cif(K) and
e D. Ifg=#(A) and ko = #(D) then

max|F(2)| > R® . n# . K #+ko . =3+l l—[ I -z
ZEA Zj$D

where z ranges over all the roots of F outside D a#(;) = n;.

Proof. Let {z1, 2, ...,7} be the set of all the distinct roots &. WIlog, assume that ap-
pearing in the lemma ig. There exists a poinp € A(m, %) such that the distance from

to any root ofF is at Ieastz—F;, this is because the union of all disa$z, Bn) covers an area
of at mostn - 7(R)? = 7& < x(8)2. Then for a roow € A, it holds 22 > R _ L

4n lzn—z| =
B Ip-zj| [P-7zjl 1 1 1
i h > = > = =
and for a I’OOtZ] ¢ A, it olds 7] -z Iz P T K§f§/z E- Note that

Ip-zjl
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IF(p)| = Icf(F) - TT_, Ip — z|", it follows
[F(p)|

HZJ’QD |Zl - Zj Ini

n
=lefF)[ -2 ] e [Nz
zeD zjeA.zj¢D EIN
1 Ry [ 1\ (1\"F
>3 (an) (m) (5)
> Ro .n# . Ko g3l
which proves the Lemma. Q.E.D.

Lemma C2. For any box Bg(B) is contained inl4B.

Proof. Considerpo(B). If ¢o(B) is a cluster, thenR intersectspo(B), and 2radfo(B)) < wg
(LemmdB3(a)). Thugo(B) < 4B.

Next supposeg(B) is a special component. Thew > %rc whererc = rad(Z(C)). Since
2B n Z(C) is non-empty, we conclude thzi(C) C 14B. Q.E.D.

Now we derive a bound for the cost of processing each comp@mehbox.

Lemma 14 Denote k= #(2Bg).
(a) Let B be a box produced in the algorithm. The cost of prsiogsB is bounded by

O(n- [ +nlog(B) + ko - (Iog(e™) +K) + o)) (C.1)
with D = ¢(B), ko = #(D) and
To:=log| [ ko -z ™. (C.2)
2;¢D

whereép is an arbitrary root contained in D.
(b) Let C be a component produced in the main-loop, and §eb&the last special component

above C, then the cost of processing a component C is bouryded b
O(n{r¢ + nlog(C) + nlog(we,) 3
C.3

+ ko - (Iog(e™) + K) + Tp])

where D is an arbitrary cluster contained in Cp k= #(D) and Tp is as defined inf{C]2).

Proof. (a) According tol(Becker et Al., 2017, Lemma 7): the cost frying out aTS(A)
test (associated with a b@kor componen€) is bounded by

O(n-[re +n-log(m.r) + L(A, F)]). (C.4)

Thus for each call oT 6(A) test, we need to bound1¢m, r) andL(A, F).
For TS(A(B)), we need to perforrﬂ'(()3 test for each subboB; into which B is divided. We
haveAg = A(m,r), it is easy to see thatlda, r) < log(B). So it remains to bound the term
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L(A,F) in (C4). By definition,L(A,F) = 2 - (4 + log(||F4llz})) And for anyz € A, it holds
IF(2| < n-|IFalle. Hence, we need to prove that ([@max.a, |F(2))™!) can be bounded by
mvile apply Lemm&d1 to obtain the bound of log((mRax

IF(2)))}). Sinceg(B) € Z(14B N 2By) (LemmaCR), it stiices to takel = 42- Ag since 42,
contains 14 Ag which (by Lemma&CR) containg(B). Hence withK’ = 42, Lemmd_ClL yields
that maxes, IF(@)| > (2 - ) . n#® . (K7)#®+ko . p-3n-1 [0 lé0 — " whereD = ¢(B),
ko = #(D), andép is an arbitrary root contained . From LemmaéB(c), we hawes > g(ﬁ)k.

It is easy to check that Iggmax.x, |F (2)])1) is bounded by{C]1).

_(b) To bound the cost of processing a compor@&we need to bound the cost of performing
TC(Ac) andTC(A"). Itis easy to see that in both cases whege, r) = Ac andA(m,r) = A, we
have logm, r) = O(Iog(C)). With the same arguments in the proof of (a), it remaingtwve that
both log maxa. ry-+ and log maxa r-: are bounded by (C.3).

First consider thd ©(A¢) test, by applying Lemma 1 witk = 1, we have max, |F(2)| >
R ke . 27301 T, .o [ép — 7™ with D an arbitrary cluster i€, ko = #(D) andép an arbitrary
root in D. We know thatRc > %WC. With the same arguments as in part (a), we can conclude
that the cost ofELAC) test is bounded by (Q.3).

Now consideﬂ'kGC (A”) test withA” = A(n, QNTCC) andnt as defined in the algorithm of Newton
test. Here we take = 2-3n- 8Nc - A’ = 48nNc - A’ since 481IN:-A’ will contain C and thus
contain all the roots it€. By applying Lemma Tl wittK = 48nNc, we have max |F(2)| >
() - n#® . K #B)ko L =31 [0 lé0 — 7™ with D an arbitrary cluster i€, ko = #(D)
andép an arbitrary root irD. First consider the lower bound fog"T”\fg)kD. By lemma BO(b), we

haveNc < 52, thusse > 32”“300. It follows log(((5-)%*) ™) = ko(2 log(wg?) + log(we,) + 5).
As is provedkp (2 log(we) + log(we,) + 5) is bounded by{CI3).

The bound for the other terms excelaﬁ‘i@""D are similar to the case discussed above. Hence
it remains to bound*®-%_ Denote the radius ok asR, thenR = 18nwe from the definition
of A. Note thatK = 481Nc < 48n- 32 = 48n- 18n- =2 and log((48n- 18n~wc0)#®*kf’) =
O(nlogn + nlog(we,)), thus it stifices to boun®*@®+k . For any rootp of F in anye-cluster
D ¢ C which containgp roots counted with multiplicities, we have

[Lolo-a" = [] eo-z"]|ko-z"

zieE,zieD zkeK
S0k Meal (fo + 2))
< (2R ST DY)
= R [ Icf(F)|
< (2(§)#(Z)—kg . OTF 2n+3 maXl(fD)n

< QTFH2M3 max (¢p)" - ’R‘#(E)—kD

So Iog@‘#§)+'f°) is bounded by[{C]3). Hence the cost for processing compdhehat is the
two kind of T® tests discussed above can be bounde@hy (C.3). Q.E.D.
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Appendix C.2. Corollary to Theorem A

CoOROLLARY TO THEOREM A
The bit complexity of the algorithm is bounded by

O(n*(z¢ + k + m) + nklog(e™) + nlog| GenDiscE,) ™).
In case F is an integer polynomial, this bound becomes

O(r(ze + k + m) + nklog(s ™).

Proof. From our assumption in Section 6, [@y) = O(rr). We can also see thaty glp <
nre + k(k + 109(s™) + Yp.s To + XK, 100(z).-

By Theorem A5y, s Tp = O(log| GenDiscE,)|"t-+nm+nlogMea(F)) And 2.pes [00(ép) <
2!;1 l09(z) < logMea(F)+ k = O(r + k+logn) (using Landau’s inequality). From the equations
above, we can deduce the first part of this lemma.

The second part comes from Corollary A6. Q.E.D.

Appendix C.3. Theorem B

We first show two useful lemmas: LemiinalC3 is about root sejparat components, and
LemmdC% says that strorgclusters are actually natural clusters.

Lemma C3. If C is any confined component, and its multiset of rdd(€) is partitioned into two
subsets GH. Then there existgyz G and z € H such thalzy — z,| < (2+ \/i)wc.

Proof. We can define theSg:= {B€ Sc: 2BNG # 0} andSy := {Be Sc: 2BNH # 0}.
Note thatSs U Sy = Sc. Since the union of the supports 8 andSy is connected, there
must a boxBy € Sg andBy, € Sy such thaiBy N By, is non-empty. This means that the centers of
By andBy, are at mostv2wc apart. From Corollary5, there is rogt(resp. z,) at distances we
from the centers oBg (resp.,Bp). Hencelzg — z,| < (2 + V2)Wwe. Q.E.D.

Lemma C4. Each stronge-cluster is a naturak-cluster.

Proof.In the definition ofe-equivalence, iz < Z then there is a witness isolatarcontaining
zandZ. If Z £ 7’ we have another witness containingz andz’. It follows from basic
properties of isolators that f andA’ intersect, then there is inclusion relation betwé&gf)
and Z(A"). ThusA or A’ is a witness foz < z’. Proceeding in this way, we eventually get a
witness isolator for the entire equivalence class. Q.E.D.

Theorem B _
Each naturale-cluster inS is a union of strong-clusters.

Proof. First we make an observation: For any streagjusterD’ and confined compone@t,
if D' NZ(C") # 0 andwg > 2-rad@’), thenD’ c Z(C’). To see this: suppose, € D' n Z(C’)
andz € Z(D) belong to a component other thén. By Property (C3)|z; — z| > we > 2r,
contradicting the fact that any 2 rootsii are separated by distance at mast 2
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LetD € S. There are two caseB is either inS or in S’ whereS = SUS’ as defined in{13).

First, assume thdd € S’. This case is relatively easy. Suppdsés a stronge-cluster and
DNE # 0. From LemmdCUE is also a natural cluster; thus eitherc E or E c D. By
the definition ofpo(B), D is a largest natural-cluster, meaning that there is no naturalluster
strictly containingD. Hence it followsE c D, which is what we wanted to prove.

In the remainder of this proof, we show that each natereluster inD is S is a union of
stronge-cluster. The observation above and Lenima B3(a) imply thra¢fich componer@’ in
the preprocessing stade, is a union of strong-clusters. Thus, when the mains loop starts, for
each componer in Q1, Z(C) is a union of strong-clusters.

Suppos is a stronge-cluster andC is a confined leaf o‘ﬁomp Itis suficient to prove that
if DN Z(C) # 0, thenD € Z(C). Letr = radD). Supposea; € D n Z(C). There is an unique
maximal path in?compsuch that all the components in this path contain

Consider the first componef in the path above such th&h contains the roor; and
We, < 4r. If C; does not exist, it means that the |€xfin this path satisfiesic, > 4r, and by the
observation above, it follows th@t ¢ Z(C;). Henceforth assunme; exists; we will prove that it
is actually a leaf ofr. comp

ConsiderC;, the parent oy in ‘?comp Note tha’LW(y1 > 4r, and by the observation above,

D c Z(C}). We show thatvc, > 2r. To show this, we discuss two cases. If the stgp— C;
SVKI? . Note that

r’ > r since the Newton disc contains all the rootsGpand hence contains. Newton step

is a Newton Step, then all the roots@ are contained in a disc of radius =

gives uswg, = 2‘% =4’ > 4r. If C; — Cy is a Bisection Step, thewc, = Wc; /2 > 2r. To

summarize, we néw know that Z wc, < 4r. Again, from our above observation, we conclude
thatD c Z(Cy).

First a notation: lefAp be the smallest disc containiiigy We now prove thaZ(C;) ¢ D.

By way of contradiction, suppose there is a raat Z(C;) \ D. SinceD is a stronge-cluster,
#(Ap) = #(114Ap). It follows that for anyz € D, we must have have—Z| > 113. On the other
hand, by Lemm&Q3, there exigtandZz fulfilling the above assumptions with the property that
lz-Z| < (2+ V2)we, < (2+ V2)4 < 113. Thus we arrived at a contradiction.

From the above discussion, we conclude tfé&€,) = D and 2 < wc, < 4r, itis easy to see
thatWe, < 3wc,. Hence we can conclude thék, < 12r < 12- 5 < e. Therefore, to show that
C, is a leaf, it remains to prove thatd, N C, = 0 for all C; in Q1 U Qqis.

Since 2 < w¢, < 4r, by some simple calculations, we can obtain Batc 8Ap thusAc, is
contained in Qp, it follows 4A¢, ¢ 36Ap. It suffices to prove that 3§, NC, = @ for all C,. Note
that for any rootz; € C; and any componei@;, we have Seg, C,) > wc, by property (C3).
Assume that Sep{, C,) = |z — p| for somep € C,. We claim that there exists a ront € C,
such thatz — p| < 3—fwcz. [To see this, suppose thptis contained in a constituent bd¢ of
C,, note that B, must contain a root, assume tlaE 2B,, it follows |z, — p| < 3—;/EWCZ.] Hence
|z2—pl+|z2—p| < Sepk, C2)+3—;/§~Sep(zl, C,). Note that #Ap) = #(114Ap), thus|zz—2| < 11%

. By triangular inequality, we have; — z| < |zz — p|+ |z — p| < (1 + %ﬁ) - Sepg, Cy). Hence
Sep@, Cy) > T{/i/zlzl — 2| > 36r, implying 36Ap N Cy = 0.

This proves that our algorithm will outp@, i.e.,C; is a confined leaf o‘ﬁomp
In summary, each naturaicluster inS is a union of strong-cluster. Q.E.D.
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Appendix C.4. A complete proof of Theorem A

Based on Lemmia14, we can now derive the total cost of caringll theTC tests in the
algorithm.
A direct result from LemmB&4 is that the cost of processihthalboxes can be bounded by

O( > (n-[rr +nlog(B) + ky) - (10G(e ™) + K) + Ty@)]) )

BeB

where8 is the set of all the boxes produced in the algorithm.
Taking into account the fact that the number of boxes chatgednaturak-cluster by the
map¢ is bounded byD(smaxlogn) = O(1), we can write the above bound as

O( > n?log(B) + > (n- [r¢ + ko - (69 + K) + To]) ). (C.5)
BeB DeS
Analogously, we can obtain that the cost of processing alcttimponents can be bounded by

O( > n?(10g(C) + log(we,)) + Y (n-[r +ko - (09(=™) +K) + Tol))  (C.6)

CeC Des

where(C is the set of all the components produced in the algorithm@nid the last special
component above.

The boundd{C]5) an@{Q.6) add up to the cost of processirthalboxes and components
produced in the algorithm. To prove Theorem A, we want to sti@t/both

o Z n?log(B)) (C.7)
BeB

and _

O( >, n* (1g(C) + log(we)) ) (C8)
CeC

can be bounded by B

O(n* 16g(Bq) +1* ), 109(¢o)) (C.9)
DeS

whereép is an arbitrary root contained iD.
First we show that the bound(C.8) can be boundef byl (C.9)caltiat for each component
C, we have
16g(C) + log(wc,) < 169(Co) + 109(Co)
whereCy is the last special component abdeSince the length of each non-special path is at
MOStSmax, We can bound(Cl8) by

Ofsmax- ), M10g(Co)) = O( »’ n*log(Co)) (C.10)
CoeSC CoeSC

whereSC is the set of all the special component produced in the dlguri Thus it stfices to
prove the following lemma.

Lemma 17. The bound{C.10) can be bounded by {C.9).
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Before proving this lemma, we first consider a simple caser&vbach special componedt
satisfies the following condition:

maec 109(2) = O(minzc 109(2)). (C.11)
Since¢(C) € C and [C.11) holds, it follows that

O( )" r?log(C)) = O )" 1*I69(yc))
CeSC CeScC

whereé,c) is an arbitrary root contained i5(C). Thus, it is easy to see that Lemma 17 holds.

In general case, condition {CJ]11) may not hold for all thecedeomponents. And we call a
special componemtce if it satisfies [C.I), otherwise it ison-nice

Now we define a set of square annuli for later use. Denotedihe width of the smallest
box centered at the origin containilﬁgv(Bo) and denotdy := | log(wp) | for short. Note that iBg
is centered at the origin, we hawg = %W(Bo). We now defindy,., :=0 and

11
li 1=[—§’§]W0,

A= < )\ (e, lisa)s

fori e {1,...,tp}. Denotew(A;) := % . % as the width of the square annulis

Ay

(5/4)Bo

Ay

Wo

mmid
mn

Figure C.5: Annulughg, Ay, Az and box?1 Bo.

An observation is that: for a componed if there exists an integere {1,...,to — 1} such
thatC ¢ A U A1, thenC satisfies[(C.T1).

Now we are prepared to prove Lemma 17.

Proof. Denote bySC; the set of all the nice special components &t the set of all the
non-nice special components. From the discussions ab@veawsee the(ﬁ(ZCeSC1 n?10g(C))
is bounded by[{C]9). Thus it remains to prove ﬁ@ca@ n?16g(C)) can be bounded bz (Q.9).

We define the unique séssuch that € | if and only if A; contains at least one root B(Q).
Supposé =ig,...,impWithi; <--- <ip.
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We consider the componentsdiC; that contain at least one rootAy,. Denote bySC2(A;,)
the set of all such components a@i{A;,) the union of the roots contained $C»(A;,). We
classify these components into 2 categories: the speciapooent that contains all the roots
in Z(A;,) and the special components part of the rootZifA,). The first category consists
of at most one components since any two special componentaicaiterent roots. If the
first category is not empty, suppoSeis the component in it. We can bou@{n? log(C)) with
O(n”10g(Bo)).-

Now we consider the second category.

We claim that for any compone@tin the second category, it holds that(@d = O(Iog(wW(A;,))).
The proof is as follows. We can easily see t&A,) c B(0, 4w(A;,)) with B(0, 4w(A;,))) the
square centered at the origin and of widi(A;,). Thus radZ(A)) < 2V2w(A;,). Since the
second category consists of at least 2 components, thusiyoc@nponentC € SCy(A;,), we
havewc < 2-rad(Z(A,)) < 4V2w(A;,) (See the observation in the proof of Theorem B). Now
for anyC € P;,, we haveZ(C) c B(0,4w(A;,)) andwe < 4V2w(A,,). By Corollary 5(b), the
distance from any point i@ to a closest root i€ is at most 2/2wc. Hence it is easy to see that
C c B(0, 4W(A;,) + 2V2 - 4v2w(A;,)) = B(0, 20w(A;,)). It follows log(C) = O(Ilog(w(A;,))).

By the definition ofSC»(A;,), for each compone@ in the second category, there exists a root
contained inA;,. And since each naturatcluster has width less than 1, there exists a natral
clusterDc¢ in C such thaDc € A, U A ;1. With the claim above, we have1(Q) = O(I0g(¢p.))
whereép, is an arbitrary root contained iDc. And in this case, we charge the component
C to the naturak-clusterDc that is contained if€. Now we prove that eacBc is charged
at mostO(logn) times. Suppos€’ is a component irSC»(A;,) that is charged t®¢. Since
C’ is not a nice componen€’ must contain a root insidé,.,. Otherwise,C’ would have

satisfied the conditio {C11) since we have(@g = O(log(w(A;,))). From the fact tha€’
contains both a root iy, and a root insidey;, .2, we conclude thate, > @. Hence we

havewe > & - 2% Meanwhile, sinceC’ ¢ B(0,20M(A,)), thuswe < 40M(A,). It is

easy to see that the number offdrent sizes o€’ is bounded byO(logn). Thus we come to
the conclusion thad(Ycesc, n°109(C)) is bounded byO(logn) - O(Xpea, ua,., N?108(¢p)) =

6(Z:DeAiluAil+1 n?10g(¢p)).

Hence we hav®(Zcescy(a,) " 109(C)) = O(n?16G(Bo) + Ypea, ua,., N 100(¢D))-
Analogously, if we consider the componentsi@, \ SC»(A;,) that contain at least one root
in Ay, we will obtain thatd(Ycesc,(a,) M 109(C)) = O - W(A1) + Toea, ua,., N*108(£0)).
By recursive analysis, we can eventually obtain that thendd@C.8) is bounded by (Q.9).
Q.E.D.

It remains to prove the following lemma.
Lemma 18. The bound{C]J7) can be bounded by {C.9).

Likewise, we first consider a simple case where eachBsatisfies the following condition:
MaXe148 109(2) = O(Ming 145 109(2)). (C.12)
Sinceg¢(B) € 14B and [C.IP) holds, it follows that

O() " n?log(B)) = O | 1 109(¢s(e)))

BeB BeB
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whereé,g) is an arbitrary root contained i(B). Thus, it is easy to see that Lemfna 17 holds.
In general case, condition {Cl12) may not hold for all theémxAnd we call a borice if it
satisfies[[C.12), otherwise it in-nice
Before we proving Lemmia18, we need to give a useful result.

Lemma 19. There exists at mogi0aligned non-nice boxes of the same size.

Proof. DenoteMg as the middle of a boB. We will shows that ifMg ¢ B(O, 20wg)(the box
centered at the origin and of width ®g), thenB is a nice box.

If Mg ¢ B(O, 20wg), then|Mg| > 10ws. We have mip14g109(2) > log(Mg — 7 V2wg) >
Io_g(i\"—&,) and max.14s10g(2) < 10g(Mg + 7 V2wg) < 10G(20Mg). It follows max.145100(2) =
O(ming145 109(2)).

We can count that the number of aligned boxes satisfiiage B(0, 20wg) is at most 26 =
400. Thus the number of non-nice boxes of widkhis at most 400. Q.E.D.

Now we prove Lemmga18.

Proof. Denote byB; the set of all the nice boxes produced in the algorithm Bndhe set
of all the non-nice boxes. From the discussions above,livis thatﬁ(ZBEgg1 n?10g(B)) can be
bounded by[{CI9). _

It remains to prove tha®(} .5, n?10g(B)) can be bounded by (G.9). By Lemra 19, the
number of non-nice boxes of the same size is at most 400. And fwoxB, if B is a con-
stituent box of a componeft, it is evident thatTo¢B) < 10g(C). Henceﬁ(ZBeB2 n?10g(B)) =
4000(Zcee N210G(C)) = O(Ycee N210G(C)). By LemmallV, the latter is bounded Hy (IC.9).

Q.E.D.
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