
Classroom Examples of

Robustness Problems in Geometric Computations∗

Lutz Kettner† Kurt Mehlhorn† Sylvain Pion‡ Stefan Schirra§ Chee Yap¶

February 7, 2006

Abstract

The algorithms of computational geometry are designed for a machine model with exact real

arithmetic. Substituting floating-point arithmetic for the assumed real arithmetic may cause imple-

mentations to fail. Although this is well known, there is no comprehensive documentation of what

can go wrong and why. In this paper, we study simple algorithms for planar convex hulls and 3d

Delaunay triangulations and give examples that make the algorithms fail in many different ways.

For the incremental planar convex hull algorithm our examples cover the negation space of the

correctness properties of the algorithms. We also show how to construct failure-examples semi-

systematically and discuss the geometry of the floating-point implementation of the orientation

predicate. We hope that our work will be useful for teaching computational geometry.

1 Introduction

The algorithms of computational geometry are designed for a machine model with exact real arithmetic.

Substituting floating-point arithmetic for the assumed real arithmetic may cause implementations to

fail. Although this is well known, it is not common knowledge. There is no paper that systematically

discusses what can go wrong and provides simple examples for the different ways in which floating-

point implementations can fail. Due to this lack of examples,

1. instructors of computational geometry have little material for demonstrating the inadequacy of

floating-point arithmetic for geometric computations,

2. students of computational geometry and implementers of geometric algorithms still underesti-

mate the seriousness of the problem, and

3. researchers in our and neighboring disciplines still believe that simple approaches are able to

overcome the problem.

∗Partially supported by the IST Programme of the EU under Contract No IST-2000-26473, Effective Computational

Geometry for Curves and Surfaces (ECG). A preliminary version of this paper appeared at ESA 2004, LNCS 3221, pages

702 – 713.
†MPI für Informatik, Saarbrücken, {kettner,mehlhorn}@mpi-inf.mpg.de
‡INRIA Sophia Antipolis, Sylvain.Pion@sophia.inria.fr
§Otto-von-Guericke-Universität, Magdeburg, stschirr@isg.cs.uni-magdeburg.de
¶New York University, New York, USA, yap@cs.nyu.edu

1

p1

p2, p3 p2, p3

Figure 1: Results of a convex hull algorithm using double-precision floating-point arithmetic with the

coordinate axes drawn to give the reader a frame of reference. The algorithm makes gross mistakes

(from left to right): The clearly extreme point p1 is left out. The convex hull has a large concave corner

with a (non-visible) self intersection near p2 and p3, which are close together. The convex hull has

a clearly visible concave chain (and no self-intersection). Details on these examples are explained in

Section 4.

In this paper, we study simple algorithms for two simple geometric problems, namely computing

convex hulls and triangulations of point sets, and show how they can fail and explain why they fail

when executed with floating-point arithmetic.

The convex hull CH(S) of a set S of points in the plane is the smallest convex polygon containing

S. A point p ∈ S is called extreme in S if CH(S) 6= CH(S \ p). The extreme points of S form the

vertices of the convex hull polygon. Convex hulls can be constructed incrementally. One starts with

three non-collinear points in S and then considers the remaining points in arbitrary order. When a point

is considered and lies inside the current hull, the point is simply discarded. When the point lies outside,

the tangents to the current hull are constructed and the hull is updated appropriately. We give a more

detailed description of the algorithm in Section 4.1 and the complete C++ program in Appendix A.

Figure 1 shows point sets (we give the numerical coordinates of the points in Section 4) and the

respective convex hulls computed by the floating-point implementation of our algorithm. In each case

the input points are indicated by small circles, the computed convex hull polygon is shown in green, and

the alleged extreme points are shown as filled red circles. The examples show that the implementation

may make gross mistakes. It may leave out points that are clearly extreme, it may compute polygons

that are clearly non-convex, and it may even run forever.

The first contribution of this paper is to provide a set of instances that make the floating-point

implementations fail in disastrous ways. The computed results do not resemble the correct results in

any reasonable sense.

Our second contribution is to explain why these disasters happen. The correctness of geometric

algorithms depends on geometric properties, e.g., a point lies outside a convex polygon if and only if it

can see one of the edges from the outside. We give examples, for which a floating-point implementation

violates these properties: a point outside a convex polygon that sees no edge and a point not outside

that sees some edges (both in a floating-point implementation of “sees”). We give examples for all

possible violations of the correctness properties of our convex hull algorithms.

Our third contribution is to show how difficult examples can be constructed systematically or at

least semi-systematically. This should allow others to do similar studies.

2

We believe that the paper and its companion web page will be useful in teaching computational

geometry, and that even experts will find it surprising and instructive in how many ways and how badly

even simple algorithms can be made to fail. The companion web page1 contains the source code of all

programs, the input files for all examples, and installation procedures. It allows the reader to perform

our and further experiments.

Numerical analysts are well aware of the pitfalls of floating point computation [For70]. Forsythe’s

paper and many numerical analysis textbooks, see for example [DH91, page 9], contain instructive

examples of how popular algorithms, e.g., Gaussian elimination, can fail when used with floating point

arithmetic. These examples have played a guiding role in the development of robust numerical meth-

ods. Our examples are in the same spirit, but concentrate on the geometric consequences of approxi-

mate arithmetic. Over the past 50 years, sophisticated machinery, e.g., new stable algorithms, forward

and backward error analysis, interval arithmetic, verified numerical computation, was developed for

making numerical computations reliable. The corresponding machinery for geometric computation

does not yet exist to the same extent. However, significant progress was made over the past 15 years

and we point the reader to approaches to reliable geometric computing in the conclusions: the exact

computation paradigm, algorithms with reduced arithmetic demand, approximate algorithms, and per-

turbation methods. In our recent courses on geometric computing, we have used the warning negative

examples of this paper to raise student awareness for the problem and then discussed the approaches

mentioned in the conclusions.

This paper is structured as follows. In Section 2 we discuss the ground rules for our experiments. In

Section 3 we study the effect of floating-point arithmetic on one of the most basic predicates of planar

geometry, the orientation predicate. In Section 4 we discuss the incremental and the gift-wrapping

algorithm for planar convex hulls and in Section 5 we briefly discuss an incremental algorithm for

3d Delaunay triangulations. In Section 6 we discuss two frequently suggested simple approaches for

making the planar convex hull algorithm more robust and argue that they fail. Finally, Section 7 offers

a short conclusion and points to approaches to reliable geometric computation.

Related Work: The literature contains a small number of documented failures due to numerical im-

precision, e.g., Forrest’s seminal paper on implementing the point-in-polygon test [For85], Shewchuk’s

example for divide-and-conquer Delaunay triangulation [She97], Ramshaw’s braided lines [MN99,

Section 9.6.2], Schirra’s example for convex hulls [MN99, Section 9.6.1], and the sweep line algo-

rithm for line segment intersection and boolean operations on polygons [MN99, Sections 10.7.4 and

10.8.4].

2 Ground Rules for our Experiments

Our codes are written in C++ and the results are reproducible on any platform compliant with IEEE

Std 754-1985 floating-point standard for double precision (see [Gol91, IEE87]), and also with other

programming languages. All programs and input data can be found on the companion web page.

Numerical computations are based on IEEE arithmetic. In particular, we study machine floating-point

numbers, called doubles for short, that are ubiquitously used in scientific and geometric computing.

Such numbers have the form ±m2e where m = 1.m1m2 . . .m52 (mi = {0,1}) is the mantissa in binary

and e is the exponent satisfying −1024 < e < 1024.2 The results of arithmetic operations are rounded

1http://www.mpi-inf.mpg.de/˜kettner/proj/NonRobust/
2We ignore here so called denormalized numbers that play no role in our experiments and arguments.

3

to the nearest double (with ties broken using some fixed rule).

Our numerical example data will be written in decimals (for human consumption). Such decimal

values, when read into the machine, are internally represented by the nearest double. We have made

sure that our data can be safely converted in this manner, e.g., conversion to binary and back to decimal

is the identity operation. However, the C++ standard library does not provide sufficient guarantees and

we offer additionally the binary data in little-endian format on the accompanying web page.

The programs were developed with the help of CGAL, the Computational Geometry Algorithms

Library,3 and LEDA, the Library of Efficient Data Types and Algorithms4 [KN04, FGK+00, MN99].

To simplify the use in the classroom, the convex hull algorithms presented in this paper can be used

independently of these (and other) libraries.

3 Planar Orientation Predicate

Three points p, q, and r in the plane either lie on a common line or form a left or right turn. The triple

(p,q,r) forms a left (right) turn, if r lies to the left (right) of the line through p and q and oriented in

the direction from p to q. Analytically, the orientation of the triple (p,q,r) is tantamount to the sign of

a determinant:

orientation(p,q,r) = sign(det





1 px py

1 qx qy

1 rx ry



) , (1)

where p = (px, py), etc. We have orientation(p,q,r) = +1 (resp., −1, 0) iff the polyline (p,q,r)
represents a left turn (resp., right turn, collinearity). Interchanging two points in the triple changes the

sign of the orientation. We implement the orientation predicate in the straightforward way:

orientation(p,q,r) = sign((qx− px)(ry− py)− (qy− py)(rx− px)). (2)

When the orientation predicate is implemented in this obvious way and evaluated with floating-point

arithmetic, we call it float orient(p,q,r) to distinguish it from the ideal predicate. Since floating-point

arithmetic incurs round-off errors, there are potentially three ways in which the result of float orient

could differ from the correct orientation:

– rounding to zero: we mis-classify a + or − as a 0;

– perturbed zero: we mis-classify 0 as + or −;

– sign inversion: we mis-classify a + as − or vice-versa.

3.1 Geometry of Float-Orientation

What is the geometry of float orient, i.e., which triples of points are classified as left-turns, right-turns,

or collinear? The following type of experiment answers the question: We choose three points p, q, and

r and then compute

float orient((px + xu, py + yu),q,r)

for 0≤ x,y≤ 255, where u is the increment between adjacent floating-point numbers in the considered

range; for example, u = 2−53 if px = 1
2

and u = 4 · 2−53 if px = 2 = 4 · 1
2
. We visualize the resulting

256× 256 array of signs as a 256× 256 grid of colored pixels:5 A yellow (red, blue) pixel represents

3http://www.cgal.org/
4http://www.algorithmic-solutions.com/enleda.htm
5We are planning a color reproduction for these images.

4

p :

(

0.5

0.5

)

q :

(

12

12

)

r :

(

24

24

)

(

0.50000000000002531

0.5000000000000171

)

(

17.300000000000001

17.300000000000001

)

(

24.00000000000005

24.0000000000000517765

)

(

0.5

0.5

)

(

8.8000000000000007

8.8000000000000007

)

(

12.1

12.1

)

(a) (b) (c)

Figure 2: The weird geometry of the float-orientation predicate: The figure shows the results of

float orient((px + xu, py + yu,q,r) for 0 ≤ x,y ≤ 255, where u = 2−53 is the increment between ad-

jacent floating-point numbers in the considered range. The result is color coded:5 Yellow (red, blue,

resp.) pixels represent collinear (negative, positive, resp.) orientation. The line through q and r is

shown in black.

collinear (negative, positive, respectively) orientation. In the figures in this section we also indicate an

approximation of the exact line through q and r in black.

Figure 2(a) shows the result of our first experiment: We use the line defined by the points q =
(12,12) and r = (24,24) and query it near p = (0.5,0.5). We urge the reader to pause for a moment

and to sketch what he/she expects to see. The authors expected to see a yellow band around the

diagonal with nearly straight boundaries. Even for points with such simple coordinates the geometry

of float orient is quite weird: the set of yellow points (= the points classified as on the line) does not

resemble a straight line and the sets of red or blue points do not resemble half-spaces. We even have

points that change the side of the line, i.e., are lying left of the line and being classified as right of the

line and vice versa.

In Figures 2(b) and (c) we have given our base points more complex coordinates by adding some

digits behind the binary point. This enhances the cancellation effects in the evaluation of float orient

and leads to even more striking pictures. In (b), the red region looks like a step function at first sight.

Note however, it is not monotone, has yellow rays extending into it, and red lines extruding from

it. The yellow region (= on-region) forms blocks along the line. Strangely enough, these blocks are

separated by blue and red lines. Finally, many points change sides. In Figure (c), we have yellow blocks

of varying sizes along the diagonal, thin yellow and partly red lines extending into the blue region

(similarly for the red region), red points (the left upper corners of the yellow structures extending into

the blue region) deep inside the blue region, and isolated yellow points almost 100 units away from the

diagonal.

All diagrams in Figure 2 exhibit block structure. We now explain why: We focus on one dimension,

i.e., assume we keep y fixed and vary only x. We evaluate float orient((px + xu, py + yu),q,r) for

5

Figure 3: We repeat the example from Figure 2(b) and show the result for all three distinct choices for

the pivot; namely p on the left, q in the middle, and r on the right. All figures exhibit sign reversal.

0≤ x≤ 255, where u is the increment between adjacent floating-point numbers in the considered range.

Recall that orientation(p,q,r) = sign((qx − px)(ry − py)− (qy − py)(rx − px)). We incur round-off

errors in the additions/subtractions and also in the multiplications. Consider first one of the differences,

say qx − px. In (a), we have qx = 12 and px ≈ 0.5. Since 12 has four binary digits, we loose the

last four bits of x in the subtraction, in other words, the result of the subtraction qx− px is constant

for 24 consecutive values of x. Because of rounding to nearest, the intervals of constant value are

[8,23], [24,39], [40,55] Similarly, the floating-point result of rx− px is constant for 25 consecutive

values of x. Because of rounding to nearest, the intervals of constant value are [16,47], [48,69],

Overlaying the two progressions gives intervals [16,23], [24,39], [40,47], [48,55], . . . and this explains

the structure we see in the rows of (a). We see short blocks of length 8, 16, 24, . . . in (a). In (b) and

(c), the situation is somewhat more complicated. It is again true that we have intervals for x, where the

results of the subtractions are constant. However, since q and r have more complex coordinates, the

relative shifts of these intervals are different and hence we see narrow and broad features.

Some Theory: We show that if all point coordinates are chosen from the range [1
2
,1], more generally,

differ by a factor of at most two, then the only sign error is rounding to zero. According to Sterbenz’s

theorem [Ste74], floating-point subtraction of two floating-point numbers a and b is exact, if 1
2
≤ a

b
≤ 2

and so there will be no cancellation in the subtraction of point coordinates. Cancellation can only occur

in the evaluation of the final expression of the form cd− e f . If cd = e f then the floating-point sign

evaluation will return zero, since the double nearest to cd and e f is the same. If cd ≥ e f , the result of

computing cd in floating-point arithmetic is at least as large as the result of computing e f in floating-

point arithmetic. Thus, the floating-point evaluation of cd− e f results in a non-negative number. We

conclude that the only sign error is rounding to zero. Because of this analysis, we choose our point

coordinates from a larger range in our examples.

Choice of a Pivot Point: The orientation predicate is the sign of a three-by-three determinant and this

determinant may be evaluated in different ways. In float orient as defined above we use the point p as

the pivot, i.e., we subtract the row representing the point p from the other rows and reduce the problem

to the evaluation of a two-by-two determinant. Similarly, we may choose one of the other points as

the pivot. Figure 3 displays the effect of the different choices of the pivot point on the example of

Figure 2(b). The choice of the pivot makes a difference, but nonetheless the geometry remains non-

6

(a) (b)

Figure 4: Examples of the impact of extended double arithmetic. We repeat the example from Fig-

ure 2(b) with different implementations of the orientation test: (a) We evaluate (qx− px)(ry− py) and

(qy− py)(rx− px) in extended double arithmetic, convert their values to double precision, and compare

them. (b) We evaluate sign((qx− px)(ry− py)− (qy− py)(rx− px)) in extended double arithmetic. For

both, the grid size u = 2−53 is the same as for the regular double precision examples in Figure 2.

trivial and sign reversals happen for all three choices.

Based on floating-point error-bound estimates one can conclude that the center point w.r.t. the

x-coordinate (or equivalently the y-coordinate) is the best choice for the pivot. But we have never

seen this actually realized to achieve better robustness for this predicate, probably because the planar

orientation predicate is so simple that the necessary conditional branching would already impair its

performance significantly. And, if one is willing to invest that time, one can also realize one of the

floating-point filter based exact implementation schemes, see for example [FvW96, She97]. Further

details are beyond the scope of this paper.

Extended Double Precision: Some architectures, for example, Intel Pentium processors, offer IEEE

extended double precision with a 64 bit mantissa in an 80 bit representation. Does this additional

precision help? Not really, as the examples in Figure 4 suggest. One might argue that the number of

misclassified points decreases, but the geometry of float orient remains fractured and exploitable for

failures similar to those that we develop below for the double precision arithmetic.

4 Planar Convex Hull Problem

We discuss two simple planar convex hull algorithms, an incremental algorithm and the gift-wrapping

method. In both cases, we describe the algorithm, state the underlying geometric assumptions, give

instances that violate the assumptions when used with floating-point arithmetic, and finally show which

disastrous effects these violations may have on the result of the computation.

4.1 Incremental Convex Hull Algorithm

The incremental algorithm maintains the current convex hull CH of the points seen so far. Initially,

CH is formed by choosing three non-collinear points in S. It then considers the remaining points one

by one. When considering a point r, it first determines whether r is outside the current convex hull

polygon. If not, r is discarded. Otherwise, the hull is updated by forming the tangents from r to CH

7

and updating CH appropriately. The incremental paradigm is used in Andrew’s [And79] and other

variants of Graham’s scan [Gra72] and also in the randomized incremental algorithm [CS89].

The algorithm maintains the current hull as a circular list L = (v0,v1, . . . ,vk−1) of its extreme points

in counter-clockwise order. The line segments (vi,vi+1), 0 ≤ i ≤ k− 1 (indices are modulo k) are the

edges of the current hull. If orientation(vi,vi+1,r) < 0, we say that r sees the edge (vi,vi+1) and that

the edge (vi,vi+1) is visible from r. If orientation(vi,vi+1,r) ≤ 0, we say that the edge (vi,vi+1) is

weakly visible from r. After initialization, k ≥ 3. The following properties are key to the operation of

the algorithm.

Property A. A point r is outside CH iff r can see an edge of CH.

Property B. If r is outside CH, the edges weakly visible from r form a non-empty consecutive sub-

chain; so do the edges that are not weakly visible from r.

If (vi,vi+1), . . . , (v j−1,v j) is the subsequence of weakly visible edges, the updated hull is obtained

by replacing the subsequence (vi+1, . . . ,v j−1) by r. The subsequence (vi, . . . ,v j) is taken in the circular

sense, e.g., if i > j then the subsequence is (vi, . . . ,vk−1,v0, . . . ,v j). From these properties, we derive

the following algorithm:

INCREMENTAL CONVEX HULL ALGORITHM (Sketch)

Initialize L to the counter-clockwise triangle (a,b,c). Remove a,b,c from S.

for all r ∈ S do

if there is an edge e visible from r then

Compute the sequence (vi, . . . ,v j) of edges that are weakly visible from r.

Replace the subsequence (vi+1, . . . ,v j−1) by r.

end if

end for

To turn the sketch into an algorithm, we provide more information about the substeps:

1. How does one determine whether there is an edge visible from r? We iterate over the edges in

L, checking each edge using the orientation predicate. If no visible edge is found, we discard r.

Otherwise, we take any one of the visible edges as the starting edge for the next item.

2. How does one identify the subsequence (vi, . . . ,v j)? Starting from a visible edge e, we move

counter-clockwise along the boundary until a non-weakly-visible edge is encountered. Similarly,

we move clockwise from e until a non-weakly-visible edge is encountered.

3. How to update the list L? We can delete the vertices in (vi+1, . . . ,v j−1) after all visible edges are

found, as suggested in the above sketch (“the off-line strategy”) or we can delete them concur-

rently with the search for weakly visible edges (“the on-line strategy”).

We give a detailed implementation in Appendix A; it was used for all experiments. There are four

logical ways to negate Properties A and B:

• Failure A1: A point outside the current hull sees no edge of the current hull.

• Failure A2: A point inside the current hull sees an edge of the current hull.

• Failure B1: A point outside the current hull sees all edges of the convex hull.

• Failure B2: A point outside the current hull sees a non-contiguous set of edges.

8

p1

p2, p3

p4

p5

p6

p7
p8

p9

��
��
��
��

������

��
��
��
��

����

p

q
r

x

(a) (b)

Figure 5: (a) The convex hull illustrating Failure A1: The point p4 in the lower left corner is left out of

the hull. (b) Schematic view indicating the ridiculous situation of a point outside the current hull and

seeing no edge of the hull: x lies to the left of all sides of the triangle (p,q,r).

Failures A1 and A2 are equivalent to the negation of Property A. Similarly, Failures B1 and B2 are

complete for Property B if we take A1 into account. Are all these failures realizable? We now affirm

this.

4.2 Single-Step Failures

We give instances violating the correctness properties of the algorithm. More precisely, we give se-

quences p1, p2, p3, . . . of points such that the first three points form a counter-clockwise triangle (and

float orient correctly discovers this) and such that the insertion of some later point leads to a viola-

tion of a correctness property (in the computations with float orient). We also discuss how we arrived

at the examples. All our examples involve nearly or truly collinear points; in the view of a standard

rounding-error analysis sufficiently non-collinear points would not cause any problems. Does this

make our examples unrealistic? We believe not. Many point sets contain nearly collinear points or

truly collinear points, which become nearly collinear by conversion to floating-point representation.

Failure A1: A point outside the current hull sees no edge of the current hull: Consider the set of

points below. Figure 5(a) shows the computed convex hull, where a point that is clearly extreme was

left out of the hull.

p1 = (7.3000000000000194, 7.3000000000000167)
p2 = (24.000000000000068, 24.000000000000071)
p3 = (24.00000000000005, 24.000000000000053)
p4 = (0.50000000000001621, 0.50000000000001243)
p5 = (8, 4) p6 = (4, 9) p7 = (15,27)
p8 = (26,25) p9 = (19,11)

float orient(p1, p2, p3) > 0

float orient(p1, p2, p4) > 0

float orient(p2, p3, p4) > 0

float orient(p3, p1, p4) > 0 (!!)

What went wrong? The culprits are the first four points. They lie almost on the line y = x, and

float orient gives the results shown above. Only the last evaluation is wrong, indicated by “(!!)”.

Geometrically, these four evaluations say that p4 sees no edge of the triangle (p1, p2, p3). Figure 5(b)

gives a schematic view of this ridiculous situation. The points p5, . . . , p9 are then correctly identified

9

p1 : (17.300000000000001,17.300000000000001)
p2 : (24.000000000000068,24.000000000000071)
p3 : (24.00000000000005,24.000000000000053)
p4 : (0.5,0.5)

(7.3000000000000194,7.3000000000000167)
(24.000000000000068,24.000000000000071)
(24.00000000000005,24.000000000000053)

(0.5,0.5)

(a) (b)

Figure 6: The points (p1, p2, p3) form a counter-clockwise triangle and we are interested in the clas-

sification of points (x(p4)+ xu,y(p4)+ yu) with respect to the edges (p1, p2) and (p3, p1) incident to

p1. The extensions of these edges are indistinguishable in the pictures and are drawn as a single black

line. The red points do not “float-see” either one of the edges (Failure A1). Points collinear with one

of the edges are ocher, those collinear with both edges are yellow, those classified as seeing one but

not the other edge are blue, and those seeing both edges are green. (a) Example starting from points in

Figure 2. (b) Example that achieves “robustness” with respect to the first three points.

as extreme points and are added to the hull. However, the algorithm never recovers from the error made

when considering p4 and the result of the computation differs drastically from the correct hull.

We next explain how we arrived at the instance above. Intuition told us that an example (if it exists

at all) would be a triangle with two almost parallel sides and with a query point near the wedge defined

by the two nearly parallel edges. In view of Figure 2 such a point might be mis-classified with respect

to one of the edges and hence would be unable to see any edge of the triangle. So we started with

the points used in Figure 2(b), i.e., p1 ≈ (17,17), p2 ≈ (24,24) ≈ p3, where we moved p2 slightly

to the right so as to guarantee that we obtain a counter-clockwise triangle. We then probed the edges

incident to p1 with points p4 in and near the wedge formed by these edges. Figure 6(a) visualizes

the outcomes of the two relevant orientation tests. Each red pixel is a candidate for Failure A1. The

example obtained in this way was not completely satisfactory, since some orientation tests on the initial

triangle (p1, p2, p3) were evaluating to zero.

We perturbed the example further, aided by visualizing float orient(p1, p2, p3), until we found the

example shown in (b). The final example has the nice property that all possible float orient tests on

the first three points are correct. So this example is independent from any conceivable initialization

an algorithm could use to create the first valid triangle. Figure 6(b) shows the outcomes of the two

orientations tests for our final example.

10

p2

p4

p1
p3

Figure 7: Schematic view of Failure B1: The point p4 sees all edges of the triangle (p1, p2, p3).

Failure A2: A point inside the current hull sees an edge of the current hull: Such examples are

plenty. We take any counter-clockwise triangle and choose a fourth point inside the triangle but close

to one of the edges. By Figure 2 there is the chance of sign reversal. A concrete example follows:

p1 = (27.643564356435643, −21.881188118811881)
p2 = (83.366336633663366, 15.544554455445542)
p3 = (4.0, 4.0)
p4 = (73.415841584158414, 8.8613861386138595)

float orient(p1, p2, p3) > 0

float orient(p1, p2, p4) < 0 (!!)
float orient(p2, p3, p4) > 0

float orient(p3, p1, p4) > 0

The convex hull is correctly initialized to (p1, p2, p3). The point p4 is inside the current convex

hull, but the algorithm incorrectly believes that p4 can see the edge (p1, p2) and hence changes the hull

to (p1, p4, p2, p3), a slightly non-convex polygon.

Failure B1: A point outside the current hull sees all edges of the convex hull: Intuition told us

that an example (if it exists) would consist of a triangle with one angle close to π and hence three

almost parallel sides. Where should one place the query point? We first placed it in the extension of

the three parallel sides and quite a distance away from the triangle. This did not work. The choice that

worked is to place the point near one of the sides so that it could see two of the sides and “float-see”

the third. Figure 7 illustrates this choice. A concrete example follows:

p1 = (200.0, 49.200000000000003)
p2 = (100.0, 49.600000000000001)
p3 = (−233.33333333333334, 50.93333333333333)
p4 = (166.66666666666669, 49.333333333333336)

float orient(p1, p2, p3) > 0

float orient(p1, p2, p4) < 0

float orient(p2, p3, p4) < 0

float orient(p3, p1, p4) < 0 (!!)

The first three points form a counter-clockwise oriented triangle and according to float orient, the

algorithm believes that p4 can see all edges of the triangle. What will our algorithm do? It depends on

the implementation details. If the algorithm first searches for an invisible edge, it will search forever

and never terminate. If it deletes points on-line from L it will crash or compute nonsense depending on

the details of the implementation.

Failure B2: A point outside the current hull sees a non-contiguous set of edges: Consider the

following points:

p1 = (0.50000000000001243, 0.50000000000000189)
p2 = (0.50000000000001243, 0.50000000000000333)
p3 = (24.00000000000005, 24.000000000000053)
p4 = (24.000000000000068, 24.000000000000071)
p5 = (17.300000000000001, 17.300000000000001)

float orient(p1, p4, p5) < 0 (!!)
float orient(p4, p3, p5) > 0

float orient(p3, p2, p5) < 0

float orient(p2, p1, p5) > 0

Inserting the first four points results in the convex quadrilateral (p1, p4, p3, p2); this is correct. The

last point p5 sees only the edge (p3, p2) and none of the other three. However, float orient makes p5

11

(a) (b)

Figure 8: Visualization of the region of interest for the points p1 and p2 for the Failure B2 data set. (a)

Candidates can be chosen from the red regions and must be below the black line. (b) Not all candidates

will give rise to a proper convex hull for the first four points. All invalid candidates are masked out in

light grey.

see also the edge (p1, p4). The subsequences of visible and invisible edges are not contiguous. Since

the falsely classified edge (p1, p4) comes first, our algorithm inserts p5 at this edge, removes no other

vertex, and returns a polygon that has self-intersections and is not simple.

We next discuss how we found the instance illustrating Failure B2. Intuition told us that an example

(if it exists) would consist of a quadrilateral with two nearly parallel sides and the two other sides

being very short. A query point sitting above the middle of one of the long sides might be able to

“float-see” the opposite side of the quadrilateral. It would not see the two short sides. We took the

points in Figure 6(a) as a starting point, denote them q1, q2, We set p3 = q3, p4 = q2, p5 = q1,

and decided to look for p1 and p2 in the vicinity of q4. So we searched for points p near q4 with

float orient(p, p4, p5) < 0 and float orient(p3, p1, p) < 0 that are also below the exact lines defined

by (p3, p5) and (p4, p5) (the last condition ensures that p5 lies above the quadrilateral). Figure 8(a)

visualizes the region of interest for p.

In addition, the first four points should realize a convex hull with our algorithm. In particular,

unwanted classifications from float orient as collinear need to be avoided. We mask all forbidden

regions in the visualization and we obtain Figure 8(b), from which we were able to select our example

points. We selected two points on one of the vertical red lines and below the black line.

Finally, we visualize the region around p5 in Figure 9. The error is small for float orient in this

region, but nevertheless there are several points realizing Failure B2, of which two are shown in the

magnified view.

Further Examples: Besides the four logical possibilities above, we can look at quantitative versions:

1. The point sees only a subset of the edge visible to it. Then too few points will be deleted from L.

2. The point sees a superset of the edges visible to it. Then too many points will be deleted from L.

3. A point sees visible and invisible edges. Then it is hard to say what happens.

12

Figure 9: Closeup of the neighborhood of the fifth point that causes Failure B2, it is the lower left one

of the two red pixels, but the other at grid-distance (32,32) from the first works also and there are

several more candidates not shown in this limited view.

4.3 Global Effects of Failures

By now, we have seen examples that cover the negation space of the correctness properties on the

incremental algorithm and we have seen the effect of an incorrect orientation test for a single update

step. We next study global effects. The goal is to refute the myth that the algorithm will always compute

an approximation of the true convex hull.

The algorithm computes a convex polygon, but misses some of the extreme points: We have

already seen such an example in Failure A1. We can modify this example so that the ratio of the areas

of the true hull and the computed hull becomes arbitrarily large. We do as in Failure A1, but move the

fourth point towards infinity. The true convex hull has four extreme points. The algorithm misses q4.

q1 = (0.10000000000000001,0.10000000000000001)
q2 = (0.20000000000000001,0.20000000000000004)
q3 = (0.79999999999999993,0.80000000000000004)
q4 = (1.267650600228229 ·1030 ,1.2676506002282291 ·1030)

float orient(q1,q2,q3) < 0

float orient(q1,q2,q4) = 0 (!!)
float orient(q2,q3,q4) = 0 (!!)
float orient(q3,q1,q4) > 0

The algorithm crashes or does not terminate: See Failure B1.

The algorithm computes a non-convex polygon: We have already given such an example in Failure

A2. However, this failure is not visible to the naked eye. We next give examples where non-convexity

is visible to the naked eye. We consider the points:

p1 = (24.00000000000005, 24.000000000000053)
p2 = (24.0, 6.0)
p3 = (54.85, 6.0)
p4 = (54.850000000000357, 61.000000000000121)
p5 = (24.000000000000068, 24.000000000000071)
p6 = (6.0, 6.0) .

13

p2 p3

p4

p2 p3

p4

p6

p′2
p3

p4

p6

p1 p5 p1 p5 p1 p5

(a) (b) (c)

Figure 10: (a) The hull constructed after processing points p1 to p5. Points p1 and p5 lie close to each

other and are indistinguishable in the upper figure. The magnified schematic view below shows that

we have a concave corner at p5. The point p6 sees the edges (p1, p2) and (p4, p5), but does not see the

edge (p5, p1). One of the former edges will be chosen by the algorithm as the chain of edges visible

from p6. Depending on the choice, we obtain the hulls shown in (b) or (c). In (b), (p4, p5) is found as

the visible edge, and in (c), (p1, p2) is found. We refer the reader to the text for further explanations.

The figures show the coordinate axes to give the reader a frame of reference.

After the insertion of p1 to p4, we have the convex hull (p1, p2, p3, p4). This is correct. Point p5

lies inside the convex hull of the first four points; but float orient(p4, p1, p5) < 0. Thus p5 is inserted

between p4 and p1 and we obtain (p1, p2, p3, p4, p5). However, this error is not visible yet to the eye,

see Figure 10(a).

The point p6 sees the edges (p4, p5) and (p1, p2), but does not see the edge (p5, p1). All of this is

correctly determined by float orient. Consider now the insertion process for point p6. Depending on

where we start the search for a visible edge, we will either find the edge (p4, p5) or the edge (p1, p2).
In the former case, we insert p6 between p4 and p5 and obtain the polygon shown in (b). It is visibly

non-convex and has a self-intersection. In the latter case, we insert p6 between p1 and p2 and obtain

the polygon shown in (c). It is visibly non-convex.

Of course, in a deterministic implementation, we will see only one of the errors, namely (b). This

is because in our example, the search for a visible edge starts at edge (p2, p3). In order to produce (c)

with our implementation we replace the point p2 by the point p′2 = (24.0,10.0). Then p6 sees (p′2, p3)
and identifies (p1, p′2, p3) as the chain of visible edges and hence constructs (c).

14

p

q

Figure 11: The extended rightturn(p,q,r) predicate returns true in the shaded region, which includes

the point q and the ray extending to the right of q.

4.4 Gift-Wrap Convex Hull Algorithm

Another approach to convex hull is based on gift wrapping. This algorithm is also very simple (see

below) and has complexity O(nh) where h is the output size, i.e., the number of extreme points.

Let us assume we know an extreme point p of a point sequence S. The points in S can be ordered

by angle around p. Since p is extreme, all points lie in one halfplane and hence this circular order can

be conveniently tested with the orientation predicate. However, we additionally want to take care of

the degenerate cases of collinear and equal points. We extend the rightturn predicate to return true if a

point r is to the right of the oriented line through pq or if it is on the ray starting in q in the direction of

q− p (see Figure 11):

extended rightturn(p,q,r) ≡ “orientation(p,q,r) < 0 or

(orientation(p,q,r) = 0 and 〈q− p,r−q〉 ≥ 0)”,

where 〈u,v〉 is the scalar product of two vectors. We have:

Property C. For a fixed extreme point p of S, the extended rightturn predicate defines a total order

�p on S×S such that q�p r iff extended rightturn(p,q,r) holds.

The maximal element in this total order �p is an extreme point of S. For a sequence S of points, we

say a pair (p,q) of points wraps S if for all s ∈ S, extended rightturn(p,s,q) holds. We have:

Property D. If (p,q) wraps S then p and q are consecutive extreme points of S∪{p,q}.

The gift-wrapping algorithm proceeds now as follows: It starts with the lexicographically smallest

point as first extreme point. From the current extreme point it extends the convex hull to the next

extreme point in counterclockwise order—“wrapping” S—until we reach the first extreme point again.

To find the next extreme point, we use the following routine WRAPSTEP(S, p) to return a point q ∈ S

such that (p,q) wraps S. The routine computes the maximum in the total order �p:

WRAPSTEP(S, p)

q← p

for all s ∈ S do

if extended rightturn(p,q,s) then

q← s

return q

Note that the definition of the total order handles the case of duplicated points correctly, which allows us

to initialize q with p in the search. The main algorithm follows immediately. It handles all degeneracies

including duplicated points and singleton point sets correctly.

15

GIFT-WRAP CONVEX HULL ALGORITHM

INPUT: A sequence S of n > 0 points

OUTPUT: Convex hull of S, CH ← (p1, . . . , ph), h > 0

CH ← ()
p, p1← lexicographically smallest point in S

repeat

Append p to CH

p←WRAPSTEP(S, p)
until p = p1

We give a detailed implementation in Appendix B; it was used for all experiments.

4.5 Failures in Gift Wrapping with Floats

It is easy to produce slightly wrong convex hulls, but the following failures have more dramatic impact.

Let us first violate Property D:

Failure D1: pq wraps the point set, but p and q are non-consecutive extreme points. Consider

the points:

p1 = (24.0, 12.0)
p2 = (7.2, 7.2)
p3 = (0.50000000000006584, 0.50000000000006561)
p4 = (0.50000000000006917, 0.50000000000006573)
p5 = (24.00000000000005, 24.0000000000000517765)

According to WRAPSTEP with float evaluation (p5, p4) wraps {p1, . . . , p5}. However, p5 and p4

are not consecutive extreme points, since p3 lies between them. In fact, p3 is the lexicographically

smallest point. The wrapping starts at p3, but unfortunately never reaches it again. Instead, the al-

gorithm reports the infinite sequence of points p3, p4, p1, p5, p4, p1, We analyze the progress more

closely: The initial sequence of points p3, p4, p1, and p5 is correct. We call now WRAPSTEP(S, p5).
The order of points in S matters and we observe the values of point q local to the WRAPSTEP(S, p5)
function call: Since q is initialized to p5, we immediately replace it with p1 and then with p2. Now,

we constructed p3 and p4 to have float orient(p5, p2, p3) > 0 (!!) while orientation(p5, p2, p3) < 0 and

float orient(p5, p2, p4) < 0 (!!) while orientation(p5, p2, p4) > 0. So, p3 will be skipped and the final

result of WRAPSTEP(S, p5) becomes p4.

Algorithmically, Property D solely relies on Property C. We can violate Property D only by vio-

lating Property C. We could violate Property C without affecting Property D, i.e., process the points

in a wrong order in WRAPSTEP but still report the correct maximum. There would be no observable

failure. Instead, we chose to construct the following two closely related failures for Property C that

violate Property D as well.

Failure C1: p is an extreme point, but �p is (falsely) not a total order. Consider the points:

p1 = (24.00000000000005, 24.0000000000000517765)
p2 = (7.2, 7.2)
p3 = (0.50000000000002798, 0.50000000000002631)
p4 = (25.0, 1.0)

16

They form a convex quadrilateral. In particular, the correct float orient(p1, p2, p3) < 0 will make

p2 the next extreme point after p1 has been found. We call now WRAPSTEP(S, p2). The order of

points in S matters and we observe the values of point q local to the WRAPSTEP(S, p2) function call:

Since q is initialized to p2, we immediately replace it with p1, ignore p2, and test p3 next. However,

float orient(p2, p1, p3) > 0 (!!) and p3 will be discarded. WRAPSTEP(S, p2) will then report p4 as

result. Similar to the previous failure the algorithm skips over the lexicographic smallest point p3 and

will not terminate.

Interesting here is that we exploit an inconsistency in the float orient predicate under permutation

of its arguments. If we choose p1 as our pivot (i.e., p1 as first argument to float orient) we correctly

see p2 as extreme point. Instead, if we choose p2 as our pivot we incorrectly see p2 inside the convex

hull and can exploit this to trigger the wrong result from WRAPSTEP(S, p2).

Failure C2: p is a (falsely) reported extreme point and thus �p is not a total order. We replace

p3 in the example for Failure C1 with

p′3 = (0.50000000000002665, 0.50000000000002665)

and obtain the same float orient evaluations as for Failure C1, just that p′3 is actually inside the convex

hull and not an extreme point, but will be falsely seen as extreme point when p1 is chosen as pivot in

float orient.

5 Incremental 3D Delaunay Triangulation Algorithm

The planar convex hull algorithms are simple educational examples. A more complex, and in practice

quite relevant algorithm is the incremental construction of the 3d Delaunay triangulation, such as the

one found in CGAL. The complex algorithm consists of several phases, which all can fail in different

ways when executed with floating-point arithmetic. We describe the algorithm in more detail and

illustrate with one exemplary failure how simple it is to make such complex algorithms fail.

We say that a point u is in conflict with a tetrahedron t if u lies in the interior of the circumscribing

sphere of t. A Delaunay triangulation of a set of points is a triangulation in which all tetrahedra verify

the Delaunay property: they do not conflict with any other point of the triangulation. In the degenerate

case of co-spherical points, the Delaunay triangulation may not be unique.

The incremental Delaunay algorithm inserts a new point u in the current Delaunay triangulation

in two steps: point location and update. The point location step returns a tetrahedron in conflict with

u. The update step removes all tetrahedra in conflict with u and populates the resulting hole with new

tetrahedra connecting u with the facets of the hole, thus establishing the Delaunay property for the

resulting triangulation.

One way to implement the point location step is to find a tetrahedron that contains u (there can

be several in the case that u is on a facet or an edge), which will a fortiori be in conflict with u.

Several algorithms can be used here, but we focus on a specific walking algorithm called remembering

stochastic walk in [DPT02], which traverses the adjacency relations between tetrahedra. The walking

part is usually sped up by another algorithm that quickly finds a tetrahedron near the target, using, for

example, either a hierarchy of triangulations or a small random sample of the points. However, we

concentrate in this paper on studying the robustness of the fundamental walking part.

Note that inserting a point that is outside the convex hull of the existing triangulation can be per-

formed similarly but uses different predicates. We are not studying the failures that can be found here.

So in the sequel, we assume that u lies inside the convex hull of the previous points. We also do

17

not consider the bootstrapping phase of the incremental algorithm where the convex hull of the points

currently inserted does not yet have the full dimension, which requires additional predicates.

5.1 Failures of the Point Location Step

By convention and ensured by the algorithm, all tetrahedra in the triangulation are positively oriented,

i.e., orientation(p,q,r,s) is positive, where the three-dimensional orientation test is defined analogously

to the planar orientation test in Equation 1 as:

orientation(p,q,r,s) = sign(det









1 px py pz

1 qx qy qz

1 rx ry rz

1 sx sy sz









) . (3)

The facet (q,r,s) of a tetrahedron opposite to p is said to separate the tetrahedron from a point u if

orientation(u,q,r,s) is negative. The definition extends analogously to the facets opposite of q, r, and

s, respectively, replacing the point opposing the facet with u in the orientation predicate.

The point location algorithm starts at an initial tetrahedron (p,q,r,s), iterates over its four facets,

and tests if a facet separates the tetrahedron from u. If such a facet is found, the algorithm moves to the

neighbor tetrahedron and repeats the point location. Otherwise, no such facet is found and u is inside

or on the boundary of the tetrahedron, which means that u is either in conflict or is equal to one of the

vertices of the tetrahedron. The latter case can be seen immediately from the return values of all the

orientation predicates performed with the facets of the tetrahedron and u.

Property E. The point location algorithm terminates with a tetrahedron that contains the query point

u if the triangulation fulfills the Delaunay property and u is inside the convex hull of the triangula-

tion [Ede90].

If we use a corresponding floating-point implementation for our orientation test we observe that Prop-

erty E can fail in two ways: (1) the algorithm loops and does not terminate, or (2) the algorithm returns

a tetrahedron that does not contain u (but which may still be in conflict with u and thus not endanger

the update step). We confine ourselves to the first kind of failure:

Failure E1: The point location algorithm loops and does not terminate. The termination proof

relies on the Delaunay property of the triangulation and the correct evaluation of the orientation pred-

icate. We search for a cycle among a small number of tetrahedra. Two tetrahedra are actually not

enough because of the obvious optimization that the algorithm does not test the tetrahedron again

where it came from. Three tetrahedra may suffice, where u lies close to the three supporting planes

of the three common facets to trigger numerical inaccuracies in the orientation test. This suggests to

build a triangulation with a central edge surrounded by three tetrahedra and to locate a point u that is

approximately on this edge as illustrated in Figure 12.

We provide a program that creates random examples of that nature and tests them for Failure E1.

At first, the program generates five random points and verifies that their Delaunay triangulation has the

desired shape of three tetrahedra grouped around a central edge, and if not it tries another set of points.

Then, the program generates a point u near the central edge by computing a point on the edge using

approximate floating-point computations. At the end, the program locates u in the triangulation. In

fact, the point location loops quite often due to inconsistent answers of the orientation predicate in the

volume around the edge. We give here an example data set that makes the algorithm loop:

18

p0

p1

p2
p3

p4

u

Figure 12: Inserting a point u near the central edge (p0, p1) of a Delaunay triangulation made of three

tetrahedra around that central edge.

p0 = (0.092408271079090554, 0.1326565794620080400, 0.20816329990430305)
p1 = (0.183729934258721530, 0.0085360395142579648, 0.39535821959993456)
p2 = (0.382775030788625510, 0.2050904804319415600, 0.01038994374388480)
p3 = (0.256251824311654270, 0.6315717178093045400, 0.16190908040221075)
p4 = (0.191845325127811610, 0.0281530165464261020, 0.57432720440646179)

u = (0.232038626475695340, 0.4235560948517673200, 0.23985175657768110)

6 Non-Solutions

A number of approaches have been suggested to make floating point implementations work, either of

specific algorithms or in general. We point to promising approaches in the next section and discuss two

frequently suggested approaches that do not work in this section.

The first approach is specific to the planar convex hull problem. A frequently heard reaction to our

paper is that all our examples exploit the fact that the first few points are nearly collinear. If one starts

with a ”roundish” hull, or at least starts with a hull formed from the points of minimal and maximal x-

and y- coordinates, the problem will go away. We have two answers to this suggestion: Firstly, neither

way can cope with the situation that all input points are nearly collinear, and secondly, the example in

Figure 10 falsifies this suggestions. Observe that we have a ”roundish” hull after the insertion of the

points p1 to p4 and then the next two insertions lead the algorithm astray. The example can be modified

to start with points of minimal and maximal x- coordinates first, which we suggest as a possible course

exercise.

Epsilon-tweaking is another frequently suggested and used remedy, i.e., instead of comparing ex-

actly with zero, one compares with a small (absolute or relative) tolerance value epsilon. Epsilon-

tweaking simply activates rounding to zero. In the planar hull example, this will make it more likely

for points outside the current hull not to see any edges because of enforced collinearity and hence at

least failure A1 will still occur. In our examples of Section 3, the yellow band in our visualizations of

collinear pixels becomes wider, but its boundary remains as fractured as it is in the comparison with

zero, see Figure 13.

Another objection argues that our examples are unrealistic since they contain near collinear point

triples or points very close together (actually the usual motivation for Epsilon-tweaking). Of course,

the examples have to look like this, otherwise there would not be room for rounding errors. But they

19

p :

(

0.5

0.50000000000833222

)

q :

(

12

12

)

r :

(

24

24

)

p :

(

0.50000000000833222

0.5

)

q :

(

12

12

)

r :

(

24

24

)

(a) (b)

Figure 13: The effect of epsilon-tweaking: The figures show the result of repeating the experiment of

Figure 2(a), but using an absolute epsilon tolerance value of ε = 10−10, i.e., three points are declared

collinear if float orient returns a value less than or equal to 10−10 in absolute value. The yellow region

of collinearity widens, but its boundary is as fractured as before. Figure (a) shows the boundary in

the direction of the positive y-axis, and Figure (b) shows the boundary in the direction of the positive

x-axis. The figures are color coded: Yellow (red, blue, resp.) pixels represent collinear (negative,

positive, resp.) orientation. The black lines correspond to the lines orientation(p,q,r) =±ε.

are realistic; firstly, practical experience shows it. Secondly, degeneracies, such as collinear point

triples, are on purpose in many data sets, since they reflect the design intent of a CAD construction

or in architecture. Representing such collinear point triples in double precision arithmetic and further

transformations lead to rounding errors that turn these triples into close to collinear point triples. And

thirdly, increasingly larger data sets increase the chance to have a bad triple of points just by bad luck,

and a single failure suffices to ruin the computation.

7 Conclusion

We provided instances that cause floating-point implementations of three basic geometric algorithms

to fail. Our instances make the algorithms fail in many different ways. We showed how to construct

such instances semi-systematically. We think that our paper and its companion web page will be useful

for classroom use and that it will alert students and researchers to the intricacies of implementing

geometric algorithms.

We want to reiterate that our goal was not to show that the specific algorithms discussed in this

paper can fail, but to give illustrative examples for what can go wrong and why. We could have

used other algorithms and implementations as the starting point of our work. After all, it is common

knowledge that most geometric implementations fail for some inputs. We have chosen the specific

algorithms because they are frequently taught and because they are so simple that one can actually

discuss in full detail what goes wrong. We see our contribution in presenting educational examples

20

for the bigger problem of why and how geometric algorithms can fail, studied on a level where all

aspects of the problem can still be discussed and understood in class. We hope that the examples will

raise awareness for the problem and willingness to study the various approaches to reliable geometric

computation.

We do not want to leave our readers in despair and therefore close with some pointers to successful

approaches to reliable geometric computation. There are several approaches: (1) make sure that the

implementations of geometric predicates always returns the correct result or (2) change the algorithm

so that it can cope with the floating-point implementation of its geometric predicates and still computes

something meaningful or (3) perturb the input so that the floating-point implementation is guaranteed

to produce the correct result on the perturbed input.

The first approach is the most general and is known under the exact geometric computation (EGC)

paradigm. For detailed discussions, we refer the reader to [Yap04] and Chapter 9 of [MN99]. The EGC

approach has been adopted for the software libraries LEDA and CGAL [KN04, FGK+00, MN99] and

other successful implementations [HK05, She97, FvW96, BEH+05].

The other approaches have been successfully applied to a number of geometric problems, see for

example [Mil89, FM91, LM90, DSB92, SIII00, HS98, FKMS05]. In the second approach the interpre-

tation of “meaningful” is a crucial and difficult problem.

References

[And79] A.M. Andrew. Another efficient algorithm for convex hulls in two dimensions. Information

Processing Letters, 9:216–219, 1979.

[BEH+05] E. Berberich, A. Eigenwillig, M. Hemmer, S. Hert, L. Kettner, K. Mehlhorn, J. Reichel,

S. Schmitt, E. Schömer, and N. Wolpert. EXACUS: Efficient and exact algorithms for

curves and surfaces. In Proc. 13th Annu. European Sympos. Algorithms (ESA’05), LNCS

3669, pages 155–166. Springer, October 2005.

[CS89] K.L. Clarkson and P.W. Shor. Applications of random sampling in computational geometry,

II. Journal of Discrete and Computational Geometry, 4:387–421, 1989.

[DH91] P. Deuflhard and A. Hohmann. Numerische Mathematik: Eine algorithmisch orientierte

Einführung. Walter de Gruyter, 1991.

[DPT02] O. Devillers, S. Pion, and M. Teillaud. Walking in a triangulation. Internat. J. Found.

Comput. Sci., 13:181–199, 2002.

[DSB92] T. K. Dey, K. Sugihara, and C. L. Bajaj. Delaunay triangulations in three dimensions with

finite precision arithmetic. Comput. Aided Geom. Design, 9:457–470, 1992.

[Ede90] H. Edelsbrunner. An acyclicity theorem for cell complexes in d dimensions. Combinator-

ica, 10(3):251–260, 1990.

[FGK+00] A. Fabri, G.-J. Giezeman, L. Kettner, S. Schirra, and S. Schönherr. On the design of CGAL

a computational geometry algorithms library. Softw. – Pract. Exp., 30(11):1167–1202,

2000.

[FKMS05] S. Funke, Ch. Klein, K. Mehlhorn, and S. Schmitt. Controlled perturbation for Delaunay

triangulations. In Proc. of 16th ACM-SIAM Symposium on Discrete Algorithms (SODA),

pages 1047–1056, Vancouver, Canada, 2005.

21

[FM91] S. Fortune and V.J. Milenkovic. Numerical stability of algorithms for line arrangements.

In SoCG’91, pages 334–341. ACM Press, 1991.

[For70] G. E. Forsythe. Pitfalls in computation, or why a math book is not enough. Technical Re-

port CS-TR-70-147, Stanford University, Computer Science Department, 1970. available

at historical.ncstrl.org/litesite-data/stan/CS-TR-70-147.pdf.

[For85] A. R. Forrest. Computational geometry in practice. In R. A. Earnshaw, editor, Fundamental

Algorithms for Computer Graphics, volume F17 of NATO ASI, pages 707–724. Springer-

Verlag, 1985.

[FvW96] S. Fortune and C. van Wyk. Static analysis yields efficient exact integer arithmetic for

computational geometry. ACM Transactions on Graphics, 15:223–248, 1996. preliminary

version in ACM Conference on Computational Geometry 1993.

[Gol91] D. Goldberg. What every computer scientist should know about floating-point arithmetic.

ACM Computing Surveys, 23(1):5–48, 1991.

[Gra72] R.L. Graham. An efficient algorithm for determining the convex hulls of a finite point set.

Information Processing Letters, 1:132–133, 1972.

[HK05] P. Hachenberger and L. Kettner. Boolean operations on 3D selective Nef complexes: Op-

timized implementation and experiments. In Proc. of 2005 ACM Symposium on Solid and

Physical Modeling (SPM’05), pages 163–174, Cambridge, MA, June 2005.

[HS98] D. Halperin and C.R. Shelton. A perturbation scheme for spherical arrangements with

application to molecular modeling. Comp. Geom.: Theory and Applications, 10, 1998.

[IEE87] IEEE standard for binary floating-point arithmetic. SIGPLAN Notices, 22(2):9–25, Febru-

ary 1987. Reprint of ANSI/IEEE Std 754-1985, The Institute of Electrical and Electronics

Engineers, Inc, 345 East 47th Street, New York, NY 10017, USA.

[KN04] L. Kettner and S. Näher. Two computational geometry libraries: LEDA and CGAL. In

Jacob E. Goodman and Joseph O’Rourke, editors, Handbook of Discrete and Computa-

tional Geometry, chapter 65, pages 1435–1463. CRC Press LLC, Boca Raton, FL, second

edition, 2004.

[LM90] Z. Li and V.J. Milenkovic. Constructing strongly convex hulls using exact or rounded

arithmetic. In SoCG’90, pages 235–243. ACM Press, 1990.

[Mil89] V.J. Milenkovic. Calculating approximate curve arrangements using rounded arithmetic.

In SoCG’89, pages 197–207. ACM Press, 1989.

[MN99] K. Mehlhorn and S. Näher. The LEDA Platform for Combinatorial and Geometric Com-

puting. Cambridge University Press, 1999. 1018 pages.

[She97] J. R. Shewchuk. Adaptive precision floating-point arithmetic and fast robust geometric

predicates. Discrete & Computational Geometry, 18:305–363, 1997.

[SIII00] K. Sugihara, M. Iri, H. Inagaki, and T. Imai. Topology-oriented implementation - an ap-

proach to robust geometric algorithms. Algorithmica, 27(1):5–20, 2000.

22

[Ste74] P.H. Sterbenz. Floating Point Computation. Prentice Hall, 1974.

[Yap04] C.K. Yap. Robust geometric computation. In J.E. Goodman and J. O’Rourke, editors,

Handbook of Discrete and Computational Geometry, chapter 41. CRC Press LLC, Boca

Raton, FL, 2nd edition, 2004.

Appendix A: Implementation of the Incremental Algorithm

We describe our C++ reference implementation of our simple incremental algorithm. We give the

details necessary to reproduce our results, for example, the exact parameter order in the predicate calls,

but we omit details of the startup phase when we search for the initial three non-collinear points and

the circular list data structure. We offer the full working source code based on CGAL [FGK+00],

all the point data sets, and the images from the analysis on our companion web page http://www.

mpi-inf.mpg.de/˜kettner/proj/NonRobust/ for reference.

We use our own plain conventional C++ point type. Worth mentioning are equality comparison

and lexicographic order used to find extreme points among collinear points in the startup phase.

struct Point { double x, y; };

The orientation test returns +1 if the points p, q, and r make a leftturn, it returns zero if they are

collinear, and it returns −1 if they form a rightturn. We implement the orientation test as explained

above with p as pivot point. Not shown here, but we make sure that all intermediate results are repre-

sented as 64 bit doubles and not as 80 bit extended doubles as it might happen, e.g., on Intel platforms.

int orientation(Point p, Point q, Point r) {

return sign((q.x-p.x) * (r.y-p.y) - (q.y-p.y) * (r.x-p.x));
}

For the initial three non-collinear points we scan the input sequence and maintain its convex hull of up

to two extreme points until we run out of input points or we find a third extreme point for the convex

hull. From there on we scan the remaining points in our main convex hull function as shown below.

The circular list used in our implementation is self explaining in its use. We assume a Standard

Template Library (STL) compliant interface and extend it with circulators, a concept similar to STL

iterators that allow the circular traversal in the list without any past-the-end position using the increment

and decrement operators. In addition, we assume a function that can remove a range in the list specified

by two non-identical circulator positions.

Our main convex hull function shown below has a conventional iterator-based interface like

other STL algorithms. It computes the extreme points in counterclockwise order of the 2d convex hull

of the points in the iterator range [first,last). It uses internally the circular list hull to store

the current extreme points and copies this list to the result output iterator at the end of the function.

It also returns the modified result iterator.

template <typename ForwardIter, typename OutputIter>
OutputIter incr_convex_hull(ForwardIter first, ForwardIter last,

OutputIter result)
{

typedef std::iterator_traits<ForwardIter> Iterator_traits;
typedef typename Iterator_traits::value_type Point;

23

typedef Circular_list<Point> Hull;
typedef typename Hull::circulator Circulator;

Hull hull; // extreme points in counterclockwise (ccw) orientation

// first the degenerate cases until we have a proper triangle

first = find_first_triangle(first, last, hull);
while (first != last) {

Point p = *first;
// find visible edge in circular list of vertices of current hull

Circulator c_source = hull.circulator_begin();
Circulator c_dest = c_source;
do {

c_source = c_dest++;
if (orientation(*c_source, *c_dest, p) < 0) {

// found visible edge, find ccw tangent

Circulator c_succ = c_dest++;
while (orientation(*c_succ, *c_dest, p) <= 0)

c_succ = c_dest++;
// find cw tangent

Circulator c_pred = c_source--;
while (orientation(*c_source, *c_pred, p) <= 0)

c_pred = c_source--;
// c˙source is the first point visible, c˙succ the last

if (++c_pred != c_succ)
hull.circular_remove(c_pred, c_succ);

hull.insert(c_succ, p);
break; // we processed all visible edges

}

} while (c_source != hull.circulator_begin());
++first;

}

return std::copy(hull.begin(), hull.end(), result);
}

Appendix B: Implementation of the Gift-Wrapping Algorithm

We describe our C++ reference implementation of the gift-wrapping algorithm. We give the details

necessary to reproduce our results, in particular, the exact parameter order in the predicate calls. We

refer to Appendix A for the implementation of the float orient predicate and continue here with the

refined extended rightturn(p,q,r) predicate, which returns true if r is to the right of the oriented line

through pq or if r is on the ray starting in q in the direction of q− p:

bool extended_rightturn(Point p, Point q, Point r) {

int orient = orientation(p,q,r);
return (orient == -1) || (orient == 0 && // (q-p)*(r-q) >= 0

((q.x-p.x) * (r.x-q.x) >= (p.y-q.y) * (r.y-q.y)));
}

Our main gift wrapping function has a conventional iterator-based interface like other STL algo-

rithms. It computes the extreme points in counterclockwise order of the 2d convex hull of the points

in the iterator range [first,last). It writes the extreme points to the result output iterator and

24

returns the modified result iterator. The WRAPSTEP function is so small that we integrated it into

the main function.

template <typename ForwardIter, typename OutputIter>
OutputIter gift_wrapping_hull(ForwardIter first, ForwardIter last,

OutputIter result)
{

typedef std::iterator_traits<ForwardIter> Iterator_traits;
typedef typename Iterator_traits::value_type Point;
if (first == last)

return result;
Point p0 = * std::min_element(first, last); // lex-min point

Point p = p0;
do {

*result++ = p;
Point q = p;
for (ForwardIter i = first; i != last; ++i) {

if (extended_rightturn(p, q, *i))
q = *i;

}

p = q;
} while (p != p0);
return result;

}

25

