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Abstract— We propose to design new algorithms for motion
planning problems based on the Domain Subdivision paradigm
but coupled with numerical primitives. Although weaker than
exact algebraic primitives, our primitives are safe and areexact
in the limit. Our algorithms are practical, easy to implemert,
and have adaptive complexity. A simple but useful example
of our approach is presented here. In contrast to the popular
PRM, our algorithms are resolution complete.

|. INTRODUCTION (@ (b)

A central problem of robotics is motion planning [5]. Fig. 1. (a) Subdivision of a region (yellow). (b) Its Subdicn Tree
In the early 80's there was strong interest in this problem
among computational geometers [3]. This period saw the in-

troduction of strong algorithmic techniques with comptexi

. . N . n obstacle sef C R4, Both R, and Q) are closed sets.
analysis, and the careful investigation of the algebraic Cﬁﬂtiall assumeR. is ad-dimensional ball of radius, > 0
space. We introduced the retraction method [7], [11] int y 0 Bo '

. . A ; ._In this case, the C-space & is R?. If « is a configuration,
motion planning. In a survey of algorithmic motion plannlngI

[12], we first established the universality of the retragtio tetogée p(lnailrfgqﬁlgzo:)i% aiteg Ee};hﬁnsifﬁf[ia]uf;irgﬁnsﬂg
method. This method is now commonly known as the roaé1 P P yito 9 o

map approach, popularized by Canny [1] who showed that i?onflguratlonoé is free if Ry[a] N Q2 is empty;« is blocked

alaebraic complexity is in sinale exponential time. T rbica”s Ry[a] intersects the interior of); « is semi-freeif it is
9 npiextty g P me. WYPIC4, qither free nor blocked. Letree(Ro, §?) denote the set of
of Computational Geometry, these exact motion planmnﬁ ) : . . :
ee configurations. Anotion from « to 3 is a continuous

algorithms assume a computational model in which exact . . - -
primitives are available in constant time. Implementingsi mapy : [0,1] = Free(Fo, Q) with (0) = a andu(l1) = 6.

oo . o . . Consider the problem of computing a motion frento 5.
primitives exactly is non-trivial (certainly not constairhe), o : .
. . . ) . .. The best exact solution is based on roadmaps (i.e., retracti
involving computation with algebraic numbers. In the 90’s

interest shifted back to more practical techniques, such gg proach). Historically, the casé = 2 was the first exact

the probabilistic roadmap method (PRM) [4] and its man foadmap algorithm [7]. For polygond, the roadmap is
P P )éfﬁciently computed as the Voronoi diagram of line segments
variants [5, Chapter 5].

In this paper, we propose new algorithms based OHS]. This algorithm remains very useful in applications

the classic subdivision paradigm, combined with numericatl'l-'alt allows pre-computation as in games. fbr= 3, an

primitives. Probabilistic forms of our approach can serse aexact solution IS not _pract|.cal: the exgc_:t Voronai dlagram
f polyhedral objects is a highly non-trivial current tofit

an alternative to PRM. But even the deterministic form offeP
search (e.g., [2]).

advantages over PRM. Our solutions are practical as Wéﬁl bdivisi h th in data structure i
as theoretically sound. The basic paradigm is to iterativel h our subdivision approach, theé main data structure 1S a
subdivide an initial configuration domaiB, C R (given subdivision tree (see Figure 1). 7 is a subdivision tree

as a box) into subdomains. This process grows a subdivisié?lOted at a boxBy, then its set of leaves is a collection of

tree rooted a3y, by expanding carefully chosen leaves. Insubboxes that forms subdivision of By, i.e., the interiors

) of any two subboxes are disjoint, and their unio Let
2-D Euclidean space, such trees are known as quadtrees, ?’tle) denote the unique éubdivision p comp?igs&i]gﬂ

. R pl
;I:)ts;:(rjaitr(]e dréll'la::gur:eeci.r(]tt))\;vg(ka?;pées[g}‘ cEl:i(r)]apEE]r oac;})may bcongruent subboxes. Boxes are considered as closed sets of

full dimensiond. Two boxesB, B’ areadjacent if B N B’
Il. SUBDIVISION MOTION PLANNING is a faceF of B or of B’. The dimension of* is exactly1

In this section, we illustrate our approach with a basitess than that oB. Given any pointa € By, let Boz7(«)
motion planning problem. Fix a rigid robdt, € R? and denote any leaf box off that containsa. A box B is

. o classified as (i)free if every configuration inB is free,
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Initially, assume a “box predicate” to perform this clas-  To begin, we could use thRandomized Strategy and

sification: for any boxB, C(B) returns the desired value this could be viewed as a form of PRM. But unlike the usual

in {FREE, BLOCKED,MIXED}. Given a subdivision treeZ, PRM, we have resolution completeness (assuming a mix with

let V(7) denote the set of free leaves . We define BFS). Another is th®ijkstra strategy: get Next() returns a

an undirected grapléz(7) with verticesV(7) and edges mixed box that is adjacent to some free box in the connected

connecting pairs of adjacent free leaves. We maintain tteomponent of Box7(«), analogous to Dijkstra’s shortest-

connected components @f(7) using aUnion-Find data path algorithm. This can be generalized to the A*, where

structure onV (7): given B, B’ € V(T), Find(B) returns we introduce a suitable potential function to bias the dearc

the index of the component containiiy andUnion(B, B’)  towards the goal (the obvious potential is the direct distan

merges the components & and of B, between the center of a box to the goal). Even better is the bi-
We associate withl” a priority queue) = @+ to store directional A* strategy. Another idea is to use some entropy

all the mixed leaves. LeT .get Next() remove a box inQ criteria. Recent work on shortest-path algorithms in Gl&lro

of the highest “priority”. This priority is discussed below Systems offers other heuristics. We plan to explore these.

Assume a subroutine to “expand” any bBxe @ as follows:

the expansion fails and returns false if the size ®fis [l. WHAT IS NEW?

smaller than a specified toleranee> 0. Otherwise, each . ) ) i

B’ € Split(B) is made a child of3 in 7. If B' is free, we Subdivision algorithms have been used before in motion

updateV/(7') and its union-find structure; iB’ is mixed, we planning, e.g., _[9]' S_O s.ubghwsmn. along s not a novglty.
insert B’ into Q. Finally we return true. Now we are readyThe use of Union-Find is llnterestmg since the operations
are extremely fast, but this has been used [5]. Our true

to present a simple but useful exact subdivision algorithm; e i X )
interest lies in relaxing the assumption of the exact pragdic

C(B). All previous subdivision algorithms have assumed

exact predicates, and this is a serious impediment to their

EXACT FINDPATH:
Input: Configurationsw, 3, tolerancee > 0, box By € R%.

Output: Path froma to 3 in Free(Ro, ) N Bo. usability. Let@(B) be a box predicate that returns a value
Initialize a subdivision treg” with only a rootBy. in {FREE, BLOCKED, FAIL}. We say thatC' approximates C
1. While (Boxr () # FREE) ) ) if (1) it is safe i.e., C(B) # FAIL implies C(B) = C(B),
) Whilg gggirz%?;xg}{(&)) fails) Return("No Path”). (2) itis convergent i.e., if {B; : i =1,2,..., co} converges
If (Expand Boz 1 (3) fails) Return("No Path”). to a configurationy andC'(y) # MIXED, thenC(B;) = C(7)
3. While (Find(Boxr(a)) # Find(Box7(5))) for large enough. _
If Q is empty, Return("No Path”) We now design an approximate box prediocatassuming
) gx;ri;-%eﬁvemt() Q) is a polyhedral set, and the boundaryfefis partitioned
4. Compute a physical path from Bozz(a) to Bozr (). |dn_to a _S|mpI|C|aI complex comprising open cells cf each
Return(®) imension. These cells are calléshtures of €. Ford = 3,

the features of dimensiorts 1,2 (resp.) are calledorners,
There are two comments to be made: First, the gaih  edgesand walls. Let m(B) andr(B) denote its midpoint
Step 4 is easy to generate in our framework: this aspect asd radius of boxB respectively, where(B) is the distance
a major advantage over PRM and algebraic methods whefrem m(B) to any corner ofB. Also, let D,,(r) denote
physical. In PRM, physical paths are usually approximatethe closed ball centered at with radiusr. We maintain
by sampling free configurations between the endpoints of anith each boxB the setS(B) of features that intersect
edge, with no guarantees. In algebraic methods, it is assum®,,, g)(ro + r(B)). We call B simple if either [SO] its set
that another numerical process will produce the physicdl paS(B) of the maintained features is empty, or [$4]> r(B)
from an algebraic description. and some feature intersects the b@l}, zy(ro — (B)). We
Second, the routing .get Next() in Step (*) is not fully now define the approximate predicﬁe[ B is non-simple,
specified, but critical. In fact, it is thetrategy that drives the then C(B) = FAIL; if [S1] holds, thenC(B) = BLOCKED;
search. A simple solution to ensuesolution completeness otherwise, [S0] holds and cleary is either free or blocked.
is the Breadth First Search (BFS) strategy, i7eget Next() But how do we decide? In fact?(B) = FREE (resp.,
returns any mixed leaf of minimum depth. Resolution comBLOCKED) iff D,,g)(r0 + 7(B)) is exterior (resp., interior)
pleteness has two pari§there is a free motion of clearance relative to the obstacl€. To distinguish these two cases,
2¢, our algorithm would find a free path of clearancee. we just check the wall features maintained in the parent box
Conversely, if there is no free path of clearance, our p(B) of B (noting thatS(p(B)) is non-empty). To do this
algorithm will return “No Path”. We mention a few other check, we may assume that each walis oriented so that
interesting strategies. Most of these these strategiesatre we know (locally) which side ofv is insidef2. First, observe
resolution complete by themselves, but we can make thetiatC' is designed to be extremely easy to implement, since
resolution complete by mixing them with BFS. For instanceall the tests boils down to one operation: the distance from a
we can alternate between BFS and these strategies. Or, pa@nt to an obstacle feature. Secoxdjs an approximation
can use a weighting function to combine their respectivef C. To complete our scheme, whé®{ B) = FAIL (i.e., B
priorities. is non-simple), we puB to @) for future expansion.



Conclusion. In the full paper, we explore variants af.
Our general philosophy can be extended to more complicated
C-spaces such aSF(2) and SE(3) and non-holonomic
planning. Combined with suitabl&.get Next() heuristics,
the complexity of our algorithms can be highly adaptive.
We plan to implement and compare our method with other
approaches, including those with exact predicates and- prob
abilistic approaches
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