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Abstract

This paper presents the first purely numerical (i.e., ngefalaic) subdivision algorithm for the iso-
topic approximation of a simple arrangement of curves. Tin@g@ement is “simple” in the sense that
any three curves have no common intersection, any two cimtesect transversally, and each curve is
non-singular. A curve is given as the zero set of an analytiction f : R? — RR?, and effective interval
forms of f, %, % are available. Our solution generalizes the isotopic cap@oximation algorithms
of Plantinga-Vegter (2004) and Lin-Yap (2009).

We use certified numerical primitives based on interval mésh Such algorithms have many favor-
able properties: they are practical, easy to implementesaob implementation gaps, integrate topolog-
ical with geometric computation, and have adaptive as vedibeal complexity.



1 Introduction

We address problems in computing approximations to curmdssarfaces. Most algebraic algorithms for
curve approximation begin by computing a combinatoriakobj< first. To computek’, we typically use
algebraic projection (i.e., resultant computation),daied by root isolation and lifting. But most applica-
tions will also require the geometric realizatich Thus we will need a separate (numerical) algorithm to
computeG. This aspect is typically not considered by algebraic allyors.

In this paper, we describe a new approach for computing amasngements based on purely numerical
(i.e., non-algebraic) primitives. Our approach will intatg the computation of the combinatori& ) and
geometric () parts. This leads to simpler implementation. Our numépdanitives are designed to work
directly with arbitrary precision dyadic (BigFloat) numbeavoiding any “implementation gap” that may
mar abstract algorithms. Furthermore, machine arithnoaincbe used as long as no over-/underflow occurs,
and thus they can serve as efficient filteip [

We now explain our specific problem, and illustrate the pidewe notions of K and G. By a sim-
ple curve arrangementwe mean a collection of non-singular curves such that ncetlofethem inter-
sect, and any two of them intersect transversally. The siraplangement of three or more curves can, in
some sense, be reduced to the case of two curves (see theREimarks). LetF” : R? — R2, where
F(z,y) = (f(z,y),9(x,y)) is a pair of analytic functions. It generically defines twamdr curves
S = f710) C R?andT = ¢g~!(0). We call F = 0 asimple systemof equations if{S, T} is a sim-
ple curve arrangement. Throughout this papeét- ( f, g) will be fixed unless otherwise indicated. Figure
illustrates such an arrangement for the curves defined(byy) = y — 2% andg(z,y) = 2% + 3> — 1.
The concept of hyperplane arrangement is highly classicebmputational geometrys]. Recent interest
focuses on nonlinear arrangemerik |

Yy = IZ = .’L‘Q
v\ J +yp=1 '\‘/'
22 +yt 1
(a) (S,T) arrangement (b) (S, T)-decomposition K* (c) cell complex K

Figure 1: Arrangement of two curveg,= 2% andz? + y? = 1

Our basic problem is the following: suppose we are giver: an 0 and a regionB, C R?, called
the region-of-interest or ROI, which is usually in the shape of an axes-aligned bog. Wsnt to compute
an e-approximation to the arrangement of the pé#, 7') of curves restricted td,. This will be a planar
straightline graptG = (V, E') whereV is a finite set of points i3, and E is a set of polygonal paths in
By. Each pathe € V connects a pair of points i, and no path intersects another path or any point in
V' (except at endpoints). Moreovek; is partitioned into two set& = Eg U Ep such thatJEp (resp.,
UFE5) is an approximation df” (resp.,S). The correctness of this gragghhas two aspects: (A) topological
correctness, and (B) geometric correctness. Geometnieatoess (B) is easy to formulate: it requires that
the setUEs C By is e-close toS in the sense of Hausdorff distanag; (S, UEs) < e. Similarly, theUEp
is e-close toT". If we specifye = oo, then we are basically unconcerned about geometric clesene

Topological correctness (A) is harder to capture. One difinis based on the notion of “cell decom-
position”. A (cell) decompositionof By is a partition K™ of By into a collection of sets called cells, each



¢* € K* homeomorphic to a closeddimensional ball{ € {0, 1,2}); we call¢* ani-cell and its dimension
isdim(c*) = 4. If b* is ani-cell andc* an(i+1)-cell, we say* boundsc* if b* is contained in the boundary
dc* of ¢*. Call K* an (S, T)-decomposition of3; if the set(S U T) N By is a union of some subset 6f
andl-cells of K*. A (S, T)-decomposition is illustrated in Figufigb).

A cell complex K is an (abstract) set such that each K has a specifiedim(c) € {0, 1,2} together
with a binary relationB C K x K such that(b,c) € B impliesdim(b) + 1 = dim(c). We say that the
decompositionik* is arealization of K, or K is anabstraction of K*, if there is a 1-1 correspondence
between the cellg* of K* with the elements € K such thatlim(c*) = dim(c), and moreover the relation
(b,c) € Biff b* boundsc* in K*. Figurel(c) shows the abstractioi of the decomposition in Figurgb).

Our algorithmic goal is to compute a planar straightlingpgréPSLG for short17]) G = (V, E') which
approximateg S, 7T") in a box By. Such a graplG naturally determines a decompositiédi*(G) of By
as follows: the set of)-cells isV, the set ofl-cells is E and the set oR-cells is simply the connected
components ofBy \ (V U (|JE)). Finally, we sayG is topologically correct if there exists &b, T')-
decomposition* such that* and K*(G) are realizations of the same abstract cell complex.

91. Towards Numerical Computational Geometry. The overall agenda in this line of research is to ex-
plore new modalities for designing geometric algorithm® &ke interested in exploiting weaker numerical
primitives that are only complete in a certain limiting sentJnlike traditional exact algorithms, our algo-

rithms must strongly interact with these weaker primitjvasd exploit adaptivity. The key challenge is to

achieve the kind of exactness and guarantees that is tiypma@sing in numerical algorithms. Se2/] for

a discussion of “numerical computational geometry”.

In the algebraic approach, one must compute the abstragilerniit before the approximate embedded
graphG. Indeed, most algebraic algorithms do not fully addressctiraputation ofGG. In contrast to
such a “decoupled” approach, our algorithm provides argmated approach whereby we can commence
to computeG (incrementally) even before we know in its entirety. Ultimately, we would be able to
determineK exactly — this can be done using zero bounds a2 {]. The advantage here is that our
integrated approach can cut off this computation at anyelgsesolution, without fully resolving all aspects
of the topology. This is useful in applications like visuzaliion.

Unlike exact algebraic primitives, our use of analytic (raxiwal) primitives means that our approach is
applicable to the much larger class of analytic curves. Nigakalgorithms are relatively easy to implement
and have adaptive as well as “local” complexity. Adaptiveangethat the worst case complexity does not
characterize the complexity for most inputs, and local ,sé¢ha computational effort is restricted to ROI.

One disadvantage of our current method is that it places sbroeg restrictions on the class of curve
arrangements: the curves must be non-singular with parrassversal intersections in the ROI. In practice,
these restrictions can be ameliorated in different wayg ddmplete removal of such restrictions is a topic
of great research interest.

The algorithms in this paper fall under the popular literatan Marching-cube type algorithms4].
There are many heuristic algorithms here which are widebdud he input for these algorithms can vary
considerably. E.g., Varadhan et &l2[ 21] discuss input functiong” : R? — R that might be a discretized
function, or a CSG model or some polygonal model — each adgsumipas its own exactness challenge.

2 Our Approach: Isotopic Curves Arrangement

All current exact algorithms for curve arrangements aretams algebraic projection, i.e., they need some
resultant computation. The disadvantage of projectiohdddarge number of cells: even in relatively simple
examples, the graph can be large as seen as FlgcixeFor many applications, the 2-cells may be omitted,
but the graph remains large. There are several known teedmitp reduce this (double-exponential in
dimension) explosion in the number of cells. In this papeg, avoid cell decomposition, but base our



topological correctness on the concept of isotopy. Ourrdlyn uses the well-known subdivision paradigm,
and produces a subdivision of the input domain into boxegurerR illustrates the form of output from our
subdivision algorithm using our previous exampleyef z2 andz? + y? = 1.* The number of subdivision
boxes tend to be even more numerous than cells in the decdimp@pproach. But these numbers are not
directly comparable to number of cells for three reasonsS(bdivision boxes are very cheap to generate.
(2) Most of these boxes can be instantly discarded as intigiséor the final output (we keep them for
visualization purposes). (3) Unlike cells, our subdivisizoxes play a double role: they are used for (A)
topological determination as well as (B) in determining getric accuracy.

The approach of this paper has previously been successiutiyed to the isotopic approximation of a
single non-singular curve or surface by Plantinga and Vddt& 15] and Lin and Yap 10, 9]. The current
paper is a non-trivial extension of these previous works.
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Figure 2: Subdivision approach for curve arrangement

We now define the notion of isotopy for arrangements. For eoblpm on arrangements, we need to
extend the standard definitions of isotopy. SuppSsE C R? are two closed sets and> 0. First recall
thatS andT" are (ambient)sotopic if there exists a continuous mapping

v:10,1] x R? — R? (1)

such that for each € [0, 1], the functiony; : R? — R? (with v;(x,y) = (¢, z,y)) is a homeomorphism,
~o is the identity map, andy(S) = 7. If, in addition, dy (S, T) < e (wheredy is the Hausdorff distance
on closed sets) we say that they afisotopic. We will write

S~ T (vian)

in this case. Note that we may omit mentionepin which case it is assumed that oco.

We now generalize this to arrangement of sets. $et (S1,...,S,,) andT = (Ti,...,T,,) be two
sequences af closed sets. For each non-empty suhBe&t {1,2,...,m}, let.S; denote the intersection
Nic.sS;. Similarly for T';. We say thatS andT areisotopicif there exists a continuous mappings in (L)
such that for each non-empty subdet {1,2,...,m}, we have

gJéTJ (Via’y).

! The figure is not produced by the algorithm of this paper bseahe implementation is currently underway. Instead, it is
produced by the Cxy Algorithm for approximating a non-silaguwurve [L0], using the input curvg’g = 0. Thus the intersection
points are singularities which the Cxy algorithm cannobhess, but this does not prevent its computation to some ffutaund.
Also, the Cxy algorithm does not know which part of the aremegnt is thef-curve and which is thg-curve.
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We also cally anisotopy from S to T. For simple curve arrangements, the critical problem tees the
casem = 2. We assume the two curvé§, So are restricted to a region or bax. Our basic problem is to
compute a pair of curved?, T») such that

(T1,T2) ~ (S; N B, S, N B). 2)

The approximationg7y,7>) produced by our algorithms will be piecewise linear curv&ee [I] for a
general discussion of isotopy of the case= 1.

2.1 Normalization relative to a Subdivision Tree

In Appendix A, we provide the necessary definitions; thesecansistent with the terminology in the related
work [10]. For now, we rely on common terms that are mostly self-axgiary.

92. Box Complexes and Subdivision Trees. Our fundamental data structure issabdivision tree 7
rooted in some boBy. In 2-D, T is the well-known quad-tree argl is a rectangle. Each internal node/of
has four congruent children. The boxes of a subdivisiondreenon-degenerate (i.2-dimensional). They
need not be squares, but for the correctness of our algqritieim aspect ratios must e 2. For any region
R C R?, we define asubdivision of R to be aseS = {Ry,..., R, } of subregions such thd = U"_, R;
and the interiors of?;’s are pairwise disjoint. If eacl®; is a box, we callS abox subdivision The box
subdivision is ébox complexif for any two adjacent boxe8, B’ € S, their intersectiord(B) N J(B’) is
side of eitherB or B’. Clearly, the se§ of leaf boxes of7” forms a box complex oBj. But in this paper,
we need to consider a more general subdivisiomigthat is obtained as the leaf boxes of a finite number
of subdivision trees. Aegmentof a box complexS is the side of a box af that does not properly contain
the side of an adjacent box. Therefore every side of a baX isfa finite union of segments. We say the
box complexs is balancedif every side is either a segment or the union of two segmehtsegment is
calledbichromatic w.r.t. a curveS if S has different signs on the endpoints of the segment; otkereall
it monochromatic.

Although (S, T") is simple, we need to consider degeneratidsiced by a subdivisionS: we say(S,T")
is S-regular if S U T does not intersect any corner of a boxSn This can be effectively achieved by an
infinitesimal perturbation of and7l” using a trick in [L6]: when we evaluate the sign gfat a box corner,
we simply regard & sign to be+1.

93. Normalization. Consider an isotopy of the arrangemé$itT") into another arrangemef$’, 7"). Let
us write (S, T'); for the arrangement at timee [0, 1] during this transformation. ThusS, Ty = (S, 7))
and(S,T); = (5',T"). The isotopy is said t&-regular provided, for allt € [0, 1], (S,T); is S-regular.
We say tha(S,T") is S-normalized if:
(NO) (S,T) is S-regular.
(N1) Each subdivision bo® of S contains at most one point 6fN 7.
(N2) LetX € {S,T}. ThenX intersects each segment®fat most once

Call (S’,T") aS-normalization of (S, T') if there exists &-regular isotopy fron{S, T") to (S’, ") such
that(S’,7”") is S-normalized. Our algorithm will construct &normalization(S’, 7") of (S, T).

94. Box Predicates. We will use a variety of box predicates. These predicatekdetermine the sub-
division process. Typically, we will keep subdividing bexentil some Boolean combination of some box
predicates hold.

Leth : R? — R be any real function. Recall (Appendix A) that we assume teral formulation off
denotedOh : OR? — OR where OR denotes the set of closed intervals ani? can be viewed as the set
of boxes. We introduce a pair of box predicates den6tgandC?, defined as

Cg(B) OQ Dh(B)a } (3)

C1(B) 0 & (Dhe(B))? + (Ohy(B))>*.
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Note thatC}* as taken from Plantinga-Vegter, where the interval opemat? is defined adzy : z,y € I}
and not{z? : = € I}. An alternative toC}" would be the weakef’, predicate from Lin-Yap{0], but the
corresponding algorithm would would be more involved. Sorfow, we focus on th&} predicate. We
classify boxes using these predicates:

e Box B is h-excludedif it satisfiesCl (B).

e Box B is h-included if it fails C?(B) but satisfie<C?(B).

e Box B isresolvedif it satisfies the predicate

cqvehnegvaoy). 4)

Box B is excludedif it satisfieng A C§. Note that excluded boxes are resolved.

Box B is acandidateif it is resolved but not excluded.

Candidate boxes can be further classified into three subtypeandidatesare those that arg-
included butg-excluded,g-candidatesis similarly defined, and g-candidatesare those that aré-
andg-included.

95. Root Boxes. We define aoot box to be any boxB whereB NS N'T" has exactly one point. We next
consider two predicates that will allow us to detect rootd®»One is thdacobian condition,

JC(B) =0 ¢ det(0Jp(B))

where 0.Jr(B) is the Jacobian of" = (f,g) evaluated onB. If JC(B) holds, thenB has at most one
root of f = g = 0, The other is théVloore-Kioustelidis condition MK (B) [13] which can be viewed as a
preconditioned form of the famous Miranda Te3}; [for other existence tests based on interval arithmetic
see []. If MK(B) holds, thenB has at least one root gf= g = 0. We provide the details for this predicate
in Appendix B; see9). Therefore, wheld C(B) andMK(B) holds, we know thaB is a root box. The use
of Miranda’s test combined with the Jacobian condition hesnbused earlier to isolate the common roots
[11]. What is new in this paper is its application to the simplevetarrangement problem.

2.2 Graph Representation

Our algorithm will produce a grap&y = (V, E) where vertices) € V are points inR? and edges are line
segments connecting pairs of vertices. Moreover, each &dgél be labeled as arb-edge or dr'-edge.
The union of these edges will provide a polygoaapproximation of .S, 7). We now give an overview of
the issues and solution.

First, we describe how the verticesdfare introduced.

(VO) We introduce a vertex in the center of a root Bx

(V1) We evaluatef, g at the endpoints of segments Bf If h € {f, g} is bichromatic on a segment of
B, then we must introduce alrvertex somewhere in the segment. In a balanced subdivision, an
S-normalized paifS’, 7") of curves has at most twio-vertices on an edge of a bdx

(V2) Introducing vertices on the edges of a i®xs straightforward ifB is an f-candidate or g-candidate.
When B is a f g-candidate, we may have an edgeontaining both g-vertex and g-vertex. In the
next section we will show how to find the relative order of #néso vertices.

Next we discuss how to introduce the eddeswhich are line segments completely contained in a box.

e If Bis aroot box, we just connect the vertex at its midpeint(B) to each of the vertices on the
edges ofB. There will be exactly twg'-vertices and twg-vertices.

e If Bis a f-candidate op-candidate, then the connection is trivial in the regulaecdn the balanced
case, the rules from the previous work of Plantinga-Vedté} dssures us of the correct connection.



e If B is a fg-candidate, but not a root box, we know that tfisegment andj-segment will not
intersect. Somg g-candidates need global information to resolve them: wheretare two edges
where each edge contains bothfarand ag-vertex. Their relative order must be determined globally
from root boxes or from boxes where their relative order isvin. We will show how to propagate
this information in Sectior3.

2.3 Curve Arrangement in Root Boxes

SupposdS’, T") is the normalization ofS, T') relative to the box3, i.e.,(S’, T") is an isotopic transforma-
tion of (S, T') which respects the four corners Bf We now determine the isotopy type @', 7”) in a root
box B. The possible combinatorial types fall under one ofglpatterns as shown in Figu We put them
in three groups (I, 11, 1l1) for our analysis.
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Figure 3: Local intersection patterns of the normalized/esi(S’, 7")

Following the standard Marching Cube technique, we evaltla sign of the functiong, ¢ at the four
corners of B. If f has different signs at the endpoints of an edgd B, then we must introduce afr
vertex somewhere in the interior @f. Our normalization assumptions imply that there are eitego or
two f-vertices on the boundary d®. We treatg similarly. Our aim is to connect the twg-vertices, the
two g-vertices, and a point in the center of the box which reprssde common root with line segments
such that the grapli¥ obtained is an isotopic approximation @’ N By, 7" N By). There is a subtlety:
the method exploits “local non-isotopy’l§, 10], meaning that we do not guarantee tlat B is isotopic
to the segment introduced to connect tyfixvertices. However, the graph will be locally isotopic to the
normalized curve$S’, 7"), i.e.,G N B is isotopic to(S’ N B, T" N B) in each subdivision bo®.

The issue before us is the relative placements of -aertex andg-vertex in case they both occur én
e.g., the patterns in group Il in Figue The main result of this section is the following.

THEOREML1. Let B be aroot box that satisfied K(B). Then the signs gf andg at each of the four corners
of B determine the combinatorial type of the normalized cu¥’e§” in B. Moreover, these combinatorial
types fall under one of the five types in Groups Il and Il inuig3.

The main idea of the proof is thatM K (B) holds for a boxB then there exists an edgef B such that
eitherf(e) > cg(e), org(e) > cf(e), for somec > 0. Given such am, we can find the relative order of the
f-vertex andg-vertex one. See Appendix C for details of the proof.



2.4 Geometry of Extended Root Boxes

By analigned boxwe mean one that can be obtained as a node of a subdivisiorotsal at the region-
of-interest (ROI)By; otherwise, it is said to beon-aligned For instance, in Figuré(a), let the box with
cornersp, q,r, s be By. Then the figure shows the four children Bf), which are aligned, as well as the
non-aligned box1/2)B, whose corners arg/,¢',r’, s’. Note that(1/2) B, can be obtained as the union
of aligned boxes. We are interested in non-aligned boxdscrabe obtained as a finite union of aligned
boxes. In the simplest case of hon-alignment, a Bax said to béhalf-aligned if it is equal to the union of
congruent aligned boxes of siz€ B) /2. Thus if B is aligned then botli1 /2) B and2B are half-aligned.

In most subdivision algorithms, it is enough to work
L | with aligned boxes. But to treat root boxes, we see an
»oill ~|  essential need to work with non-aligned boxes. The
r a s 25 reason is that if we apply the Moore-Kioustelidis predi-
' —— cate to aligned boxes, non-termination may occur when
a root of F' lies on the boundary of an aligned boxes.
But such roots can be detected in the interior of non-
aligned boxes. This issue is often ignored in the liter-
ature, but it needs to be properly treated in exact algo-
rithms. Some discussions may be found in Stah] [
and Kamath T]; in the univariate case, a solution is
suggested by Roté §] for splines.

Therefore, given an aligned bax, we provide a procedure to detecRiB is a root box. We consider
the nested sequence of boxes 2B C 6B C 8B as illustrated in figurd(b). Our goal is to dete@B as a
root box, but because of alignment issues, we must alsottre¢drger box8 B which is called theextended
root box corresponding td3.

We construct the followingtandard subdivisionof 8 B, denotedStd(B), into sub-boxes:

e Subdivide6 B into 9 boxes, each congruent 2@ (indeed,2B is one of thes® boxes).

e The annular regio8B \ 6B is partitioned intd28 boxes, each congruent 8. These are called the

ring boxes.
See Figurel(b) for illustration. Note thattd(B) is balanced. None of the subdivision boxes are aligned,
but the ring boxes are half-aligned.

s p [}

(a) Half-aligned(1/2)B = (p'q'r's’) (b) Standard Subdivision &fB

Figure 4: (a)B = (pqrs) is aligned, (b)2B is a
root box

96. Conforming Subdivisions. LetII be a subdivision of a regioR. A box B’ € II is aboundary box
of the subdivision if0 B’ intersect®) R. In the following definitions, we fix a regioRy C By and fix a box
B such thaBB C Ry. Also letk > 1 be an integer.

A subdivisionIl for R, \ 8B is calledexternally k-conforming for B if it has three propertied is
balanced, the uniofly U {8B} is a box complex, and for each bdX € Iy, if B’ is adjacent t®B then
w(B') = w(B)/2*. A subdivisionIl; of 8B is calledinternally k-conforming for B if II; is balanced,
and for every boundary bo®’ of Iy, w(B') = w(B)/2*~!. Note for instance that ifl; is the standard
subdivision of8B, then it is internallyl-conforming for B. Below we show how to achieve subdivisions
of 8B that is internallyk-conforming for B for £ > 2. The following is immediatelf II; is externally
k-conforming for B, and I1; is internally k-conforming for B, then their unionlly U II; is a balanced
subdivision ofR,. Note that ift > 1 then getting a balanced subdivisionldf U I1; may cause the edges
of a root box2B to split into two segments (but not more); see FighreThis can be handled by a case
analysis similar to Theorerhbased on Lemma@. An alternative approach is to replag8® by 103 which
would have an extra ring of boxes congruentAo In this case, we can handle akhy> 1 by subdividing
this outermost ring, but without affecting the standarddsvibion of 8 B. This gives a simple and effective
solution.



§7. Strong Root Isolation. SupposeB is a root box. We sagB is strongly isolated if the following
conditions hold

e (P1) The following four predicates hoIdI{(SB), C{(8B),JC(6B), MK(2B).

e (P2)F = (f,g) has no roots in the annuld \ 2B.
The predicates in (P1) ensures that is a root box. It is not hard to see thaRif? contains a root of’ and
is sufficiently small, then properties (P1) and (P2) willchoT he reason foM K (2B) (not justMK(B) is to
ensure that we test the Moore-Kioustelidis predicate omlapping boxes, so that roots on the boundary of
an aligned box3 will appear in the interior o2 B. The reason fod C(6B) instead of]JC(2B) is that there
can be two boxegB and2B’ such that both of them satisfy MK-test and they overlap. Hu}lC(6B)
ensures that if there are two such boxes then they correspdhd same root, and so discard one of them.

98. Root Refinement: Let B be an aligned box from the subdivision queue such 2tiais a root box.
We give a subroutine to refine such a root 2@x. It it important that in our refinement method all the sub-
boxes remain dyadic boxes, assuming the input boxes arécdytlie idea is to cove2 B with a covering

of aligned boxes, which must be of siz€ B)/2, and check whether MK-test holds for the doubling of any
of these 16 boxes. If not, then subdivide these boxes andhcentecursively with thef g-candidates. See
Appendix A for more details.

3 Algorithm for Curve Arrangement

Our overall algorithm begins with the (trivial) subdivisidree7 rooted at the ROB, but with no other
nodes. The algorithm amounts to repeatedly expansion afahdidate leafs ifi” until a variety of global
properties hold. We given an overview of the algorithm ingueace of Stages see Appendix C.

99. Stage |: Resolution Subdivision The high level description of this stage is easy: keep expand
any leafB of 7 that is not resolved (sed)]. Recall that resolved boxes are either excluded or catesd

As each box is resolved, it is placed in one of the followingrfqueues:Q), for excluded boxes(); for
f-candidates), for g-candidates, an@, for fg-candidates Besides these four global queues, we also use
these additional queue®? ¢, Qumk, Qroot COrresponding roughly to boxes that satisfies tfieand MK
predicates, or are found to be root box&ke boxes in all the queues are always aligned boxes

910. Stage II: Jacobian Stage. Remove a box3 from Q ¢, and do the following: 1fJC(653) holds then
put B into Q ¢, otherwise, subdividés and distribute the children intQq, Q 7, Qg, Q t4-

€11. Stage Ill: MK Stage. For every boxB € Qjc we subdivide it until either we find a sub-ba¥
such thatMK (2B’) holds, or we have identified all sub-boxes as on@@fQ ¢, Qg, Q f,-

912. Stage IV: Strong Root Isolation Stage We assume thayk is a priority queue, where boxes are
popped starting from the largest size. For each such®@heck whetheBB is disjoint from8B’, for

all its neighborsB’; if not then replaceB with RefineRootB). We now have obtained a quelBzoot
containing root boxes for all the roots in ROI. The next stefiexternally confornstd(B) with the rest
of the subdivision tre§.

913. Stage V: Pruning7  In this stage we will turn OFF some leaf boxes(m(7") depending on how
they interact with the extended root box@B. The aim is to “blackout” the B regions from ROI, and
ensure that the boxes abutting it are all aligned boxes BL&fe the great-grandparent Bfin 7. Then we
get the list of leaf boxes that cover the interior 8f and another list of boxes that are its neighbors. For
each boxB;n,, in these lists, we turn it OFF if it is contained 8@ if it overlaps8B then we subdivided it
and proceed with its children. LT be the resulting subdivision tree.



914. Stage VI: Balancing and Externally Conforming Recall the standard balancing procedure for a
subdivision7 of a regionB, from the appendix. We will construct a balanced and extrrainformal
subdivision of By \ U;8B;, where8B;’s are pairwise disjoint extended root boxes. For each3®8x we
add a conceptual box t6’, with depth either one more than its smallest neighbor, all the neighbors of
8B are larger tham(B) then one more than the depthBfin 7. Call the standard balancing procedure on
the modified7’. By Lemma3, we will get the desired subdivision; after balancing thedsoborderings B

will all be of the same size, namely(B) /2", for somek > 1.

915. Stage VII: Internally Conforming Extended Root Boxes Consider any extended root b8® and

its standard subdivisioftd(B). Given ak > 1 from the previous stage, we want to balance the interior
and the exterior oftd(B). Note that sincé > 1 the boxes on the exterior are always smaller than all the
boxes inStd(B). To get a balanced conformal subdivisionSefl( B), we initialize a priority queu&) with

all the boxes on the exterior 88 (all of them are of the same size) and the 37 boxesit{ B). Then we
initiate the standard balancing procedure(pnSee Figuré(c) for an illustration of this procedure; the box
B’ has widthw(B)/8. We do this balancing step for each of the extended root b&&esThe union of
these subdivisions with the balanced subdivisioBpf\ U;8 B; gives us a balanced subdivision Bf, our
ROI.

916. Stage VIII: PV-Construction  For each box irf) ¢, connect its twgf -vertices with a line segment; do
the same for boxes ip,. For each box iQr..¢ place a vertex at its center and connect the fiaertices
and the twagy-vertices with this vertex according to the cases shown ou@s Il and Ill. of Figure3. At the
end of this stage, the only queue that remains unprocessgg, isSThe next stage resolves these boxes.

§17. Stage IX: Resolving Ambiguousf g-candidates We call anfg-candidate boxambiguousif they
have the same set of bichromatic segments; otherwise,healbbaxunambiguous By definition, boxes
where f and g do not share a bichromatic segment are unambiguous. Howsw@e ambiguous boxes
can be made unambiguous locally. From Theoreme know that ambiguous root boxes can be made
unambiguous. Also, boxes where the two shared bichromegiments are on adjacent edges can be made
unambiguous by repeated subdivisions of the edges untileaehra segment in one of the edges that is
bichromatic for one curve and monochromatic for the othag will happen along one of the edges since
both C’{ andCY hold. A similar approach works to resolve ambiguous boxasghare an edge with, and

a common bichromatic segment is on this edge, because bypsso boundary o3, does not contain a
root of f, g. From these unambiguous boxes, we propagate the orderthg pfvertex andy-vertex on the
shared edge to their ambiguous neighbors.

918. Correctness of Algorithm We must prove that our gragh = (V, E) is isotopic to the arrangement
(S,T) in box By. Suppose there aferoots,|S N T'| = k. Our correctness requires that none of these roots
lie in 0By. Our algorithm produces the following data: we have “wellased” the roots in this sense: we
have foundk aligned boxesB;, ..., B; such tha2B; is a root box,8B; C By, and the interiors of the
8B;’s are pairwise disjoint. Next, we have constructed sulsthws,

807817---78k

wheresS; is a subdivision oBB; (i = 1,...,k) andSy is a subdivision ofB \ U§:18Bz- Moreover, the
union of all these subdivisions, denot&d, constitutes a balanced box complexiy.

THEOREM 2. The PSLGH computed by the algorithm is&*-normalization of the curvegsS, T').

We sketch the arguments here: (&',7”) be aS*-normalization of(S,7'). The graphG will be
obtained as the union @f 3 for all B € S*, where eacltiz is a PSLG contained in bok. We know from
Theorem 1 how to construct a PSI&; C B that is isotopic tdS’, 7”) in each root box3. We know from
Plantinga-Vegter how to construct PSILC% that are isotopic t@’ in each non-root boxX3. Similarly we

9



68

Figure 5: An internally conformal subdivision 8td(B)

haveGZ. But we need to form their "union”, which is the PSL@; that is isotopic to(S’, 7”) in B. For
this purpose, we need to know the relative ordering offtheertex andy-vertex on each segment &fthat
is bichromatic for both curves. This information is resal\®y Stage IX of our construction.

4 Final Remarks

We have presented a complete numerical algorithm for thiepso arrangement of two simple curves.
The underlying paradigm is Domain Subdivision, couplechviibx predicates and effective forms of the
Miranda Test. Moreover, we crucially exploit the previogsstopic approximation algorithms of Plantinga-
Vegter [L€6] for a single curve.

The algorithm is very implementable: despite the many stagg@ch stage involves iteration using well-
known data structures. A full implementation and compasswith other methods is planned; we have
currently implemented the root isolation part.

The extension of this work to the simple arrangement of mlatcurves is of great interest. Many of
the techniques we have developed for 2 curves will obvioegignd. One possible way to use our work
for multiple curves is as follows: first compute the root be2d3; of all the pairwise intersections, and
make them “well isolated” in the sense ttads; boxes are pairwise disjoint, as before. Then we compute a
balanced, conforming subdivisia@y of complement of the union of the843 boxes. Moreover, we need to
resolve ambiguities, i.e., relative ordering of curves @ommon segment. Some of this can be resolved by
propagation, but there will be need for recursive subdivisn general. In the full paper, we will provide
such a description.

A general open problem is to prove polynomial complexity sl for such subdivision algorithms.
As a first step, we would like to prove that the root isolatiartgs polynomial-time. This would be a
generalization of our recent work on continuous amortirator real and complex roots §].
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APPENDIX A: Basic Concepts

We fix the terminology for well-known concepts in boxes, imatg arithmetic and subdivision trees.

919. Boxes. Let OR denote the set of closed intervals. We may idenRfywith degenerate intervals
[a,a] € OR. Also OR? is thed-fold Cartesian product ofiR. Elements of01R“ are calledd-boxes The
width of Bis (w(I),...,w(l)) where the width of an intervdl = [a, b] iSw(I) = b— a. the same (resp.,
differ by at mostl). If B, B’ are two boxes iV, we say they aré-neighborsif B N B’ has dimension
k. Sok € {-1,0,1,2}, when the empty set has dimensien. Note that if B and B’ are2-neighbors, it
means that one is contained in the other. We Baand B’ areadjacent if they arel-neighbors. Each box
has4 sides(sometimes calleddge$ and4 corners. The boundary of a bo® is denotedB.

€20. Box Functions. Interval arithmetic 2] is central to our computational toolkit. If : R — R
is a real function, then we call a function of the formf : OR? — OR aninclusion function for f if
for all B € ORY, Of(B) containsf(B) = {f(p):p € B}. Call O0f abox function for f if it is an
inclusion function forf and for allB; : i € N, if B; converges monotonically to a pointc R then 0 f(B;)
converges monotonically tf(p). Note that box functions are easy to construct for polynésxdad common
real functions.

921. Subdivision Trees. Our fundamental data structure is a quad-tregudivision tree7": the nodes of

T are boxes in0R%, and each internal node has2? children which are congruent sub-boxes, with pairwise
disjoint interiors, and whose union 1. In order to use/ to represent regions of complex geometry, we
assume that each leaf @fis (arbitrarily) either turned ON or turned OFF. The unioratifthe ON-leaves

is denotedR(7), called theregion-of-interest (ROI). Let On(T) denote the set of ON-leaves ®f. We
call On(T) asubdivision of R(T). In general, asubdivision of a setX C R? s a collectionC' of sets

in R? such thatuC' = X and the relative interior of the sets @ are pairwise disjoint. One of the basic
operations on subdivision trees is to take an ON-Badf 7 and to “expand it”, i.e., to splif3 into 2¢
congruent sub-boxes and attach them as childres.of hus B becomes an internal node and its children
become leaves of the expandgéd By definition, the children oB remain ON-leaves. Thus the ROl is not
affected by expansion.

A segmentof 7 is a line segment of the form® N B’ whereB, B’ are adjacent boxes ii. Note that
a segment is always an edge of some box, but some box edgestaegments. In general, an edge is
subdivided into a finite number of segments.

The boxes of a subdivision tree are assumed to be non-dedenée., they are-dimensional. Of
course, we are mostly interested in the cdse 2. In our algorithms, certain ON-leaves are called “can-
didates box”. Unless otherwise noted, we could assume &@Breaf is a candidate box. We then say
is? uniform (resp.,balanced if, for any two candidate boxes, if they are adjacent thesirttiepths are the
same (resp., differ by at most one).

Finding neighbors: Given a subdivision treg in the plane, a crucial sub-procedure required by the
algorithm is the ability to get the neighbors of a box7in One way to achieve this is to associate two
pointers with every edge of a leaf box ®f namely the pointers that point to the extreme neighbonsgalo
the edge (there may be only one such neighbor, in which thebiers point to the same box). Thus we
associate 8 pointers with every leaf box. Then to find all #sigimbors of a box3 in 7, we do the following:
starting fromB traverse down the leftmost path fnuntil we reach a leaf bo®B’; now B’ must be the box
that has the same north-east corner3asnoreover, the north and the east neighbors3bimust also be
the neighbors of3; starting from one of these neighbors Bfand using their pointers we can list all the
neighbors ofB. We will often say the “eight neighbors” of a box to refer te thoxes pointed by these eight
pointers, where we count the boxes with multiplicity.

2 Note that in our previous work 1p, 10]), uniform subdivisions were called “regular subdivisin The current usage of
regular/uniform seems better.
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Standard Balancing Procedure:

—

Let Qmp be a priority queue of all the leaves‘iit the deeper the level the higher the priorjty.
While Qmp, is non-empty do

B < Qtmp-pop().

For each neighbaB,,, of B do

If Bimp is not balanced w.r.tB subdivideB;,,, and add its children tQ),p.

There can be at most two neighbors@fthat need to be subdivided, becausehares two edges with its
siblings and so the boxes neighborifjalong those edges are balanced w.Bt. the unbalanced boxes
can occur on the remaining two edges. Moreover, for any beigB..,, that is subdivided only one of its
children neighbors3. Balancing also has the following nice property, which itnely says that the boxes
produced in the ensuing subdivision cannot all be very small

LEMMA 3. Suppose we are balancing a bB8xand letB’ be its violating larger neighbor. Letbe the edge
of B’ shared withB and ¢’ be the opposite edge. Then the subdivisio®'oaused byB while balancing
will split the edgec’ only once.

In the subdivision tree aB’, the two children of that shaeé are in a different subdivision tree compared
to the child of B’ that is adjacent t@ and shares; see Figures. Balancing produces a subdivision tree of
B’ that has only one path, with leaves hanging from it, that @mdsbox whose size is double the sizerf
The number of leaves in this tree &e(logw(B’) — logw(B) — 1).

B

B[]

Figure 6: A subdivision caused balancing
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APPENDIX B: The Moore-Kioustelidis Test for Roots

Although our paper is focused on arrangement of curves, \a#t ®mporarily consider a more general
setting of a continuous functiof’ : R — R"™ in n-space. Let the coordinate functions i6fbe denoted
(fi,---y fn)- If B =T[, I, € R"is a box, we writeB;” and B; for the pair of faces ofB whose
outward normal are (respectively) the positive and negativsemi-axis. Thus, if; = [a;, b;] thenB; =
Iy x oo X Ly Xa; X Lipg X oo X I, andB;r is similar, but withb; in place ofa;. The center of a bo®,
cen(B), is defined as the vect¢fa; + b1)/2,, ..., (a, + b,)/2). For a positive real numbe, define the
scaled box

AB :={\(x — cen(B) + cen(B))|x € B}.

Miranda’s theoremd] gives us a sufficient condition for the existence of rootg-oiin the interior of
box B:

ProPOsSITION4 (Simplified Miranda).Let F' = (f1,..., fn) : R™ — R™ be a continuous function, and
a box. A sufficient condition thdt has a root in the interior of3 is that

fi(Bi") >0, fi(B;) <0 (5)
holds foreach = 1,... . n.

Remark: we have stated Miranda’s theorem in the simplestiplesorm. For instance, our simple form
could be generalized by replacing) (vith the following condition: f; takes a definite sig|§1;r e {-1,+1}
on B;", takes a definite sigs, on B;, ands; s; = —1. But the simplified form implies this more general
form since we can replace the systét= (fi, ..., f,) by

ﬁ = (Si‘rfl, oo ,S;’;fn),

since the systems' and I have exactly the same set of roots. The usual statement ahiii‘'s theorem
is even general, wheré&)is replaced bythere exists a permutation of the indices{1,...,n} with this
property: for eachi, f; has definite signs;” ands; on B;F(Z.) and B, (respectively), where"s; = —1.
We shall see that there is no need to find such a permutatiorg ifansformF’ appropriately. Moore and
Kioustelidis [L3] give the following effective form of the Miranda test:

PropoOsITIONS (Effective Miranda’s Test)Let F':=(f1,..., f,) : R" — R™ be a continuous function
with appropriate box functions. Writg ; := 0 f;/0x;. For any boxB with widthw(B) = (w1, ..., wy), if
foralli=1,....,n

filcen(B;")) - fi(cen(B;)) < 0, (6)
|filcen(Bf)| > Y mag(0fi;(Bf))w;, and (7)

Jj=1,j#i
|[filcen(B )| > Y mag(Df;;(B)))wj, ®)

J=1j#i

thenF has a zero in the interior ob.

Proof. Using the mean-value interval extensionfofiwve know that

fi(Bf") € fi(cen(B)) + OV fi(B;) - (B — cen(B]"));

i —
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note the dot-product on the RHS is the inner-product of vialevectors. But

OV fi(B) - (Bf —cen(Bf)) =) | 0f (B )z, 7] — (z; +75)/2)

=1

= Y 0Bz 3] - (2 +7)/2) (sincer; = z,)
=1

= > 0aeH T
=1

= Z mag( Dfi,j(B;_))
=Ly

— Z mag( 0f; ;(B;"))

J=1,j#i

(Ej - &j)

(Ej - ij)

n

= > mag(D0fi;j(B))(w;/2) | [-1,1].
=L

Thus

w(OVA(BF) - (Bf —cen(B))) = ) mag(0fi;(B)wj.
j=1,j#i
Therefore, 7) implies that0 ¢ f;(B;"). Similarly, 8) implies that0 ¢ f;(B; ). By (6), f; takes opposite
signs on the faceB;” and B;", and so Miranda’s theorem implié$ contains a root in its interior. Q.E.D.

Miranda’s test is not a “complete” method for detecting soiotthe following sense: there are systems
F = 0 whose roots cannot be detected by Miranda’s test, even igaheral form that allows permutation
7. For instance, lef’ = (f, g) wheref = x + y andg = = — y. Then no rectangl& C R? containing the
root (0, 0) will pass the generalized Miranda test.

The solution is a “preconditioning” trick. Consider a treorsnation of F' to G:=Y F', whereY is a
suitable non-singular matrix in the bax. Note thatG and F' have the same sets of roots. To perform the
Miranda Test on a bo®, we choos&” to be the inverse of any non-singular Jacobiatim) wherem € B.
More precisely,

MK-test for a systemF on a boxB is the effective Miranda-test applied to the 9
system.Jp(m) "' F, wherem := cen(B), and the Jacobian is non-singular. ©)

This idea was first mentioned by Kioustelidis and its comgriess was shown by Moore-Kioustelidis
[13]. We reproduce their result, but to do that we need someinatahd the Mean Value Theorem in higher
dimensions.

Givenz,y € R, the notationr+y denotes a number of the formt-6y, whered is such that < |6] < 1;
thus “+” hides thef implicit in the definition. We further extend this notatiom matrices in the following
sense: for two matrices, B, the matrixA+ B := [a;;£b;;]; also, for a scalak, the matrixA+\ := [a;; £ A].
We now recall the Mean Value Theorem fBr: R” — R™: Given two pointsx,y € R", there exists a
matrix K with non-negative entries such that

F(x)-F(y)=(Jr(y) = K|x-yl)  (x-y) (10)
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To see this claim, we apply the mean value theorem twice ih eithe components af to obtain

fi(x) = fily) = (fia(y) T Kiallx =yl fin(y) £ Kinllx —yl) - (x = y)
=Vfily) (x—y) £ (Ki1,... ., Kin) (x—y)[x -yl

fori=1,...,n.

LEMMA 6. Let F' be a zero-dimensional system of polynomials. For all sefiity smallopenboxesB
containing a single rootx of F' the modified systert:= .Jr(m(X))"'F, if well defined, satisfies the

conditions in Miranda’s theorem, namely foe= 1,...,n, g;(B;") > 0 andg;(B;") < 0.

Proof. Let x be a point on the boundary of the b&x From the definition ot and from the mean value
theorem {0) we know that

G(x) = Jp(m) ™ (F(a) + (Jr(m) £ K|x - al]) - (x — a))
= Jp(m)" (Jp(m) + K|x = al) - (x — a))
= (1£ [[Jr(m) " Klxlx —all) - (x — ).

Theith component in the vector
L[| Jr(m) " Kl llx — all) - (x — @) (11)

is the polynomialy;(B), so we obtain
19:(x) = (@i — aq)| < x = all[ Jr(m) " Koo Y laj — - (12)
j=1

The term on the RHS

n

Ix = alll[Je(m) " Koo > s — ay] < [lo(B)F 1Te(m) ™ K|,
j=1

because|x — af| < [[@(B)||2 < [[@(B)[1 and> 7, |z; — aj] < [[w(B)[1. Suppose the bok is such
that
20(B)|} 175 (m) " Ko < min [~ BE|

then we claim that for ali = 1,...,n, g;(B;") > 0 andg;(B;) < 0. This is because for at € B},
|3§‘Z' — OZZ'| = |fz — Oéi| = ||Oé — Bj_H, since the projection af on Bz_ is (011, ey OG 1, T, OG- ,Oén);
similar argument applies fot € B;". Thus the term on the RHS id%) is smaller thanz; — «;|/2, which
implies thatg;(B;") > 0 (we can similarly show thag;(B;") < 0), and therefore the syste6i(x) has the
same sign pattern as— « on the boundary of the bok. Q.E.D.

This “orthogonalization” around the zero by the pre-canding step helps us avoid finding the permu-
tation matrix in the general Miranda’s test. Note, howetrat if the root is on the boundary of the box then
the above proof breaks down.
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Appendix C: Proofs and Details
922. The RefineRoot Procedure:

RefineRoot(3)
<4 Assume thalC(6B) holds. Thus no neighbor @B can be an MK-box.

Input: an aligned box3 with 23 as the root box.
Output: an aligned bo®* with 2B* as the root box.
RemoveB from Qyik.
Subdivide the neighbors @ until the size of the neighborhood &f is w(B)/2.
Add the children of the neighbors to the appropriate qUEUEK) r, Qg, Q fg-
Initialize Qmp With the neighbors of3 and its four children.
While Q¢mp, is non-empty do
Btmp < thp'pop()'
If MK (2Bimp) holds then
Empty Qimp iNto Q4. ReturnBy,,, and add it taQnx .
Else SubdivideB;,,, and add its children t@o, @, Q4, aNdQtp.

Correctness: The subdivision 8fand its neighborhood of size(B)/2 covers2B, the root box corre-
sponding toB. Let B’ be any of these 16 boxes. Sinb€(65) holds, if MK (2B’) for a box B’ then then
the root in2B’ is exactly the root ir2 3.

923. Details of Stage Il

While Q ;¢ is non-empty
B < Qjc.pop().
Qtmp < {B}
While Q¢mp is non-empty do
Btmp — thp'pop()'
If MK(2Bmp) holds.
PushBi,, into Quk. EMPLY Qtmp iNto Q 7.
Else SplitBy.,, and distribute the children intQo, Q ¢, Qg, Qtmp-

For each boxB € Quk do
If there is another bo®’ € Q\ik such thakB N 2B’ # () then removeB’ from Q ik .

Note that we only search for a root fiy-candidate boxes. This is justified by Lem@and the observation
that eventually the root will be contained in the interiortbé doubling of anfg-candidate box. At the
end, Q¢ is empty and)yk contains a set of root boxes. Moreover, the last loop enswds/o boxes
B, B" € Quik correspond to the same root, i.2B N 2B’ = (). The boxes irQ s, do not contain any root.

924. Details of Stage V-
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For each boxB € Qroot do
Let B’ be the great-grandparent Bf
Initialize Qimp to all the leaves iry that partition the interior of3’.
While Q¢mp, is non-empty do
Btmp A thp-pOp()'
If Bimp C 8B then turn it OFF.
If the interior of By, intersects the interior &f B then subdivide it and add its children @@, p,.
Initialize Qmp as the set of all leaves i that are the neighbors @f'.
While Q¢mp is non-empty do
Btmp — thp-pop()'
If Bimp C 8B then turn it OFF and add all its neighbors@,, .
If the interior of By,,,, intersects the interior &f 5 then subdivide it and add its children @@, .
< NOTE: Whenever we subdivide a bBy,, we also do the following: remove it from one of the
<4 queues)y, Qq, Or Qr, and add its children to the appropriate queue.

Since8B is half-aligned, there is a subdivision of every leaf bB¥.,, in 7 such that every box in this
subdivision is either contained BB or does not intersect its interior. Thus the procedure ds=trabove
will terminate. Let7’ be the refinement of with blacked-out regions corresponding to extended root
boxes.

925. Details of Stage VI:

For eachB € Qreoot dO
Letm be the largest depth amongst all the neight®gg, of 8B in 7'.
Let ¢ be the depth oB in the subdivision tre§. < Thusw(B,,,) = u:(B)Q"*"’
If m > ¢thenk <+ m; elsek + ¢+ 1.
Add aconceptual leaf boto 7" that represent8 B. Set the depth of this box o+ 1 and
initialize its 8 pointers to the 8 extreme neighborsS&f.
Let 7" be the resulting subdivision tree.
Let @ be the priority queue of all the leavesr’; the deeper the level the higher the priority.
Initiate the standard balancing procedure(pwith one difference: whenever we pop a conceptual
box 8 B we check the depth of its neighbors, and if necessary resetepth o8 B to one more thap
the depth of its deepest neighbor.
< NOTE: Whenever we subdivide a bB¥,,, we also do the following: remove it from one of the
<4 queues)y, Qg4 Or Q s, and add its children to the appropriate queue.

We claim that at the end of this procedure the tféds balanced, and all the neighbors of extended root
boxes8B; in 7" are of the same size, namely(B;)/2", for somek > 1. The balancing of3, \ U;(8B;)
follows from the proof of correctness for standard balagg@nocedure. The conformity follows because a
conceptual box is always deeperirf than its neighbors, so it will never be subdivided, and iig/mgors

will always be twice its size. The modification to the stamdbalancing is required, because a smallest
neighborBy,,,, of 8B in 7' could have been subdivided by a box that is adjacertg, along the edge
that is not abuttingg B or any of the neighbors &fB. However, this can only happen once because of the
balancing property, Lemnia

926. Details of Stage IX:
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Initialize Q,p With all the root boxes.
For each box5 € Qy, do
If there is pair off-vertex andy-vertex that do not share an edgeithen
Connect thef-vertices andy-vertices according to one of the patterns in Group | froiguire 3.
Add B t0 Q¢mp and remove it fron@) z,,.
< In the remaining boxes, the two pairs(df, g)-vertices are on two edges.
If the two pairs of( f, g)-vertices are on adjacent edges’ then <« Call such a box dransition Box
< These boxes definitely appear in a covering of negietbops; they can appear otherwise al
Subdivide bothe ande’ until we reach a segment in one of the edges such that
only one of the curveg or g changes sign od’; saye” C e and f changes sign on it.
Check which side of \ ¢” doesg change sign; order thg-vertex andy-vertex
alonge accordingly; connect thé¢-vertices andj-vertices respecting this order;
add B to Qimp and remove it fronQ) ¢,.
If B shares an edgewith B, then
Subdividee until we reach a segment C e such that only one of the curves g change
sign one”. Check which side of \ ¢” contains the other curve. Order the vertices accordingly
and connect th¢-vertices angj-vertices. AddB to Q. and remove it fron@Q) .
< The boxes i)mp are all unambiguous boxes.
While Q¢mp is non-empty do
B «+ thp.pOP()
For each ambiguougg-neighborB’ of B do
Order thef-vertices andj-vertices on the shared edge betwé#rand B according
to their ordering inB; connect the pair of -vertices andj-vertices inB’ respecting this ordering.
Add B’ to Qtmp and remove it fromQs,. < Thus all thef g-neighbors are unambiguous.

In practice, we should first resolve boxes that can be eitheed to root boxes or to boxes in Group Il of
Figure3. Then we should resolve transition boxes and propagate dragring. Finally, in the remaining
ambiguous boxes, we should resolve the boundary boxes apdgate their ordering. At the end of this
stageq) r, Will be empty, since any ambiguous box can be traced to onleedfiaur boxes: root box, Group
Il box, transition box, or a boundary box.

Proof of Theorem 1: We will need the following lemma for the proof.

LEMMA 7. If a box B satisfiesMK (B) and an f-vertex and ay-vertex share an edgeof B then we can
determine the relative order of the normalized cur¢&57") alonge.

Proof.

Since theMK(B) test passed along we know that there are real number$ such that eithes- f(e) >
b-gle)ora- f(e) < b-g(e). To see this, recall thatlK(B) test replaces the systef= (f, g)" by the
systemF = J - F, whereJ is the inverse of the Jacobian &f evaluated aten(B), and performs the

Miranda test, PropositioB, for F. If J = { Z _db } andF = (f, 9T thenf: a- f—b-g. The Miranda

test onF asserts that there is an edgédor which eitherf(e) > 0 or f(e) < 0. The first inequality is
equivalent taz - f(e) > b- g(e), and the second inequality is equivalenttof (e) < b - g(e). In the rest of
the proof we assume that f(e) > b- g(e); the analysis in the other case is same.

Neithera nor b can vanish, since that would imply that eithpr g has a constant sign an which is
a contradiction as botli andg have a vertex om. Lete(t) be a parametrization ef with endpointse(0)
ande(1). LetTy C (0,1) be such thaif(e(t)) = 0 for all t € T, and lett; be the smallest element in
Ty, similarly defineT, andt,. Since bothf andg change sign across we know that the cardinality of
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Ty andT, is odd. Any normalizatior{S’,7") of (S, T) relative toB will remove all but one element from
both Ty andT, while maintaining the relative order of the remaining ede That order is the same as the
order oft; andt, alonge. Thus we want to determine whethgr< t, ort, < t;. Suppose:b > 0. Then
f(e) > ¢ g(e) for somec > 0. There are two cases to consider:

e f(e(0)) > 0: then f(e(ty)) > cg(e(ty)) = 0, which implies thatf is positive ate([0,t,]) and so

ty > 14,

e f(e(0)) < 0: this similarly impliest ; < t,.

If ab < 0theng(e) > c- f(e), for somec > 0, and the claim follows from similar arguments. Q.E.D.

927. Group | Patterns. Notice that using the sign of, g at the corners of3, we can never detect these
patterns. For instance, for Figug@la), we will not detect the presence of the cu¥/ebecausef has the
same sign on every corner of the box. So we first show that thegat arise.

LEMMA 8. Suppose bo® satisfiesMK(B). Then the patterns in Group | of FiguBecannot occur.

Proof.Lete be an edge oB and suppos&’UT” interseck in three consecutive poinist; ), e(t2), e(t3)
(t1 < to < t3) wheree(t) is a parametrization of. The “pattern” of these intersections is the triple
(p1,p2,p3) Wherep; € {f,g}. Forinstance, it is the top edge of the box in FiguB¢la), then the pattern
is either(f, g, f) or (g, f,g). Our claim is equivalent to showing that the intersectiotigua of any three
consecutive intersections 6f U 7" on any edge of B cannot bgf, g, f) or (g, f, 9)-

From Lemma7 we know thatf(e) > c - g(e), for somec € R, let us assume > 0. Consider the
(f, g, f) pattern (the other pattern is similar). Consider the sign affthe pointe(t; — ) ande(ts + ) for
sufficiently smalls > 0. Theng must have different signs at these points — this is because asove from
e(t;1 —e) to e(ts + ), the functiong changes sign exactly once,edts). Likewise, we see thgt must have
the same sign af(t; —¢) ande(t3—¢), because as we move frafft; —¢) to e(t3+¢), the functionf changes
sign exactly twice, at(t1) ande(ts). Thusf(e(t; —e)) > gle(t;y — ¢)) iff fe(t1 —¢)) < g(e(t1 — €)).
This is a contradiction. Q.E.D.

928. Group Il Patterns. Supposef, g have sign agreement di. We can determine from these signs the
two edges that containg andg-vertices. Supposeis such an edge. So there is gvertex and aj-vertex
one, and from Lemm& we know their relative ordering.

929. Group Ill Patterns.  Let us say thaff, g havesign agreementon B if there is a sigrs € {+1, —1}
such thatsign(f(c)g(c)) = s for each corner of B. Observe that Group Il patterns arise precisely
becausef, g have sign agreement; likewise Group Il patterns ariseipegcbecausg, g do not have sign
agreement. We claim that the patterns in Group Ill can berehited by signs off andg at the corners of
B. First of all, by evaluating the signs gfandg on the corners oB, we can determine whether or nfitg
have sign agreement & . If not then we can determine whether the pattern is (IlldQ)or (lllc). If (1lla),
the pattern is completely determined. If (IlIb), there isealyee containing both arf- and ag-vertex, and
we need to know their relative order enThis is determined by the positions of the otlfevertex and other
g-vertex: this is because the order of the fgurand g-vertices on the boundary @ must be alternating:
f,q,f,g. Asimilar remark applies in case (llic).

To summarize the proof of Theoreln Lemmas implies that Group | patterns cannot occur; for Group
Il patterns we can determine the relative order from Lena@ad for Group Il patterns the ordering is
immediate.
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