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Abstract

This paper presents the first purely numerical (i.e., non-algebraic) subdivision algorithm for the iso-
topic approximation of a simple arrangement of curves. The arrangement is “simple” in the sense that
any three curves have no common intersection, any two curvesintersect transversally, and each curve is
non-singular. A curve is given as the zero set of an analytic functionf : R2 → R

2, and effective interval
forms off, ∂f

∂x
, ∂f
∂y

are available. Our solution generalizes the isotopic curveapproximation algorithms
of Plantinga-Vegter (2004) and Lin-Yap (2009).

We use certified numerical primitives based on interval methods. Such algorithms have many favor-
able properties: they are practical, easy to implement, suffer no implementation gaps, integrate topolog-
ical with geometric computation, and have adaptive as well as local complexity.



1 Introduction

We address problems in computing approximations to curves and surfaces. Most algebraic algorithms for
curve approximation begin by computing a combinatorial objectK first. To computeK, we typically use
algebraic projection (i.e., resultant computation), followed by root isolation and lifting. But most applica-
tions will also require the geometric realizationG. Thus we will need a separate (numerical) algorithm to
computeG. This aspect is typically not considered by algebraic algorithms.

In this paper, we describe a new approach for computing curvearrangements based on purely numerical
(i.e., non-algebraic) primitives. Our approach will integrate the computation of the combinatorial (K) and
geometric (G) parts. This leads to simpler implementation. Our numerical primitives are designed to work
directly with arbitrary precision dyadic (BigFloat) numbers, avoiding any “implementation gap” that may
mar abstract algorithms. Furthermore, machine arithmeticcan be used as long as no over-/underflow occurs,
and thus they can serve as efficient filters [3].

We now explain our specific problem, and illustrate the preceding notions ofK andG. By a sim-
ple curve arrangement we mean a collection of non-singular curves such that no three of them inter-
sect, and any two of them intersect transversally. The simple arrangement of three or more curves can, in
some sense, be reduced to the case of two curves (see the FinalRemarks). LetF : R

2 → R
2, where

F (x, y) = (f(x, y), g(x, y)) is a pair of analytic functions. It generically defines two planar curves
S = f−1(0) ⊆ R

2 andT = g−1(0). We callF = 0 a simple systemof equations if{S, T} is a sim-
ple curve arrangement. Throughout this paper,F = (f, g) will be fixed unless otherwise indicated. Figure1
illustrates such an arrangement for the curves defined byf(x, y) = y − x2 andg(x, y) = x2 + y2 − 1.
The concept of hyperplane arrangement is highly classical in computational geometry [5]. Recent interest
focuses on nonlinear arrangements [2].

(a) (S, T ) arrangement
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Figure 1: Arrangement of two curves,y = x2 andx2 + y2 = 1

Our basic problem is the following: suppose we are given anǫ > 0 and a regionB0 ⊆ R
2, called

the region-of-interest or ROI, which is usually in the shape of an axes-aligned box. We want to compute
an ǫ-approximation to the arrangement of the pair(S, T ) of curves restricted toB0. This will be a planar
straightline graphG = (V,E) whereV is a finite set of points inB0 andE is a set of polygonal paths in
B0. Each pathe ∈ V connects a pair of points inV , and no path intersects another path or any point in
V (except at endpoints). Moreover,E is partitioned into two setsE = ES ∪ ET such that∪ET (resp.,
∪ES) is an approximation ofT (resp.,S). The correctness of this graphG has two aspects: (A) topological
correctness, and (B) geometric correctness. Geometric correctness (B) is easy to formulate: it requires that
the set∪ES ⊆ B0 is ǫ-close toS in the sense of Hausdorff distance:dH(S,∪ES) ≤ ǫ. Similarly, the∪ET

is ǫ-close toT . If we specifyǫ =∞, then we are basically unconcerned about geometric closeness.
Topological correctness (A) is harder to capture. One definition is based on the notion of “cell decom-

position”. A (cell) decompositionof B0 is a partitionK∗ of B0 into a collection of sets called cells, each
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c∗ ∈ K∗ homeomorphic to a closedi-dimensional ball (i ∈ {0, 1, 2}); we callc∗ ani-cell and its dimension
isdim(c∗) = i. If b∗ is ani-cell andc∗ an(i+1)-cell, we sayb∗ boundsc∗ if b∗ is contained in the boundary
∂c∗ of c∗. CallK∗ an(S, T )-decomposition ofB0 if the set(S ∪ T ) ∩ B0 is a union of some subset of0-
and1-cells ofK∗. A (S, T )-decomposition is illustrated in Figure1(b).

A cell complexK is an (abstract) set such that eachc ∈ K has a specifieddim(c) ∈ {0, 1, 2} together
with a binary relationB ⊆ K × K such that(b, c) ∈ B impliesdim(b) + 1 = dim(c). We say that the
decompositionK∗ is a realization of K, or K is anabstraction of K∗, if there is a 1-1 correspondence
between the cellsc∗ of K∗ with the elementsc ∈ K such thatdim(c∗) = dim(c), and moreover the relation
(b, c) ∈ B iff b∗ boundsc∗ in K∗. Figure1(c) shows the abstractionK of the decomposition in Figure1(b).

Our algorithmic goal is to compute a planar straightline graph (PSLG for short [17]) G = (V,E) which
approximates(S, T ) in a boxB0. Such a graphG naturally determines a decompositionK∗(G) of B0

as follows: the set of0-cells isV , the set of1-cells isE and the set of2-cells is simply the connected
components ofB0 \ (V ∪ (

⋃
E)). Finally, we sayG is topologically correct if there exists an(S, T )-

decompositionK∗ such thatK∗ andK∗(G) are realizations of the same abstract cell complex.

¶1. Towards Numerical Computational Geometry. The overall agenda in this line of research is to ex-
plore new modalities for designing geometric algorithms. We are interested in exploiting weaker numerical
primitives that are only complete in a certain limiting sense. Unlike traditional exact algorithms, our algo-
rithms must strongly interact with these weaker primitives, and exploit adaptivity. The key challenge is to
achieve the kind of exactness and guarantees that is typically missing in numerical algorithms. See [24] for
a discussion of “numerical computational geometry”.

In the algebraic approach, one must compute the abstract complexK before the approximate embedded
graphG. Indeed, most algebraic algorithms do not fully address thecomputation ofG. In contrast to
such a “decoupled” approach, our algorithm provides an integrated approach whereby we can commence
to computeG (incrementally) even before we knowK in its entirety. Ultimately, we would be able to
determineK exactly — this can be done using zero bounds as in [23, 4]. The advantage here is that our
integrated approach can cut off this computation at any desired resolution, without fully resolving all aspects
of the topology. This is useful in applications like visualization.

Unlike exact algebraic primitives, our use of analytic (numerical) primitives means that our approach is
applicable to the much larger class of analytic curves. Numerical algorithms are relatively easy to implement
and have adaptive as well as “local” complexity. Adaptive means that the worst case complexity does not
characterize the complexity for most inputs, and local means the computational effort is restricted to ROI.

One disadvantage of our current method is that it places somestrong restrictions on the class of curve
arrangements: the curves must be non-singular with pairwise transversal intersections in the ROI. In practice,
these restrictions can be ameliorated in different ways. The complete removal of such restrictions is a topic
of great research interest.

The algorithms in this paper fall under the popular literature on Marching-cube type algorithms [14].
There are many heuristic algorithms here which are widely used. The input for these algorithms can vary
considerably. E.g., Varadhan et al. [22, 21] discuss input functionsF : R3 → R that might be a discretized
function, or a CSG model or some polygonal model – each assumption has its own exactness challenge.

2 Our Approach: Isotopic Curves Arrangement

All current exact algorithms for curve arrangements are based on algebraic projection, i.e., they need some
resultant computation. The disadvantage of projection is the large number of cells: even in relatively simple
examples, the graph can be large as seen as Figure1(c). For many applications, the 2-cells may be omitted,
but the graph remains large. There are several known techniques to reduce this (double-exponential in
dimension) explosion in the number of cells. In this paper, we avoid cell decomposition, but base our
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topological correctness on the concept of isotopy. Our algorithm uses the well-known subdivision paradigm,
and produces a subdivision of the input domain into boxes. Figure2 illustrates the form of output from our
subdivision algorithm using our previous example ofy = x2 andx2 + y2 = 1.1 The number of subdivision
boxes tend to be even more numerous than cells in the decomposition approach. But these numbers are not
directly comparable to number of cells for three reasons: (1) Subdivision boxes are very cheap to generate.
(2) Most of these boxes can be instantly discarded as inessential for the final output (we keep them for
visualization purposes). (3) Unlike cells, our subdivision boxes play a double role: they are used for (A)
topological determination as well as (B) in determining geometric accuracy.

The approach of this paper has previously been successfullyapplied to the isotopic approximation of a
single non-singular curve or surface by Plantinga and Vegter [16, 15] and Lin and Yap [10, 9]. The current
paper is a non-trivial extension of these previous works.

(a) Overall subdivision (b) Closeup at the origin (c) Closeup at an intersection

Figure 2: Subdivision approach for curve arrangement

We now define the notion of isotopy for arrangements. For our problem on arrangements, we need to
extend the standard definitions of isotopy. SupposeS, T ⊆ R

2 are two closed sets andǫ > 0. First recall
thatS andT are (ambient)isotopic if there exists a continuous mapping

γ : [0, 1] × R
2 → R

2 (1)

such that for eacht ∈ [0, 1], the functionγt : R2 → R
2 (with γt(x, y) = γ(t, x, y)) is a homeomorphism,

γ0 is the identity map, andγ1(S) = T . If, in addition,dH(S, T ) ≤ ǫ (wheredH is the Hausdorff distance
on closed sets) we say that they areǫ-isotopic. We will write

S
ǫ
≃ T (via γ)

in this case. Note that we may omit mention ofǫ, in which case it is assumed thatǫ =∞.
We now generalize this to arrangement of sets. LetS = (S1, . . . , Sm) andT = (T1, . . . , Tm) be two

sequences ofm closed sets. For each non-empty subsetJ ⊆ {1, 2, . . . ,m}, let SJ denote the intersection
∩i∈JSi. Similarly for T J . We say thatS andT areisotopic if there exists a continuous mappingγ as in (1)
such that for each non-empty subsetJ ⊆ {1, 2, . . . ,m}, we have

SJ
ǫ
≃ T J (via γ).

1 The figure is not produced by the algorithm of this paper because the implementation is currently underway. Instead, it is
produced by the Cxy Algorithm for approximating a non-singular curve [10], using the input curvefg = 0. Thus the intersection
points are singularities which the Cxy algorithm cannot resolve, but this does not prevent its computation to some cut-off bound.
Also, the Cxy algorithm does not know which part of the arrangement is thef -curve and which is theg-curve.
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We also callγ an isotopy from S to T . For simple curve arrangements, the critical problem to solve is the
casem = 2. We assume the two curvesS1, S2 are restricted to a region or boxB. Our basic problem is to
compute a pair of curves(T1, T2) such that

(T1, T2)
ǫ
≃ (S1 ∩B,S2 ∩B). (2)

The approximations(T1, T2) produced by our algorithms will be piecewise linear curves.See [1] for a
general discussion of isotopy of the casem = 1.

2.1 Normalization relative to a Subdivision Tree

In Appendix A, we provide the necessary definitions; these are consistent with the terminology in the related
work [10]. For now, we rely on common terms that are mostly self-explanatory.

¶2. Box Complexes and Subdivision Trees. Our fundamental data structure is asubdivision tree T
rooted in some boxB0. In 2-D,T is the well-known quad-tree andB0 is a rectangle. Each internal node ofT
has four congruent children. The boxes of a subdivision treeare non-degenerate (i.e.,2-dimensional). They
need not be squares, but for the correctness of our algorithm, their aspect ratios must be≤ 2. For any region
R ⊆ R

2, we define asubdivision of R to be a setS = {R1, . . . , Rn} of subregions such thatR = ∪ni=1Ri

and the interiors ofRi’s are pairwise disjoint. If eachRi is a box, we callS a box subdivision. The box
subdivision is abox complex if for any two adjacent boxesB,B′ ∈ S, their intersection∂(B) ∩ ∂(B′) is
side of eitherB or B′. Clearly, the setS of leaf boxes ofT forms a box complex ofB0. But in this paper,
we need to consider a more general subdivision ofB0 that is obtained as the leaf boxes of a finite number
of subdivision trees. Asegmentof a box complexS is the side of a box ofS that does not properly contain
the side of an adjacent box. Therefore every side of a box ofS is a finite union of segments. We say the
box complexS is balanced if every side is either a segment or the union of two segments.A segment is
calledbichromatic w.r.t. a curveS if S has different signs on the endpoints of the segment; otherwise call
it monochromatic.

Although(S, T ) is simple, we need to consider degeneraciesinducedby a subdivisionS: we say(S, T )
is S-regular if S ∪ T does not intersect any corner of a box inS. This can be effectively achieved by an
infinitesimal perturbation ofS andT using a trick in [16]: when we evaluate the sign off at a box corner,
we simply regard a0 sign to be+1.

¶3. Normalization. Consider an isotopy of the arrangement(S, T ) into another arrangement(S′, T ′). Let
us write(S, T )t for the arrangement at timet ∈ [0, 1] during this transformation. Thus(S, T )0 = (S, T )
and(S, T )1 = (S′, T ′). The isotopy is said toS-regular provided, for allt ∈ [0, 1], (S, T )t is S-regular.
We say that(S, T ) is S-normalized if:
(N0) (S, T ) is S-regular.
(N1) Each subdivision boxB of S contains at most one point ofS ∩ T .
(N2) LetX ∈ {S, T}. ThenX intersects each segment ofS at most once

Call (S′, T ′) aS-normalization of (S, T ) if there exists aS-regular isotopy from(S, T ) to (S′, T ′) such
that(S′, T ′) is S-normalized. Our algorithm will construct anS-normalization(S′, T ′) of (S, T ).

¶4. Box Predicates. We will use a variety of box predicates. These predicates will determine the sub-
division process. Typically, we will keep subdividing boxes until some Boolean combination of some box
predicates hold.

Let h : R2 → R be any real function. Recall (Appendix A) that we assume an interval formulation ofh
denoted h : R

2 → R where R denotes the set of closed intervals andR2 can be viewed as the set
of boxes. We introduce a pair of box predicates denotedCh

0 andCh
1 , defined as

Ch
0 (B) ≡ 0 6∈ h(B),

Ch
1 (B) ≡ 0 6∈ ( hx(B))2 + ( hy(B))2.

}
(3)
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Note thatCh
1 as taken from Plantinga-Vegter, where the interval operation I2 is defined as{xy : x, y ∈ I}

and not
{
x2 : x ∈ I

}
. An alternative toCh

1 would be the weakerCh
xy predicate from Lin-Yap [10], but the

corresponding algorithm would would be more involved. So for now, we focus on theCh
1 predicate. We

classify boxes using these predicates:
• Box B is h-excludedif it satisfiesCh

0 (B).
• Box B is h-included if it fails Ch

0 (B) but satisfiesCh
1 (B).

• Box B is resolvedif it satisfies the predicate

(Cf
0 ∨ Cf

1 ) ∧ (Cg
0 ∨ Cg

1 ). (4)

• Box B is excludedif it satisfiesCf
0 ∧Cg

0 . Note that excluded boxes are resolved.
• Box B is acandidate if it is resolved but not excluded.
• Candidate boxes can be further classified into three subtypes: f -candidatesare those that aref -

included butg-excluded,g-candidatesis similarly defined, andfg-candidatesare those that aref -
andg-included.

¶5. Root Boxes. We define aroot box to be any boxB whereB ∩ S ∩ T has exactly one point. We next
consider two predicates that will allow us to detect root boxes. One is theJacobian condition,

JC(B) ≡ 0 /∈ det( JF (B))

where JF (B) is the Jacobian ofF = (f, g) evaluated onB. If JC(B) holds, thenB has at most one
root of f = g = 0, The other is theMoore-Kioustelidis condition MK(B) [13] which can be viewed as a
preconditioned form of the famous Miranda Test [8]; for other existence tests based on interval arithmetic
see [6]. If MK(B) holds, thenB has at least one root off = g = 0. We provide the details for this predicate
in Appendix B; see (9). Therefore, whenJC(B) andMK(B) holds, we know thatB is a root box. The use
of Miranda’s test combined with the Jacobian condition has been used earlier to isolate the common roots
[11]. What is new in this paper is its application to the simple curve arrangement problem.

2.2 Graph Representation

Our algorithm will produce a graphG = (V,E) where verticesv ∈ V are points inR2 and edges are line
segments connecting pairs of vertices. Moreover, each edgeE will be labeled as anS-edge or aT -edge.
The union of these edges will provide a polygonalǫ-approximation of(S, T ). We now give an overview of
the issues and solution.

First, we describe how the vertices ofV are introduced.

(V0) We introduce a vertex in the center of a root boxB.
(V1) We evaluatef, g at the endpoints of segments ofB. If h ∈ {f, g} is bichromatic on a segment of

B, then we must introduce anh-vertex somewhere in the segment. In a balanced subdivision, an
S-normalized pair(S′, T ′) of curves has at most twoh-vertices on an edge of a boxB.

(V2) Introducing vertices on the edges of a boxB is straightforward ifB is anf -candidate or ag-candidate.
WhenB is afg-candidate, we may have an edgee containing both af -vertex and ag-vertex. In the
next section we will show how to find the relative order of these two vertices.

Next we discuss how to introduce the edgesE, which are line segments completely contained in a box.

• If B is a root box, we just connect the vertex at its midpointcen(B) to each of the vertices on the
edges ofB. There will be exactly twof -vertices and twog-vertices.

• If B is af -candidate org-candidate, then the connection is trivial in the regular case. In the balanced
case, the rules from the previous work of Plantinga-Vegter [16] assures us of the correct connection.
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• If B is a fg-candidate, but not a root box, we know that thef -segment andg-segment will not
intersect. Somefg-candidates need global information to resolve them: when there are two edges
where each edge contains both anf - and ag-vertex. Their relative order must be determined globally
from root boxes or from boxes where their relative order is known. We will show how to propagate
this information in Section3.

2.3 Curve Arrangement in Root Boxes

Suppose(S′, T ′) is the normalization of(S, T ) relative to the boxB, i.e.,(S′, T ′) is an isotopic transforma-
tion of (S, T ) which respects the four corners ofB. We now determine the isotopy type of(S′, T ′) in a root
boxB. The possible combinatorial types fall under one of the8 patterns as shown in Figure3. We put them
in three groups (I, II, III) for our analysis.

(Ia)

(IIIa) (IIIb)

(IIa)

(IIIc)

(Ib) (Ic) (IIb)
⊖ ⊖

⊕⊕⊖

⊖

⊕

⊖

f = 0 :

g = 0 :

KEY:

Figure 3: Local intersection patterns of the normalized curves(S′, T ′)

Following the standard Marching Cube technique, we evaluate the sign of the functionsf, g at the four
corners ofB. If f has different signs at the endpoints of an edgee of B, then we must introduce anf -
vertex somewhere in the interior ofe. Our normalization assumptions imply that there are eitherzero or
two f -vertices on the boundary ofB. We treatg similarly. Our aim is to connect the twof -vertices, the
two g-vertices, and a point in the center of the box which represents the common root with line segments
such that the graphG obtained is an isotopic approximation of(S′ ∩ B0, T

′ ∩ B0). There is a subtlety:
the method exploits “local non-isotopy” [16, 10], meaning that we do not guarantee thatS ∩ B is isotopic
to the segment introduced to connect twof -vertices. However, the graphG will be locally isotopic to the
normalized curves(S′, T ′), i.e.,G ∩B is isotopic to(S′ ∩B,T ′ ∩B) in each subdivision boxB.

The issue before us is the relative placements of anf -vertex andg-vertex in case they both occur ine;
e.g., the patterns in group II in Figure3. The main result of this section is the following.

THEOREM1. LetB be a root box that satisfiesMK(B). Then the signs off andg at each of the four corners
ofB determine the combinatorial type of the normalized curvesS′, T ′ in B. Moreover, these combinatorial
types fall under one of the five types in Groups II and III in Figure 3.

The main idea of the proof is that ifMK(B) holds for a boxB then there exists an edgee of B such that
eitherf(e) > cg(e), or g(e) > cf(e), for somec > 0. Given such ane, we can find the relative order of the
f -vertex andg-vertex one. See Appendix C for details of the proof.
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2.4 Geometry of Extended Root Boxes

By analigned boxwe mean one that can be obtained as a node of a subdivision treerooted at the region-
of-interest (ROI)B0; otherwise, it is said to benon-aligned. For instance, in Figure4(a), let the box with
cornersp, q, r, s beB0. Then the figure shows the four children ofB0, which are aligned, as well as the
non-aligned box(1/2)B0 whose corners arep′, q′, r′, s′. Note that(1/2)B0 can be obtained as the union
of aligned boxes. We are interested in non-aligned boxes that can be obtained as a finite union of aligned
boxes. In the simplest case of non-alignment, a boxB is said to behalf-aligned if it is equal to the union of
congruent aligned boxes of sizew(B)/2. Thus ifB is aligned then both(1/2)B and2B are half-aligned.

In most subdivision algorithms, it is enough to work

(a) Half-aligned(1/2)B = (p′q′r′s′)

B′

B
2B

6B

8B

(b) Standard Subdivision of8B

ps

r q

q′

p′s′

r′

Figure 4: (a)B = (pqrs) is aligned, (b)2B is a
root box

with aligned boxes. But to treat root boxes, we see an
essential need to work with non-aligned boxes. The
reason is that if we apply the Moore-Kioustelidis predi-
cate to aligned boxes, non-termination may occur when
a root ofF lies on the boundary of an aligned boxes.
But such roots can be detected in the interior of non-
aligned boxes. This issue is often ignored in the liter-
ature, but it needs to be properly treated in exact algo-
rithms. Some discussions may be found in Stahl [20]
and Kamath [7]; in the univariate case, a solution is
suggested by Rote [18] for splines.

Therefore, given an aligned boxB, we provide a procedure to detect if2B is a root box. We consider
the nested sequence of boxesB ⊂ 2B ⊂ 6B ⊂ 8B as illustrated in figure4(b). Our goal is to detect2B as a
root box, but because of alignment issues, we must also treatthe larger box8B which is called theextended
root box corresponding toB.

We construct the followingstandard subdivisionof 8B, denotedStd(B), into sub-boxes:
• Subdivide6B into 9 boxes, each congruent to2B (indeed,2B is one of these9 boxes).
• The annular region8B \ 6B is partitioned into28 boxes, each congruent toB. These are called the

ring boxes.
See Figure4(b) for illustration. Note thatStd(B) is balanced. None of the subdivision boxes are aligned,
but the ring boxes are half-aligned.

¶6. Conforming Subdivisions. Let Π be a subdivision of a regionR. A box B′ ∈ Π is aboundary box
of the subdivision if∂B′ intersects∂R. In the following definitions, we fix a regionR0 ⊆ B0 and fix a box
B such that8B ⊆ R0. Also letk ≥ 1 be an integer.

A subdivisionΠ0 for R0 \ 8B is calledexternally k-conforming for B if it has three properties:Π0 is
balanced, the unionΠ0 ∪ {8B} is a box complex, and for each boxB′ ∈ Π0, if B′ is adjacent to8B then
w(B′) = w(B)/2k. A subdivisionΠ1 of 8B is calledinternally k-conforming for B if Π1 is balanced,
and for every boundary boxB′ of Π1, w(B′) = w(B)/2k−1. Note for instance that ifΠ1 is the standard
subdivision of8B, then it is internally1-conforming forB. Below we show how to achieve subdivisions
of 8B that is internallyk-conforming forB for k ≥ 2. The following is immediate:If Π0 is externally
k-conforming forB, andΠ1 is internally k-conforming forB, then their unionΠ0 ∪ Π1 is a balanced
subdivision ofR0. Note that ifk > 1 then getting a balanced subdivision ofΠ0 ∪Π1 may cause the edges
of a root box2B to split into two segments (but not more); see Figure5. This can be handled by a case
analysis similar to Theorem1 based on Lemma7. An alternative approach is to replace8B by 10B which
would have an extra ring of boxes congruent toB. In this case, we can handle anyk > 1 by subdividing
this outermost ring, but without affecting the standard subdivision of 8B. This gives a simple and effective
solution.
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¶7. Strong Root Isolation. Suppose2B is a root box. We say2B is strongly isolated if the following
conditions hold
• (P1) The following four predicates hold:Cf

1 (8B), Cg
1 (8B), JC(6B),MK(2B).

• (P2)F = (f, g) has no roots in the annulus8B \ 2B.
The predicates in (P1) ensures that2B is a root box. It is not hard to see that if2B contains a root ofF and
is sufficiently small, then properties (P1) and (P2) will hold. The reason forMK(2B) (not justMK(B) is to
ensure that we test the Moore-Kioustelidis predicate on overlapping boxes, so that roots on the boundary of
an aligned boxB will appear in the interior of2B. The reason forJC(6B) instead ofJC(2B) is that there
can be two boxes2B and2B′ such that both of them satisfy MK-test and they overlap. The testJC(6B)
ensures that if there are two such boxes then they correspondto the same root, and so discard one of them.

¶8. Root Refinement: Let B be an aligned box from the subdivision queue such that2B is a root box.
We give a subroutine to refine such a root box2B. It it important that in our refinement method all the sub-
boxes remain dyadic boxes, assuming the input boxes are dyadic. The idea is to cover2B with a covering
of aligned boxes, which must be of sizew(B)/2, and check whether MK-test holds for the doubling of any
of these 16 boxes. If not, then subdivide these boxes and continue recursively with thefg-candidates. See
Appendix A for more details.

3 Algorithm for Curve Arrangement

Our overall algorithm begins with the (trivial) subdivision treeT rooted at the ROIB0 but with no other
nodes. The algorithm amounts to repeatedly expansion of thecandidate leafs inT until a variety of global
properties hold. We given an overview of the algorithm in a sequence of 9stages; see Appendix C.

¶9. Stage I: Resolution Subdivision The high level description of this stage is easy: keep expanding
any leafB of T that is not resolved (see (4)). Recall that resolved boxes are either excluded or candidates.
As each box is resolved, it is placed in one of the following four queues:Q0 for excluded boxes,Qf for
f -candidates,Qg for g-candidates, andQfg for fg-candidates Besides these four global queues, we also use
these additional queues:QJC, QMK, QRoot corresponding roughly to boxes that satisfies theJC andMK
predicates, or are found to be root boxes.The boxes in all the queues are always aligned boxes.

¶10. Stage II: Jacobian Stage. Remove a boxB from Qfg and do the following: IfJC(6B) holds then
putB into QJC, otherwise, subdivideB and distribute the children intoQ0, Qf , Qg, Qfg.

¶11. Stage III: MK Stage. For every boxB ∈ QJC we subdivide it until either we find a sub-boxB′

such thatMK(2B′) holds, or we have identified all sub-boxes as one ofQ0, Qf , Qg, Qfg.

¶12. Stage IV: Strong Root Isolation Stage We assume thatQMK is a priority queue, where boxes are
popped starting from the largest size. For each such boxB check whether8B is disjoint from8B′, for
all its neighborsB′; if not then replaceB with RefineRoot(B). We now have obtained a queueQRoot

containing root boxes for all the roots in ROI. The next step is to externally conformStd(B) with the rest
of the subdivision treeT .

¶13. Stage V: PruningT In this stage we will turn OFF some leaf boxes inOn(T ) depending on how
they interact with the extended root boxes8B. The aim is to “blackout” the8B regions from ROI, and
ensure that the boxes abutting it are all aligned boxes. LetB′ be the great-grandparent ofB in T . Then we
get the list of leaf boxes that cover the interior ofB′ and another list of boxes that are its neighbors. For
each boxBtmp in these lists, we turn it OFF if it is contained in8B; if it overlaps8B then we subdivided it
and proceed with its children. LetT ′ be the resulting subdivision tree.
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¶14. Stage VI: Balancing and Externally Conforming Recall the standard balancing procedure for a
subdivisionT of a regionB0 from the appendix. We will construct a balanced and externally conformal
subdivision ofB0 \ ∪i8Bi, where8Bi’s are pairwise disjoint extended root boxes. For each box8Bi, we
add a conceptual box toT ′, with depth either one more than its smallest neighbor, or ifall the neighbors of
8B are larger thanw(B) then one more than the depth ofB in T . Call the standard balancing procedure on
the modifiedT ′. By Lemma3, we will get the desired subdivision; after balancing the boxes bordering8B
will all be of the same size, namelyw(B)/2k , for somek ≥ 1.

¶15. Stage VII: Internally Conforming Extended Root Boxes Consider any extended root box8B and
its standard subdivisionStd(B). Given ak > 1 from the previous stage, we want to balance the interior
and the exterior ofStd(B). Note that sincek > 1 the boxes on the exterior are always smaller than all the
boxes inStd(B). To get a balanced conformal subdivision ofStd(B), we initialize a priority queueQ with
all the boxes on the exterior of8B (all of them are of the same size) and the 37 boxes inStd(B). Then we
initiate the standard balancing procedure onQ. See Figure5(c) for an illustration of this procedure; the box
B′ has widthw(B)/8. We do this balancing step for each of the extended root boxes8B. The union of
these subdivisions with the balanced subdivision ofB0 \ ∪i8Bi gives us a balanced subdivision ofB0, our
ROI.

¶16. Stage VIII: PV-Construction For each box inQf , connect its twof -vertices with a line segment; do
the same for boxes inQg. For each box inQRoot place a vertex at its center and connect the twof -vertices
and the twog-vertices with this vertex according to the cases shown in Groups II and III. of Figure3. At the
end of this stage, the only queue that remains unprocessed isQfg. The next stage resolves these boxes.

¶17. Stage IX: Resolving Ambiguousfg-candidates We call anfg-candidate boxambiguous if they
have the same set of bichromatic segments; otherwise, call the boxunambiguous. By definition, boxes
wheref andg do not share a bichromatic segment are unambiguous. However, some ambiguous boxes
can be made unambiguous locally. From Theorem1 we know that ambiguous root boxes can be made
unambiguous. Also, boxes where the two shared bichromatic segments are on adjacent edges can be made
unambiguous by repeated subdivisions of the edges until we reach a segment in one of the edges that is
bichromatic for one curve and monochromatic for the other; this will happen along one of the edges since
bothCf

1 andCg
1 hold. A similar approach works to resolve ambiguous boxes that share an edge withB0 and

a common bichromatic segment is on this edge, because by assumption boundary ofB0 does not contain a
root off, g. From these unambiguous boxes, we propagate the ordering ofthef -vertex andg-vertex on the
shared edge to their ambiguous neighbors.

¶18. Correctness of Algorithm We must prove that our graphG = (V,E) is isotopic to the arrangement
(S, T ) in boxB0. Suppose there arek roots,|S ∩ T | = k. Our correctness requires that none of these roots
lie in ∂B0. Our algorithm produces the following data: we have “well isolated” the roots in this sense: we
have foundk aligned boxes,B1, . . . , Bk such that2Bi is a root box,8Bi ⊆ B0, and the interiors of the
8Bi’s are pairwise disjoint. Next, we have constructed subdivisions,

S0,S1, . . . ,Sk

whereSi is a subdivision of8Bi (i = 1, . . . , k) andS0 is a subdivision ofB0 \ ∪
k
i=18Bi. Moreover, the

union of all these subdivisions, denotedS∗, constitutes a balanced box complex ofB0.

THEOREM 2. The PSLGG computed by the algorithm is aS∗-normalization of the curves(S, T ).

We sketch the arguments here: let(S′, T ′) be aS∗-normalization of(S, T ). The graphG will be
obtained as the union ofGB for all B ∈ S∗, where eachGB is a PSLG contained in boxB. We know from
Theorem 1 how to construct a PSLGGB ⊆ B that is isotopic to(S′, T ′) in each root boxB. We know from
Plantinga-Vegter how to construct PSLGGS

B that are isotopic toS′ in each non-root boxB. Similarly we
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Figure 5: An internally conformal subdivision ofStd(B)

haveGT
B . But we need to form their ”union”, which is the PSLGGB that is isotopic to(S′, T ′) in B. For

this purpose, we need to know the relative ordering of thef -vertex andg-vertex on each segment ofB that
is bichromatic for both curves. This information is resolved by Stage IX of our construction.

4 Final Remarks

We have presented a complete numerical algorithm for the isotopic arrangement of two simple curves.
The underlying paradigm is Domain Subdivision, coupled with box predicates and effective forms of the
Miranda Test. Moreover, we crucially exploit the previous isotopic approximation algorithms of Plantinga-
Vegter [16] for a single curve.

The algorithm is very implementable: despite the many stages, each stage involves iteration using well-
known data structures. A full implementation and comparisons with other methods is planned; we have
currently implemented the root isolation part.

The extension of this work to the simple arrangement of multiple curves is of great interest. Many of
the techniques we have developed for 2 curves will obviouslyextend. One possible way to use our work
for multiple curves is as follows: first compute the root boxes 2Bi of all the pairwise intersections, and
make them “well isolated” in the sense that8Bi boxes are pairwise disjoint, as before. Then we compute a
balanced, conforming subdivisionS0 of complement of the union of these8B boxes. Moreover, we need to
resolve ambiguities, i.e., relative ordering of curves on acommon segment. Some of this can be resolved by
propagation, but there will be need for recursive subdivision in general. In the full paper, we will provide
such a description.

A general open problem is to prove polynomial complexity bounds for such subdivision algorithms.
As a first step, we would like to prove that the root isolation part is polynomial-time. This would be a
generalization of our recent work on continuous amortization for real and complex roots [19].
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APPENDIX A: Basic Concepts

We fix the terminology for well-known concepts in boxes, interval arithmetic and subdivision trees.

¶19. Boxes. Let R denote the set of closed intervals. We may identifyR with degenerate intervals
[a, a] ∈ R. Also R

d is thed-fold Cartesian product of R. Elements of R
d are calledd-boxes. The

width of B is (w(I1), . . . , w(Id)) where the width of an intervalI = [a, b] isw(I) = b−a. the same (resp.,
differ by at most1). If B,B′ are two boxes inT , we say they arek-neighbors if B ∩ B′ has dimension
k. Sok ∈ {−1, 0, 1, 2}, when the empty set has dimension−1. Note that ifB andB′ are2-neighbors, it
means that one is contained in the other. We sayB andB′ areadjacent if they are1-neighbors. Each box
has4 sides(sometimes callededges) and4 corners. The boundary of a boxB is denoted∂B.

¶20. Box Functions. Interval arithmetic [12] is central to our computational toolkit. Iff : Rd → R

is a real function, then we call a function of the formf : R
d → R an inclusion function for f if

for all B ∈ R
d, f(B) containsf(B) = {f(p) : p ∈ B}. Call f a box function for f if it is an

inclusion function forf and for allBi : i ∈ N, if Bi converges monotonically to a pointp ∈ R then f(Bi)
converges monotonically tof(p). Note that box functions are easy to construct for polynomials and common
real functions.

¶21. Subdivision Trees. Our fundamental data structure is a quad-tree orsubdivision treeT : the nodes of
T are boxes in R

d, and each internal nodeB has2d children which are congruent sub-boxes, with pairwise
disjoint interiors, and whose union isB. In order to useT to represent regions of complex geometry, we
assume that each leaf ofT is (arbitrarily) either turned ON or turned OFF. The union ofall the ON-leaves
is denotedR(T ), called theregion-of-interest (ROI). LetOn(T ) denote the set of ON-leaves ofT . We
call On(T ) a subdivision of R(T ). In general, asubdivision of a setX ⊆ R

d is a collectionC of sets
in R

d such that∪C = X and the relative interior of the sets inC are pairwise disjoint. One of the basic
operations on subdivision trees is to take an ON-leafB of T and to “expand it”, i.e., to splitB into 2d

congruent sub-boxes and attach them as children ofB. ThusB becomes an internal node and its children
become leaves of the expandedT . By definition, the children ofB remain ON-leaves. Thus the ROI is not
affected by expansion.

A segmentof T is a line segment of the formB ∩ B′ whereB,B′ are adjacent boxes inT . Note that
a segment is always an edge of some box, but some box edges are not segments. In general, an edge is
subdivided into a finite number of segments.

The boxes of a subdivision tree are assumed to be non-degenerate, i.e., they ared-dimensional. Of
course, we are mostly interested in the cased = 2. In our algorithms, certain ON-leaves are called “can-
didates box”. Unless otherwise noted, we could assume everyON-leaf is a candidate box. We then sayT
is2 uniform (resp.,balanced) if, for any two candidate boxes, if they are adjacent then their depths are the
same (resp., differ by at most one).

Finding neighbors: Given a subdivision treeT in the plane, a crucial sub-procedure required by the
algorithm is the ability to get the neighbors of a box inT . One way to achieve this is to associate two
pointers with every edge of a leaf box ofT , namely the pointers that point to the extreme neighbors along
the edge (there may be only one such neighbor, in which the twopointers point to the same box). Thus we
associate 8 pointers with every leaf box. Then to find all the neighbors of a boxB in T , we do the following:
starting fromB traverse down the leftmost path inT until we reach a leaf boxB′; nowB′ must be the box
that has the same north-east corner asB; moreover, the north and the east neighbors ofB′ must also be
the neighbors ofB; starting from one of these neighbors ofB and using their pointers we can list all the
neighbors ofB. We will often say the “eight neighbors” of a box to refer to the boxes pointed by these eight
pointers, where we count the boxes with multiplicity.

2 Note that in our previous work ([16, 10]), uniform subdivisions were called “regular subdivisions”. The current usage of
regular/uniform seems better.
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Standard Balancing Procedure:

LetQtmp be a priority queue of all the leaves inT ; the deeper the level the higher the priority.
While Qtmp is non-empty do

B ← Qtmp.pop().
For each neighborBtmp of B do

If Btmp is not balanced w.r.t.B subdivideBtmp and add its children toQtmp.

There can be at most two neighbors ofB that need to be subdivided, becauseB shares two edges with its
siblings and so the boxes neighboringB along those edges are balanced w.r.t.B; the unbalanced boxes
can occur on the remaining two edges. Moreover, for any neighborBtmp that is subdivided only one of its
children neighborsB. Balancing also has the following nice property, which intuitively says that the boxes
produced in the ensuing subdivision cannot all be very small

LEMMA 3. Suppose we are balancing a boxB, and letB′ be its violating larger neighbor. Lete be the edge
of B′ shared withB ande′ be the opposite edge. Then the subdivision ofB′ caused byB while balancing
will split the edgee′ only once.

In the subdivision tree ofB′, the two children of that sharee′ are in a different subdivision tree compared
to the child ofB′ that is adjacent toB and sharese; see Figure6. Balancing produces a subdivision tree of
B′ that has only one path, with leaves hanging from it, that endsin a box whose size is double the size ofB.
The number of leaves in this tree are3 · (logw(B′)− logw(B)− 1).

B

e e
′

B
′

Figure 6: A subdivision caused balancing
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APPENDIX B: The Moore-Kioustelidis Test for Roots

Although our paper is focused on arrangement of curves, we shall temporarily consider a more general
setting of a continuous functionF : Rn → R

n in n-space. Let the coordinate functions ofF be denoted
(f1, . . . , fn). If B =

∏n
i=1 Ii ⊆ R

n is a box, we writeB+
i andB−

i for the pair of faces ofB whose
outward normal are (respectively) the positive and negative ith semi-axis. Thus, ifIi = [ai, bi] thenB−

i =
I1 × · · · × Ii−1 × ai × Ii+1 × · · · × In, andB+

i is similar, but withbi in place ofai. The center of a boxB,
cen(B), is defined as the vector((a1 + b1)/2, , . . . , (an + bn)/2). For a positive real numberλ, define the
scaled box

λB := {λ(x− cen(B) + cen(B))|x ∈ B}.

Miranda’s theorem [8] gives us a sufficient condition for the existence of roots ofF in the interior of
boxB:

PROPOSITION4 (Simplified Miranda).LetF = (f1, . . . , fn) : R
n → R

n be a continuous function, andB
a box. A sufficient condition thatF has a root in the interior ofB is that

fi(B
+
i ) > 0, fi(B

−
i ) < 0 (5)

holds for eachi = 1, . . . , n.

Remark: we have stated Miranda’s theorem in the simplest possible form. For instance, our simple form
could be generalized by replacing (5) with the following condition:fi takes a definite signs+i ∈ {−1,+1}
onB+

i , takes a definite signs−i onB−
i , ands+i s

−
i = −1. But the simplified form implies this more general

form since we can replace the systemF = (f1, . . . , fn) by

F̃ = (s+1 f1, . . . , s
+
n fn),

since the systemsF andF̃ have exactly the same set of roots. The usual statement of Miranda’s theorem
is even general, where (5) is replaced by:there exists a permutationπ of the indices{1, . . . , n} with this
property: for eachi, fi has definite signss+i ands−i onB+

π(i) andB−
π(i) (respectively), wheres+i s

−
i = −1.

We shall see that there is no need to find such a permutation, ifwe transformF appropriately. Moore and
Kioustelidis [13] give the following effective form of the Miranda test:

PROPOSITION 5 (Effective Miranda’s Test).Let F := (f1, . . . , fn) : Rn → R
n be a continuous function

with appropriate box functions. Writefi,j := ∂fi/∂xj . For any boxB with widthw(B) = (w1, . . . , wn), if
for all i = 1, . . . , n

fi(cen(B
+
i )) · fi(cen(B

−
i )) < 0, (6)

|fi(cen(B
+
i ))| >

n∑

j=1,j 6=i

mag( fi,j(B
+
i ))wj , and (7)

|fi(cen(B
−
i ))| >

n∑

j=1,j 6=i

mag( fi,j(B
−
i ))wj , (8)

thenF has a zero in the interior ofB.

Proof.Using the mean-value interval extension off , we know that

fi(B
+
i ) ⊆ fi(cen(B

+
i )) + ∇fi(B

+
i ) · (B

+
i − cen(B+

i ));
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note the dot-product on the RHS is the inner-product of interval vectors. But

∇fi(B
+
i ) · (B

+
i − cen(B+

i )) =
n∑

j=1

f ′
i,j(B

+
i )([xj, xj]− (xj + xj)/2)

=

n∑

j=1,j 6=i

fi,j(B
+
i )([xj, xj]− (xj + xj)/2) (sincexi = xi)

=

n∑

j=1,j 6=i

fi,j(B
+
i )

(xj − xj)

2
[−1, 1]

=
n∑

j=1,j 6=i

mag( fi,j(B
+
i ))

(xj − xj)

2
[−1, 1]

=




n∑

j=1,j 6=i

mag( fi,j(B
+
i ))

(xj − xj)

2


 [−1, 1]

=




n∑

j=1,j 6=i

mag( fi,j(B
+
i ))(wj/2)


 [−1, 1].

Thus

w( ∇fi(B
+
i ) · (B

+
i − cen(B+

i ))) =
n∑

j=1,j 6=i

mag( fi,j(B
+
i ))wj .

Therefore, (7) implies that0 6∈ fi(B
+
i ). Similarly, (8) implies that0 6∈ fi(B

−
i ). By (6), fi takes opposite

signs on the facesB+
i andB−

i , and so Miranda’s theorem impliesB contains a root in its interior.Q.E.D.

Miranda’s test is not a “complete” method for detecting roots in the following sense: there are systems
F = 0 whose roots cannot be detected by Miranda’s test, even in thegeneral form that allows permutation
π. For instance, letF = (f, g) wheref = x+ y andg = x− y. Then no rectangleB ⊆ R

2 containing the
root (0, 0) will pass the generalized Miranda test.

The solution is a “preconditioning” trick. Consider a transformation ofF to G := Y F , whereY is a
suitable non-singular matrix in the boxB. Note thatG andF have the same sets of roots. To perform the
Miranda Test on a boxB, we chooseY to be the inverse of any non-singular JacobianJF (m) wherem ∈ B.
More precisely,

MK-test for a systemF on a boxB is the effective Miranda-test applied to the
systemJF (m)−1F , wherem := cen(B), and the Jacobian is non-singular.

(9)

This idea was first mentioned by Kioustelidis and its completeness was shown by Moore-Kioustelidis
[13]. We reproduce their result, but to do that we need some notation and the Mean Value Theorem in higher
dimensions.

Givenx, y ∈ R, the notationx±y denotes a number of the formx+θy, whereθ is such that0 ≤ |θ| ≤ 1;
thus “±” hides theθ implicit in the definition. We further extend this notation to matrices in the following
sense: for two matricesA,B, the matrixA±B := [aij±bij]; also, for a scalarλ, the matrixA±λ := [aij±λ].
We now recall the Mean Value Theorem forF : Rn → R

n: Given two pointsx,y ∈ R
n, there exists a

matrixK with non-negative entries such that

F (x)− F (y) = (JF (y) ±K‖x− y‖) · (x− y). (10)
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To see this claim, we apply the mean value theorem twice in each of the components ofF to obtain

fi(x)− fi(y) = (fi,1(y) ±Ki,1‖x− y‖, · · · , fi,n(y) ±Ki,n‖x− y‖) · (x− y)

= ∇fi(y) · (x− y)± (Ki,1, . . . ,Ki,n) · (x− y)‖x − y‖

for i = 1, . . . , n.

LEMMA 6. Let F be a zero-dimensional system of polynomials. For all sufficiently smallopenboxesB
containing a single rootα of F the modified systemG := JF (m(X))−1F , if well defined, satisfies the
conditions in Miranda’s theorem, namely fori = 1, . . . , n, gi(B

+
i ) ≥ 0 andgi(B

−
i ) ≤ 0.

Proof.Letx be a point on the boundary of the boxB. From the definition ofG and from the mean value
theorem (10) we know that

G(x) = JF (m)−1(F (α) + (JF (m)±K‖x− α‖) · (x− α))

= JF (m)−1(JF (m) +K‖x− α‖) · (x− α))

= (1± ‖JF (m)−1K‖∞‖x− α‖) · (x− α).

Theith component in the vector

(1± ‖JF (m)−1K‖∞‖x− α‖) · (x− α) (11)

is the polynomialgi(B), so we obtain

|gi(x)− (xi − αi)| ≤ ‖x− α‖‖JF (m)−1K‖∞

n∑

j=1

|xj − αj |. (12)

The term on the RHS

‖x− α‖‖JF (m)−1K‖∞

n∑

j=1

|xj − αj| ≤ ‖ŵ(B)‖21 ‖JF (m)−1K‖∞,

because‖x − α‖ ≤ ‖ŵ(B)‖2 ≤ ‖ŵ(B)‖1 and
∑n

j=1 |xj − αj | ≤ ‖ŵ(B)‖1. Suppose the boxB is such
that

2‖ŵ(B)‖21 ‖JF (m)−1K‖∞ < min
i=1,...,n

‖α−B±
i ‖

then we claim that for alli = 1, . . . , n, gi(B
+
i ) ≥ 0 andgi(B

−
i ) ≤ 0. This is because for allx ∈ B+

i ,
|xi − αi| = |xi − αi| = ‖α − B+

i ‖, since the projection ofα onB−
i is (α1, . . . , αi−1, xi, αi+1, . . . , αn);

similar argument applies forx ∈ B−
i . Thus the term on the RHS in (12) is smaller than|xi − αi|/2, which

implies thatgi(B
+
i ) ≥ 0 (we can similarly show thatgi(B

−
i ) ≤ 0), and therefore the systemG(x) has the

same sign pattern asx− α on the boundary of the boxB. Q.E.D.

This “orthogonalization” around the zero by the pre-conditioning step helps us avoid finding the permu-
tation matrix in the general Miranda’s test. Note, however,that if the root is on the boundary of the box then
the above proof breaks down.
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Appendix C: Proofs and Details
¶22. The RefineRoot Procedure:

RefineRoot(B)
⊳ Assume thatJC(6B) holds. Thus no neighbor of2B can be an MK-box.

Input: an aligned boxB with 2B as the root box.
Output: an aligned boxB∗ with 2B∗ as the root box.

RemoveB from QMK.
Subdivide the neighbors ofB until the size of the neighborhood ofB isw(B)/2.
Add the children of the neighbors to the appropriate queuesQ0, Qf , Qg, Qfg.
Initialize Qtmp with the neighbors ofB and its four children.
While Qtmp is non-empty do

Btmp ← Qtmp.pop().
If MK(2Btmp) holds then

EmptyQtmp into Qfg. ReturnBtmp and add it toQMK .
Else SubdivideBtmp and add its children toQ0, Qf , Qg, andQtmp.

Correctness: The subdivision ofB and its neighborhood of sizew(B)/2 covers2B, the root box corre-
sponding toB. LetB′ be any of these 16 boxes. SinceJC(6B) holds, ifMK(2B′) for a boxB′ then then
the root in2B′ is exactly the root in2B.

¶23. Details of Stage III:

While QJC is non-empty
B ← QJC.pop().
Qtmp ← {B}
While Qtmp is non-empty do

Btmp ← Qtmp.pop().
If MK(2Btmp) holds.

PushBtmp into QMK. EmptyQtmp into Qfg.
Else SplitBtmp and distribute the children intoQ0, Qf , Qg, Qtmp.

For each boxB ∈ QMK do
If there is another boxB′ ∈ QMK such that2B ∩ 2B′ 6= ∅ then removeB′ from QMK.

Note that we only search for a root infg-candidate boxes. This is justified by Lemma6 and the observation
that eventually the root will be contained in the interior ofthe doubling of anfg-candidate box. At the
end,QJC is empty andQMK contains a set of root boxes. Moreover, the last loop ensuresno two boxes
B,B′ ∈ QMK correspond to the same root, i.e.,2B ∩ 2B′ = ∅. The boxes inQfg do not contain any root.

¶24. Details of Stage V:
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For each boxB ∈ QRoot do
LetB′ be the great-grandparent ofB.
Initialize Qtmp to all the leaves inT that partition the interior ofB′.
While Qtmp is non-empty do

Btmp ← Qtmp.pop().
If Btmp ⊂ 8B then turn it OFF.
If the interior ofBtmp intersects the interior of8B then subdivide it and add its children toQtmp.

Initialize Qtmp as the set of all leaves inT that are the neighbors ofB′.
While Qtmp is non-empty do

Btmp ← Qtmp.pop().
If Btmp ⊂ 8B then turn it OFF and add all its neighbors toQtmp.
If the interior ofBtmp intersects the interior of8B then subdivide it and add its children toQtmp.

⊳ NOTE: Whenever we subdivide a boxBtmp we also do the following: remove it from one of the
⊳ queuesQf , Qg, or Qfg and add its children to the appropriate queue.

Since8B is half-aligned, there is a subdivision of every leaf boxBtmp in T such that every box in this
subdivision is either contained in8B or does not intersect its interior. Thus the procedure described above
will terminate. LetT ′ be the refinement ofT with blacked-out regions corresponding to extended root
boxes.

¶25. Details of Stage VI:

For eachB ∈ QRoot do
Letm be the largest depth amongst all the neighborsBtmp of 8B in T ′.
Let ℓ be the depth ofB in the subdivision treeT . ⊳ Thusw(Btmp) = w(B)2ℓ−m

If m > ℓ thenk ← m; elsek ← ℓ+ 1.
Add aconceptual leaf boxto T ′ that represents8B. Set the depth of this box tok + 1 and
initialize its 8 pointers to the 8 extreme neighbors of8B.

Let T ′′ be the resulting subdivision tree.
LetQ be the priority queue of all the leaves inT ′′; the deeper the level the higher the priority.
Initiate the standard balancing procedure onQ with one difference: whenever we pop a conceptual
box8B we check the depth of its neighbors, and if necessary reset the depth of8B to one more than
the depth of its deepest neighbor.

⊳ NOTE: Whenever we subdivide a boxBtmp we also do the following: remove it from one of the
⊳ queuesQf , Qg, or Qfg and add its children to the appropriate queue.

We claim that at the end of this procedure the treeT ′ is balanced, and all the neighbors of extended root
boxes8Bi in T ′ are of the same size, namelyw(Bi)/2

k, for somek ≥ 1. The balancing ofB0 \ ∪i(8Bi)
follows from the proof of correctness for standard balancing procedure. The conformity follows because a
conceptual box is always deeper inT ′′ than its neighbors, so it will never be subdivided, and its neighbors
will always be twice its size. The modification to the standard balancing is required, because a smallest
neighborBtmp of 8B in T ′ could have been subdivided by a box that is adjacent toBtmp along the edge
that is not abutting8B or any of the neighbors of8B. However, this can only happen once because of the
balancing property, Lemma3.

¶26. Details of Stage IX:
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Initialize Qtmp with all the root boxes.
For each boxB ∈ Qfg do

If there is pair off -vertex andg-vertex that do not share an edge ofB then
Connect thef -vertices andg-vertices according to one of the patterns in Group III from Figure3.
AddB to Qtmp and remove it fromQfg.

⊳ In the remaining boxes, the two pairs of(f, g)-vertices are on two edges.
If the two pairs of(f, g)-vertices are on adjacent edgese, e′ then ⊳ Call such a box aTransition Box

⊳ These boxes definitely appear in a covering of nestedfg-loops; they can appear otherwise also.
Subdivide bothe ande′ until we reach a segmente′′ in one of the edges such that
only one of the curvesf or g changes sign one′′; saye′′ ⊂ e andf changes sign on it.
Check which side ofe \ e′′ doesg change sign; order thef -vertex andg-vertex
alonge accordingly; connect thef -vertices andg-vertices respecting this order;
addB to Qtmp and remove it fromQfg.

If B shares an edgee with B0 then
Subdividee until we reach a segmente′′ ⊂ e such that only one of the curvesf , g change
sign one′′. Check which side ofe \ e′′ contains the other curve. Order the vertices accordingly
and connect thef -vertices andg-vertices. AddB to Qtmp and remove it fromQfg.

⊳ The boxes inQtmp are all unambiguous boxes.
While Qtmp is non-empty do

B ← Qtmp.pop()
For each ambiguousfg-neighborB′ of B do

Order thef -vertices andg-vertices on the shared edge betweenB′ andB according
to their ordering inB; connect the pair off -vertices andg-vertices inB′ respecting this ordering.
AddB′ toQtmp and remove it fromQfg. ⊳ Thus all thefg-neighbors are unambiguous.

In practice, we should first resolve boxes that can be either traced to root boxes or to boxes in Group III of
Figure3. Then we should resolve transition boxes and propagate their ordering. Finally, in the remaining
ambiguous boxes, we should resolve the boundary boxes and propagate their ordering. At the end of this
stageQfg will be empty, since any ambiguous box can be traced to one of the four boxes: root box, Group
III box, transition box, or a boundary box.

Proof of Theorem 1: We will need the following lemma for the proof.

LEMMA 7. If a boxB satisfiesMK(B) and anf -vertex and ag-vertex share an edgee of B then we can
determine the relative order of the normalized curves(S′, T ′) alonge.

Proof.
Since theMK(B) test passed alonge, we know that there are real numbersa, b such that eithera·f(e) >

b · g(e) or a · f(e) < b · g(e). To see this, recall thatMK(B) test replaces the systemF = (f, g)T by the
systemF̂ = J · F , whereJ is the inverse of the Jacobian ofF evaluated atcen(B), and performs the

Miranda test, Proposition5, for F̂ . If J =

[
a −b
c d

]
andF̂ = (f̂ , ĝ)T thenf̂ = a · f − b · g. The Miranda

test onF̂ asserts that there is an edgee for which eitherf̂(e) > 0 or f̂(e) < 0. The first inequality is
equivalent toa · f(e) > b · g(e), and the second inequality is equivalent toa · f(e) < b · g(e). In the rest of
the proof we assume thata · f(e) > b · g(e); the analysis in the other case is same.

Neithera nor b can vanish, since that would imply that eitherf or g has a constant sign one, which is
a contradiction as bothf andg have a vertex one. Let e(t) be a parametrization ofe with endpointse(0)
ande(1). Let Tf ⊆ (0, 1) be such thatf(e(t)) = 0 for all t ∈ Tf , and lettf be the smallest element in
Tf ; similarly defineTg andtg. Since bothf andg change sign acrosse, we know that the cardinality of
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Tf andTg is odd. Any normalization(S′, T ′) of (S, T ) relative toB will remove all but one element from
bothTf andTg, while maintaining the relative order of the remaining element. That order is the same as the
order oftf andtg alonge. Thus we want to determine whethertf < tg or tg < tf . Supposeab > 0. Then
f(e) > c · g(e) for somec > 0. There are two cases to consider:
• f(e(0)) > 0: thenf(e(tg)) > cg(e(tg)) = 0, which implies thatf is positive ate([0, tg ]) and so

tf > tg;
• f(e(0)) < 0: this similarly impliestf < tg.

If ab < 0 theng(e) > c · f(e), for somec > 0, and the claim follows from similar arguments. Q.E.D.

¶27. Group I Patterns. Notice that using the sign off, g at the corners ofB, we can never detect these
patterns. For instance, for Figure3(Ia), we will not detect the presence of the curveS′ becausef has the
same sign on every corner of the box. So we first show that they cannot arise.

LEMMA 8. Suppose boxB satisfiesMK(B). Then the patterns in Group I of Figure3 cannot occur.

Proof.Let e be an edge ofB and supposeS′∪T ′ intersecte in three consecutive pointse(t1), e(t2), e(t3)
(t1 < t2 < t3) wheree(t) is a parametrization ofe. The “pattern” of these intersections is the triple
(p1, p2, p3) wherepi ∈ {f, g}. For instance, ife is the top edge of the box in Figure3(Ia), then the pattern
is either(f, g, f) or (g, f, g). Our claim is equivalent to showing that the intersection pattern of any three
consecutive intersections ofS′ ∪ T ′ on any edgee of B cannot be(f, g, f) or (g, f, g).

From Lemma7 we know thatf(e) > c · g(e), for somec ∈ R 6=0; let us assumec > 0. Consider the
(f, g, f) pattern (the other pattern is similar). Consider the sign ofg at the pointe(t1 − ε) ande(t3 + ε) for
sufficiently smallε > 0. Theng must have different signs at these points — this is because aswe move from
e(t1 − ε) to e(t3 + ε), the functiong changes sign exactly once, ate(t2). Likewise, we see thatf must have
the same sign ate(t1−ε) ande(t3−ε), because as we move frome(t1−ε) to e(t3+ε), the functionf changes
sign exactly twice, ate(t1) ande(t3). Thusf(e(t1 − ε)) > g(e(t1 − ε)) iff f(e(t1 − ε)) < g(e(t1 − ε)).
This is a contradiction. Q.E.D.

¶28. Group II Patterns. Supposef, g have sign agreement onB. We can determine from these signs the
two edges that containsf - andg-vertices. Supposee is such an edge. So there is anf -vertex and ag-vertex
on e, and from Lemma7 we know their relative ordering.

¶29. Group III Patterns. Let us say thatf, g havesign agreementonB if there is a signs ∈ {+1,−1}
such thatsign(f(c)g(c)) = s for each cornerc of B. Observe that Group II patterns arise precisely
becausef, g have sign agreement; likewise Group III patterns arise precisely becausef, g do not have sign
agreement. We claim that the patterns in Group III can be determined by signs off andg at the corners of
B. First of all, by evaluating the signs off andg on the corners ofB, we can determine whether or notf, g
have sign agreement ofB. If not then we can determine whether the pattern is (IIIa), (IIIb) or (IIIc). If (IIIa),
the pattern is completely determined. If (IIIb), there is anedgee containing both anf - and ag-vertex, and
we need to know their relative order one. This is determined by the positions of the otherf -vertex and other
g-vertex: this is because the order of the fourf - andg-vertices on the boundary ofB must be alternating:
f, g, f, g. A similar remark applies in case (IIIc).

To summarize the proof of Theorem1: Lemma8 implies that Group I patterns cannot occur; for Group
II patterns we can determine the relative order from Lemma7 and for Group III patterns the ordering is
immediate.

21


	Introduction
	Our Approach: Isotopic Curves Arrangement
	Normalization relative to a Subdivision Tree
	Graph Representation
	Curve Arrangement in Root Boxes
	Geometry of Extended Root Boxes

	Algorithm for Curve Arrangement
	Final Remarks

