Optimal Greedy Method for Generalized Activity Selection

- 3 Chee Yap ☑ 😭 📵
- 4 Department of Computer Science, Courant Institute, New York University, USA
- 6 Department of Computer Science, Courant Institute, New York University, USA

7 — Abstract

- The generalized activity selection problem is this: given $m \ge 1$ and a set A of intervals representing time spans of activities, we want to select m subsets $\{C_i \subseteq A : i = 1, ..., m\}$ such that the intervals in each C_i are pairwise disjoint, and $|\bigcup_{i=1}^m C_i|$ is maximized. The well-known activity selection problem corresponds to m = 1. We provide an $O(n \log n)$ greedy algorithm. Proving its optimality is more subtle than in the m = 1 case.
- 2012 ACM Subject Classification Replace ccsdesc macro with valid one
- 14 Keywords and phrases Dummy keyword
- Digital Object Identifier 10.4230/LIPIcs.CVIT.2016.23
- Funding This work is funded by NSF Grant #CCF-2212462.

1 Introduction

25

27

29

33

35

The activity selection problem is used in standard text books such as [1, 4] to illustrate the greedy method.² The problem is this: given a set A of intervals, compute a compatible set $C \subset A$ of maximal size. Here, C is compatible if the intervals in C are pairwise disjoint. Each interval $I \in A$ represents the time span of an activity. In the following, we assume half-open intervals of the form I = (s, f] or I = (s(I), f(I)] where s(I) and f(I) are the start and finish time of activity I. So the set $\{I, J\}$ is compatible iff $f(I) \leq s(J)$.

The problem is usually attributed to Gavril (1972) who showed that the more general problem of maximal independent set in a chordal graph [3, §3] can be computed in $O(n^3)$ time, given the perfect elimination order³ of G. When specialized to interval graphs, the complexity improves to $O(n \log n)$ [1, §15.1].

In this paper, we consider the following generalization: given $m \ge 1$ and A, compute m compatible sets C_1, \dots, C_m of A such that $|C_1 \cup \dots \cup C_m|$ has maximal size. Note that wlog, we may assume the C_i 's are pairwise disjoint, and allow some C_i 's to be empty. We may call this the **multiroom activity selection problem** because we imagine the activities in C_i to be assigned to the ith room. If m is fixed, we speak of the m-room activity selection **problem**. The original problem of Gavril is the 1-room case. Our main result is a greedy algorithm to compute an optimal solution for this problem. We show that its complexity remains $O(n \log n)$, but its correctness is considerably more subtle than the 1-room case.

Related Problems: Despite it's naturalness, our generalization appears to be new. There is a known generalization to the weighted case [5, 1, 4]: suppose we are given a function $W: A \to \mathbb{R}_{>0}$, and the goal is to compute a compatible set $C \subseteq A$ whose weight

¹ Optional footnote, e.g. to mark corresponding author

² It is also popular in coding websites such as https://www.geeksforgeeks.org/.

³ In her original paper, she gave an $O(n^4)$ method to compute the elimination order. Subsequently Rose, Luecker and Tarjan [6]. gave an O(m+n) algorithm based on BFS. In this paper, the parameters n, m denotes the number of vertices and edges of a graph G.

44

 $W(C) = \sum_{I \in C} W(I)$ is maximum. Unfortunately, this generalization needs a dynamic programming solution with complexity $\Omega(n^2)$; in contrast to our generalization is still amenable to a $O(n \log n)$ greedy approach.

As noted above, Gavril viewed the activity selection problem as an maximum independent set problem. More precisely, the set of intervals A defines an interval graph G(A) with A as vertex set and edges are pairs $\{I,J\}$ of intervals with non-empty intersection. So a compatible set $C \subseteq A$ is just an independent set of G(A). In this graph setting, Gavril considered the **minimum coloration problem** [3, §2]. In modern terminology, this is computing the **chromatic number** $\chi(G)$ of a graph G, She gave an $O(n^2)$ algorithm to compute $\chi(G)$ for a chordal graph G. When G is an interval graph, Kleinberg and Tardos ([4, p. 122], [1, Ex. 16.1-3, p. 179]) improved it to $O(n \log n)$ solution. The topic of scheduling has many similarities with activities selection. For instance, in the job-shop scheduling problem we are given n jobs and m machines (like our intervals and rooms). But our interval is replaced by a job J_i that is characterized only by its duration $\mu(J_i) > 0$: the algorithm not only assigns J_i to a machine, but it also has to schedule the starting time $s(J_i)$.

Finally, there is some geometric content inherent in interval graphs, and it will be useful to adopt the notion of "stabbing numbers" [2, §10.4, p.227] from computational geometry. Consider the following **interval stabbing problem**: given $m \ge 1$ and A, find a subset $C \subseteq A$ of maximum size and with stabbing number $\le m$. Here, the **stabbing number** of C is defined as

$$stab\#(C) := \max_{x \in \mathbb{R}} |x \wedge C|$$

where $x \wedge C := \{I \in C : x \in I\}$ is the set of intervals of C that are "stabbed" by x. Let Opt(A, m) denote the size |C| of the optimal solution.

Observation 1. A set C of intervals can be partitioned into k non-empty compatible sets iff stab#(C) = k.

This will follow from the correctness of our greedy algorithm below. Therefore, the interval stabbing problem is equivalent the multiroom activity selection problem.

2 Optimal Greedy Algorithm for 2-Room Activity Selection

We first give an optimal solution for the two room case (m = 2). It will make the transition of the general case much easier.

Here is a brief overview of the algorithm: let the input set A of n intervals be sorted by their finish times:

$$I_1 <_f I_2 <_f \dots <_f I_n \tag{1}$$

where $I <_f J$ iff f(I) < f(J). Note that we assume that the finish times are distinct. This is without loss of generality since we can break ties arbitrarily. Likewise, assume that each $s(I_i) \ge 0$. We maintain two lists Room[j] (j = 1, 2) holding compatible sets of intervals. For interval I_i (1 = 1, ..., n), we process I_i by either Accepting or Rejecting it. This is usual Accept/Reject paradigm of greedy methods. The twist is that, we accept I_i by appending it to either Room[1] or Room[2].

The critical question is how to process an interval. For this purpose, let fTime(j) be the finish time of the last interval placed into Room[j] (j = 1, 2). So fTime(j) is increased (in view of (1)) whenever we place a new interval into Room[j]. Introduce a variable front whose value is 1 iff $fTime(1) \ge fTime(2)$; otherwise front = 2. Also maintain a complementary

variable back satisfying the invariant back = 3 - front. Call Room[front] and Room[back] the **front** and **back room** respectively. The ordered pair

is called the **state** of the rooms. So if s = (a, b) is a state, then $a \le b$. The **initial state** is $s_0 := (0, 0)$. It turns out that for all non-initial states, we always have the strict inequality a < b. In this case, we prefer to denote the state in a more distinctive way, "(a < b)". Suppose that the current state is $s = (a \le b)$. We say I = (s, f] is **applicable** to s = (a < b) if b < f. If I is applicable to s = (a < b), then we can apply I to s to transform it to a new state t = (a' < b') defined as follows:

$$(a' < b') := \begin{cases} (a < f) & \text{if } b \leq s & \dots \text{Case(I): keep,} \\ (b < f) & \text{if } a \leq s < b & \dots \text{Case(II): flip,} \\ (a < b) & \text{if } s < a & \dots \text{Case(III): reject.} \end{cases}$$

$$(2)$$

Write $(a < b) \xrightarrow{I} (a' < b')$ to indicate this transformation. So the sequence (1) induces a sequence of transformations:

$$s_0 \xrightarrow{I_1} s_1 \xrightarrow{I_2} \cdots \xrightarrow{I_n} s_n. \tag{3}$$

- This sequence is well-defined because each I_i is applicable to the previous state s_{i-1} .
- Running Example. Suppose the sorted input are these 6 intervals:

Sort(A) =
$$(I_1(0,3)] <_f I_2(1,4) <_f I_3(4,6) <_f I_4(2,7) <_f I_5(6,8) <_f I_6(4,9)$$
. (4)

This induces the following state transformations:

$$\mathbf{s_0}(0,0) \xrightarrow[keep]{I_1} \mathbf{s_1}(0 < 3) \xrightarrow[flip]{I_2} \mathbf{s_2}(3 < 4) \xrightarrow[keep]{I_3} \mathbf{s_3}(3 < 6) \xrightarrow[rej]{I_4} \mathbf{s_4}(3 < 6) \xrightarrow[keep]{I_5} \mathbf{s_5}(3 < 8) \xrightarrow[flip]{I_6} \mathbf{s_6}(8 < 9).$$

$$(5)$$

Note that we also indicate the case (keep/flip/reject) of each transformation.

We have now completely described our algorithm which is called Greedy2(A) here:

90 91

```
Greedy2(A) \rightarrow B
  INPUT: A is a set of n intervals
  OUTPUT: Set B \subseteq A with stabbing number \leq 2 with maximal cardinality.
      Sort the n intervals of A as in (1).
      Let Room[1], Room[2] be compatible sets of intervals, initially empty.
      Let fTime(1) \leftarrow fTime(2) \leftarrow 0
                 and front \leftarrow 1, back \leftarrow 2.
      For i = 1, \ldots, n,
         Case(I) If s(I_i) \ge fTime(front),
                     Room[front].append(I_i)
                     fTime(front) \leftarrow f(I_i)

    ✓ keep the value of front

         Case(II) Else if (s(I_i) \ge fTime(back),
                     front \leftrightarrow back \quad \lhd flip front \ and \ back
                     Room[front].append(I_i)
                     fTime(front) \leftarrow f(I_i)
         Case(III) Else \triangleleft s(I_i) < fTime(back)
                     Reject I_i 	ext{ } 	ext{$<$} i.e., do nothing
      Return B = Room[1] \cup Room[2]
```

Note that Cases (I-II) in the algorithm implement rule (2). Moreover, we identify state s_i $(i=1,\ldots,n)$ in (3) as the state at the end of the *i*th iteration of the for-loop. We also see why Case(I) and Case(II) are called "keep" and "flip" cases. In the running example above, Greedy2(A) returns the set $Room[1] \cup Room[2]$ where

```
Room[1] = (I_1(0,3], I_6(4,9]), \qquad Room[2] = (I_2(1,4], I_3(4,6], I_5(6,8]).
```

Only one interval $I_4(2,7]$ is rejected.

100

104

109

111

The correctness of *Greedy2* is based on the following theorem:

```
▶ Theorem 2 (Key).

(a) If stab\#(A) \le 2, then Greedy2(A) = A.

(b) If B \subseteq A then |Greedy2(B)| \le |Greedy2(A)|.

▶ Corollary 3. Greedy2 is correct,

i.e., if B = Greedy2(A) then stab\#(B) \le 2 and |B| = Opt(A, 2).
```

Proof of Corollary If B = Greedy2(A) then clearly $stab\#(B) \le 2$ because B is the union of two compatible subsets of A. This implies that $Opt(A,2) \ge |B|$. So it remains to prove that $Opt(A,2) \le |B|$. By definition of Opt(A,2), there is a set $B^* \subseteq A$ such that $|B^*| = Opt(A,2)$ and $stab\#(B^*) \le 2$. Thus

```
\begin{array}{lll} \text{105} & Opt(A,2) = |B^*| & \text{(by choice of } B^*) \\ & = |Greedy2(B^*)| & \text{(by Theorem 2(a))} \\ & \leq |Greedy2(A)| & \text{(by Theorem 2(b))} \\ & = |B| & \text{(by choice of } B). \end{array}
```

110 Q.E.D.

114

115

116

117

118 119

121

131

134

137

148

Of the two parts in Theorem 2, part(a) is the easier to show:

Proof of Theorem 2(a) Assuming $stab\#(A) \leq 2$, we must show that Greedy2(A) = A, i.e., no interval of A is rejected. Let $s_i = (a_i < b_i)$ (i = 1, ..., n) be the states in (3). Our result follows from 3 CLAIMS:

CLAIM 0: If $a_i = 0$ then I_i cannot be rejected. Pf: $a_i = 0$ means that Room[back] is empty. In this case, the transformation $s_{i-1} \xrightarrow{I_i} s_i$ falls under Case(I) or (II), i.e., I_i is not rejected.

CLAIM 1: If $a_i > 0$ then there are some $j < k \le i$ such that

$$a_i \in I_i \cap I_k$$
 (6)

Pf: Note that $b_i = f(I_i)$ and $a_i = f(I_j)$ for some j < i. Suppose I_j is in Room[1] (the other case is similarly argued). That means that at the end of the jth iteration, front = 1. Since I_i must be in Room[2], there is a smallest k ($j < k \le i$) such that I_k caused a flip (Case(II)), i.e., $s(I_{k-1}) < a_i < f(I_k)$. Thus $a_i \in I_j \cap I_k$, as CLAIMed.

125 I.e., $s(I_{k-1}) < a_i < f(I_k)$. Thus $a_i \in I_j \cap I_k$, as CLAIMed.

CLAIM 2: If $a_i > 0$ then $a_{i+1} > 0$ and I_{i+1} is never rejected. Pf: Consider the transition

127 $s_i \xrightarrow{I_{i+1}} s_{i+1}$. This cannot result in Case(III) (the rejection of I_{i+1}) because it would imply

128 that $a_i \in I_{i+1}$, and (combined with CLAIM 1) implies $stab\#(a_i, A) = 3$, contradicting the

129 assumption $stab\#(A) \le 2$. Furthermore $a_{i+1} > 0$ holds because Case(I) implies $a_i = a_{i+1}$ 130 and Case(II) implies $a_{i+1} \in I_i \cap I_{i+1}$.

Q.E.D.

2.1 Setup for the proof of Theorem 2(b)

Theorem 2(b) clearly follows if we prove that

$$|Greedy2(A)| \le |Greedy2(A^+)|$$
 (7)

for all A and $A^+ = A \cup \{I^+\}$. To simplify the setting, note that (7) holds if I^+ is rejected by $Greedy2(A^+)$. Therefore we may assume I^+ is accepted by $Greedy2(A^+)$. Let

$$Sort(A^+) = (J_1 <_f J_2 <_f \dots <_f J_{n+1}).$$
 (8)

Thus I^+ appears in (8) as J_{i^+} for some $1 \le i^+ \le n+1$. The sequence (8) induces these state transformations

$$s_0 \xrightarrow{J_1} s_1 \xrightarrow{J_2} \cdots \xrightarrow{J_{n+1}} s_{n+1}.$$

We want to compare the state transformations of $Greedy2(A^+)$ with those of Greedy2(A).

But Greedy2(A) produces one less state than $Greedy(A^+)$. We will make them agree by an artifice: let $A^0 := A \cup \{I^0\}$ where $I^0 := (-1, f(I^+)]$ be an artificial interval that will always be rejected by our algorithm. Therefore the sorted sequence $Sort(A^0)$ agrees with (8) except that $J_{i^+} = I^+$ is replaced by I^0 . Let $(t_0, t_1, \ldots, t_{n+1})$ be the corresponding sequence of states induced by $Sort(A^0)$. Now we can compare s_i with t_i for $i = 1, \ldots, n+1$. Clearly, $s_i = t_i$ for $i < i^+$. But $s_{i^+} \neq t_{i^+}$ since I^+ is accepted and I^0 is rejected. Let $P_i := \begin{bmatrix} s_i \\ t_i \end{bmatrix}$ be the ith state pair (or simply pair). Also s_i and t_i are the upper and lower states of P_i . We call P_i an equality pair if $s_i = t_i$. So the first inequality pair is P_i + called the **critical** pair. In the rest of our analysis, we consider this sequence of state pairs

$$P_0 \longrightarrow P_1 \longrightarrow \cdots \longrightarrow P_n \longrightarrow P_{n+1}$$
 (9)

152

153

154

155

156

157

158

159

160 161

162

165

166

168

170

171

172

173

Moreover, for $i \neq i + 1$, we may write

$$P_{i-1} \xrightarrow{J_i} P_i$$

since the same I_i is used to transform the upper and lower states of P_{i-1} .

Running Example (contd). Let $I^+ = (3,5]$, then $Sort(A^+)/Sort(A^0)$ is

$$(J_1(0,3] <_f J_2(1,4] <_f (I^+/I^0) <_f J_4(4,6] <_f J_5(2,7] <_f J_6(6,8] <_f J_7(4,9])$$
 (10)

It induces the transformations of pairs:

$$\begin{array}{c}
P_{0} \xrightarrow{J_{1}} P_{1} \begin{bmatrix} 0 < 3 \\ 0 < 3 \end{bmatrix} \xrightarrow{J_{2}} P_{2} \begin{bmatrix} 3 < 4 \\ 3 < 4 \end{bmatrix} \xrightarrow{I^{+}/I^{0}} P_{3} \begin{bmatrix} 4 < 5 \\ 3 < 4 \end{bmatrix} \xrightarrow{J_{4}} P_{4} \begin{bmatrix} 5 < 6 \\ 3 < 6 \end{bmatrix} \\
\xrightarrow{J_{5}} P_{5} \begin{bmatrix} 5 < 6 \\ 3 < 6 \end{bmatrix} \xrightarrow{J_{6}} P_{6} \begin{bmatrix} 5 < 8 \\ 3 < 8 \end{bmatrix} \xrightarrow{J_{7}} P_{7} \begin{bmatrix} 5 < 8 \\ 8 < 9 \end{bmatrix}.
\end{array}$$
(11)

Since $i^+ = 3$, the critical pair in (11) is $P_3 = \begin{bmatrix} 4 < 5 \\ 3 < 4 \end{bmatrix}$. Note that the subscript $xy \in \{k, f, r\}^2$ in the notation

$$P_{i-1} \begin{bmatrix} s_{i-1} \\ t_{i-1} \end{bmatrix} \xrightarrow{J_i} P_i \begin{bmatrix} s_i \\ t_i \end{bmatrix}$$
 (12)

says that the upper transformation $s_{i-1} \to s_i$ is Case x and lower transformation $t_{i-1} \to t_i$ is Case y. Call xy the **type** of the transition. The type is completely determined by P_{i-1} and P_i . Check: the lower transformations in (11) is basically given by (5).

Equivalent Pairs. For $P = \begin{bmatrix} a \le b \\ c \le d \end{bmatrix}$, let $\operatorname{supp}(P) := \{a, b, c, d\}$. E.g., $\operatorname{supp}(\begin{bmatrix} 1 < 4 \\ 0 < 4 \end{bmatrix}) = \{0, 1, 4\}$. We say two pairs P and Q are **equivalent** if there is a monotone function $T : \operatorname{supp}(P) \to \operatorname{supp}(Q)$ such that $Q = T(P) = \begin{bmatrix} T(a) \le T(b) \\ T(c) \le T(d) \end{bmatrix}$. Here, T is a **monotone** means $x \le y$ iff $T(x) \le T(y)$. It is easy to check that that that equivalence relation on state pairs, denoted $P \equiv Q$. E.g., $\begin{bmatrix} 1 < 4 \\ 0 < 4 \end{bmatrix} \equiv \begin{bmatrix} 3 < 5 \\ 1 < 5 \end{bmatrix}$ but $\begin{bmatrix} 0 < 3 \\ 0 < 2 \end{bmatrix} \not\equiv \begin{bmatrix} 0 < 2 \\ 0 < 3 \end{bmatrix}$. Call each equivalence class a class pair.

Strict Pairs. A state s = (a, b) is **strict** if a < b. Other than the initial state (0, 0), subsequent states must be strict. A pair $P = \begin{bmatrix} s \\ t \end{bmatrix}$ is **strict** if both s and t are strict. It is easy to verify that for all $i \ge 2$, $P_i = \begin{bmatrix} s_i \\ t_i \end{bmatrix}$ is strict. We largely focus on strict pairs; henceforth the unqualified "pair" will mean "strict pair".

Our rule (2) for transforming states easily implies:

▶ **Lemma 4.** We have $|\operatorname{supp}(P_i)| < 4$ for all P_i in the sequence (9).

E.g., $P = \begin{bmatrix} 1 < 3 \\ 2 < 4 \end{bmatrix}$ cannot occur in (9). In view of this lemma, we see that every strict pair is equivalent to one of these 7 **canonical pairs** with support in $\{1, 2, 3\}$:

$$[A] = \begin{bmatrix} 1 < 3 \\ 1 < 2 \end{bmatrix} \quad [B] = \begin{bmatrix} 2 < 3 \\ 1 < 2 \end{bmatrix} \quad [C] = \begin{bmatrix} 2 < 3 \\ 1 < 3 \end{bmatrix} \quad [D] = \begin{bmatrix} 1 < 2 \\ 1 < 3 \end{bmatrix}$$

$$[E] = \begin{bmatrix} 1 < 2 \\ 1 < 2 \end{bmatrix} \quad [F] = \begin{bmatrix} 1 < 3 \\ 2 < 3 \end{bmatrix} \quad [G] = \begin{bmatrix} 1 < 2 \\ 2 < 3 \end{bmatrix}$$
(13)

Let $V_2 = \{[A], [B], [C], [D], [E], [F], [G]\}$ be the set of canonical pairs from (13). We interchangeably view $\alpha \in V_2$ as a pair as well as an equivalence class. Thus write both $P \equiv \alpha$ and $P \in \alpha$.

▶ Observation 5.

- (a) There are exactly 7 class pairs, and they may be identified with the elements of V_2 .
- (b) The critical pair P_{i+} in (9) is equivalent to either [A] or [B].

Transition graph G_2 : Let $G_2 = (V_2, E_2)$ be the digraph whose edges are defined as follows: $(\alpha \longrightarrow \beta) \in E_2$ iff there exist state pairs $P \equiv \alpha$ and $Q \equiv \beta$ and type $\tau \in \{k, f, r\}^2 \setminus \{rr\}$ such that $P \xrightarrow[\tau]{I} Q$ for some I. We also write $\alpha \xrightarrow[\tau]{} \beta$ in this case, and say⁴ that τ is **applicable** to α . E.g. we see that $\tau = kk$ is applicable to every $\alpha \in V_2$ because $P \xrightarrow[kk]{I} Q$ if s(I) > a for all $a \in \text{supp}(P)$. The requirement that $\tau \neq rr$ means that I is accepted by either upper or lower state of P. If $\alpha \xrightarrow[\tau_i]{} \beta_i$ for $i = 1, 2, \ldots$, we can write

$$\alpha \xrightarrow[\tau_1/\tau_2/\cdots]{} \beta_1/\beta_2/\ldots$$

E.g., We see that there exactly two types, kk and ff, that are applicable to [E]; moreover

$$[E] \xrightarrow{kk/ff} [E]/[E].$$

The following lemma shows that for $\alpha \neq [E]$, there are exactly 3 types that are applicable to α . It is proved by simple enumeration:

.85 ▶ Lemma 6.

The complete list of types applicable to each $\alpha \in V_2$ are enumerated as follows:

(a) [A]
$$\xrightarrow{kk/fk/ff}$$
 [E]/[C]/[C]

(b)
$$[B] \xrightarrow{kk/fk/rf} [C]/[C]/[D]$$

(c)
$$[C] \xrightarrow{kk/ff/rf} [C]/[E]/[G]$$

190 (d)
$$[D] \xrightarrow{kk/kf/ff} [E]/[F]/[F]$$

191 (e)
$$[E] \xrightarrow{kk/ff} [E]/[E]$$

192 (f)
$$[F] \xrightarrow{kk/ff/fr} [F]/[E]/[B]$$

193 **(g)**
$$[G] \xrightarrow{kk/kf/fr} [F]/[F]/[A]$$

These edges completely determine the graph G_2 as shown in Figure 1.

Structure of G_2 : Node [E] is the only sink. The elementary cycles of G_2 consist of 3 self-loops at the vertices [C], [E], [F], and 3 non-trivial cycles

$$\langle [A] \longrightarrow [C] \longrightarrow [G] \rangle$$
, $\langle [B] \longrightarrow [D] \longrightarrow [F] \rangle$, $\langle [B] \longrightarrow [C] \longrightarrow [G] \longrightarrow [F] \rangle$.

195 Define $\Delta: V_2 \to \{1, 0, -1\}$ where

$$\Delta(\alpha) = \begin{cases} 1 & \text{if } \alpha \in \{[A], [B], [C]\} & \dots...(\text{positive class}) \\ 0 & \text{if } \alpha \in \{[D], [F], [G]\} & \dots...(\text{neutral class}) \\ \frac{1}{2} & \text{else.} & \dots...(\text{ambiguous class}) \end{cases}$$

$$(14)$$

Thus, the classes in V_2 are classified as positive, neutral or ambiguous by Δ . We also call a pair P positive, neutral or ambiguous if its equivalence class is positive, neutral or ambiguous.

We will next see how this classification is used.

⁴ Unlike $P \longrightarrow Q$ having a unique type, $\alpha \longrightarrow \beta$ may have more than one type.

Figure 1 Transition graph G_2 : Edges have -1/0/+1 weights: they have weight 0 unless noted otherwise.

Proof of Theorem 2(b)

200

207

214

201 Consider the sequence (9) of pairs, and let

$$\alpha_0 \longrightarrow \alpha_1 \longrightarrow \cdots \longrightarrow \alpha_{n+1} \tag{15}$$

be the corresponding sequence of classes where $P_i \equiv \alpha_i$. Let U(i) (resp., L(i)) be the total number of intervals accepted by the upper (resp., lower) states of P_0, P_1, \ldots, P_i . Let $\delta(i) := U(i) - L(i)$. Clearly, $\delta(i) = 0$ for all $i < i^*$ and $\delta(i^+) = 1$.

CLAIM 1: For $i > i^+$, if $P_{i-1} \xrightarrow{xy} P_i$ then

$$\delta(i) - \delta(i-1) = W(P \xrightarrow{xy} P_i) := \begin{cases} -1 & \text{if } x = r, \\ +1 & \text{if } y = r, \\ 0 & \text{else.} \end{cases}$$
 (16)

Pf: We verify one of these 3 cases: x = r implies that U(i) = U(i-1). But it also implies that $y \neq r$, and hence L(i) = L(i-1) + 1. So

$$\delta(i) = U(i) - L(i) = U(i-1) - (L(i-1) + 1) = \delta(i-1) - 1.$$

The other two cases are similar. This establishes CLAIM 1.

As defined, $\delta(i)$ depends on the pairs P_j for all $j=0,\ldots,i$. We next show that $\delta(i)$ depends only on the equivalence class of P_i alone (although $\delta(i)$ can be 0 or 1 if P_i is ambiguous).

CLAIM 2: The formula for $W(P \to Q)$ in (16) is a function of the underlying classes, i.e.,

$$W(P \to Q) = \Delta(\beta) - \Delta(\alpha) \tag{17}$$

where $P \equiv \alpha$ and $Q \equiv \beta$, and Q is not ambiguous. Pf: Suppose $W(P \to Q) = -1$. From Lemma 6(b,c), we see the two possibilities: $(\alpha,\beta) = ([B],[D])$, or $(\alpha,\beta) = ([C],[G])$.

Since $\Delta([B]) = \Delta([C]) = 1$ and and $\Delta([D]) = \Delta([G]) = 0$, we verify (17).

Suppose $W(P \to Q) = +1$. Again Lemma 6(f,g) shows the two possibilities: $(\alpha, \beta) = ([F], [B])$, or $(\alpha, \beta) = ([G], [A])$. We may again verify (17).

Finally, if $W(P \to Q) = 0$, we see that $\Delta(\alpha) = \Delta(\beta)$ in the remaining edges, verifying (17).

CLAIM 3: $\delta(i^+) = \Delta(\alpha_{i^+}) = 1$.

Pf: By our setup, $\delta(i^+) = 1$. By Observation 5, P_{i^+} is equivalent to [A] or [B] and $\Delta([A]) = \Delta([B]) = 1$.

CLAIM 4: For $i \ge i^+$, $CLAIM 4: For <math>i \ge i^+$,

 $\delta(i) \begin{cases} = \Delta(\alpha_i) & \text{if } \alpha_i \neq [E], \\ \in \{0, 1\} & \text{if } \alpha_i = [E]. \end{cases}$ (18) **Pf:** We prove this by induction on *i*. The basis $i = i^+$ is shown in CLAIM 3. If $\alpha_i \neq [E]$

$$\delta(i) = \delta(i-1) + W(P_{i-1} \to P_i)$$
 (CLAIM 1)
$$= \Delta(\alpha_{i-1}) + W(P_{i-1} \to P_i)$$
 (induction hypothesis)
$$= \Delta(\alpha_{i-1}) + (\Delta(\alpha_i) - \Delta(\alpha_{i-1})$$
 (CLAIM 2)
$$= \Delta(\alpha_i).$$

Suppose $\alpha_i = [E]$. Since [E] is a sink and $\alpha_{i^+} \neq [E]$, there is a last time j such that j < i and $\alpha_j \neq [E]$. We had proved by induction that $\delta(j) = \Delta(\alpha_j)$. So it remains to show that for all k > j, $\delta(k) = \delta(j)$. Looking at Lemma 6(a,c,d,f), we see verify 'that $W(P_j \to P_{j+1}) = 0$ for any transition from an non-ambiguous class into the ambiguous class. This means that $\delta(j+1) = \delta(j)$. Next, we also see that $W(P \to Q) = 0$ for transitions between two ambiguous pairs (by Lemma 6(e)). This proves that $\delta(i) = \delta(i-1) + W(P_{i-1} \to P_i) = \delta(i-1)$. Repeating this, we see that $\delta(i) = \delta(j)$. Our CLAIM follows since $\Delta(\alpha_i) \in \{0,1\}$.

To conclude our proof, CLAIM 4 implies that $\delta(n+1) \in \{0,1\}$. But $\delta(n+1) = |Greedy2(A^+)| - |Greedy2(A^0)|$. Thus $|Greedy2(A^+)| \ge |Greedy2(A^0)|$, proving Theorem 2(b).

General Case

We now consider the general case of $m \ge 2$ rooms. Although many concepts introduced for m = 2 remain intact, we need to generalize some.

Our algorithm now maintains m rooms, and the ith interval I_i is again rejected or else it is accepted into one of the m rooms. The ith room is associated with fTime(i), which equals f(I) where I was last put into the room. We have an array front[1.m] where $front[i] \in \{1, ..., m\}$ are used to maintain this invariant:

$$fTime[front[1]] \le fTime[front[2]] \le \dots \le fTime[front[m]].$$
 (19)

These inequalities are strict unless both values are 0.

States. We now define a state to be $s = (a_1 < a_2 < \cdots < a_k)$ with $1 \le k \le m$ with $\operatorname{supp}(s) = \{a_1, \ldots, a_k\}$. The initial state is (0) where k = 1 and $a_1 = 0$; but thereafter, $a_1 > 0$. Note that our notion of states departs slightly from the m = 2 case. The rank of s is k, corresponding to the number of non-empty rooms so far. We map the sequence $f = (f_1 \le f_2 \cdot \cdots \cdot \le f_m)$ of (19) into a state by removing any $f_i = 0$. E.g., $f = (0, 0, 2, 5, 6) \mapsto s = (2, 5, 6)$. The rule (2) for transforming states will now explicitly allow for the increase in rank: if interval I is applicable to $s = (a_1 < \cdots < a_k)$ (i.e., $f(I) > a_k$), then its application to s results in a new state $t = (b_1 < \cdots < b_\ell)$ defined as follows: let $i^* := \operatorname{argmax}_{i=0}^k \{a_i : a_i \le s(I)\}$ (where $a_0 = 0$).

$$t = \begin{cases} (a_1 < \dots < \widehat{a_{i*}} < \dots < a_k < f(I)) & \text{if } i^* \ge 1, & \dots & \text{Case}(i^*) \\ (a_1 < \dots < \dots < a_k < f(I)) & \text{if } i^* = 0 \text{ and } k < m, & \dots & \text{Case}(0) \\ s & \text{if } i^* = 0 \text{ and } k < m, & \dots & \text{Case}(-1) \end{cases}$$
(20)

```
where the notation \widehat{a_{i*}} in Case(i^*) means that a_{i*} is omitted from the sequence. As usual, we write s \xrightarrow{I} t. E.g., let m = 4. Then s = (1,3,5) \xrightarrow{(0,7]} t = (1,3,5,7) with i^* = 0.

Also s = (1,3,5) \xrightarrow{(4,7]} t = (1,5,7) with i^* = 2. The type of the transition s \xrightarrow{I} t in (20) is reject (rej) in Case(-1), accept (acc) in Case(i \ge 1) and extend (ext) in Case(i \ge 1). Thus, the rank of s is incremented iff the type is ext. Also s accepts i = 1 means that some i = 1 and i = 1 when the type is i = 1 when the type is i = 1 when i = 1 when i = 1 and i = 1 when i = 1 when i = 1 and i = 1 when i = 1 when i = 1 and i = 1 when i = 1 when i = 1 and i = 1 and i = 1 when i = 1 and i = 1 and
```

Lemma 7. Let $s = (a_1 < \cdots < a_k)$ be a state. If $R \subseteq A$ is the current set of intervals accepted into in the k rooms, then $stab\#(a_i, R) = k - i + 1$.

The proof is similar to CLAIM 1 in the proof of Theorem 2(a). Indeed, the m-room generalization of Theorem 2(a) follows from this.

Pairs. Again we consider the sequence of state pairs in (9) corresponding to $Sort(A^+)$ and $Sort(A^0)$. Let $P = \begin{bmatrix} s \\ t \end{bmatrix} = \begin{bmatrix} a_1 < a_2 < \cdots < a_k \\ b_1 < b_2 < \cdots < b_\ell \end{bmatrix}$ be such a pair. Let $supp(P) = supp(s) \cup supp(t)$ and $rank(P) = max\{rank(s), rank(t)\}$. Two states s, t are equivalent if there exist a monotone map $T: supp(s) \to supp(t)$ such that T(s) = t. Two pairs P, Q are equivalent if there is a monotone map $T: supp(P) \to supp(Q)$ such that T(P) = Q. Say P is canonical if $supp(P) = \{1, 2, \dots, k\}$ where k = rank(P). Clearly, every pair is equivalent to a unique canonical pair.

Superclasses: In order to achieve a general analysis, we cannot naively generalize Lemma 6 because we would be analyzing transition graphs with $\Omega(m^2)$ nodes. Instead, define the following set of superclasses:

$$V_m := \{ [A_1], [B_1], [A_0], [B_0], [E] \}. \tag{21}$$

Each superclass is a sets of pairs of rank $\leq m$:

- \blacksquare $[A_1]$ is the set of all pairs $\begin{bmatrix} s \\ t \end{bmatrix}$ such that $(\exists a)[\operatorname{supp}(s) = \operatorname{supp}(t) \cup \{a\}]$.
- \blacksquare B_1 is the set of all pairs $\begin{bmatrix} s \\ t \end{bmatrix}$ such that $(\exists a < b)[\operatorname{supp}(s) \cup \{b\} = \operatorname{supp}(t) \cup \{a\}]$.
- $= [A_0]$ is the set of all pairs $\begin{bmatrix} s \\ t \end{bmatrix}$ such that $(\exists b)[\sup(s) \cup \{b\} = [\sup(t)]]$.
- $[B_0]$ is the set of all pairs $\begin{bmatrix} s \\ t \end{bmatrix}$ such that $(\exists a > b)[\sup(s) \cup \{b\} = \sup(t) \cup \{a\}]$.
- E [E] is set of all equality pairs.

The superclasses are no longer equivalence classes. E.g., $\begin{bmatrix} 2 < 3 < 4 \\ 1 < 3 < 4 \end{bmatrix} \neq \begin{bmatrix} 1 < 3 < 4 \\ 1 < 2 < 4 \end{bmatrix}$ but both pairs belong to $[B_1]$.

▶ Observation 8.

279

280

281

282

283

- (a) Each superclass $\alpha \in V_m$ is a union of equivalence classes of pairs.
- **(b)** The critical pair P_{i+} in (9) belongs to either $[A_1]$ or $[B_1]$.

The transition graph $G_m = (V_m, E_m)$: We have an edge $(\alpha \to \beta) \in E_m$ iff there exist pairs $P \in \alpha, Q \in \beta$ and interval I such that $P \xrightarrow{I} Q$. This graph is shown in Figure 2. Furthermore, if $P \xrightarrow{I} Q$ (for some $xy \in \{a, e, r\}^2 = \{acc, ext, rej\}^2$) then we write $\alpha \xrightarrow{xy} \beta$ and say⁵ xy is applicable to α . For example, the type rr is always applicable to any superclass. We call rr the trivial type because always it represents self-loops: $\alpha \xrightarrow{rr} \alpha$. The following theorem enumerates all non-trivial types applicable to each $\alpha \in V_m$.

⁵ But β may not be uniquely determined by α and xy. E.g., Theorem 9(II) shows that $[B_1] \xrightarrow{aa} [E] \text{or}[B_1]$.

Figure 2 Transition Graph G_m

Theorem 9.

303 304 305

306 307

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

325

The complete list of non-trivial types applicable to each $\alpha \in V_n$ is enumerated as follows: 301

(I)
$$[A_1] \xrightarrow[aa/ae/ee/re]{} [A_1]/[E]/[A_1]/[B_0]$$

(II) $[B_1] \xrightarrow[aa/ra/ee/ea]{} [E] or [B_1]/[B_0]/[B_1]/[A_1]$
(III) $[A_0] \xrightarrow[aa/ea/ee/er]{} [A_0]/[E]/[A_0]/[B_1]$
(IV) $[B_0] \xrightarrow[aa/ar/ee/ee]{} [B_0] or [E]/[B_1]/[B_0]/[A_0]$

(IV)
$$[B_0] \xrightarrow[aa/ar/ee/ae]{} [B_0] or [E]/[B_1]/[B_0]/[A_0]$$

(V)
$$[E] \xrightarrow{aa/ee} [E]/[E]$$

Proof. See appendix.

Q.E.D.

We summarize our main result as follows:

▶ **Theorem 10** (Main Result). The multiroom activity selection problem can be optimally solved by our greedy algorithm as defined by (20). This algorithm can be implemented in $O(n \log n)$.

Proof. The correctness of the greedy algorithm follows from the above generalization of Theorem 2. The main issue is the complexity claim. If m is fixed, this is no issue. But in the generalized problem, m is part of the input $(m \le n)$. Above, we said that we maintain the invariant (19) using an array front[1..m]. Then it O(m) to update this array for each interval I_i , or a total of $\Omega(mn)$ time. This is not acceptable if $m = \Omega(\log n)$. Our solution is fairly standard: suppose only k rooms are currently in use $(k \leq m)$. Use any balanced binary tree T (e.g., an AVL tree) to store the pairs $\{(fTime[1], 1), \dots, (fTime[k], k)\}$, sorted by the first component fTime[i] of each pair. Given interval I, we use T to find the node (fTime[j], j) $(j=1,\ldots,k)$ such that fTime[j] is the largest value satisfying $fTime[j] \leq s(I)$. If such a j exists, we can delete node containing (fTime[j], j) and insert the pair (f(I), j). We can update $fTime[j] \leftarrow f(I)$. Suppose j does not exists: there are two possibilities: if k = m, we will reject I and there is nothing to do. Otherwise, we extend the current state by inserting the pair (f(I), k+1) into T, update $fTime[k+1] \leftarrow f(I)$. Thus we can implement the

23:12 Generalized Activity Selection

transformation (20) in $O(\log m) = O(\log n)$ time. Q.E.D.

329

4 Conclusion

This paper introduced a novel generalization of the activity selection problem, and gave a relatively simple optimal greedy algorithm with an interesting proof. Our multi-room scenario opens up many possibilities for generalization. Which of these generalizations remains subquadratic in complexity? For instance, suppose the m rooms come in 2 sizes (big and small) and some activities can only be assigned to big rooms. Is there still an optimal greedy algorithm?

Appendix: Full Proof of Theorem 9 and References

Theorem 9

337

338

344 345

353

354

The complete list of non-trivial types applicable to each $\alpha \in V_n$ is enumerated as follows: 339

(I)
$$[A_1] \longrightarrow [A_1]/[E]/[A_1]/[B_0]$$

(I)
$$[A_1] \xrightarrow[aa/ae/ee/re]{} [A_1]/[E]/[A_1]/[B_0]$$

(II) $[B_1] \xrightarrow[aa/ra/ee/ea]{} [E] \text{or} [B_1]/[B_0]/[B_1]/[A_1]$

(III)
$$[A_0] \xrightarrow[aa/ea/ee/er]{} [A_0]/[E]/[A_0]/[B_1]$$

(IV)
$$[B_0] \xrightarrow{aa/ar/ee/ae} [B_0] \text{or} [E]/[B_1]/[B_0]/[A_0]$$

(V)
$$[E] \xrightarrow{aa/ar/ee/ae} [E]/[E]$$

Proof. Case (V) is immediate. Due to the symmetry between A_1 and A_0 , and between B_1 and B_0 , we only need to prove Cases (I) and (II). Cases (III) and (IV) may be derived by 3 347 simultaneous exchanges $A_1 \leftrightarrow A_0$, $B_1 \leftrightarrow B_0$, and $xy \leftrightarrow yx$. to any transition $\alpha \longrightarrow \beta$.

Figure 3 Canonical pairs for $[A_1]$ and $[B_1]$: two variants of each are shown.

Case (I) Refer to Figure 3(top) illustrating a canonical pair $P = \begin{bmatrix} s \\ t \end{bmatrix} \in [A_1]$. Let s = $(a_1 < \cdots < a_k), t = (b_1 < \cdots < b_{k-1}) \text{ and } b = \text{supp}(s) \setminus \text{supp}(t).$ The figure 350 distinguishes two possibilities: $b = a_1$ or $b > a_1$. Consider the transition $P \xrightarrow{I} Q$ 351 for some applicable interval I. 352

We consider 3 cases, depending on whether s accepts, extends to accept or rejects I:

(I.1) If this interval is accepted by state s, then t cannot reject I. So t can accept I, or it can extend to accept I. (i) If t accept I, then we see that Q belongs to $[A_1]$. (ii) If t extends to accept I, this implies $b_1 > b = a_1$, and $a_1 < s(I) < b_1$. Moreover, $a_1 \in \mathbf{s}$ is displaced by f(I), and \mathbf{t} adds f(I). If $Q = \begin{bmatrix} s' \\ t' \end{bmatrix}$, this means that s' = t' i.e. Q belongs to [E]. Thus we have shown

$$[A_1] \xrightarrow[aa/ae]{} [A_1]/[E].$$

(1.2) If s extends to accept the interval, then t must extend to accept I. So both s and t simply add the element f(I). Then Q belongs to $[A_1]$. This proves that

$$[A_1] \xrightarrow{ee} [A_1].$$

(1.3) If s rejects I, then t must extend to accept I. After adding f(I) to t, the resulting pair satisfies supp $(s) \cup f(I) = \text{supp}(t) \cup b$. Since b < f(I), Q belongs to $[B_0]$. This proves that

$$[A_1] \xrightarrow{re} [B_0].$$

362

- Case (II) Refer to Figure 3(bottom) illustrating a canonical pair $P = \begin{bmatrix} s \\ t \end{bmatrix} \in [B_1]$. By definition of $[B_1]$, we may assume that $s = (a_1 < \cdots < a_k)$, $t = (b_1 < \cdots < b_k)$ and $\sup p(s) \cup \{b\} = \sup p(t) \cup \{a\}$ for some a < b. Also, there is a unique $c \in \sup p(t)$ that precedes b. The figure distinguishes two possibilities: $a = b_1$ or $a > b_1$. Assume I is applicable to P, i.e., $f(I) > a_k$. Consider 3 possibilities: s accepts I, or rejects I, or extends to accepts I.
 - (II.1) If I is accepted by s, then it must also be accepted by t. But, what is the superclass of Q where $P \xrightarrow{I}_{aa} Q$? This turns out to be non-unique. Let $d \in \operatorname{supp}(s)$ be displaced when s accepts I. Similarly, let $d' \in \operatorname{supp}(t)$ be displaced when t accepts I. If $d \neq b$ then d' = d, and we see that Q still belongs to $[B_1]$. If d = b, then we see that d' = c. Now, there are two possibilities: either a < c in which case $Q \in [B_1]$, or a = c in which case $Q \in [E]$. This proves our claim that

$$[B_1] \xrightarrow{aa} [E] \operatorname{or}[B_1].$$

(II.2) If s rejects I, then t must also reject I unless $a = b_1$. If $a = b_1$, t may accept I but it may not extend t to accept I. Accepting I implies that b_1 is displaced by f(I) in Q. Then Q belongs to $[B_0]$. This proves that

$$[B_1] \longrightarrow [B_0].$$

(II.3) If s extends to accept I, then t cannot reject I. So t can also extend to accept I, or it can accept I: (i) If t extends to accept I, then we see that Q belongs to $[B_1]$. (ii) If t accepts I, this implies $b_1 = a$. Moreover, b_1 is displaced by f(I) in t. If $Q = \begin{bmatrix} s' \\ t' \end{bmatrix}$, this means that $\sup (t') = \sup (t') \cup \{b\}$, i.e., $Q \in [A_1]$. Thus we have shown

$$[B_1] \xrightarrow[ee/ea]{} [B_1]/[A_1].$$

 $\mathbf{Q.E.D.}$

5.6

364

366

367

368

- 1 Thomas H. Corman, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. *Introduction to Algorithms*. The MIT Press and McGraw-Hill Book Company, Cambridge, Massachusetts and New York, fourth edition, 2022.
- Mark de Berg, Otfried Cheong, Marc van Kreveld, and Mark Overmars. *Computational Geometry: Algorithms and Applications*. Springer-Verlag, Berlin, revised 3rd edition edition, 2008.
- F. Gavril. Algorithms for minimum coloring, maximum clique, minimum covering by cliques and maximum independent set of a chordal graph. SIAM J. Computing, 1:180–187, 1972.
- Jon Kleinberg and Éva Tardos. Algorithm Design. Addison Wesley, Boston, 2006.
- 5 Kurt Mehlhorn and Peter Sanders. *Algorithms and Data Structures: The Basic Toolbox*. Springer, Berlin-Heidelberg, 2008.
- D. Rose, George Lueker, and Robert E. Tarjan. Algorithmic aspects of vertex elimination on graphs. SIAM J. Computing, 5(2):266–283, 1976. doi:doi:10.1137/0205021.