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Abstract7

The generalized activity selection problem is this: given m ¥ 1 and a set A of intervals representing8

time spans of activities, we want to select m subsets tCi � A : i � 1, . . . , mu such that the intervals9

in each Ci are pairwise disjoint, and |
�m

i�1 Ci| is maximized. The well-known activity selection10

problem corresponds to m � 1. We provide an Opn log nq greedy algorithm. Proving its optimality11

is more subtle than in the m � 1 case.12
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1 Introduction17

The activity selection problem is used in standard text books such as [1, 4] to illustrate18

the greedy method.2 The problem is this: given a set A of intervals, compute a compatible19

set C � A of maximal size. Here, C is compatible if the intervals in C are pairwise disjoint.20

Each interval I P A represents the time span of an activity. In the following, we assume21

half-open intervals of the form I � ps, f s or I � pspIq, fpIqs where spIq and fpIq are the22

start and finish time of activity I. So the set tI, Ju is compatible iff fpIq ¤ spJq.23

The problem is usually attributed to Gavril (1972) who showed that the more general24

problem of maximal independent set in a chordal graph [3, §3] can be computed in Opn3q25

time, given the perfect elimination order3 of G. When specialized to interval graphs, the26

complexity improves to Opn log nq [1, §15.1].27

In this paper, we consider the following generalization: given m ¥ 1 and A, compute m28

compatible sets C1, � � � , Cm of A such that |C1Y� � �YCm| has maximal size. Note that wlog,29

we may assume the Ci’s are pairwise disjoint, and allow some Ci’s to be empty. We may call30

this the multiroom activity selection problem because we imagine the activities in Ci31

to be assigned to the ith room. If m is fixed, we speak of the m-room activity selection32

problem. The original problem of Gavril is the 1-room case. Our main result is a greedy33

algorithm to compute an optimal solution for this problem. We show that its complexity34

remains Opn log nq, but its correctness is considerably more subtle than the 1-room case.35

Related Problems: Despite it’s naturalness, our generalization appears to be new.36

There is a known generalization to the weighted case [5, 1, 4]: suppose we are given a37

function W : A Ñ R¡0, and the goal is to compute a compatible set C � A whose weight38

1 Optional footnote, e.g. to mark corresponding author
2 It is also popular in coding websites such as https://www.geeksforgeeks.org/.
3 In her original paper, she gave an Opn4q method to compute the elimination order. Subsequently Rose,

Luecker and Tarjan [6]. gave an Opm � nq algorithm based on BFS. In this paper, the parameters n, m
denotes the number of vertices and edges of a graph G.
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23:2 Generalized Activity Selection

W pCq �
°

IPC W pIq is maximum. Unfortunately, this generalization needs a dynamic39

programming solution with complexity Ωpn2q; in contrast to our generalization is still40

amenable to a Opn log nq greedy approach.41

As noted above, Gavril viewed the activity selection problem as an maximum independent42

set problem. More precisely, the set of intervals A defines an interval graph GpAq with A as43

vertex set and edges are pairs tI, Ju of intervals with non-empty intersection. So a compatible44

set C � A is just an independent set of GpAq. In this graph setting, Gavril considered the45

minimum coloration problem [3, §2]. In modern terminology, this is computing the46

chromatic number χpGq of a graph G, She gave an Opn2q algorithm to compute χpGq47

for a chordal graph G. When G is an interval graph, Kleinberg and Tardos ([4, p. 122], [1,48

Ex. 16.1-3, p. 179]) improved it to Opn log nq solution. The topic of scheduling has many49

similarities with activities selection. For instance, in the job-shop scheduling problem we are50

given n jobs and m machines (like our intervals and rooms). But our interval is replaced by51

a job Ji that is characterized only by its duration µpJiq ¡ 0: the algorithm not only assigns52

Ji to a machine, but it also has to schedule the starting time spJiq.53

Finally, there is some geometric content inherent in interval graphs, and it will be useful
to adopt the notion of “stabbing numbers” [2, §10.4, p.227] from computational geometry.
Consider the following interval stabbing problem: given m ¥ 1 and A, find a subset
C � A of maximum size and with stabbing number ¤ m. Here, the stabbing number of C

is defined as
stab#pCq :� max

xPR
|x^ C|

where x ^ C :� tI P C : x P Iu is the set of intervals of C that are “stabbed” by x. Let54

OptpA, mq denote the size |C| of the optimal solution.55

� Observation 1. A set C of intervals can be partitioned into k non-empty compatible sets56

iff stab#pCq � k.57

This will follow from the correctness of our greedy algorithm below. Therefore, the58

interval stabbing problem is equivalent the multiroom activity selection problem.59

2 Optimal Greedy Algorithm for 2-Room Activity Selection60

We first give an optimal solution for the two room case (m � 2). It will make the transition61

of the general case much easier.62

Here is a brief overview of the algorithm: let the input set A of n intervals be sorted by63

their finish times:64

I1  f I2  f � � �  f In (1)65

where I  f J iff fpIq   fpJq. Note that we assume that the finish times are distinct. This66

is without loss of generality since we can break ties arbitrarily. Likewise, assume that each67

spIiq ¥ 0. We maintain two lists Roomrjs (j � 1, 2) holding compatible sets of intervals. For68

interval Ii (1 � 1, . . . , n), we process Ii by either Accepting or Rejecting it. This is usual69

Accept/Reject paradigm of greedy methods. The twist is that, we accept Ii by appending it70

to either Roomr1s or Roomr2s.71

The critical question is how to process an interval. For this purpose, let fT imepjq be the
finish time of the last interval placed into Roomrjs (j � 1, 2). So fT imepjq is increased (in
view of (1)) whenever we place a new interval into Roomrjs. Introduce a variable front whose
value is 1 iff fT imep1q ¥ fT imep2q; otherwise front � 2. Also maintain a complementary
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variable back satisfying the invariant back � 3� front. Call Roomrfronts and Roomrbacks

the front and back room respectively. The ordered pair

pfT imepbackq, fT imepfrontqq

is called the state of the rooms. So if s � pa, bq is a state, then a ¤ b. The initial state is72

s0 :�p0, 0q. It turns out that for all non-initial states, we always have the strict inequality73

a   b. In this case, we prefer to denote the state in a more distinctive way, “pa   bq”. Suppose74

that the current state is s � pa ¤ bq. We say I � ps, f s is applicable to s � pa   bq if b   f .75

If I is applicable to s � pa   bq, then we can apply I to s to transform it to a new state76

t � pa1   b1q defined as follows:77

pa1   b1q :�

$&
%

pa   fq if b ¤ s .......Case(I): keep,

pb   fq if a ¤ s   b .......Case(II): flip,

pa   bq if s   a .......Case(III): reject.
(2)78

Write pa   bq
I
ÝÑ pa1   b1q to indicate this transformation. So the sequence (1) induces a79

sequence of transformations:80

s0
I1ÝÑ s1

I2ÝÑ � � �
InÝÑ sn. (3)81

This sequence is well-defined because each Ii is applicable to the previous state si�1.82

Running Example. Suppose the sorted input are these 6 intervals:83

SortpAq � pI1p0, 3s  f I2p1, 4s  f I3p4, 6s  f I4p2, 7s  f I5p6, 8s  f I6p4, 9sq. (4)84

This induces the following state transformations:85

s0p0, 0q
I1

ÝÝÝÝÑ
keep

s1p0   3q
I2

ÝÝÝÝÑ
flip

s2p3   4q
I3

ÝÝÝÝÑ
keep

s3p3   6q
I4

ÝÝÝÝÑ
rej

s4p3   6q
I5

ÝÝÝÝÑ
keep

s5p3   8q
I6
ÝÑ
flip

s6p8   9q.

(5)86

Note that we also indicate the case (keep/flip/reject) of each transformation.87

88

We have now completely described our algorithm which is called Greedy2pAq here:89

90

91

CVIT 2016



23:4 Generalized Activity Selection

Greedy2pAq Ñ B

INPUT: A is a set of n intervals
OUTPUT: Set B � A with stabbing number ¤ 2 with maximal cardinality.

Sort the n intervals of A as in (1).
Let Roomr1s, Roomr2s be compatible sets of intervals, initially empty.
Let fT imep1q Ð fT imep2q Ð 0

and front Ð 1, back Ð 2.
For i � 1, . . . , n,

Case(I) If spIiq ¥ fT imepfrontq,
Roomrfronts.appendpIiq

fT imepfrontq Ð fpIiq � keep the value of front

Case(II) Else if pspIiq ¥ fT imepbackq,
front Ø back � flip front and back

Roomrfronts.appendpIiq

fT imepfrontq Ð fpIiq

Case(III) Else � spIiq   fT imepbackq

Reject Ii � i.e., do nothing
Return B � Roomr1s YRoomr2s

92

Note that Cases (I-II) in the algorithm implement rule (2). Moreover, we identify state si

(i � 1, . . . , n) in (3) as the state at the end of the ith iteration of the for-loop. We also see
why Case(I) and Case(II) are called “keep” and “flip” cases. In the running example above,
Greedy2pAq returns the set Roomr1s YRoomr2s where

Roomr1s � pI1p0, 3s, I6p4, 9sq, Roomr2s � pI2p1, 4s, I3p4, 6s, I5p6, 8s.q

Only one interval I4p2, 7s is rejected.93

The correctness of Greedy2 is based on the following theorem:94

� Theorem 2 (Key).95

(a) If stab#pAq ¤ 2, then Greedy2pAq � A.96

(b) If B � A then |Greedy2pBq| ¤ |Greedy2pAq|.97

� Corollary 3. Greedy2 is correct,98

i.e., if B � Greedy2pAq then stab#pBq ¤ 2 and |B| � OptpA, 2q.99

100

Proof of Corollary If B � Greedy2pAq then clearly stab#pBq ¤ 2 because B is the union of101

two compatible subsets of A. This implies that OptpA, 2q ¥ |B|. So it remains to prove that102

OptpA, 2q ¤ |B|. By definition of OptpA, 2q, there is a set B� � A such that |B�| � OptpA, 2q103

and stab#pB�q ¤ 2. Thus104

OptpA, 2q � |B�| (by choice of B�)105

� |Greedy2pB�q| (by Theorem 2(a))106

¤ |Greedy2pAq| (by Theorem 2(b))107

� |B| (by choice of B).108

109

Q.E.D.110

111
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Of the two parts in Theorem 2, part(a) is the easier to show:112

113

Proof of Theorem 2(a) Assuming stab#pAq ¤ 2, we must show that Greedy2pAq � A, i.e.,114

no interval of A is rejected. Let si � pai   biq (i � 1, . . . , n) be the states in (3). Our result115

follows from 3 CLAIMS:116

CLAIM 0: If ai � 0 then Ii cannot be rejected. Pf: ai � 0 means that Roomrbacks is117

empty. In this case, the transformation si�1
IiÝÑ si falls under Case(I) or (II), i.e., Ii is not118

rejected.119

CLAIM 1: If ai ¡ 0 then there are some j   k ¤ i such that120

ai P Ij X Ik (6)121

Pf: Note that bi � fpIiq and ai � fpIjq for some j   i. Suppose Ij is in Roomr1s (the other122

case is similarly argued). That means that at the end of the jth iteration, front � 1. Since123

Ii must be in Roomr2s, there is a smallest k (j   k ¤ i) such that Ik caused a flip (Case(II)),124

i.e., spIk�1q   ai   fpIkq. Thus ai P Ij X Ik, as CLAIMed.125

CLAIM 2: If ai ¡ 0 then ai�1 ¡ 0 and Ii�1 is never rejected. Pf: Consider the transition126

si
Ii�1
ÝÑ si�1. This cannot result in Case(III) (the rejection of Ii�1) because it would imply127

that ai P Ii�1, and (combined with CLAIM 1) implies stab#pai, Aq � 3, contradicting the128

assumption stab#pAq ¤ 2. Furthermore ai�1 ¡ 0 holds because Case(I) implies ai � ai�1129

and Case(II) implies ai�1 P Ii X Ii�1. Q.E.D.130

131

2.1 Setup for the proof of Theorem 2(b)132

Theorem 2(b) clearly follows if we prove that133

|Greedy2pAq| ¤ |Greedy2pA�q| (7)134

for all A and A� � AY tI�u. To simplify the setting, note that (7) holds if I� is rejected135

by Greedy2pA�q. Therefore we may assume I� is accepted by Greedy2pA�q. Let136

SortpA�q � pJ1  f J2  f � � �  f Jn�1q. (8)137

Thus I� appears in (8) as Ji� for some 1 ¤ i� ¤ n� 1. The sequence (8) induces these state
transformations

s0
J1ÝÑ s1

J2ÝÑ � � �
Jn�1
ÝÑ sn�1.

We want to compare the state transformations of Greedy2pA�q with those of Greedy2pAq.138

But Greedy2pAq produces one less state than GreedypA�q. We will make them agree by an139

artifice: let A0 :�AY
 
I0( where I0 :�p�1, fpI�qs be an artificial interval that will always140

be rejected by our algorithm. Therefore the sorted sequence SortpA0q agrees with (8) except141

that Ji� � I� is replaced by I0. Let pt0, t1, . . . , tn�1q be the corresponding sequence of142

states induced by SortpA0q. Now we can compare si with ti for i � 1, . . . , n � 1. Clearly,143

si � ti for i   i�. But si� � ti� since I� is accepted and I0 is rejected. Let Pi :� r si
ti
s be144

the ith state pair (or simply pair). Also si and ti are the upper and lower states of Pi.145

We call Pi an equality pair if si � ti. So the first inequality pair is Pi� called the critical146

pair. In the rest of our analysis, we consider this sequence of state pairs147

P0 ÝÑ P1 ÝÑ � � � ÝÑ Pn ÝÑ Pn�1 (9)148

CVIT 2016



23:6 Generalized Activity Selection

Moreover, for i � i� 1, we may write

Pi�1
JiÝÑ Pi

since the same Ii is used to transform the upper and lower states of Pi�1.149

Running Example (contd). Let I� � p3, 5s, then SortpA�q{SortpA0q is150

pJ1p0, 3s  f J2p1, 4s  f pI
�{I0q  f J4p4, 6s  f J5p2, 7s  f J6p6, 8s  f J7p4, 9sq (10)151

It induces the transformations of pairs:152

P0
J1ÝÝÝÝÑ
kk

P1 r 0 3
0 3 s

J2ÝÝÝÝÑ
ff

P2 r 3 4
3 4 s

I�{I0
ÝÝÝÝÑ

fr
P3 r 4 5

3 4 s
J4ÝÝÝÝÑ
fk

P4 r 5 6
3 6 s153

J5ÝÝÝÝÑ
rr

P5 r 5 6
3 6 s

J6ÝÝÝÝÑ
kk

P6 r 5 8
3 8 s

J7ÝÝÝÝÑ
rf

P7 r 5 8
8 9 s . (11)154

Since i� � 3, the critical pair in (11) is P3 � r 4 5
3 4 s. Note that the subscript xy P tk, f, ru

2
155

in the notation156

Pi�1
� si�1

ti�1

� JiÝÝÝÝÑ
xy

Pi r
si
ti
s (12)157

says that the upper transformation si�1 Ñ si is Case x and lower transformation ti�1 Ñ ti158

is Case y. Call xy the type of the transition. The type is completely determined by Pi�1159

and Pi. Check: the lower transformations in (11) is basically given by (5).160

161

Equivalent Pairs. For P �
�

a¤b
c¤d

�
, let supppP q :� ta, b, c, du. E.g., supppr 1 4

0 4 sq �162

t0, 1, 4u. We say two pairs P and Q are equivalent if there is a monotone function163

T : supppP q Ñ supppQq such that Q � T pP q �
�

T paq¤T pbq
T pcq¤T pdq

�
. Here, T is a monotone means164

x ¤ y iff T pxq ¤ T pyq. It is easy to check that this is an equivalence relation on state pairs,165

denoted P � Q. E.g., , r 1 4
0 4 s � r 3 5

1 5 s but r 0 3
0 2 s � r 0 2

0 3 s. Call each equivalence class a166

class pair.167

Strict Pairs. A state s � pa, bq is strict if a   b. Other than the initial state p0, 0q,168

subsequent states must be strict. A pair P � r s
t s is strict if both s and t are strict. It is easy169

to verify that for all i ¥ 2, Pi � r si
ti
s is strict. We largely focus on strict pairs; henceforth170

the unqualified “pair” will mean “strict pair”.171

Our rule (2) for transforming states easily implies:172

� Lemma 4. We have | supppPiq|   4 for all Pi in the sequence (9).173

E.g., P � r 1 3
2 4 s cannot occur in (9). In view of this lemma, we see that every strict pair is174

equivalent to one of these 7 canonical pairs with support in t1, 2, 3u:175

(13)176

Let V2 � trAs, rBs, rCs, rDs, rEs, rF s, rGsu be the set of canonical pairs from (13). We177

interchangeably view α P V2 as a pair as well as an equivalence class. Thus write both P � α178

and P P α.179

� Observation 5.180
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(a) There are exactly 7 class pairs, and they may be identified with the elements of V2.181

(b) The critical pair Pi� in (9) is equivalent to either rAs or rBs.182

Transition graph G2: Let G2 � pV2, E2q be the digraph whose edges are defined
as follows: pα ÝÑ βq P E2 iff there exist state pairs P � α and Q � β and type τ P

tk, f, ru
2
z trru such that P

I
ÝÑ

τ
Q for some I. We also write α ÝÑ

τ
β in this case, and say4

that τ is applicable to α. E.g. we see that τ � kk is applicable to every α P V2 because
P

I
ÝÑ
kk

Q if spIq ¡ a for all a P supppP q. The requirement that τ � rr means that I is
accepted by either upper or lower state of P . If α ÝÑ

τi

βi for i � 1, 2, . . ., we can write

α ÝÝÝÝÑ
τ1{τ2{���

β1{β2{ . . . .

E.g., We see that there exactly two types, kk and ff , that are applicable to rEs; moreover

rEs ÝÝÝÝÑ
kk{ff

rEs{rEs.

The following lemma shows that for α � rEs, there are exactly 3 types that are applicable to183

α. It is proved by simple enumeration:184

� Lemma 6.185

The complete list of types applicable to each α P V2 are enumerated as follows:186

(a) rAs ÝÝÝÝÑ
kk{fk{ff

rEs{rCs{rCs187

(b) rBs ÝÝÝÝÑ
kk{fk{rf

rCs{rCs{rDs188

(c) rCs ÝÝÝÝÑ
kk{ff{rf

rCs{rEs{rGs189

(d) rDs ÝÝÝÝÑ
kk{kf{ff

rEs{rF s{rF s190

(e) rEs ÝÝÝÝÑ
kk{ff

rEs{rEs191

(f) rF s ÝÝÝÝÑ
kk{ff{fr

rF s{rEs{rBs192

(g) rGs ÝÝÝÝÑ
kk{kf{fr

rF s{rF s{rAs193

These edges completely determine the graph G2 as shown in Figure 1.194

Structure of G2: Node rEs is the only sink. The elementary cycles of G2 consist of 3
self-loops at the vertices rCs, rEs, rF s, and 3 non-trivial cycles

@
rAs ÝÑ rCs ÝÑ rGs

D
,
@
rBs ÝÑ rDs ÝÑ rF s

D
,
@
rBs ÝÑ rCs ÝÑ rGs ÝÑ rF s

D
.

Define ∆ : V2 Ñ t1, 0,�1u where195

∆pαq �

$&
%

1 if α P trAs, rBs, rCsu ....(positive class)
0 if α P trDs, rF s, rGsu ....(neutral class)
1
2 else. ....(ambiguous class)

(14)196

Thus, the classes in V2 are classified as positive, neutral or ambiguous by ∆. We also call a197

pair P positive, neutral or ambiguous if its equivalence class is positive, neutral or ambiguous.198

We will next see how this classification is used.199

4 Unlike P ÝÑ Q having a unique type, α ÝÑ β may have more than one type.

CVIT 2016



23:8 Generalized Activity Selection

Figure 1 Transition graph G2: Edges have �1{0{ � 1 weights: they have weight 0 unless noted
otherwise.

Proof of Theorem 2(b)200

Consider the sequence (9) of pairs, and let201

α0 ÝÑ α1 ÝÑ � � � ÝÑ αn�1 (15)202

be the corresponding sequence of classes where Pi � αi. Let Upiq (resp., Lpiq) be the203

total number of intervals accepted by the upper (resp., lower) states of P0, P1, . . . , Pi. Let204

δpiq :�Upiq � Lpiq. Clearly, δpiq � 0 for all i   i� and δpi�q � 1.205

CLAIM 1: For i ¡ i�, if Pi�1 ÝÑ
xy

Pi then206

δpiq � δpi� 1q � W pP ÝÑ
xy

Piq :�

$&
%

�1 if x � r,

�1 if y � r,

0 else.

(16)207

Pf: We verify one of these 3 cases: x � r implies that Upiq � Upi� 1q. But it also implies
that y � r, and hence Lpiq � Lpi� 1q � 1. So

δpiq � Upiq � Lpiq � Upi� 1q � pLpi� 1q � 1q � δpi� 1q � 1.

The other two cases are similar. This establishes CLAIM 1.208

As defined, δpiq depends on the pairs Pj for all j � 0, . . . , i. We next show that δpiq209

depends only on the equivalence class of Pi alone (although δpiq can be 0 or 1 if Pi is210

ambiguous).211

CLAIM 2: The formula for W pP Ñ Qq in (16) is a function of the underlying classes,212

i.e.,213

W pP Ñ Qq � ∆pβq �∆pαq (17)214

where P � α and Q � β, and Q is not ambiguous. Pf: Suppose W pP Ñ Qq � �1. From215

Lemma 6(b,c), we see the two possibilities: pα, βq � prBs, rDsq, or pα, βq � prCs, rGsq.216

Since ∆prBsq � ∆prCsq � 1 and and ∆prDsq � ∆prGsq � 0, we verify (17).217

Suppose W pP Ñ Qq � �1. Again Lemma 6(f,g) shows the two possibilities: pα, βq �218

prF s, rBsq, or pα, βq � prGs, rAsq. We may again verify (17).219

Finally, if W pP Ñ Qq � 0, we see that ∆pαq � ∆pβq in the remaining edges, verifying220

(17).221
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CLAIM 3: δpi�q � ∆pαi�q � 1.222

Pf: By our setup, δpi�q � 1. By Observation 5, Pi� is equivalent to rAs or rBs and223

∆prAsq � ∆prBsq � 1.224

CLAIM 4: For i ¥ i�,225

δpiq

"
� ∆pαiq if αi � rEs,

P t0, 1u if αi � rEs.
(18)226

Pf: We prove this by induction on i. The basis i � i� is shown in CLAIM 3. If αi � rEs227

then:228

δpiq � δpi� 1q �W pPi�1 Ñ Piq (CLAIM 1)229

� ∆pαi�1q �W pPi�1 Ñ Piq (induction hypothesis)230

� ∆pαi�1q � p∆pαiq �∆pαi�1q (CLAIM 2)231

� ∆pαiq.232

Suppose αi � rEs. Since rEs is a sink and αi� � rEs, there is a last time j such233

that j   i and αj � rEs. We had proved by induction that δpjq � ∆pαjq. So it234

remains to show that for all k ¡ j, δpkq � δpjq. Looking at Lemma 6(a,c,d,f), we235

see verify ‘ that W pPj Ñ Pj�1q � 0 for any transition from an non-ambiguous class236

into the ambiguous class. This means that δpj � 1q � δpjq. Next, we also see that237

W pP Ñ Qq � 0 for transitions between two ambiguous pairs (by Lemma 6(e)). This238

proves that δpiq � δpi � 1q � W pPi�1 Ñ Piq � δpi � 1q. Repeating this, we see that239

δpiq � δpjq. Our CLAIM follows since ∆pαjq P t0, 1u.240

To conclude our proof, CLAIM 4 implies that δpn�1q P t0, 1u. But δpn�1q � |Greedy2pA�q|�241

|Greedy2pA0q|. Thus |Greedy2pA�q| ¥ |Greedy2pA0q|, proving Theorem 2(b).242

3 General Case243

We now consider the general case of m ¥ 2 rooms. Although many concepts introduced for244

m � 2 remain intact, we need to generalize some.245

Our algorithm now maintains m rooms, and the ith interval Ii is again rejected or else246

it is accepted into one of the m rooms. The ith room is associated with fT imepiq, which247

equals fpIq where I was last put into the room. We have an array frontr1..ms where248

frontris P t1, . . . , mu are used to maintain this invariant:249

fT imerfrontr1ss ¤ fT imerfrontr2ss ¤ � � � ¤ fT imerfrontrmss. (19)250

These inequalities are strict unless both values are 0.251

States. We now define a state to be s � pa1   a2   � � �   akq with 1 ¤ k ¤ m with252

supppsq � ta1, . . . , aku. The initial state is p0q where k � 1 and a1 � 0; but thereafter,253

a1 ¡ 0. Note that our notion of states departs slightly from the m � 2 case. The254

rank of s is k, corresponding to the number of non-empty rooms so far. We map the255

sequence f � pf1 ¤ f2 � � � � � � ¤ fmq of (19) into a state by removing any fi � 0. E.g.,256

f � p0, 0, 2, 5, 6q ÞÑ s � p2, 5, 6q. The rule (2) for transforming states will now explicitly allow257

for the increase in rank: if interval I is applicable to s � pa1   � � �   akq (i.e., fpIq ¡ ak),258

then its application to s results in a new state t � pb1   � � �   bℓq defined as follows: let259

i� :� argmaxk
i�0 tai : ai ¤ spIqu (where a0 � 0).260

t �

$&
%

pa1   � � �  yai�   � � �   ak   fpIqq if i� ¥ 1, .... Case(i�)
pa1   � � �   � � �   ak   fpIqq if i� � 0 and k   m, .... Case(0)
s if i� � 0 and k   m, .... Case(�1)

(20)261
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where the notation xai� in Case(i�) means that ai� is omitted from the sequence. As usual,262

we write s
I
ÝÑ t. E.g., let m � 4. Then s � p1, 3, 5q p0,7s

ÝÝÝÝÑ t � p1, 3, 5, 7q with i� � 0.263

Also s � p1, 3, 5q p4,7s
ÝÝÝÝÑ t � p1, 5, 7q with i� � 2. The type of the transition s

I
ÝÑ t in264

(20) is reject (rej) in Case(�1), accept (acc) in Case(i ¥ 1) and extend (ext) in Case(0).265

Thus, the rank of s is incremented iff the type is ext. Also s accepts I means that some266

a P s is displaced by fpIq. Write s ÝÑ
τ

t when the type is τ P tacc, ext, reju.267

� Lemma 7. Let s � pa1   � � �   akq be a state. If R � A is the current set of intervals268

accepted into in the k rooms, then stab#pai, Rq � k � i� 1.269

The proof is similar to CLAIM 1 in the proof of Theorem 2(a). Indeed, the m-room270

generalization of Theorem 2(a) follows from this.271

Pairs. Again we consider the sequence of state pairs in (9) corresponding to SortpA�q272

and SortpA0q. Let P �

�
s

t

�
�

�
a1   a2   � � �   ak

b1   b2   � � �   bℓ

�
be such a pair. Let supppP q �273

supppsq Y suppptq and rankpP q � max trankpsq, rankptqu. Two states s, t are equivalent274

if there exist a monotone map T : supppsq Ñ suppptq such that T psq � t. Two pairs P, Q275

are equivalent if there is a monotone map T : supppP q Ñ supppQq such that T pP q � Q.276

Say P is canonical if supppP q � t1, 2, . . . , ku where k � rankpP q. Clearly, every pair is277

equivalent to a unique canonical pair.278

Superclasses: In order to achieve a general analysis, we cannot naively generalize279

Lemma 6 because we would be analyzing transition graphs with Ωpm2q nodes. Instead, define280

the following set of superclasses:281

Vm :� trA1s, rB1s, rA0s, rB0s, rEsu . (21)282

Each superclass is a sets of pairs of rank ¤ m:283

rA1s is the set of all pairs r s
t s such that pDaqrsupppsq � suppptq Y taus.284

rB1s is the set of all pairs r s
t s such that pDa   bqrsupppsq Y tbu � suppptq Y taus.285

rA0s is the set of all pairs r s
t s such that pDbqrsupppsq Y tbu � rsuppptqs.286

rB0s is the set of all pairs r s
t s such that pDa ¡ bqrsupppsq Y tbu � suppptq Y taus.287

rEs is set of all equality pairs.288

The superclasses are no longer equivalence classes. E.g., r 2 3 4
1 3 4 s � r 1 3 4

1 2 4 s but both289

pairs belong to rB1s.290

� Observation 8.291

(a) Each superclass α P Vm is a union of equivalence classes of pairs.292

(b) The critical pair Pi� in (9) belongs to either rA1s or rB1s.293

The transition graph Gm � pVm, Emq: We have an edge pα Ñ βq P Em iff there exist294

pairs P P α, Q P β and interval I such that P
I
ÝÑ Q. This graph is shown in Figure 2.295

Furthermore, if P
I
ÝÑ
xy

Q (for some xy P ta, e, ru
2
� tacc, ext, reju

2) then we write α ÝÑ
xy

β296

and say5 xy is applicable to α. For example, the type rr is always applicable to any297

superclass. We call rr the trivial type because always it represents self-loops: α ÝÑ
rr

α.298

The following theorem enumerates all non-trivial types applicable to each α P Vm.299

5 But β may not be uniquely determined by α and xy. E.g., Theorem 9(II) shows that rB1s ÝÑ
aa

rEsorrB1s.
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Figure 2 Transition Graph Gm

� Theorem 9.300

The complete list of non-trivial types applicable to each α P Vn is enumerated as follows:301

(I) rA1s ÝÝÝÝÑ
aa{ae{ee{re

rA1s{rEs{rA1s{rB0s302

(II) rB1s ÝÝÝÝÑ
aa{ra{ee{ea

rEsorrB1s{rB0s{rB1s{rA1s303

(III) rA0s ÝÝÝÝÑ
aa{ea{ee{er

rA0s{rEs{rA0s{rB1s304

(IV) rB0s ÝÝÝÝÑ
aa{ar{ee{ae

rB0sorrEs{rB1s{rB0s{rA0s305

(V) rEs ÝÝÝÝÑ
aa{ee

rEs{rEs306

307

Proof. See appendix. Q.E.D.308

309

We summarize our main result as follows:310

� Theorem 10 (Main Result). The multiroom activity selection problem can be optimally311

solved by our greedy algorithm as defined by (20). This algorithm can be implemented in312

Opn log nq.313

314

Proof. The correctness of the greedy algorithm follows from the above generalization of315

Theorem 2. The main issue is the complexity claim. If m is fixed, this is no issue. But in the316

generalized problem, m is part of the input (m ¤ n). Above, we said that we maintain the317

invariant (19) using an array frontr1..ms. Then it Opmq to update this array for each interval318

Ii, or a total of Ωpmnq time. This is not acceptable if m � Ωplog nq. Our solution is fairly319

standard: suppose only k rooms are currently in use (k ¤ m). Use any balanced binary tree320

T (e.g., an AVL tree) to store the pairs tpfT imer1s, 1q, . . . , pfT imerks, kqu, sorted by the first321

component fT imeris of each pair. Given interval I, we use T to find the node pfT imerjs, jq322

(j � 1, . . . , k) such that fT imerjs is the largest value satisfying fT imerjs ¤ spIq. If such a323

j exists, we can delete node containing pfT imerjs, jq and insert the pair pfpIq, jq. We can324

update fT imerjs Ð fpIq. Suppose j does not exists: there are two possibilities: if k � m, we325

will reject I and there is nothing to do. Otherwise, we extend the current state by inserting326

the pair pfpIq, k � 1q into T , update fT imerk � 1s Ð fpIq. Thus we can implement the327
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transformation (20) in Oplog mq � Oplog nq time. Q.E.D.328

329

4 Conclusion330

This paper introduced a novel generalization of the activity selection problem, and gave331

a relatively simple optimal greedy algorithm with an interesting proof. Our multi-room332

scenario opens up many possibilities for generalization. Which of these generalizations333

remains subquadratic in complexity? For instance, suppose the m rooms come in 2 sizes (big334

and small) and some activities can only be assigned to big rooms. Is there still an optimal335

greedy algorithm?336



C. Yap and B. Zhang 23:13

A Appendix: Full Proof of Theorem 9 and References337

Theorem 9338

The complete list of non-trivial types applicable to each α P Vn is enumerated as follows:339

(I) rA1s ÝÝÝÝÑ
aa{ae{ee{re

rA1s{rEs{rA1s{rB0s340

(II) rB1s ÝÝÝÝÑ
aa{ra{ee{ea

rEsorrB1s{rB0s{rB1s{rA1s341

(III) rA0s ÝÝÝÝÑ
aa{ea{ee{er

rA0s{rEs{rA0s{rB1s342

(IV) rB0s ÝÝÝÝÑ
aa{ar{ee{ae

rB0sorrEs{rB1s{rB0s{rA0s343

(V) rEs ÝÝÝÝÑ
aa{ee

rEs{rEs344

345

Proof. Case (V) is immediate. Due to the symmetry between A1 and A0, and between B1346

and B0, we only need to prove Cases (I) and (II). Cases (III) and (IV) may be derived by 3347

simultaneous exchanges A1 Ø A0, B1 Ø B0, and xy Ø yx. to any transition α ÝÑ
xy

β.348

Figure 3 Canonical pairs for rA1s and rB1s: two variants of each are shown.

Case (I) Refer to Figure 3(top) illustrating a canonical pair P � r s
t s P rA1s. Let s �349

pa1   � � �   akq, t � pb1   � � �   bk�1q and b � supppsqz suppptq. The figure350

distinguishes two possibilities: b � a1 or b ¡ a1. Consider the transition P
I
ÝÑ Q351

for some applicable interval I.352

We consider 3 cases, depending on whether s accepts, extends to accept or rejects353

I:354

(I.1) If this interval is accepted by state s, then t cannot reject I. So t can
accept I, or it can extend to accept I. (i) If t accept I, then we see that
Q belongs to rA1s. (ii) If t extends to accept I, this implies b1 ¡ b � a1,
and a1   spIq   b1. Moreover, a1 P s is displaced by fpIq, and t adds fpIq.
If Q �

�
s1

t1

�
, this means that s1 � t1 i.e. Q belongs to rEs. Thus we have

shown
rA1s ÝÑ

aa{ae
rA1s{rEs.

(I.2) If s extends to accept the interval, then t must extend to accept I. So both
s and t simply add the element fpIq. Then Q belongs to rA1s. This proves
that

rA1s ÝÑ
ee

rA1s.

(I.3) If s rejects I, then t must extend to accept I. After adding fpIq to t, the
resulting pair satisfies supppsq Y fpIq � suppptq Y b. Since b   fpIq, Q

belongs to rB0s. This proves that

rA1s ÝÑ
re

rB0s.
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Case (II) Refer to Figure 3(bottom) illustrating a canonical pair P � r s
t s P rB1s. By355

definition of rB1s, we may assume that s � pa1   � � �   akq, t � pb1   � � �   bkq356

and supppsq Y tbu � suppptq Y tau for some a   b. Also, there is a unique357

c P suppptq that precedes b. The figure distinguishes two possibilities: a � b1 or358

a ¡ b1. Assume I is applicable to P , i.e., fpIq ¡ ak. Consider 3 possibilities: s359

accepts I, or rejects I, or extends to accepts I.360

(II.1) If I is accepted by s, then it must also be accepted by t. But, what is the361

superclass of Q where P
I
ÝÑ
aa

Q? This turns out to be non-unique.362

Let d P supppsq be displaced when s accepts I. Similarly, let d1 P suppptq
be displaced when t accepts I. If d � b then d1 � d, and we see that Q

still belongs to rB1s. If d � b, then we see that d1 � c. Now, there are two
possibilities: either a   c in which case Q P rB1s, or a � c in which case
Q P rEs. This proves our claim that

rB1s ÝÑ
aa

rEsorrB1s.

(II.2) If s rejects I, then t must also reject I unless a � b1. If a � b1, t may
accept I but it may not extend t to accept I. Accepting I implies that b1
is displaced by fpIq in Q. Then Q belongs to rB0s. This proves that

rB1s ÝÑ
ra

rB0s.

(II.3) If s extends to accept I, then t cannot reject I. So t can also extend
to accept I, or it can accept I: (i) If t extends to accept I, then we
see that Q belongs to rB1s. (ii) If t accepts I, this implies b1 � a.
Moreover, b1 is displaced by fpIq in t. If Q �

�
s1

t1

�
, this means that

supppt1q � supppt1q Y tbu, i.e., Q P rA1s. Thus we have shown

rB1s ÝÑ
ee{ea

rB1s{rA1s.

Q.E.D.363

364
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