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Abstract

The Real/Expr package is a C++ project to support the precision-driven
approach to exact computation of geometric algorithms. The package is built
on top of the class Real that encompasses a variety of numerical representations.
The class Expr captures a set of algebraic expressions on which any comparison
can be done precisely.

The software libraries described here are available via the Web page
http://simulation.nyu.edu/projects/exact/.






1 Introduction

Robust implementation of geometric algorithms is difficult to achieve. The main prob-
lem arises from the use of fized-precision arithmetic such as machine floating-point
arithmetic. To overcome this, the exact computation method which uses arbitrary-
precision arithmetic has been proposed. However, its naive interpretation, namely,
computing all numerical quantities exactly, is too inefficient. Notice that what needs
to be exact is a combinatorial structure; but the numerical quantities associated with
the combinatorial structure need not be exact. This observation suggests another in-
terpretation of the exact computation, precision-driven computation, where numerical
quantities will be computed to be precise enough so that decisions for the related
combinatorial structure can be made exactly. As a tool for this approach of the exact
computation, we would like to introduce the Real/Expr package in which users can
perform the precision-driven computation over algebraic expressions.

Geometric algorithms characteristically involve geometric data structures. By a
geometric data structure, we mean a combinatorial data structure together with nu-
merical quantities. Moreover, there are implicit consistency constraints governing the
relation between the combinatorial structure and its associated numerical quantities.
This means that perturbing the numerical values without taking into account the
combinatorial structure can lead to qualitatively different or inconsistent states, which
often result in catastrophic errors in algorithms.

Many researchers have devised methods to address non-robustness problems within
the fixed-precision arithmetic. We believe that non-robustness in geometric algorithms
is inherent when one is committed to fixed-precision, and the best general policy
for attacking non-robustness is the exact computation, to compute geometrical data
structures exactly.

Exact computation has a naive interpretation, namely, to compute every numerical
quantity exactly. This surely guarantees the robustness of algorithms. However, it is
too inefficient in general because occasionally huge numerical quantities must be dealt
with.

We will take another approach, where computing exactly is taken to mean the
combinatorial structure must be mathematically correct, but the associated numerical
quantities may be approximations that are consistent with the combinatorial structure.
This interpretation of exact computation could be realized with much less expensive
cost than the naive one.

Now, we compare fixed-precision arithmetic and arbitrary-precision arithmetic.

In fixed-precision arithmetic (e.g. machine floating-point arithmetic), all the nu-
merical objects are limited to some universal fixed-precision. The arithmetic opera-
tions are fast, and often there are hardware supports. Since the size of an object is
fixed, the memory allocation for a brand new object can be statically done.

In arbitrary-precision arithmetic, there is no limitation for precisions of numerical
objects (officially, of course. In practice, there is a limitation based on the limited
available resources, etc). The arithmetic operations could be done without causing
overflow or underflow, but the speed is slow. From the view point of complexity, if the
size of objects becomes larger, the cost for the operations grows at least proportionally
to the size of objects (usually, much worse). At execution time, the memory allocation



for a newly constructed object is a much more serious problem: since the size of an
object is unknown, the memory allocation for the object should be done dynamically.
We must use arbitrary-precision arithmetic. So, somehow we would like to limit
the growth of the size of numerical objects. To achieve this goal, we introduce an
arbitrary-precision floating-number representation in the following format:

(mantissa & error) x BASE®Porent,

where mantissa and exponent are integers of arbitrary length and error is a non-
negative integer. A triple (mantissa, error,exponent) is interpreted as any (real alge-
braic) number in the interval

[(mantissa — error) x BASE®?"" (mantissa + error) X BASEexpO”e"t] :

Obviously, any (fixed-precision) floating-point number or an integer of arbitrary length
can be represented by some arbitrary-precision floating-point number. But, we need
more: to perform the exact computation, we must deal with rational numbers, or
much more generally, algebraic numbers. Here, an algebraic number is defined to be a
root of some integer coefficient polynomial. Any rational or algebraic number can also
be represented by our arbitrary-precision floating-point number representation with
an error component error > 0. Note that the correspondence between rational (or
algebraic) numbers and our arbitrary-precision floating-point representations is not
bijective. In fact, any arbitrary-precision floating-point representation with non-zero
error contains infinitely many rational (or algebraic) numbers.

Using this arbitrary-precision floating-point number representation, we could re-
alize our interpretation of exact computation with reduced size of numerical objects.
For example, to determine the sign of a non-zero rational number, we simply approxi-
mate it in terms of our arbitrary-precision floating-point representation which does not
contain 0. If the rational number has a numerator and a denominator of length O(n)
and O(d) bits, respectively, then we need consider a arbitrary-precision floating-point
number whose mantissa is of length 1 bit and exponent is of length O(lg |n — d|) bits.

Furthermore, to minimize inefficiency, we restrict the range of error so that it
fits some fixed-precision number representation (e.g. machine unsigned long integer).
Whenever an object happens to have error which is out of range, we truncate error as
well as mantisaa so that error will fall into the standard range. This way, we prevent
mantissa from growing rapidly.

Given this arbitrary-precision floating-point number representation, we now in-
troduce our Expr package which embodies our interpretation of exact computation:
“precision-driven computation”. The Expr package captures a set of algebraic expres-
sions involving +, —, -, / and \/ over rational numbers. An expression is expressed
as a rooted DAG (directed acyclic graph), and maintains an approximation of the ex-
pression. When the precision of the root is specified, we recursively drive the precision
of each of the children nodes, so that if the subexpression rooted at the child node is
approximated to that precision then we could get the approximation of the root to the
required precision. For these approximations, we use our arbitrary-precision floating-
point numbers, and thus, Expr package returns the interval to which the value of the



expression belongs while the width of the interval is controlled by the specified preci-
sion. The precision could be set explicitly by users, or internal function calls such as
calls to the equality operators.

Many fundamental predicates of geometric algorithms are expressed by algebraic

expressions. For example, “P is left of the directed line segment ﬁ” is expressed as a
sign of the signed volume (the determinant of the matrix whose entries are coordinates
of P, @Q and R and 1’s) of APQR. For these predicates, our Expr package is best
applicable. We construct the expression for the signed volume, and approximate its
value precisely enough so that we can determine its sign; but we never compute the
value itself.

In this paper, we describe the design, the algorithms, and the implementation
techniques of our package.

2 Overview

In this section, we introduce the basic elements in our Real/Expr package and raise
the issues to be addressed in this paper.

The package is written in the C++ language, and is realized as a set of C++ class
libraries. There are three major classes: the class Expr, the class Real and the class
BigFloat.

2.1 The Class Expr

The class Expr captures a set of algebraic expressions.

Formally, an instance of Expr is a rooted DAG where each leaf can store some value
in Q and each internal node represents one of the operations +, (unary and binary)
—, -, / and NE If every leaf of the tree rooted at e stores a value in Q then e can be
viewed as an element of a real algebraically closed field D which contains Q. We call
this element in D the exact value of e. Note that the exact value of e is not a data
member of Expr.

Each instance e of Expr maintains some real value x and precision p such that z
approximates the exact value of e to precision p. The precision p is set explicitly by
the user, or implicitly by the package. For example, the comparison operation e > 0
will set the necessary precision p to determine the sign of the exact value of e. To get
an approximation x of e to p, we drive the precision top-down from the node e to its
descendent leaves, and collect approximations bottom-up from leaves to the node e. In
this case, the precision of an instance is set by its parent node. Setting the necessary
precisions is the main algorithmic issue of Expr.

Another important issue is the semantics of Expr. We would like users to use our
package as a tool for symbolic computation. For this reason, we define the special
semantics for assignments that is different from the standard grammar of C++. Since
the “pass-by-value” rule cannot be taken, the realization of our scheme is a non-trivial
issue in the implementation of Expr.



2.2 The Class Real

Instances of the class Real are used for the approximate values of instances of Expr
and the exact values in leaves of some Expr trees.

The class Real encompasses a variety of number representations: machine integers
(int, long), machine (double-precise) floating-point numbers (double), integers of
arbitrary length (BigInt) and rational numbers (Rational), as well as our arbitrary-
precision floating-point representation BigFloat. Currently, we use GNU’s Integer
and Rational for BigInt and Rational, respectively.

The main algorithmic issue here is how to define the operations +, (unary and
binary) —, -, / and Vv More specifically, the way to determine the type of the result
of binary operators applied to arguments of different types and the way to define
operations without causing overflow or underflow become important topics.

The implementation issue is how to realize the class that has an ability to capture
various types. We would like to implement Real operations in an object-oriented way,
that is, operations are implemented so that, given specific operand(s), the compiler
can choose the correct algorithm depending on the type(s) of the operand(s).

2.3 The Class BigFloat

The class BigFloat realizes arbitrary-precision floating-point number representation
with the error component. Instances of BigFloat are intended to approximate real
numbers. If an instance of BigFloat has a non-zero error then it is actually an interval
and approximates any real number which belongs to that interval.

There are two algorithmic issues for BigFloat.

One is the design of an approximation algorithm: given a rational number and
precision, find a BigFloat which approximates the rational number to that precision.

The other is the design of the arithmetic operations and the function va for
BigFloat. Since an instance of BigFloat represents an interval, the operations must
be defined so that they are valid for any real number in that interval.

The class BigFloat has a member mantissa which is declared to be an integer of
arbitrary length. Accessing mantissa slows down the execution speed of the package
seriously. We show how the use of the “letter-envelope” technique helps to reduce
unnecessarily accesses to the mantissa components.

3 BigFloat

In this section, we describe our arbitrary-precision floating-point package BigFloat
implemented as a class library in C++. In addition to the standard libraries of C++,
we assume that we have a class library of integers of arbitrary length such as GNU’s
Integer.

Some basic ideas are described in [DY93].



3.1 Definition

Fix any positive integer ¢ and let B = 2°. For the implementation, it is convenient

to set ¢ as follows; if the largest unsigned long is 2L — 1 then ¢ = [gJ -2, e.g.,

L=32=c=14.
Each BigFloat number is a triple (m, err, exp) where

e mantissa m € Z = {0, +1,+2,...},

e error err € N={0,1,2,...},

e exponent exp € Z.

We say the BigFloat (m,err, exp) is error-normalized (or simply normalized) if
err € {0,1,...,4B —1}.

Unless otherwise specified, we assume BigFloat numbers are normalized.
BigFloat numbers are intended to be approximations for real numbers. A real
number X is said to belong to a BigFloat number (m, err, exp) if

X € [(m — err)B®?, (m + err)B*?] .
Let (r,a) € Nx Z. A BigFloat (m,err, exp) is said to have an error-bound [r, a] if

err < |m|27"
OR
errB¢? < 279

3.2 Approximation

Let X be a real number and (r,a) € N X Z.
We say a real number X approzimates X to precision [r,a] and write

X~X [, al
if
‘X - 5(\‘ < max{|X| 277, 2*“} .
Intuitively, this notation suggests that X is the “output” for input X and [r, a]. Here,
r and a specify relative and absolute bounds on the error.

We say a BigFloat x = (my,erry,exp,) approrimates X to precision [r,a] and
write

x = X|r, al
if X belongs to z and
erry B¢ < rnax{|X| 277, 2‘“} :
If z approximates X then m,B®P* = X|[r a], i.e.,

X = m, B < max{|X[27, 27},



3.2.1 Approximation Algorithm

Given R € Q and (r, a) € NxZ, we would like to compute a BigFloat x = (my, erry, exp,)
with the error-bound [r, a] such that R belongs to 2. Suppose

N
R=7%
where (N, D) € Z X Zy. Then, x will be computed by the function div (N, D, r, a).
We now describe the algorithm for div (N, D, r,a).
If N =0 then it returns the BigFloat zero:

my; < 0
err, < 0
erp, <+ 0.

Now, assume N # 0. Basically, the mantissa m, is computed by performing the
division |N|/|D| (up to the sign of ND denoted sgn (ND)). The mantissa m, is
an integer which must be long enough to have the required error-bound. Thus, we
actually shift |N| left or right and invoke the integer division so that we may control
the length of the quotient. Shifting must be done chunk by chunk, that is, ¢ bits by ¢
bits.

First, suppose |N| is shifted left s > 0 chunks. Then, the integer division |N| B*/ |D)|
yields the equality

IN|B® = W\'[J)?SJ |D| 4+ remainder where 0 < remainder < |D|.

Thus
|N|BSJ s < |N _Q|N|BSJ remainder) s Q|N|BSJ ) s
{IDI B~ < \D\_ |+ G ) BT < | +1) B

Note remainder = 0 iff |D| divides |N| B*. Hence, we set

My sgn(ND)VMBSJ

1D
0 if |D| divides |N| B®

err, < )
r { 1 otherwise

eTPy — —S.

Next, suppose |N| is shifted right ¢ > 0 chunks. In this case, |N| is actually

truncated and the the quotient [%J of the integer division [%J / |D| satisfies

NL IN] N
hth < o < |pE|th

Thus




Hence, we set

My sgn(ND){ V] J
erry, <+ 1
exrp, <+ t.

Note err, is always set to be 1 in this case. We could have a slightly more precise algo-
rithm if the integer division [%J / |D| (i.e. truncate |N| by ¢ chunks before dividing by
| D)) is replaced by the integer division |N|/|D|B' (i.e. divide |N| by |D| B*). Then,
like the previous case, err, might be set to be 0 if |[D| B* divides |N|. Unfortunately,
this is inefficient, since we must perform the integer division with larger operands.

It is convenient to put two cases together. We are able to do so by setting s = —t
in the first case. Therefore, we set

N
my; <$— sgn(ND) \‘ﬁJ

0 if ¢t <0 and |D| divides |[N| B~*

err, <4— s
T { 1 otherwise

exrp, <+ t.

Now, we need to determine the value of ¢ (may or may not be non-negative) which
satisfies

erry < |mg|277 OR err, 2% <27 (1)

Since err, = 0 OR 1, a sufficient condition for (1) is

1< hgde 27 OR 2% <2
We claim that it suffices to set
e man{ |V LDU | e @)
c ) c '

—r 4N DI | Then
C

To see that (2) is correct, first, suppose t = {

ct —r+ [lg|N]] - [lg[D]] -1
—r+ [1g|N] - 1g|D|]

= —r+ {lg‘%” )

<
<

Since r > 0, ct < [lg ‘%H <lg ‘%‘ or equivalently

[V
[D[2° > 1.

It is not hard to show that lg |z]| > |lgz| Va > 1. Using this fact,

ros lefBl et = e < ek

7




or equivalently

Next, suppose t = [%GJ Immediately
2t < 97 a,

3.2.2 Properties

Fix R € Q and (r,a) € N X Z. Let x = (my, erry, exp,) be the BigFloat computed by
our approximation algorithm on input R and [r, al.

Proposition 1

1.
ma| B < |R].
2.
r 2 R[r, a.
In particular, m,B*?* = R[r,a], i.e., |R — m,B*?*| < max {|R|27", 27%}.
Proof.

1. The claim is obvious, since

_ | LBl
ma| = | pemr | -

2. By definition
err, B¢Ps < max{|mx| Bé*P= 27T 2’“} ,

and we have just seen |m,| B*?* < |R|.

Q.E.D.

Proposition 2 If m, # 0 then
g [ma|] + ¢~ exps = [Ig|R]] -

Proof. If m, # 0 then R # 0. Thus, the right hand side of the formula is well-
defined, and |m,| = { A J Hence

9crexpy

R R
Ug |ml’|J - \‘lg \‘26|'6I|pz JJ - \}g 2c|-ez|sz - Ug |R|J — C- ETPy
where the second equality holds since 26_@1,30 > 1. Q.E.D.




3.3 Error-Normalization

To keep the representation efficient, we would like to normalize our BigFloat number,
i.e., maintain the error err in the range 0 < err < 4B.

Let (m/,err’, exp') be a BigFloat not necessarily normalized. We could define the
normalization of (m', err',exp’) to be a BigFloat (m,err, exp) which satisfies

(a) 0 <err<4B,

(b) [(m — err)B=», (m+ err) B] 2 [(f = err') B, (m + erv’) B,
and

(c’) errB® is minimized subject to (a) and (b).

The condition (b) states that any real number which belongs to the original
BigFloat number must also belong to the normalized BigFloat number.
Since (c’) is somewhat hard to guarantee, we shall officially replace it by:

(c) errBe™ < 2err' BV,

3.3.1 Error-Normalization Algorithm

If err’ < 4B then there is nothing to do. Otherwise, let f > 1 be the integer which

satisfies
2B/ < err' < 2B/*!

or equivalently, f = {MJ Set

c

n | 1]
m <4 sgn(m') BT
err < {%J +2
exp +— exp + f.
The requirement (a) is satisfied, since

{%ﬂ+2 < 2B+2 < 4B.

For the requirement (b), if m’ > 0 then

(m —err)B*? < Q'g}w — Q%J + 1)) Bew'+f

< (m' —err' B

and

(m + err)Be? = <Q|gf|J + 1) + Q%’}'J + 1)) Bewv'+]

> (m' + err’) B

9



If m" < 0 then

et = (5] ) (3] +1) 5

< (m' —err") B

(m+ err)B“? > <<— Pm”) + Q%?IJ + 1)) B+

> (m' + err’) BV

and

Finally, the requirement (c) is satisfied, because when err’ > 4B

errB*P = Q%J + 2) Bewr'+/
< (err' + 2Bf) Bew'

< 2err'BeY

3.4 Unary Minus Operator

Let x = (my, err,, exp,) be aBigFloat. Define —x to be aBigFloat y = (m,, erry, exp,)
such that if a real X belongs to z then —X belongs to .
Set

my < —Mmy
erTy < erry

eTpy < TPy

The correctness is obvious.
Note y does not need to be normalized, since err, < 4B.

3.5 Arithmetic Operators

In the following subsections, we describe how arithmetic operations are done over
BigFloat numbers.

Let & = (my, erry, exp,) and y = (m,, erry, exp,) be BigFloat. For @ € {+, —, -, /},
we would like to define x@Qy to be a BigFloat z = (m,,err,, exp,) which satisfies

(a) if a real X belongs to x and a real Y belongs to y then XQY belongs to z,
and
(b’) err,BP= is minimized subject to (a).

As (b’) is difficult to ensure, our algorithms will only guarantee upper bounds for
err,B¢*P=,

In our algorithms, we first define a BigFloat 2’ = (m/,err’, exp') whose normal-
ization would be z.

10



3.5.1 Addition and Subtraction

We would like to compute z = z £ y. By symmetry, we may assume exp, > exp,.

1. If exp, = exp, then

m, < mgEtm,
err, < erry +erry,
exp, < erpg.

The correctness is obvious.

If err, =0 or err, =0 then err), < 4B and 2’ does not need to be normalized.

2. If exp, > exp, and err, = 0 then we shift m, left by exp, — exp, chunks and
add it to m, to get m/ so that we may avoid throwing away the error-free bits

of my,:
m, < myBPeTP £y,
err, < erry
exp, < exp,.

The correctness for this case is also obvious.
Since err!, < 4B, 2z’ does not need to be normalized.
3. If exp, > exp, and err, > 0 then err, “hides” some insignificant bits of m, and

erry. We shift m,, right by exp, — exp, chunks and add it to m, to get m’,, and
add 5 to err, to get err’; 1 for covering the truncated bits of m, and 4 for err,:

~

m
m, <4— My £ sgn(my) {7BemefLwa

err! ¢ erry+5

z

exp, < erp,.
If m, > 0 then the addition and the subtraction are correct, since
' — err!) B

= ((mx + {%D — (erry + 5)) Be®Pe

[my|

ey & (| g ) e o
< (my — erry) BP* £+ (m, F err,) B*"?v

and

' +errl)BeP:

= <(mx + {%J) + (erry + 5)) BevPe

Y (YIRS —

> (my + erry) BSP* £ (m,, + err,) By,

The correctness for the case m, < 0 is similar.

11



Note the result of addition or subtraction of two error-free BigFloat numbers is
also error-free.

Proposition 3
err,B*?* < 6max{err,B“", err,B“Pv}.
Proof.
1. If exp, = exp, then

/
err,B*"P: < 2err, BP-
_ exp exp
= 2(erryB“P" + err,B“")

< 4max{err,B“", err,B“?}.

2. If exp, > exp, and err, = 0 then
err, B¢ < Qerr'zB”p;
= 2erry,B“M.
3. If exp, > exp, and erry =1 or 2 then

! .
err, Be"P= err!, Be"P= (since err, = err, +5 < 4B)
/
z

< 6err,B®P=. (since err, < 6err,)

4. If exp, > exp, and err, > 3 then err), = err, +5 < 3err,. Thus

’
err,B*"P: < 2err,BP*

< 6err,B®P=,

Q.E.D.
3.5.2 Multiplication
To compute z =z - y, we let
m, < mgymy
err, < |mg|erry + erry|my| + erryerr,
exp, <— erpy + erp,.
To see that this is correct, it is enough to show
(mg + erry) B> (m, + err,) B¢
, : + err,) B®*P= (m, — err,) B®Py
I "y Berp. < (mI z Y Y
(m, —err2) = (mg — erry) B+ (my, + err,) B (3)
(mg — erry) B+ (m,, — err,) By



and

(my + erry) BPr (my, + err,) By

(mx + erry) BP* (m,, — err,) B¢y (4)
(mg — erry) B+ (my, + err,) By [~

(mg — erry) B+ (m,, — err,) By

!
(m!, +errl) BS*P> > max

The inequalities (3) and (4) amount to the relatively obvious inequalities

(my + erry) (my + erry)
i — el < (mg + erry) (my —erry)
= (my — erry) (my, + erry)

! ! < ml +errl. (5)
(mx erry) (my — erry)

It is easy to see that (5) holds whatever the signs of m, and m,,.
Note the result of multiplication of two error-free BigFloat numbers is also error-
free. In particular, 2z’ does not need to be normalized.

Proposition 4
|my| B*"P=err, B¢y
err,B®?: < 6max<{ err,B®P*|m,| B¢Pv
err, B¢*Pzerr, B¢y

Proof.

err,BP:
’
< 2err, B>
= 2(|mg| B“P=err,B“" + err, B“"* |m,| B*"" 4 err, B“"**err, B“")

< 6max {|my| B“P*err,B?v, err, B*?* |m,| BPv err,B*P*err,BPv} .

Q.E.D.

3.5.3 Division

We would like to compute z = z/y. We may assume |m,| > err,, because otherwise
0 belongs to y and (by definition) the operator is not defined.

The mantissa of the result is computed by calling the function div (m,, m,,r) for
some r € N. Here, div (m,, my,r) is defined to be div (m,, my, r, 00) which was defined
in Section 3.2.1 Approximation Algorithm.

Let

Iy, ={X/Y | X and Y are real, X belongs to x and Y belongs to y} .

If err, > 0 or erry, > 0 then I/, is not a singleton and we can estimate the size
of the interval I,/,. Using this estimate, we choose a suitable r for the function call
div (mg, my, T).

If erry = erry = 0 then I, = {Z}, a singleton, and (unless m, divides m,) it
is impossible to find an error-free BigFloat z to which Z, belongs. In this case, 7 is
artificially specified to be some global constant 74eau1¢ Which users can change.

We now describe the algorithm in several cases.

13



(a) CASE err, =err, =0:
Let (m],err), exp]) = div (Mg, My, qetan1z). Then, we set

n

!
m!, <+ m!
! n
err. <« err’
exp, < exp, — erp, + exp.

Note 2’ does not need to be normalized, since err], < 1.
(b) CASE err, >0 or err, > 0:

(b-1) CASE |m| < erry:
If |m,| < err, then 0 belongs to z. Thus, we set
m, < 0

err, <— {7|mz|+ewz-‘
Imy|—err,

~

exTp, < exTpy — erpy.

The correctness follows from

(|Imy|+err,)Be*Pe

I Rexp’,
S (myl—err,)pom S TBEE

IN

(mgterr,)BePz
(myEerr,)BePy

(b-2) CASE |m,| > err,:
Let (m],err), expl) = div (mg, my, ).
First, we will show how to estimate r. In this case,

I - (|mg|—erry)Be*P*  (|mg|+err,)Be*Pz
oy = (Imy|+erry)Be=Py 2 (lmy|—erry) Be*Py
Since % does not affect the choice of r, it is convenient to use

I, = Berey [ |mg|—erry |mglterr,
z/y — tz/y Bezpz — |my|+erry’ |my|—erry,

instead of I,/,. Note % € Jz/y. By Proposition 1,

vl

< Amelg-r,

Img| " “
| I BT S )

|1y

Thus, r specifies an upper bound for the distance between % and |m| Be*P: . Tt is
Yy

enough to choose r so that
;| B2 € Jypy, (6)

because a larger r does not decrease the error of 2’ substantially. To ensure (6), it
suffices to have

M| o—r || |m,|—err,
2 < — 7
myl 2 Syl ~ Imylrern,” (7)

14



because

Imy| — Jmy| |my|B”pg

|ma| M271~ < |m//|Bezp'j _ {MJ Bew < |m| < | |+err,
- z = my| Imy|—erry

Hence, we are interested in the smallest r so that (7) holds. As getting the “smallest”

r is difficult, we shall only compute some upper bound. Since

Ima|  |me|—erry |my|erry+errg|my|
Imy| Imy|+err, Imy|(Imy|+erry)

_ Im.| (errm +erry>
Imy|+erry \ |ma| [y

> |m| <87"7“x " erry>
- 2|my| | | |my|
> |m| max { err, €rry }
= 2|my] Ima | |my| [
it suffices to have
11 if err, =0 and err, >0
2 |my| z Y
27" < %Iﬂizl if err, > 0 and err, =0
1 11
5 max{|mz|, |my|} if erry > 0 and err, > 0.
Hence, we set
g |my|] +2 if err, = 0 and err, > 0
roo g |my|| + 2 if err, > 0 and err, =0

min {|1g |m.||, [lg|my||} +2 if err, > 0 and err, >0
and

! "
m, — m,

exp, < exp, — erp, + exp.

Next, we compute err,. ' Tt must satisfy

, , ’ (mgxerr,)BePr , p /
(mz — BTTZ) Bemp“ S (myierry)Bempy S (mz + €’I"TZ) Befﬂpz
or equivalently
m! —err < myterry < m! +err!
z ¢ = (myxterr,)Ber? = z &

IWe could have

|mm|+e7"7°x |mx |—er7"z> e 2(|mz|67‘7‘y+67‘7‘z |my|) Berre

! —
err, <|my|—erry = |my|+err, 2

But this error-bound is unnecessarily large and expensive to compute.
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Since we assume that |m,| > err, and |m,| > err,, the signs of m, £ err, and
m, £ err, are the same as those of m, and m,, respectively. Dividing both sides of

(9) by sgn (m,) = sgn (mym,),

|m,|Eterr,
(Imy| :i:erry)B”szl

|m”| — err!, < |ml| +errl. (10)

We claim that it suffices to set

e | el | + |22 | + 6 — |y | [ml| + erry || 1)
z |my|—er7'y

where

z —

5= 0 ifexp] <0
] 2 ifexp! >0.

m

2|
Be:cpg

| /1m0,

Note the quantity u"i”;‘,, J —|my,| |m/,| is the remainder of the integer division {

and it has already been computed by div (mz, my,r). If u"iﬁ,J + [;’";";,,J is replaced
by [%J then we could have § < 1, but we must perform another integer division
to get it.

To see that (11) implies (10), we have

| Ly | | 22y | o=y |m | +erry |

67“7“' > B”P'z' BfTPz
z = il |my|—erry
m err
> T T _ ml
- (|myI_eTry)Beng | Z|
my|xerr
> T T _ ml
= |(jmy|xerry) Bezrz ]

where the last inequality is proven as follows:
Let

|my|—err,

Dt — |ma|+err,
(|my|+erry)B”PIZ'

(|my|_erry)BeszZ,

~ .

and D~ :‘

— [m]

Actually, -
+err
D+ — My T
(|my|_erry)Bemplzl

‘|

- |mz

. |ma|+errs |m| M| ,
since > S — 1’| and
(Jmy Merry)Bexp'g my \B”pg = | jmy |Bezplzl | . | )

|my|—err,
(|my|+erry)Bezplzl

D™ = |m| -

because of our choice of r. Obviously

|mg|terr,
(|my|ierry)BeszZ,

maX{D+, D_} - |m;| )

16



but max {D*, D~} = D%, since

_ +err |mg|—err
D+ _ D — |mz| x x x
(myl—err,) B T (m, | +err,) B

2(Jmg||my|+erryerr,)

— 2|m|

= —2|m/
(|my|2_err5)Bezp'z’ | Z|
2|my||m,| '

Z oy Pt~ 21

_ |mg | ||

= 2T BT 2 [, B

> 0.

Proposition 5
1. If erry = erry =0 then
. Mg |BEPE o pyggan

€T7'ZBemp S W 2 Tdef lt.

2. If either err, =0 and ‘%Ll >erry, >0
or |my| > erry >0 and err, =0
or |mg| > err, >0 and @ > erry > 0 then

exp- |ma |BETPe erry  €rry
err,B < 12 [, [ B max o)’ Tyl [ -

Proof.

1. This is immediate from definition for div (my, my, Tesan1z) (see Section 3.2.1 Ap-
proximation Algorithm).

. / . .
2. Since err, B> < 2err,B®P=, it is enough to show

| geap, < |m | B*Px {errw erry}
err,B < 6 [, By M [ s T -
We will consider three cases. The cases follow the logic of the algorithms for
division.
(a) Suppose m, = err, =0 and MQL' > erry, > 0.
(This is the case (b-1) of the algorithm.)
Then, err], = 0.
(b) Suppose either |my| > err, > 0 and err, =0
or |my| > err, > 0 and % > err, > 0 and |lg|m,|| < |lg|m,]|].
(This is the case (b-2) of the algorithm when r is set to be |lg|m,|] + 2 in
(8).)
In this case, we see from (2) that

;- |l

exrp, =

17



Then
crexpl < —(llglmyl] +1)—2 < 0.

Thus
Be:z:p'z' — 26-6&?[);’ < I 1 .
|my|
Hence
Be:lrp'” . BezszeszZ’ |mm|Bexpx 1 12
- BeTpy |my|Bezpy 4|mm| : ( )
From (11)
’ |mm|+errx " :
err —|m 1 since 6 =0
z < (|my|_€T'Ty)Beng | z| + ( )
|m |+err, ||
— 2
S (myl=err) B Jmy Bt
. || |ma|+erry |my|—err,
— 7 + 2
(|my|—erry) Be*P= M| [y
m err
< ol (4 ) +2.
Therefore

! m '+ [ err err /
err, Bt < 2 Ml pe, <— + |m—y|> + 2B
y

[y | BPE 2|

mg|B*PT (err, | €rry |m,|Be*Pr 1
< 2, B <Imx| + |my|> 2 o, [5Gy (PY (12))
_ me|B*PT [ err, 1 erry
= 2 m, Bexpy |mz| + 4|mm| + |my|
mg|Be"Pe err, €rry
S 6 m, Bepy max |mm|, —|my|

(c) Suppose either |m,| > err, =0 and @ > erry >0
or |my| > err, > 0 and % > erry, > 0 and [lg|m,|| > [lg|m,]|].
(This is the case (b-2) of the algorithm when r is set to be |lg|m,|] +2 in
(8).)

In this case, (2) gives us

capf — | lemeli=2liimy)| 3 |
Then
c-exp; < |lg|mg|] —2([lglmy|] +1) — 1.
Thus
Be:vp’z’ — 2c-e:vp’z’ < |mz|2
2|m,|
Hence .,
Bewps 1 1
< 1
el < By < Ty (13)
where the last inequality follows from |m,| > 2. Also
explz . Bezszeng |mI|Bezpz 1
B =T <, [ 2, (14)

18



From (11)

€TTZ
|mg|+errs "
—|m 1
< (Imy|—err,)Bewp? T |my|—err, mZ| +
|mm|+errz 2 |mz|
— 2
< Gmyl—erryy Bt * T T-err, ~ 3ot
— || Ime|+err, | 2BeP? _my|—erry 49
(|my|—erry)BezP'z' || [z [my|
1 err
) M| erry y 9. by (1
> |my|Bexpr' |mz| + 2|my| + |my| + ( y ( 3))
Therefore
err;B”plz
Mg |Be*P% [ err, 1 erry |m,|B*Pr 1
< 2y B \ma] + Fmgl + Tyl ) + 2 i, B 2y (P (14))
m, |B¢*PT [ epp err 1
= 29, 5 < 5o+ )
my|BETPY -\ |my| Imy| [y
my|Be*Pe err, €rry
S 6 m, Bezpy max |mm|, |my|

This proposition does not cover the cases 0 = |m,| < err, or 0 < |m,| < err,
since there is no upper bound for err’, in terms of x and y, nor does it cover
the cases 2err, > |m,| > err, > 0 since we may assume that non-exact y
can be recomputed so that it will have the error-bound [r,a] with » > 1 and
a>—|lg|m,|] + 1.

Q.E.D.

3.6 Squareroot

Let x = (m,, err,, exp,) be a BigFloat with m, > 0. Define sqrt () to be a BigFloat
y = (my, erry, exp,) such that V real X > 0, if X belongs to x then v X belongs to y.
For © = (my, erry, exp,) with m, < 0, sqrt (z) is not defined.

3.6.1 Algorithm for sqrt (z)

Let x = (my,erry, exp,) be a BigFloat with m, > 0. We would like to compute a
BigFloat y = sqrt (z).

Define the function sqrt (X, A) as follows:

For X € Nand A € 7, sqrt (X, A) returns an error-free BigFloat z = (m., 0, exp,)
such that ‘\/X — m,BeP=| < 274,

The function sqrt (z) will be computed by calling sqrt (X, A) for some X and A.
Let

Iz = {\/5 | € is non-negative real and £ belongs to x} .

If err, > 0 then I 5 is not a singleton and we can estimate the size of the interval
I /;. Using this estimate, we choose a suitable A for the function call sqrt (X, A).
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If err, = 0 then I 5 = {(o}, a singleton, and (unless m, is a prefect square) it
is impossible to find an error-free BigFloat y to which ¢, belongs. In this case, A is
artificially specified by some default precision.

Let
5— 0 if exp, is even
| 1 if exp, is odd.

We now describe the algorithm in several cases. In each case, we first define a
BigFloat ' = <m’y, erry, e:vp;> whose normalization would be y.

(a) CASE m, < err,:
If m, < err, then 0 belongs to x. Thus, we set

m, < 0
ol o { 0 if err, =0
v 2 (|sqrt ((double) err,)| + 1) 251 if err, > 0.
o B

Here, double sqrt (double d) is the function in the standard library of C++ to compute
v/d for d > 0 which is correctly rounded as outlined in the IEEE 754 floating-point

standard [PH90] [Gol91].
The correctness follows from

’ erpr
err;Be“’y > 2y/erry,V B%y/ 335
> 4/2err,Bepre

> \/(mx + erry,) Bewp:,

(b) CASE m, > err, = 0:
We would like to compute y' such that

BTT;Bemp; S 2*adsfault*1
where Ggefan1¢ 1S some global constant which users can change.
Let (m,,0,exp,) = sqrt (sz‘s, Ogefaurt + 1+ C- %ﬁs) and

ELPy—

p = adefault+]-+c'T§+c'€xp2'

If p <0 then 277 > 1. Thus, we set

m'y — m,
err, <+ 27°
=4
e:z:p'y — exp, + %.

The correctness is obvious.
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If p > 0 then 277 < 1. We shift 277 left [%1 chunks to get err; so that err, > 1.
Thus

ol

— mZB[W
— 2‘1’Bm

erp,—09 Ogefauist1
— exp, + P2 _"Lc’-lz_"dfclt -|

m

err

NS S S

exp
The correctness is also obvious.
(c) CASE m, > err, > 0:

Let (m,,0,exp,) = sqrt (mxB‘s, A) for some A.
First, we will show how to estimate A. In this case,

I = [\/(mx — erry) Bewps, \/(mx +erry) Bemi’w} :

It is convenient to use

I xr
Jz = \/ﬁ = {\/(mm —erry) BY, \/(mx + erry) B‘s}

instead of I . Note v/m,B° € J s;. By definition for sqrt (mxB‘s, A), A specifies an
upper bound for the distance between /m,B? and m,BP=. It is enough to choose A
so that

B (15)
because a larger A does not decrease the error of y' substantially. Since m, > err,,
\/mmB5 — \/(mx —err,) B® > \/(mm +err,) B — \/mIB5. (16)

Hence, to ensure (15), it suffices to have

\/(mm +err,) BO — \/mIB5 > 274 (17)

We are interested in the smallest A such that (17) holds. As getting the “smallest” A
is difficult, we shall only compute some upper bound. Since m, > err, > 0,

erry erry erri _ ErTry 2
1+m—x > 1+2mm 16 m2 (1+4mm)
Hence

erry erry
1+ e T 1 > T

Therefore

\/(mx+errx)B‘5— m,B’ = \/W(,/le%—l)
> erryV B?
4y/mg (18)

2lg errm—Q—% lgmx-i-é%
> 2L1g erry | — L%(Ug me+175c)J 73‘

21



Hence, we set
A« —igerr,) + |5 (llgma) +1-3¢)| +3

Next, we compute err;. It must satisfy

(m; — err’y) BePy < \/(mx + err,) Bewre < (m’y + err’y) BPy,

Considering (16), it suffices to set err; so that

exp
\/m Berpe — \/ — erry) Bewps 4274 % < err;B”pz.

Since 1 > 1 — &= >,
My

- /1= < 1 (1- %) = 9

Mg Mg Mg

Hence

exp
\/my BeéPr — \/mx—errx Bexpz 4 27 A\/B i

_ /7771 Beans (1 . /1 erm) + erm\/_ Bezpz (by (18))
erro /B | orr, /B

< NG 4./m,
< o erryV BT vV Bf"“”)ﬂc
NG

Therefore, err; must be set so that

err v/ Béxpx !
e NG < err;/B”py.
x

Let
g = —1—[lgerry] + [% UgmmJJ -0 [%1 +c-exp,.

Note if ¢ < 0 then \Z/WJEB{; > 1.

If ¢ <0 then we set

m, = m,
—|1 c|_e. .
err, < 2erry?2 [slgme] | +o]§ ] -ceap.
exp; — exp, + EP2=0 5_6.

This is correct, because

/ 1 s 1
err, > QGTTI\/m_IVB Berrs 1

Y

and

err! BewPy > 9 €rreV.BY BTP:y/Beth o erryV/ BetPe
y = 2 /m,Berp NG = e
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If ¢ > 0 then 279 < 1. We shift 279 left [%1 chunks to get err; so that err; > 1.
Thus

c 2 c

et o] eopget [ el e | o1

The correctness is similar to the previous case. Note 3’ does not need to be normalized,
since err, < B.

Proposition 6
1. Iferr, =0 then

erTyBez‘py S 2—adefau1t .
2. If erry > 0 then 2

erryB“"Pv < 164/ err, Betps,

Proof.
L. If my = err, = 0 then err, = 0.

If m, > err, =0 then

err, B¢y < 2err! Bety < .9 Gastaus 1
i y — .

2. If m, <err, and err, > 0 then

err, B¢ < Qerr;B“”;
< 2(yerr, +2) 2051 [ B

< 2(err, + 2y/erry) 2V B [ B
= 12y/err,Berpr=,

If m, >err, >0and g =—1—[lgerr,|+ [% UngJJ -9 [%1 +c-exp, < 0 then

!
erry B < 2err, By

— 2.%¢rr, 2 L3lemel[+0[ 5] ceap. By Brrre

v/ B¢
2 / 1 B®*pzy/Be%pa
< 2-267“7“3”\/7—302 B(sBexpz VB?

= 16, /%\/errmBm’w
< 16y/err,BeTrz,

2If ¢ is even then we could replace 16 by 8, because {%1 = 3, ie, 2[5 = VB4, Note we set
¢ = |£| — 2 where 2F — 1 is the largest unsigned long. In almost all systems, L is some positive
power of 2 (typically L = 32), and hence, ¢ is even.
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If m, > err, >0 and ¢ > 0 then

erryBPv = err'yBe‘”pfu
sl | 5] e 1] B2
< 2-2 errm\/im_z Q@Be}wz B””f/\é_?esz
< 16\/err, Bewrs,
Q.E.D.

3.6.2 Algorithm for sqrt (X, A)
We now describe the algorithm for sqrt (X, A) defined above.

We simulate Newton’s method to compute /X over BigFloat numbers. First, we

introduce some functions which will be used in our algorithm.

For X € N, error-free BigFloat numbers y = (m,,0,exp,) with m, > 0 and

z = (m,,0,exp,) with m, > 0, and A € 7, define

Qx(y,A) = <m;, 0, expl — expy>
where <mf1, erry, e:z:p;> = div (X, my, 00, A—c-exp,),
H(z) = <["2LZJ ,O,e:z:pz>,
Nx(y,A) = H(y+Qx(y,4)),
Sx(y) = % (myB”p’v’ + 111y By

Note the function Sx(y) yields a fraction, not a BigFloat.

Lemma 7
1.
mygempy 24 < mygezpy BIF < Quy,A) < mygmpy‘
2.
Sx(y)— 24 < Sx(y) - BT < Ny, 4) < Sx(y)
Proof.

1. By definition (see Section 3.2.1 Approzimation Algorithm),

A

Qx(y,A) =




Thus

_x gl X =)
— Bl™ = — 1) Bl™=
myB”Py (myB L%J—i—e:vpy )
QX (ya A)
< i Bl=]
myBLTJJf“py
o X
~ m, By

2. By definition of BigFloat addition,

Q.E.D.

- —A
L (my B+ Qx(y, A) — 3B [ < H (54 Qx(y, 4)
< 1(m,Be" +Qx(y, ).
By (19)
L (m, B 4 Qx(y, 4)) — §pmrteme 15}
> % (myBe""”’y + 7my1§ew — BL%J> _ %Bmin{mw =]}
1 ex X -4
> 35 (myB Py myBempy> _pl=
and
1 ex 1 e X
9 (myB Py "‘Qx(y,A)) < b) (myB Py W) .
Lemma 8

1. /X lies between my B¢Pv and

L y
myBe”’y , 1.e.,

(myBe:vpy — \/}) <% — ﬁ) <0.

2. If my B > /X then
my B > Sx(y) > VX
where the equalities hold iff m,B*Pv = VX.

Proof.
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1. If my,B*Pv > /X then
X /
m,, B¢y < JxX X,

and if m, B*Pv < VX then

X __ o X _ X

2. Note Sx(y) is the midpoint between m, B*"Pv and ﬁ; but
v X — min {myBexpy, ﬁ} < max {myBexpya myig(ezpy} - vX

since
ey, — 2L _ /X)) — (VX —mi Bewry, — X
max my ,myBempy min my ,myBempy

X
= myB* =2V X + ey
m2 B2y —2m, B"Py /X + X
(m, Be*?s —/X)

myBe.pr

0.

v

Q.E.D.

Now, we present the algorithm for sqrt (X, A). Since the case X = 0 or 1 is trivial,

assume X > 2. Set
Yo = (X,0,0)
¥i = Nx(yi1,A) i=1,2,....

Note my,, B“Pvw >/ X.
The iteration continues until we will find the smallest i € N such that

Qx (i, A) +274 > m,, By, (23)
and (my,, 0, exp,,) will be returned. The correctness follows from the following lemmas.
Lemma 9 The condition (23) is sufficient to have ‘\/)_( — my, By | < 274,

Proof. There are two cases.
1. If Qx (y;, A) + 24 > my, Be®Pvi > VX then
0 < my, B®Pvi — VX <274,

since

Qx (yi, A)+2°4 > m,, B  (by assumption)
> VX (by assumption)
X
Z myiBezpyi (by (21))
> Qx (yi, A). (by (19))
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2. Suppose
Qx (y, A) +274 > my, B*P  and VX > my, BPvi. (24)

Actually, the first condition of (24) is redundant, i.e., (24) is equivalent to v/X >
my, BPvi. In fact, if VX > my, BPvi then

Qx (yi, A) +274 W (by (19))

VX (by (21))

my, B¢™Pvi. (by assumption)

VIV V

If VX > my, B and m,,B“" > /X for j =0,1,2,...,i— 1 then

0 < VX —my,, B < 274

Sx(ma) > VX (by (22))
> my, B*Pvi = Nx (y;1,A4) (by (21))
> Sx(yi1) —27% (by (20))

Q.E.D.

Lemma 10 There exists i € N such that (23) holds.

Proof. 1f m,, B®Pvi > /X then my].B”p’v’j > myjHBexpyHl, because

my;, B > Sx (y;) (by (22))
> Nx (y5,A4) (by (20))
= my,,, B+

Since m,, B*Pv0 > /X, the sequence {myj By } is non-increasing for small j. De-

pending on the behavior of {my].BeI”yj }, we consider several cases.

1. If 3 € Nsuch that my, B?vi = m,,  B“Pi+1 and m,, B > m, B+ for
7=0,1,2,...,2—1 then

my, B = Sx (y;) = Nx (yi, A) = My, BEPvi+t,

my, BV = —0m— < QX ( ] A) 2
Yi myiBexpyi Yi, .

Note, in this case, m,, B*Pv = v/ X.

2. Suppose {myj B yi} is strictly decreasing for all small j.
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(a) If 3i € Ny such that VX > m,, B and m,,B*" > /X for j =

0,1,2,...,7 — 1 then we have already seen in Lemma 9 that Qx (y;, 4) +
94 > my, BewPi,

(b) Otherwise, Vj € N m,, B*" > v/X. By (22), Vj € N

my, B > Sx (y;) = my,,, B+ > VX,

Thus, both {myj Be“’yi} and {Sx (y;)} are strictly decreasing for all j and

bounded from below by v/X. Hence, both of them converge. Moreover,
limy_, o0 my,; B = lim;_,o Sx (y;). Hence,

lim m,, B = VX,

J]—00

and in particular, 3i € N such that (23) holds.

Q.E.D.

Finally, we claim that the convergence of {my].BeI”yj} is quadratic as the original

Newton’s method. Let i be the smallest non-negative integer such that (23) holds. By
Lemma 10, for j =1,2,...,i — 1, my,, B"% > v/X. Then

my, B — /X

IA

<

NX (yj—laA) - \/y

Sx (yj—1) — VX (by (20))
]. exr . X

2 (myle Pt 4 myj_1Bexpyj1> N \/)_(
mijlezewyi—l -2 My; 4 BVi-1{/X+X

ET -
2m,. B Pyj—1
j—1

2
2\})—( (myj_lBeévpyj_l — \/y) . (since myj_lBempyj_l > \/)—()

Summarizing:

if X =0 then return (0,0,0)
else if X =1 then return (1,0,0)
else
y + (X,0,0)
loop
q + Qx(y, 4)
if y <q+2 4 then return (m,,0,exp,)
Yy H(y+q)
end loop
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3.7 Implementation

We use the well-known “letter-envelope” technique [Cop92]. Any BigFloat number is
associated with two instances, one belongs to the “envelope” class BigFloat and the
other belongs to the “letter” class BigFloatRep.

The “envelope” class BigFloat is defined as follows:

class BigFloat

{
BigFloatRep* rep;

// private member functions come here.
public:

// public member functions come here.

I
The “letter” class BigFloatRep is defined as follows:

class BigFloatRep

{
friend class BigFloat;

Biglnt m;
unsigned long  err;

long exp;
unsigned int refCount;

// private member functions come here.

};

Here, BigInt is the class of integers of arbitrary length. In the previous sections, we
assume that the exponent exp € Z. In the implementation, however, we declare exp
to be long for efficiency.

No member of BigFloatRep is declared to be public. Thus, the members of
BigFloatRep can be accessed only via BigFloat.

The only data member of BigFloat is a pointer rep to the “letter” where the
values of components are stored. The member or friend functions of BigFloat are
implemented as implicit calls to the corresponding member functions of BigFloatRep.
For example,

BigFloat x, y;
X +y;

is compiled as follows (see Figure 1):
The binary operator

29



cl ass Bi gFl oat

(xry }
y

{ X. operator +(y) }

cl ass Bi gFl oat Rep

{z.rep->add(*x.rep, *y.rep) }

Figure 1: The flow for x + y.

BigFloat BigFloat :: operator +(const BigFloat) const

is called with the implicit argument x and the explicit argument y. It constructs
BigFloat z where the result is going to be stored, and calls the member function of
BigFloatRep

void BigFloatRep :: add(const BigFloatRep, const BigFloatRep)

with the implicit argument *z.rep and the explicit arguments *x.rep and *y.rep.

The “letter-envelope” technique allows us to do memory-management efficiently
since multiple “envelopes” can share the single “letter”. For example, consider the
function

BigFloat BigFloat :: abs() const

which returns the absolute value of the *this. If BigFloat x has a non-negative
mantissa then the values of the components of x and x.abs() are the same. Thus,
x.abs () could be implemented as a BigFloat whose rep is identical to x.rep rather
than a copy of x. Compared to a brute-force implementation, we now reduce the
number of BigInt instances by one (see Figure 2).

| mpl emrentation with

Brute-force Inplementation Letter-envel ope Techni que

E |

N/

{<m err, exp>}

x. abs() }

X x. abs()

<m err, exp >

<m err, exp >

Figure 2: If a brute-force implementation is used, the components of x and x.abs () are
distinct, even though their components store the same values. If the “letter-envelope”
technique is used, x and x.abs () can share their components.

The class BigFloatRep has the private data member refCount which counts how
many “envelopes” points to *this. When an instance of BigFloat x is about to be
destroyed, x.rep->refCount is decremented, and if it reaches 0 then *x.rep is also
destroyed.
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4 Real

In this section, we describe the Real package implemented as a class library in C++.
In addition to the standard libraries of C++, we assume that we have a class library
of integers of arbitrary length and a class library of rational numbers such as GNU’s
Integer and Rational as well as our class BigFloat.

The class Real is used to represent numerical objects in the Expr package. The
class has the ability to capture various types of number representations, namely, built-
in machine types and some arbitrary length number types including BigFloat.

4.1 Definition

4.1.1 Construction

Define
KernelType = {int, long, double, BigInt, Rational, BigFloat}.

Here, int, long and double are the standard C++ types, BigInt is the type of arbitrary
length integers and Rational is the type of rational numbers.

A Real z is defined to be a numerical object X of type ¢ € KernelType.

We say X is the kernel of x.

4.1.2 Semantics

Any Real number is associated with a triple (T, V, Err) where
e T € RealType = (KernelType \ {BigFloat}) U {ExBigFloat, AppBigFloat},
e VeEQ
o Err € Q.

Here, ExBigFloat is the type of error-free BigFloat numbers and AppBigFloat is
the type of BigFloat numbers with positive errors. As one would expect, there is a
natural type coercion among the types in RealType. It is as follows:

double

i 1
int < long < { BigTnt

} < ExBigFloat < Rational < AppBigFloat. (25)

Note double resides between long and ExBigFloat, that is, a double can be a kernel
of some Real only if it is ezact.
For any Real z, (T}, V,, Err,) is set as follows:

e If the kernel of z is the BigFloat X = (my,erry,expx) then

T { ExBigFloat if erry =0
v AppBigFloat if errxy >0
Err, = errxB®Px,
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e If the kernel of x is X whose type is t # BigFloat then

T, =t
Ve = X
Err, = 0.

A Real x is said to be error-free if Err, = 0. Hence, a Real x is error-free, unless
T, is AppBigFloat.

On the other hand, a Real x with 7, = AppBigFloat is intended to be an ap-
proximation for some real number. A real number X is said to belong to a Real x
if

X €[V, — Erry, Vo + Erry].

Let (r,a) € N x Z. A Real z is said to have an error-bound [r,a| if
Err, < max{|VZv| 277, 2‘“} :
The most significant bit (MSB) p, of a Real x is defined to be

g |[Val] if Vo #0
—00 it V, =0.
4.2 Approximation

Let X be a real number and (r,a) € N x Z. We say a Real x approzimates X to
precision [r,a] and write
z = X|[r, a

if X belongs to z and
Err, < max{|X| 277, 2’“} :
If z approximates X then V, = X|[r, a], i.e.,

X =V, < max{|X[27, 27}

4.2.1 Approximation Algorithm

Given R € Q and (r,a) € N x Z, we would like to compute a Real x with the error-
bound [r, a] such that R belongs to z.

If r = a = oo then x is the Real whose kernel is R.

Otherwise, = is the Real whose kernel is the BigFloat X with error-bound [r, a]
such that R belongs to z (defined in Section 3.2.1).
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4.2.2 Properties

Proposition 11 Fiz R € Q and (r,a) € N X Z. Let x be the Real computed by our
approzimation algorithm on input R and [r,a).

1.
Vol < |RJ. (26)

r = R[r, al. (27)
In particular, V, = Rr,a], i.e., |R — V| <max {|R|27", 27}.
3. If R # 0 then
pe = g | R[] (28)

Proof. 1f T,, # ExBigFloat or T, # AppBigFloat then the claims are trivial.
If T, = ExBigFloat or 7, = AppBigFloat then the claims follow from Proposition
1 and 2. Q.E.D.

4.3 Arithmetic Operators and Squareroot

Over Real, the arithmetic operators +, (unary and binary) —, - and / as well as the
function sqrt() are defined.

4.3.1 Unary Minus

Let 2 be Real whose kernel is X. We define —z as follows:

1. Suppose T, = int. Note, in this case, —X may not fit in int. Thus, —x is the
Real whose kernel is 3

—-X if —X fits in int
—(long)X if —X does not fit in int.

Here, (t)X stands for X to which the casting operator () is applied so that the
result has type t.

2. Suppose T, = long. Again, —X may not fit in long. Thus, —z is the Real
whose kernel is

-X if —X fits in long
—(BigInt)X if —X does not fit in long.

3. Suppose T, > double or BigInt. Then, —x is the Real whose kernel is —X.

3By definition, int C long. If a system assumes that int = long then long must be replaced by
BigInt.
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4.3.2 Unifier

We need the concept of unifiers to define the binary operators.

Let s and t € RealType. We say u € RealType unifies s and t if s <w and t < u
where < is defined as in (25). If u unifies s and ¢, u is called a unifier of s and t. For
example, both ExBigFloat and AppBigFloat are the unifiers of double and BigInt.

The most general unifier (MGU) of s and ¢ is defined to be u € RealType such
that

e 1 unifies s and ¢,
e V unifier v’ of s and ¢, v’ £ u.

For example, the MGU of double and BigInt is ExBigFloat.
Note, as long as both s and ¢t € RealType, their MGU is uniquely determined.

4.3.3 Addition, Subtraction and Multiplication

We now define the binary operators +, — and - over Real.

Let x and y be Real whose kernels are X and Y, respectively. Further, let u be
the MGU of T, and T,.

For @ € {+, —, -}, we define z@Qy as follows:

1. Suppose u = int, i.e., T, = T, = int. Note @ defined in int is not overflow-free.
Thus, x@Qy is the Real whose kernel is

xXay if XQY fits in int
(Long) X@(long)Y if XQ@Y does not fit in int but fits in long
(BigInt)X@(BigInt)Y if XQY does not fit in long.

2. Suppose u = long. Again, @ defined in long is not overflow-free. Thus, x@y is
the Real whose kernel is

(Long) X@(long)Y if (Long)X@(long)Y fits in long
(BigInt)X@(BigInt)Y if (long)X@(long)Y does not fit in long.

3. Suppose u = double. Then, @ defined in double is neither overflow-free nor
underflow-free. Moreover, even when @ does not cause over/underflow, the result
may be rounded (an exception “inexact” is caused). Since we assume that a non-
exact double cannot be a kernel of Real, we must use @ in BigFloat when the
result of @ in double is rounded. Thus, x@y is the Real whose kernel is

( (double) X @(double)Y
if (double) X @(double)Y does not cause exceptions:
overflow or underflow or inexact
(BigFloat)X@(BigFloat)Y
if (double) X @(double)Y causes an exception:
overflow or underflow or inexact.
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4. Suppose BigInt < u < Rational. Set v € KernelType to be

BigFloat if u = ExBigFloat
U otherwise.

Then, @Q defined in v is overflow-free. Thus, x@y is just the Real whose kernel
s (v)XQ(v)Y.

. Suppose the one of T, and T, is Rational and the other is AppBigFloat.
WLOG, we may assume that 7, = Rational and 7, = AppBigFloat. Al-
though v = AppBigFloat, we cannot simply say that x@y is the Real whose
kernel is (BigFloat)X@(BigFloat)Y, because Rational cannot be casted into
BigFloat. Instead, we first compute an approximation z of x to some precision
so that 7;; = AppBigFloat, then we define z@Qy to be the Real whose kernel is
xXay Where X is the kernel of 7.

We now state how much precision is specified to get 7.

(a) If @ =+ or — then & = z[o0, — |Ig Erry|].
Note

Err; < Erry,, (29)

since Erry < 208l < Brp, .
(b) If @ = then 7 = z [max {[lg|V,|] — [lg Err,|, 0} + 1, c0].
Note, by (26),

\Vz| Erry, < |Vu| Erry,
and
Errz|Vy| < |Vi|Erry,

|Vz|Erry

since Erry < |V, | 2~ (lsVull+)+lsBrry ] < A and

ErrzErr, < |Vi|Err,.
because Errs < |V, 27", All together,

max {|Vz| Erry, Err;|V,|, Err;Err,} < |Vy| Err,,. (30)

6. If T, = T, = AppBigFloat then xQy is the Real whose kernel is XQY".

For example, if x = (ExBigFloat, X,0) and y = (Rational, R,0) then z +y =

(Rational, (Rational) X + R,0) where + is the addition defined in Rational.
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4.3.4 Division

To define the binary operator / over Real, we must clarify the semantics of /.

Let = and y be Real whose kernels are X and Y, respectively. We would like
to define z = x/y so that z = y - z. Unfortunately, in some types, the operator /
does not satisfy this condition. For example, if X and Y are both int then X/Y is
sgn (XY) H%H which is different from <= (unless Y|X). Hence, we first cast X and Y’
to be Rational or BigFloat where / is appropriately defined.

Let u be the MGU of T, and T,. We define z/y as follows:

1. If v € {int,long,BigInt,Rational} then z/y is the Real whose kernel is
(Rational)X/(Rational)Y.

2. Suppose u = double or ExBigFloat. Then, z/y is the Real whose kernel is
(BigFloat)X/(BigFloat)Y. We could use the division in Rational, but con-
structing Rational from double or BigFloat is expensive, in general.

3. Suppose that one of T, and T, is Rational and the other is AppBigFloat.
WLOG, we may assume that 7, = Rational and T, = AppBigFloat. Again,
instead of casting X into BigFloat, z must be approximated by Z so that
T.. = AppBigFloat. We set = x[max{|lg|V,|] — [lgErry|, 0} + 1, 00] and
X to be the kernel of Z. Then, z/y is the Real whose kernel is X /Y.

Note
Vel Brrs g By
[Vyl V= = |Vl Vgl >
. V. |E
since Brry < V| 2 (el sliepm) < DaZims ang
ng\ Erry < |Vz| E’I"Ty
|Vy| |Vy| - |Vy| |Vy|,
by (26). Hence
|V;‘ - Err~  Err, < V| Erry (31)
[Vyl |V;|’ Vil = (VI Wyl

4. If T, = T,, = AppBigFloat then x/y is the Real whose kernel is X/Y".

4.3.5 Squareroot

Let z be Real whose kernel is X. Since there is no type where v/ X can be com-
puted exactly, we use the function BigFloat sqrt (BigFloat (my,erry,expx)) which

computes \/(mx, errx,expx) for mxy > 0 (see Section 3.6).

1. Unless T, = Rational then sqrt (z) is defined to be the Real z whose kernel is
sqrt ((BigFloat) X).
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2. If T, = Rational then, once again, x must be approximated by Z so that T3 =
AppBigFloat. We set T = x[00,2 dgesan1t + 8] and X to be the kernel of Z.
Then, sqrt (x) is defined to be the Real z whose kernel is sqrt (X)

Note

VErry <27t (32)

4.3.6 Properties

Proposition 12 Let x and y be Real.
1. If a real X belongs to x then —X belongs to —x.

2. For @ € {4,—,-,/}, if a real X belongs to x and a real Y belongs to y then
XQY belongs to xQy.

3. If a real X > 0 belongs to x then /X belongs to sqrt (z).

Proof. Clear from definitions. Q.E.D.

Proposition 13 Let x, y and z be Real.
1. If z=x Lty then

Err, < 6 max{Erry, Err,}. (33)

2. If z=x -y then

Err, < 6 max{|V,|Erry, Erry|V,|, ErryErr,}. (34)

3. Suppose z = z/y.

(a) If Erry = Err, =0 then

ET’I“Z S I“;z} 2_7'default (35)

where Tgefan1s 1S Some global constant which users can change.
(b) If either Err, =0 and “;—“ > Erry >0

or |Vy| > Erry >0 and Err, =0

or |[Vz| > Err, >0 and %ﬂ > Erry > 0 then

|Vz| ET"I‘I ETT'y
Err, < 12 v max s (36)

4. Suppose z = sqrt (x).
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(a) If Err, =0 then
ETTZ S Q*Gdsfault (37)

where Ggesan1s 1S some global constant which users can change.

(b) If Erry > 0 then
Err, < 16+\/Err,. (38)

Proof. If T, # ExBigFloat or T, # AppBigFloat then the claims are trivial.

If either T, = ExBigFloat or T, = AppBigFloat but neither T, nor T, is Rational
then the claims follow from Proposition 3, 4, 5 and 6.

Otherwise one of T, and T}, is Rational and the other is AppBigFloat. WLOG, we
may assume 7T, = Rational and 7, = AppBigFloat. In this case, x is approximated
by z and z is defined to be the result of the BigFloat operation applied to Z and y.

1. If z = x + y then

Err, 6 max {Err;, Err,} (by Proposition 3)

<
< 6Err,. (by (29))

2. If z =z -y then

< 6 max{|V;| Erry, Err;|V,|, Err;Err,} (by Proposition 4)
< 6 |Vy| Erry. (by (30))

3. If z=x/y and ‘LZ’J‘ > Erry > 0 then

ETT‘; Erry

Err, < 12 @ max {—

} (by Proposition 5)

IVl |V; TVl
< 12T (by (31))
4. If z = sqrt (x) then
Err, < 16./Err> (by Proposition 6)
< oo (by (32)

Q.E.D.

4.4 Implementation

For the implementation, we use the class inheritance scheme of the C++ language, as
well as the “letter-envelope” technique. From the class Real, we derive several classes,
each of which corresponds to the number types that Real incorporates.
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class Real

{

Real* rep;

// other members here.

}:

class Reallnt : public class Real

{

friend class Reallong;
friend class RealDouble;
friend class RealBiglnt;
friend class RealBigFloat;
friend class RealRational;

int ker; // kernel

// other members come here.

3

// other inherited classes come here.

Now, consider the following program segment:

double X = 1.0;
BigInt Y = 1;
Real x = X;
Real y =1Y;
X +y;
cl ass Real
[x+y J

y

{ x. operator +(y) }

y

[ X. rep->operator +(y) } y. rep->addDoubl e(*x. rep) }
cl ass Real Doubl e cl ass Real Bi gl nt
{ X. rep->operator +(y) } { y. rep->addDoubl e(*x. rep) }

Figure 3: The flow for x + y.

Then, x + y is compiled as follows (see Figure 3):
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1. The binary operator
Real Real :: operator +(const Real) const

is called with the implicit argument x and the explicit argument y.

2. Determine T,. The operator + applied to the “envelope” x calls the operator +
for its “letter” *x.rep:

virtual Real Real :: operator +(const Real) const

is called with the implicit argument *x.rep and the explicit argument y. By the
virtual function mechanism, the compiler finds that 7, = double, and actually

Real RealDouble :: operator +(const Real) const

is called.

3. Determine 7). “Swap” the implicit and explicit arguments and do the same as
before: the member operator + of RealDouble calls

virtual Real Real :: addDouble(const RealDouble) const
with the implicit argument *y.rep and the explicit argument *x.rep. Again,
by the virtual function mechanism, the compiler finds that 7, = BigInt, and
actually

Real RealBigInt :: addDouble(const RealDouble) const

is called.

4. Now, x + y turns out to be an addition for double and BigInt. Since the MGU
of double and BigInt is ExBigFloat,

Real(BigFloat (*x.rep) + BigFloat(*y.rep)).

is returned.

5 Expr

In this section, we describe the Expr package implemented as a class library in C++.
In addition to the standard library of C++, we assume that we have our class Real.
The class Expr captures a set of algebraic expressions.
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5.1 Definition
5.1.1 Node of Expr Tree and Exact Value
An Expr e is a node of some rooted DAG. If Expr e is a leaf of some rooted DAG then
it is
e a parameter node which can store some value in Q.
If Expr e is an internal node of some rooted DAG then it is either

e o unary minus node which has one child f and represents —f, or

e a binary operator node which has two children f and ¢g and represents f@gqg for
Qe {+,—,-,/}, or

e a squareroot node which has one child f and represents /f.

A non parameter node is called an operator node.

Let e and f be Expr. The tree rooted at e and the tree rooted at f could share
some subtrees. Hence, a single node may have several parent nodes. This is why we
define an instance of Expr to be a node of some DAG, and not a node of some simple
tree.

Any Expr e is associated with an ezact value é defined as follows:

1. Suppose e is a parameter node. If e stores a value x € Q then é = x. Otherwise,
¢ is an indeterminate value denoted w,.

2. If e is a unary minus node whose child is f then é = —f.

3. If e is a binary operator node which has two children f and g and represents
fQg for @ € {4, —,-,/} then é = fQg.

4. If e is a squareroot node whose child is f then ¢ = — .

If every leaf of the tree rooted at e has the exact value in Q then é is the element of
some algebraically closed filed D containing Q.

In this paper, we may use the same symbol e for an instance of Expr, a tree rooted
at e and its exact value. The context should make our intent clear. For example, in
the statement “if e is a parameter then e € Q”, the first e is meant to be the instance
of Expr and the second e is the exact value of the instance.

5.1.2 Approximation

Let e be Expr and (r,a) € N x Z. We say Real € approximates e to precision [r, a] and
write
€ = elr, al

if e belongs to € and

Errs < max{|e|2”", 2’“}.
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If é = e[r,a] then V5 = e[r, a, i.e.,
le—V4 < max{|e| 277, 2’“} :
Each Expr e maintains

e an approrimate value € in Real, and
e precision [r,a] where r € N and a € 7

so that € 2 e[r,a]. Precision can be set explicitly by users or implicitly by some
function call. Whenever precision [r, a] of Expr e is specified, we recompute the ap-
proximate value € of e so that € = ¢e[r, a].

5.1.3 Semantics of Assignments

In the Expr package, assignment is somewhat subtle as we now explain.

The copy rule of C++ is “pass by value”. Thus, the assignment x = y assigns the
current actual value of y to the actual value of x. We do not want to apply this copy
rule to assignment operators over instances of Expr. Consider the following program:

Expr a, b, c;
Expr D=Db *x b - 4 x a x ¢;
// at this point, the exact value of D is wy — 4w,w,.

a = 3;
b =7;
c = 3;

// at this point, the exact value of D is still w} — 4w,w.,
// although we expect it to be 13.

If we follow the standard semantics of C++, then the exact value of D at the end of the
program is w? — 4 w,w.. We would like to have special semantics where the exact value
of e becomes 13 at the end of the program.

Define the semantics of the assignment operator = for Expr so that the following
holds:

Fix ascope §. Let e, f and g be Expr and = be Real. Further, let ® be an algebraic
expression which involves 4, (unary and binary) —, -, / and Ve

1. Suppose, in S, there are statements of the form

e = @(f) (39)
f = = (40)

If (40) precedes (39), and in between (40) and (39) there is no assignment state-
ment whose left operand is f then, as in the standard C++ semantics, the exact
value of e becomes ® () when (39) is stated. If (39) precedes (40), and in be-
tween (39) and (40) there is no assignment statement whose left operand is e

then, unlike the standard C++ semantics, the exact value of e becomes ® (x) when
(40) is stated.
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2. Suppose, in S, there are statements of the form

e = @(f) (41)
f =g (42)

If (42) precedes (41), and in between (42) and (41) there is no assignment state-
ment whose left operand is f then, as in the standard C++ semantics, the exact
value of e becomes the exact value of ® (¢g) when (41) is stated. If (41) precedes
(42), and in between (41) and (42) there is no assignment statement whose left
operand is e then, unlike the standard C++ semantics, the exact value of e be-
comes the exact value of ® (¢g) when (42) is stated.

Note our new semantics for the assignment operator causes a side-effect:
Fix a scope §. Let e and f be Expr and ® be an algebraic expression which involves
+, (unary and binary) —, -, / and /- Suppose, in S, there is a statement of the form

e = 3(f).

Then, in the rest of S, until e is assigned to be something else, whenever the assignment
operator whose left operand is f is stated, the exact value of e is changed.

The assignment of the form e = ® (e) is not defined. Also, the operators +=, -=
*= and /= are not defined.

)

5.2 Implementation

To realize the semantics described above, again, we use the full power of the “letter-
envelope” technique.

There are two basic classes, the class Expr for “envelopes” and the class ExprRep
for “letters”. From ExprRep, we derive three classes, ParamRep, UnaryOpRep and
BinOpRep. From UnaryOpRep, we derive two classes, NegRep and SqrtRep. From
BinOpRep, we derive four classes, AddRep, SubRep, MultRep and DivRep. (See Figure
4.) Tt is clear what each of those classes represents.

Expr
|
— T
(Paranfep | [naryGorer
s — / '\
racrep |/ [witre |

Figure 4: Expr, ExprRep and the classes inherited from ExprRep

The class ExprRep is derived from the class Expr. Thus, an instance of the class
ExprRep could point to another instance of the class ExprRep.
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class Expr

{
protected:

Expr* rep;

// other members come here.

¥

class ExprRep : public class Expr
{

friend class Expr;

friend class ParamRep;

friend class UnaryOpRep;

friend class BinOpRep;

private:
unsigned refCount;
protected:
Real appValue; // approximate value

// other members come here.

}:

// +the inherited classes come here.

5.2.1 Node

A node of Expr tree is realized as a chain that consists of 0 or 1 “envelope” (Expr)
followed by 1 or more “letter(s)” (ExprRep) (see Figure 5).

The last letter in the chain specifies the type of the node, e.g., if the last letter in
the chain is NegRep then the chain represents a unary minus node. The approximate
value and the precision of the chain reside in the last letter.

‘ Expr Expr Rep Expr Rep
| 1.

Figure 5: The chain of Expr. Arrows indicate rep pointers.

The last letter in the chain is characterized as an ExprRep where rep == this
holds. Hence, given a chain of Expr, its last letter is detected as follows: starting
from any instance of Expr or ExprRep in the chain, follow the chain until reaching the
instance where rep == this holds.
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5.2.2 Construction

A new parameter node e which stores x € Q is a chain of one Expr and one ParamRep
which contains Real x.

‘ Expr

Par anRep‘

e

Rea O )

A new unary minus node e which represents —f is a chain of one Expr and one
NegRep whose child is *f.rep.

‘ Expr NegRep ‘
e O
‘ Expr Expr Rep

Expr Rep

A new binary operator node e which represents f@g is a chain of one Expr and one
letter of some derived class of BinOpRep (depending on @) whose children are *f.rep

and *g.rep.
‘ Expr Bi nOpRep‘
e O
\ Expr Expr Rep
g
\ Expr Expr Rep

K

A new squareroot node e which represents \/f is a chain of one Expr and one
SqrtRep whose child is *f .rep.

Expr Sqrt Rep
e
Expr Expr Rep
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5.2.3 Assignment

Let e and f be Expr and x be Real.
The assignment operation e = x is done as follows:

1. Suppose *e.rep is ParamRep. Then, *e.rep can store x. We cut the chain
headed by e at xe.rep and destroy the instances in the chain headed by e.rep->rep
(if exist), and set e.rep->exValue to be x.

‘ Expr Par anRep Expr Rep
e Q fffff -

2. Suppose *e.rep is UnaryOpRep or BinOpRep. Then, e.rep cannot store x. First,
we cut the chain headed by e at the *e.rep and destroy the instances in the chain
headed by e.rep->rep (if exist). Then, we cut the link(s) from to its child(ren)
(if exists) and destroy the chain(s) headed by *e.rep’s child(ren). Finally, we
construct a new ParamRep which will store x, and make both e and the current
*xe.rep point to this newly constructed ParamRep.

e
Expr Rep

The assignment operation e = f is done as follows:

First, we cut the chain headed by e at the *e.rep and destroy the instances in the
chain headed by e.rep->rep (if exist). Then, we cut the link(s) from to its child(ren)
(if exist(s)) and destroy the chain(s) headed by *e.rep’s child(ren). Then, we set
e.rep->rep to be *f .rep.

| Expr or i nipmee Expr Rep
e
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6 Root Bound

In this section, we describe our algorithm to determine whether or not a given Expr
is exactly 0. The algorithm is based on the theory of the root bounds for polynomials
over an algebraically closed field. The missing proofs for the theorems are found in
[Yap97].

6.1 Notations

Fix an algebraically closed field D. Any Expr e can be viewed as an element of D, i.e.,
JE(X) € D[X] such that E(e) = 0.
Write

E(X)=) X" where e, # 0.
i=0

We say F(X) is of degree m and write deg E' = m. The leading coefficient of E(X) is

Em.-

Let aq, ..., €D (not necessarily distinct) be all the roots of E(X). Then

E(X)=-en ﬁ(X — ).

i=1

Define

m
IEI = > leil
1=0

1Bl = |2 lel’
1=0

1Bl = max{lep], -, lem[}

Note [[E], = [|El, = || E]| -

6.2 Root Bound

In this subsection, we describe Landau’s root bound theorem and introduce our algo-
rithm to determine whether or not a given Expr e is ezactly 0, provided the 2-norm of
E(X) € D[X] such that E(e) = 0 is known.

6.2.1 Landau’s Root Bound

We start from Landau’s root bound theorem which gives us an upper bound for the
magnitude of any root of E(X):

Theorem 14 (Landau) For any root a of E(X) = 7, e; X" € D[X] with e,, # 0,

o] < LEL

lem]
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Let F(X) =Y",e;X" € D[X] with e,, # 0. Define the tail coefficient of E(X) to
be e; which satisfies

et #0 and e,=0 ¢1=0,...,t—1.
Such t always exists, since e, # 0. Obviously, ¢t < m.

Lemma 15 Let E(X) = X7, e; X" with e, # 0 be a polynomial in D[X] whose tail
coefficient is e;. Then, E(X) has a non-zero root in D iff t < m.

Proof. We show that the only root of F(X) is 0 iff t = m.

If the only root of E(X) is 0 then E(X) = e, X™.

Conversely, the equation e, X™ = 0 where e,, # 0 has the only solution 0 over the
integral domain D. Q.E.D.

Theorem 16 Let E(X) =" e; X* with e,, # 0 be a polynomial in D[X| whose tail
coefficient is e,. For any non-zero root a of E(X)

e
> .
ol = 1,

Proof. Define

m . m—t
m 1Y _ yvm 1y\* _ ]
= j=
Suppose E(X) has a non-zero root. By lemma 15, ¢ < m. Hence, deg F = m—t >
1, and for any non-zero root « of E(X), é is a root of F'(X).
Since ||F||, = ||E||, and the leading coefficient of F(X) is the tail coefficient of

E(X), applying Landau’s root bound for é yields

al = el >
or equivalently
le:|
> .
ol 2 gy,
Q.E.D.
Corollary 17 Let « be a root of E(X) € Z[X]. Then
. 1
a7 0 iff lof = g
Proof. The sufficient condition is trivial.
The necessary condition is immediate from Theorem 16. Q.E.D.
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6.2.2 Algorithm

Let e be Expr and E(X) € zZ[X] such that E(e) = 0. Define a length bound I, of e to
be a positive integer which satisfies

le > [Ig||E1],] -

Note > 2l

1
[P2]®
Proposition 18 e = 0 iff 0 belongs to € where € = e |00, [, + 2].

Proof. The necessary condition is trivial.
Suppose 0 belongs to €, i.e., |[V5| < Err;. Then

le] < le=Vo|+ V5] < 2Err.

Since € & ¢[00, [, + 2|, Err; < 27%=2. Hence

< 9-le—1 i
el < < TET;

By Corollary 17, e = 0. Q.E.D.

Proposition 18 suggests the algorithm to determine whether or not a given Expr e
is eractly 0. We simply compute € = e [00, [, + 2]. If |V5| < Err; then e is ezactly 0.
Otherwise, e # 0.

6.3 Resultant

To invoke our algorithm to determine whether or not a given Expr e is ezactly 0, we
must calculate the length bound [, of E(X) € z[X] such that E(e) = 0. In this
subsection, we describe the method of finding such an E(X).

6.3.1 Sylvester Resultant

Let F(X) and G(X) be polynomials in D[X] of degree m and n, respectively. Write
P(X) = 57 X' and G(X) = 5 X' whete g, # 0.

The Sylvester matriz syly (F,G) of F and G with respect to X is the (m + n)
dimensional square matrix which is defined to be

Jm  fm1 e fo
Jm o fi Jo
fm e fo
9n  Gn—1 s 9o
gn T g1 9o
an s 9o
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The Sylvester resultant resy (F,G) of F and G with respect to X is defined to be

det (syly (F, G)).

Let By,...,0n and v1,...,7, be the roots of F' and G, respectively.

The following lemma is a well-known property of the Sylvester resultant which is

sometimes used as an alternative definition of the Sylvester resultant.
Lemma 19 (Poisson’s Definition for Resultant)

n

resx (F,6) = 3 TT0/8) = o TP (o) = £ TLET 8- ).

j=1 i=1j=1
Theorem 20
1. -
resy (F(X FY),G(Y)) = fror TT T (X — (B: £ 7)) -
i=17j=1
2. .
resy (Y (5) . G(YV)) = fha TLTT(X — 6iy)-
i=1j=1
Proof.
1.
resy (F(X FY),G(Y)) = g7 [[F(X F7)
j=1
Al (fm TT(X 5 - @))
j=1 i=1
= frgr TLIL (X = (Bi£).
i=1j=1
2.

n

resy (YmF (%) ,G(Y)) = g, I:IIWTF <§]>

(i (5 )

J=1

= g T (s (2 - 5))

j=li=1

= fron IT TI(X = Bivj)-

i=1j=1

20

Q.E.D.



Proposition 21 Algebraic numbers are closed under taking the inverse, addition and
multiplication. In fact, algebraic numbers form a field.

Proof. Let § and v € D. Then, 3F(X) and G(X) € z[X]so that F(§) = G(y) = 0.
If B # 0 then % is a root of

X ($) (45)
(see the proof for Theorem 16). By (43), 3 £ v is a root of
resy (F(X FY),G(Y)). (46)
By (44), f+ is a root of
resy (VP F (3) ,G(Y)) . (47)
Finally, if F(X) and G(X) are both in Z[X] then so are (45), (46) and (47), because
of their constructions. Q.E.D.

6.3.2 Algorithms

Fix any Expr e. We would like to find F(X) € Z[X] such that E(e) = 0. They are
computed recursively by traversing the Expr tree e bottom-up from the leaves to the
root e.

1. Suppose ¢ is a leaf. Then, the exact value e € Q is known. Writing e = g where
(p,q) € Z X Zyo with ged(p, ¢) = 1, we find that

E(X) =¢X —p. (48)

2. Suppose e is of the form e = —f for some Expr f. By assumption, F/(X) =
Sy fiXt € z]X] with f,, # 0 such that F(f) =0 is known. Then

E(X)=F(=X)=Y (-1)'f;X". (49)
i=0
The correctness is obvious.

3. Suppose e is of the form e = fQg for some Expr f and g and for some @ €
{+,—,+,/}. By assumption, F(X) and G(X) € Z[X]such that F(f) = G(g) =0

are known.
(a) If e = f + g then
E(X) =resy (F(X -Y),G(Y)) (50)

or

E(X) = resy (G(X — Y), F(Y)). (51)

The correctness is immediate from (46).
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(b) If e = f — g then
E(X) =resy (F(X+Y),G(Y)) (52)
E(X)=H(—X) where H(X)=resy (G(X+Y),F(Y)). (53)

The correctness for (52) is immediate from (46). Also, by (46), g — f is a
root of H(X). Hence, f —g = —(g— f) is a root of H(—X).

(c) Ife=f-gthen
B(X) =resy (YR F (5),G(Y)). (54)

The correctness is immediate from (47).
(d) If g # 0 and e = f/g then

B(X) =resy (VI F (), V4G (). (55)

The correctness is proven as follows:
Since g # 0, by (45), % is a root of X4&¢( (%) By (47), *5 = f
root of (55).

1S a

Q@ |~

4. Suppose e is of the form e = sqrt (f) for some Expr f with f > 0. By assumption,
F(X)=%", fiX" € z]X] with f,, # 0 such that F(f) =0 is known. Then

E(X)=F(X?) = fj fiX? (56)
i=0
This is correct, since
m 2 m )
Ee)=>_f; (\/E) =Y fiff=o.
i=0 i=0

6.4 Degree-Length Bound

In the previous subsection, we described the method, for a given Expr e, of finding
E(X) € z[X] such that F(e) = 0. We would like to compute the length bound I,
of E(X). The naive approach is just to calculate all the coefficients of E(X) and
use them to get [Ig||E||,]. This is inefficient both in terms of space and time: To
find E(X), for each descendent f of e, we must find a polynomial F(X) € Z[X]
such that F(f) = 0, but the degree and the magnitudes of the coefficients of those
polynomials easily become huge. To avoid these problems, we compute an upper bound
for [Ig||E||,] which may not be tight, but could be gotten much more efficiently. In
fact, we compute it without knowing any coefficient of E(X).

4We could also have
E(X) = resy (ydegGG (%) ,F(Y)) .

But unlike the addition or subtraction, having this alternative choice will not affect our algorithm.
Hence, we can safely ignore it.
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6.4.1 Generalized Hadamard Bound

We are going to use the generalized version of Hadamard Bound [GG74] which gives
us an upper bound for the 2-norm of the determinant of a matrix over C[X]:

Theorem 22 (Generalized Hadamard Bound) Let P(X) = [P;x(X)] be an n di-
mensional square matriz over C[X|. Then

det P(X)], < HJZ 1P (57)

Proposition 23 Let F(X) =X f;X7 and G(X) = X7 ;X7 € Z[X] with fmgn #
0.

1. If E(X) =resy (F(XFY),G(Y)) then

deg E<mn and |[E|, < (|[F]l,2")"[G][5". (58)

2. If B(X) =resy (Y™F (3) ,G(Y)) then

degE<mn and |E|l, < |||l IGI (59)
Proof.
1.
FXFY) = Y H(XFY)
7=0
- 2oy ([ ey
7=0 k=0
- i((w)’“ifj(j)w) v
k=0 =k k

For each of the upper n rows of syl, (F(X FY),G(Y)), any non-zero element
in the row is a polynomial (in X') of degree at most m, and for each of the lower
m rows, all the elements in the row are constants. Hence, deg £ < mn.

For each of the upper n rows of syl (F(X FY),G(Y)), the square root of the
sum of the squared 1-norm of the elements in the row is bounded from above as

e £, ()

k=0 j=k

ZHH|ZZ<>

7=0k=0

il

IN
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1Pl >- 2
=0

17l 27

<
< |IF|l, 2"

For each of the lower m rows of syly (F(X FY),G(Y)), the square root of the
sum of the squared 1-norm of the elements in the row is

A 1gl? = G,
§=0

1B, < (IIF1, 27 1G]]

Applying (57) to E(X),

. Let f; be the tail coefficient of F/(X). Then

YU (3) = mit i XY,

J=0

For each of the upper n rows of syl (YmF (%) ,G(Y)), any non-zero element
in the row is a polynomial (in X') of degree at most m, and for each of the lower
m rows, all the elements in the row are constants. Hence, deg £ < mn.

For each of the upper n rows of syl (YmF (%) ,G(Y)), the square root of the
sum of the squared 1-norm of the elements in the row is

m—t
Jz o xmd2 = 5 P
7=0 \

= |IFl,-

For each of the lower m rows of syl (YmF (%) ,G(Y)), the square root of the
sum of the squared 1-norm of the elements in the row is

\ Z|gg |Gl -

1Ell, < Il 16115

Applying (57) to E(X),

Q.E.D.
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6.4.2 Algorithms

Let e be Expr and E(X) € Z[X] such that E(e) = 0. Define a degree-length bound of
e to be a pair (de,l.) € Nog X N which satisfies

de > degE and [ > |lg||E]|,]-

By Proposition 18, e = 0 iff 0 belongs to € where € 2 e [00, [, + 2].

Fix any Expr e. Let E(X) € Z[X] such that E(e) = 0. We would like to find a
degree-length bound (d,,[.) of e. The bounds are computed recursively by traversing
the Expr tree e bottom-up from the leaves to the root e.

1. Suppose e is a leaf. Then, by (48), E(X) = pX — ¢ where (p,q) € Z X Z such
that e = g and ged(p, g) = 1. Thus

degE=1 and |[|E||,=/p*>+¢>

Hence, we set

do < 1

I+ max{[lglpl], [lglgl]} +1 > |3 +1g(max{lp|, gl})]
= |5 (1 +1g (max{lp|, a]})*)]
= [3lz@max{p?, ¢*})]

> |lgvp* + q2J :

2. Suppose e is of the form e = — f for some Expr f. Assume (d;,(;) is known. Let
F(X) € z[X] found in Section 6.3.2 such that F'(f) = 0. Then, dy > deg F' and
1> [lg||FIl,). By (49), B(X) = F(~X). Thus

deg B =deg ' and ||E[], = [|F|l,.
Hence, we set
de — df

le — lf.

3. Suppose e is of the form e = fQg for some Expr f and g and for some @Q €
{+,—,-,/}. Assume (dy,[y) and (d,, ;) are known. Let F'(X) and G(X) € Z[X]
found in Section 6.3.2 such that F(f) = G(g) = 0. Then, d; > degF, I; >
g [|F|l,], dg > deg G and I, > [Ig[|G]l,].

(a) Suppose e = f + g. If; as (50), E(X) = resy (F(X —Y),G(Y)) then, by
(58),

deg G
deg E < deg F degG and || E||, < (||F||22degF+1) ¢ Il
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Thus

UgllEll,] = ldegG (1g]|F[], + deg F' +1) + deg F' 1g [|G]],
[deg G (g [|Fll, + deg F' + 1) | + [deg F 1g || ][] + 1
deg G (|1g||F||,] + deg FF + 1) + deg G — 1
+deg F' [1g]|G||,] +deg FF — 1+ 1.
If, as (51), E(X) =resy (G(X —Y), F(Y)) then, by (58),

<
<

deg E < deg G deg F and ||E|, < (||G]], 202 0+) " || F|jdesC.
Thus
UgllEll] < deg F([lg||G|l,] +degG +1) 4+ deg F — 1
+deg G |1g||F||,| +degG — 1 + 1.
Hence, we set
d, « dsd,
le «— dflyg+dgly+dpdy+min{ds,dy} +ds +dy—1.
Suppose e = f — g. If; as (52), E(X) = resy (F(X +Y),G(Y)) then, by
(58),
deg E < deg F deg G and ||B||, < (|[F|l,2%" )™ |G| 3"

If, as (53), E(X) = H(—X) where H(X) = resy (G(X +Y),F(Y)) then,
by (58),
deg F =deg H < deg G deg I

and dog F
deg G
1B, = |[HIl, < (/IG]], 275 ) |||y ¢

Hence, we set
d, « dsd,
le «— dflyg+dgly+dpdy+min{ds,dy} +dy +dy— 1.
If e = f - g then, by (54), E(X) = resy (Y5 F () G(Y)). By (59),
deg E < deg F degG and |[|E|, < ||F||gegG ||G||gegF.
Thus
Ug||E|l,] = [degG lg||F||,+ deg F 1g[|G]],]

< [deg G Ig|[F||,] + [deg F 1g||G]],] +1
< degG [Ig|[F|[,] + deg G — 1
+deg F' |1g||G]|,| +deg FF — 1 + 1.
Hence, we set
d, « d;d,

lp, <+ dflg+dglf—|—df-|—dg—1.
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(d) If g # 0 and e = f/g then, by (55), E(X) = resy (YdegFF (%) ,H(Y))
where H(Y) = Y4G (5-). Since deg H < deg G and ||H||, = [|G]|,. by
(59),

deg F < deg F deg H < deg F' deg G
and

deg H deg I’ deg G deg I
1Elly < [[F[l 7 [ < [IFILET NGRS

Hence, we set

d, « dgd,
le — dflg+dglf+df+dg—1.

4. Suppose e is of the form e = sqrt (f) for some Expr f with f > 0. Assume
(dg,lf) is known. Let F(X) € Z[X] found in Section 6.3.2 such that F'(f) = 0.
Then, dy > deg F and [; > [Ig]||F||,]. By (56), E(X) = F (X?). Thus

deg E = deg? P and |||, = ||F],.
Hence, we set

de < dj
le — lf.

7 Precision-Driven Algorithm

In this section, we describe our algorithm to compute an approximation of a given
Expr to a given precision.

Let e be Expr. Whenever precision p, is given, for each child f of e, we compute the
precision py of f so that if f is approximated by fto ps then € which is computed by
applying Real operation to f will be an approximation of e to the required precision
pPe- Thus, in our algorithms, the precisions are propagated top-down from e to the
leaves, whereas approximate values are collected bottom-up from the leaves to e.

7.1 Approximation

Let e be Expr and (r,a) € N x Z. We say Real € approximates e to precision [r, a] and
write
€ = elr,al

if e belongs to € and
Errs < max{|e| 277, 2’“} .
If € = e[r,a] then V5 = e[r, al, i.e.,

le—V4 < max{|e| 277, 2’“} :
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7.1.1 Properties

Lemma 24 Fiz Expr e and (r,a) € N X Z. Let € = ¢[r, a].

1. If a > — |lg|e|] then
Vel < 2]el.

2. Ifr>1and a > —[lgle|] + 1 then
el
|V2| > 2
3. Ifr>1and a > — |lgle|| + 1 then
V5| > Errs.

Proof.

1. If |V5] < |e| then there is nothing to prove.

Suppose |V5| > |e|. Since r > 0 and a > — |lgle|], max{|e|27", 27} < |e].

Then

Vol < le|+ Erry; < le|+max{le]277, 27} < 2]e].

e

2. If |V4] > |e| then there is nothing to prove.

Suppose |[V5] < |e|. Since r > 1 and a > — [lg|e|| + 1, max {|]e|27", 27} < %

Then

V5| > le|— Err; > |e] —max{|e|]27", 27%} > %

3. Again, max {|e| 27", 27} < ‘—;' Together with (61),

Errs < max{le27, 2 < 4 < g

7.2 Most Significant Bit
Let e be Expr. The most significant bit (MSB) p, of e is defined to be

{ llglel] ife#0

—00 if e=0.

Note
Qe S |6| < 2Me+1‘

Here, we mean 2-°° = 0 by convention. We write o, = sgn (e).

o8

Q.E.D.



The MSB . of e plays an important role in our precision driven algorithm. If
non-trivial y. is known then each of the relative and absolute precisions of e could be
“translated” to the other. Moreover, a non-trivial u, actually tells us whether or not
e is exactly 0, i.e, if e is exactly 0 then p, = —oo. Since we usually do not know the
exact value of e, the MSB itself is hard to compute. Instead, we compute an upper
bound x} and a lower bound p for the MSB . of e. We also compute the sign o, of
e which is helpful to compute p and g .

We now describe how to compute uf, u. and o.

We will consider two cases:

(a) When e is newly constructed or gets some new substructure.

(b) When e has been approximated at least once to precision [r,a] with » > 1 and
a> —pe+ 1

This idea comes from the following observation:

If e has never approximated, then we use a static algorithm to compute u and
i . These bounds may not be tight. Thus, once we get some approximation of e, we
try to refine uf and p .
7.2.1 Algorithms for MSB

Let e be Expr. We would like to compute an upper bound pf and a lower bound p
for the MSB 1, of e, as well as the sign o, of e. They are computed recursively by
traversing the Expr tree e bottom-up from the leaves to the root e.

(a) Suppose e is newly constructed or gets some new substructure.

1. Suppose € is a leaf. Then, the exact value e € Q is known. Thus, we set

pe =, < |lglel)
o < sgn(e).
2. Suppose e is of the form e = —f for some Expr f. By assumption, ,u;?, vy and
oy are known. Then
2hr < |=fl=1f] < 2w

Thus, we set

fe < py
He <= My
O¢ $— —O0jf.
3. Suppose e is of the form e = fQg for some Expr f and g and for some @ €
{+,—,-,/}. By assumption, uf, p;, oy, puf, py and o, are known.

(a) Suppose e = f & g. There are several cases depending on o; and o,.
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i. If either e = f +gand ofo, >00re=f —gand or0, <0 then

gunax{uring}

Thus, we set

T

e
Oe

241 4 QM

I+ 19l =1f 9]
2uf+1_|_2ug+1 S Qmax{ﬂfyﬂg}‘i‘Q.

— max {u}*, u;} +1

— max{u;,ug_}
<~ Oy.

ii. If either e = f + g and o0, < 0ore= f —gand or0, > 0 then

= lgll=1f g < gmax{ s +1,pg+1}

Thus, we set

pr max{u}“,u;“}.

To get . and o, we consider three sub-cases.

A. Suppose p; — p > 2. Then

If+g] =

V

v

Thus, we set

ory L,

|f] =gl

2/1; _ 2u:{+1
(2#;*#:{*1 _ 1) 2u3’+1
QhT —Hg =2 o +1

(since py — pf —1>1)

pe  pp—1
Oe < Of.

Intuitively, the above means that p, is much smaller than s so
that, even though f & ¢ is performed, g cannot cancel out py.

B. Suppose p; — ,u}“ > 2. By a similar argument to the previous case,

|f+gl=—1fl+]g]

Thus, we set
He

Oe

> kg 1

— py —1

o ife=f+g
-0, ife=f—g.

|
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C.

Otherwise, /1 and p, are almost the same, and most (possibly all)
of the significant bits of f and ¢ will cancel out with each other.
Unfortunately, there is no way to predict how many of them will
cancel out, and we cannot find p, or o, by just using statically
obtained quantities. We must use the algorithm which will be de-
scribed later.

iii. If o # 0 but 0, = 0 then f + g = f. Thus, we set

e g
He S [y
Oc < Oyf.

iv. If oy = 0 but o, # 0 then |f £+ g| = |g|. Thus, we set

e gy

He = Hg

Oe <— {Ug 1f€:f+g
—o, ife=f—g.

v. Ifop =0, =0then f+g=0.
(b) If e = f - g then

2Hf+ﬂg S |f| |g| < 2Hf+llg+2.

Thus, we set

pe = pf 4l +1
fe 4y iy
Oe 4 00,

(c) Suppose e = f/g. If 0, = 0 then e is not well-defined. Otherwise

f
g

Qhf—pg—1l < QHfHgtl

Thus, we set

frg =y
Mo < pp =y —1
Oc < 0f0y.

4. Suppose e is of the form e = sqrt (f) for some Expr f. By assumption, u}*, 1y

and oy are known. If oy = —1 then e is not well-defined. Otherwise
o+ < 29 < VI < o < o]+,
Thus, we set
+
1
fe < {%J
N My
% -7
:U’e \‘ 2 J
Oe < Of.



(b) Suppose e has been approximated by € to precision [r,a] with r > 1 and a >

— e + 1.
The following proposition suggests that we could refine ) and g, when a suitable

approximation of e is known.

Proposition 25

Proof. By (61),

By (60),

Q.E.D.

We now could have the algorithm to refine pf and pu:
pd — min{pd, pp+ 1}
fe < maX{u; e — 1}-

7.3 Precision-Driven Algorithm

Let Expr e and (r,, a,) € NxZ. We would like to compute Real € such that € 2 e [r,, a,].
There are several cases depending on the type of e.

1. Suppose ¢ is a leaf. Then, the exact value e € Q is known. We simply call the
approximation algorithm to compute € € Real with the error-bound [r., a.] such
that e belongs to €. By (27) in Proposition 11, é 2 e[r, a].

2. Suppose e is of the form e = — f for some Expr f. The computation of € consists
of two phases:

~

(&)

(a) Set 7y < 1. and ay < a., and make a recursive call to compute f =
f [Teaae]'
(b) Set &« —F.

By Proposition 12,
e—(=V7)| = le—Vs < max{le|27", 27},

3. Suppose e is a binary operator node of the form e = f@g for some Expr f and
g and for some @ € {4, — -, /}. The computation of € consists of two phases:

(a) Determine (r7,ay) and (ry,a,) € N X Z so that

e— < max{|e|2*”, 2*“5},

Vf[rf,af]@g[rg,ag}

and make recursive calls to compute f = f [r7,ar] and fyg (g, ag].
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(b) Compute f@g to get e.

4. Suppose e is of the form e = sqrt (f) for some Expr f with f > 0. The compu-
tation of € consists of two phases:

(a) Determine (ry,ay) € N X Z so that

e — sqrt (Vf[rf,af]> ‘ < rnax{|e| 27", 2‘“‘5} ,

and make a recursive call to compute f = f rp,ap).
(b) Compute sqrt (f) to get e.
Since phase (b) of the algorithms for binary operator nodes and sqrt nodes is just

the Real operation (and its correctness immediately follows from Proposition 12), we
will concentrate on phase (a).

7.3.1 Addition and Subtraction

Consider an Expr of the form e = f + ¢g. Given (7¢,a.) € N X Z, we would like to
determine (rf,as) and (rg,a,) € N X Z so that

- Vf[’"f?“f]ig[rg’ag]

< max{|e| 27", 2*“8} : (63)
Proposition 26 To ensure (63), it suffices to set

rf%max}u}—u;+re+4,0i, af < a. + 3,

g < maxyput —p; +re+4,0p,  ay < a.+ 3.
Proof. By (33), it is enough to show

6 max {Errf, Errg} < max{|e| 27", 2_“3} :
By symmetry, we may assume max {Errf, Erra} = Erry If Erry < |f]27" then

6 Erry < 6|f|27"7

< 6|f| 2_(M}—+1)+Me__7'e_3
< le|27".

If Errfg 27% then

6-27%
6.2 %3
97,

6 Errf

VAN VAR VAN

Q.E.D.
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7.3.2 Lower Bound for MSB

We now describe the algorithm to set p, and o, for Expr e when e is of the form
either f + ¢ with oy0, < 0 or f — g with 070, > 0, and neither p; — u;“ > 2 nor
Py — u}r > 2. In this case, p1y and p, are almost the same, and p. becomes very tiny
(possibly —o0). To get u, and 0., we must eventually compute an approximation of
e to some precision.

Setting

rfemax{u}r+le+6,0}, ap <l + 9,
rg<—max{u2r+le+6,0}, ag < lo +5,

we compute f & f [rr,ar] and g = g|ry, a,] by our precision-driven algorithm. Note
max {|f]| 2777, 2 %} <275 and max {|g| 27", 2%} < 27l~5 Thus,

max {Err}?, Errg} < glemd,
By (33),
Erry < 6max{Errf, Errg} < B-27lTD < 9le2,

Hence, € 2 e [0, [, + 2.
By Proposition 18, if 0 belongs to € then e = 0.
Unless 0 belongs to € then e # 0. Thus, we could set

pe < [g(Val = Err))
o < sgn(15).
7.3.3 Multiplication

Consider an Expr of the form e = f-¢. Given (re,a.) € N x Z, we would like to
determine (ry,as) and (rg4,a,) € N X Z so that

€- Vf[rf,af]-g[rg,ag]

< max{|e| 27", 2*“8} : (65)

Proposition 27 To ensure (65), it suffices to set

rpé=Te+4,  ap < maxy—p; + 1, pf +a.+57, (66)
rg < Te+4,  agmaxy—pu; +1, uf+a.+5;.
Proof. By (34), it is enough to show
6max{‘Vf‘ Errs, Errf‘Vg : ErrfErrg} < max{|e| 27", 2_“3}. (67)

Observe ry > 4 and ay > —pu; + 1. Then, by (62), ETTJ’;S ‘Vf‘- Thus
ErrfErrg < ‘Vf‘ Errg.
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Hence, to have (67), we only need to show
6max {|V7| Errg, Errz|V5]} < max{|e|27, 27}
We claim
6|V Erry < max{|e|27, 27}

Since ay > —puy + 1, by (60),

Vf‘ <2|f|. If Err; < |g|27" then

6|V Errs < 6-2|f||g|27"
< 12|f-gl27
< lef27.
If Errg < 27% then
6|Ve| Erry < 6-2|f[27%

<
< 12ff2m( e
< 270

Similarly
6Errf‘V§‘ < max{|e| 277, 2’“5}.
Q.E.D.

7.3.4 Division

Consider an Expr of the form e = f/g. Given (r.,a.) € N x 7, we would like to
determine (rf,as) and (g, a,) € N X Z so that

€ = Vilrsar]/olrao)

< max{|e| 27", 2*“8} : (68)

Proposition 28 To ensure (68), it suffices to set

ry < min{r, + 7, max {y; +a.+8,2}},  ap < —p; +ory,
g < min{r. + 7, max {yf +a. +8, 2}},  ag <+ —py; + 1y, (69)
T'default <— max {rdefaulta min {re + 6; ,U/: + Qe + 7}} -

Proof. First, note max {|f|27"/,27%} = |f|27"f and max{|g|27"s, 27%} =
|g|27"9. Thus, we only need to consider the case where f and g are both bounded by
their relative precisions.

Next, observe 7y > 2, af > —puy +2, 7, > 2 and ay > —p, + 2. Then, by (60) and
(61),

U<y <211 and 4 <|vz] <21g]. (70)
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Moreover,

f
Erry < (71)
\a
because Errfg If|27" < ‘Vf‘ 2t < 5. Similarly
Err; < |—L| (72)
Now, we show that (68) holds. There are two cases.

1. Suppose Erry= Erry=0. By (35), it is enough to show

~

12 ‘V/f\| Tdefault S maX{|6| 2_7.6, 2_ae} .
g

But, by (70),

2|/]

| T'default S ]- 2 \g|
2

< 48 |e| max {27‘66, Q(uiﬂ)aeﬁ}

—_
NV}
bl

T'default

S

< max {|e| 277, 2*“5} .

2. Suppose Erry >0 or Erry > 0. Since (71) and (72) hold, by (36), it is enough
to show

12Jﬁmax{%, %} < max{|e|2’”,2’“e}.
Vil Vil v

If Erry < |f[277 and Err; < |g|27" then, by (70),

12Mmax Brrg Errg |y 211 |f| ax d 217 BT
‘V‘ ‘Vf ‘Vg‘ 2

IN

2
96 |e |max{2 re=7 g=(m+1)- “6—7}

< max{|e| 27", 2_“3} .
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7.3.5 Squareroot

Consider an Expr of the form e = sqrt (f). Given (r.,a.) € N x Z, we would like to
determine (rf,as) € N X Z so that

e — sqrt (Vf[rf,af]>‘ < max {|e| 27", 2_“3} . (73)

Proposition 29 To ensure (73), it suffices to set

Tp < 2r.+38, ayp < 2a.+8,
(default <— max {adefaulta mln{_li; + Tea ae}} .

(74)

Proof. There are two cases.

1. Suppose Errf: 0. By (37), it is enough to show

27adsfault S max { |6| 271"8, 2*%} .

But
2 Gdefanlt max{2“e__”, 2“‘8} < max{|e[27T, 27%}.

2. Suppose Erry> 0. By (38), it is enough to show
16\/Erry < rnax{|e| 277, 2‘“‘5}.
If Erry < [f|2777 then

16\/Erry < 164/ f] 277

164/]f] 274

= |e]27".

If Errfg 27% then

16,/Err}? < 16V27%
= 16-27%*
= 2%,

Q.E.D.
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8 Conclusion

Most geometric algorithms are designed under the assumption that all the numerical
quantities are real (algebraic) numbers and they can be computed exactly. Thus, their
implementations are quite difficult and often practically impossible.

As an typical example, we consider the problem of the sign determination of de-
terminants of square matrices. Many geometrical predicates such as “left of line” or
“on circle” can be reduced into this problem.

For this problem, several robust implementations are proposed. Some of them
are based on floating-point arithmetic, and therefore, every implementation can work
correctly with some specific inputs and under some limited conditions. A user must
carefully choose the appropriate implementation which satisfies his/her request, and
probably some adjustments need to be done.

Our Real/Expr package may relax these annoying conditions to some extent. By
using the Real/Expr package, the user can have a simple implementation, namely,
expand the determinant to get the algebraic expressions for it, and apply the inequality
operator. The elements of the input matrix could be of any type from which an
instance of Real can be constructed. In particular, the inputs could be arbitrarily
long. Moreover, the same implementation can be used for matrices of any dimension
although it is not practical for dimensions above 6.

We would also like to say that the algorithms we use to determine the sign of
expressions may be more efficient than the other exact computation package where
the naive implementation of the exact computation is taken.

We conclude that users can use our Real/Expr package to implement the exact
algorithms in the very general situation. More specifically, the Real/Expr package has
the following significant points:

e Users can implement the exact algorithms without being constrained by the
restrictions caused by fixed-precision arithmetic.

e Users can expect better performance than the traditional exact computation
tools where all numerical quantities are computed exactly.

e Users can deal with algebraic expressions involving the squareroots.

We expect the Real/Expr package will be used in the following situations.

Under some circumstances, the Real/Expr package may be a primary candidate
to implement algorithms. The implementation could be an almost straightforward
interpretation of the underlying algorithm.

Nevertheless, floating-point arithmetic is fast. It is quite natural to choose floating-
point arithmetic to implement algorithms. Then, the robustness (or exactness) needs
to be ensured. In this situation, users can embed the Real/Expr package in their
implementation at some critical points where exactness is important.

Finally, users may use the Real/Expr package as a verifier of floating-point imple-
mentation.
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