
Real/Expr : Implementation of an Exact

Computation Package

Kouji Ouchi

January 16, 1997

Abstract

The Real/Expr package is a C++ project to support the precision-driven

approach to exact computation of geometric algorithms. The package is built

on top of the class Real that encompasses a variety of numerical representations.

The class Expr captures a set of algebraic expressions on which any comparison

can be done precisely.

The software libraries described here are available via the Web page

http://simulation.nyu.edu/projects/exact/.

1 Introduction

Robust implementation of geometric algorithms is di�cult to achieve. The main prob-

lem arises from the use of �xed-precision arithmetic such as machine
oating-point

arithmetic. To overcome this, the exact computation method which uses arbitrary-

precision arithmetic has been proposed. However, its naive interpretation, namely,

computing all numerical quantities exactly, is too ine�cient. Notice that what needs

to be exact is a combinatorial structure; but the numerical quantities associated with

the combinatorial structure need not be exact. This observation suggests another in-

terpretation of the exact computation, precision-driven computation, where numerical

quantities will be computed to be precise enough so that decisions for the related

combinatorial structure can be made exactly. As a tool for this approach of the exact

computation, we would like to introduce the Real/Expr package in which users can

perform the precision-driven computation over algebraic expressions.

Geometric algorithms characteristically involve geometric data structures. By a

geometric data structure, we mean a combinatorial data structure together with nu-

merical quantities. Moreover, there are implicit consistency constraints governing the

relation between the combinatorial structure and its associated numerical quantities.

This means that perturbing the numerical values without taking into account the

combinatorial structure can lead to qualitatively di�erent or inconsistent states, which

often result in catastrophic errors in algorithms.

Many researchers have devised methods to address non-robustness problems within

the �xed-precision arithmetic. We believe that non-robustness in geometric algorithms

is inherent when one is committed to �xed-precision, and the best general policy

for attacking non-robustness is the exact computation, to compute geometrical data

structures exactly.

Exact computation has a naive interpretation, namely, to compute every numerical

quantity exactly. This surely guarantees the robustness of algorithms. However, it is

too ine�cient in general because occasionally huge numerical quantities must be dealt

with.

We will take another approach, where computing exactly is taken to mean the

combinatorial structure must be mathematically correct, but the associated numerical

quantities may be approximations that are consistent with the combinatorial structure.

This interpretation of exact computation could be realized with much less expensive

cost than the naive one.

Now, we compare �xed-precision arithmetic and arbitrary-precision arithmetic.

In �xed-precision arithmetic (e.g. machine
oating-point arithmetic), all the nu-

merical objects are limited to some universal �xed-precision. The arithmetic opera-

tions are fast, and often there are hardware supports. Since the size of an object is

�xed, the memory allocation for a brand new object can be statically done.

In arbitrary-precision arithmetic, there is no limitation for precisions of numerical

objects (o�cially, of course. In practice, there is a limitation based on the limited

available resources, etc). The arithmetic operations could be done without causing

over
ow or under
ow, but the speed is slow. From the view point of complexity, if the

size of objects becomes larger, the cost for the operations grows at least proportionally

to the size of objects (usually, much worse). At execution time, the memory allocation

1

for a newly constructed object is a much more serious problem: since the size of an

object is unknown, the memory allocation for the object should be done dynamically.

We must use arbitrary-precision arithmetic. So, somehow we would like to limit

the growth of the size of numerical objects. To achieve this goal, we introduce an

arbitrary-precision
oating-number representation in the following format:

(mantissa � error)� BASE

exponent

;

where mantissa and exponent are integers of arbitrary length and error is a non-

negative integer. A triple hmantissa; error; exponenti is interpreted as any (real alge-

braic) number in the interval

h

(mantissa� error)� BASE

exponent

; (mantissa + error)� BASE

exponent

i

:

Obviously, any (�xed-precision)
oating-point number or an integer of arbitrary length

can be represented by some arbitrary-precision
oating-point number. But, we need

more: to perform the exact computation, we must deal with rational numbers, or

much more generally, algebraic numbers. Here, an algebraic number is de�ned to be a

root of some integer coe�cient polynomial. Any rational or algebraic number can also

be represented by our arbitrary-precision
oating-point number representation with

an error component error � 0. Note that the correspondence between rational (or

algebraic) numbers and our arbitrary-precision
oating-point representations is not

bijective. In fact, any arbitrary-precision
oating-point representation with non-zero

error contains in�nitely many rational (or algebraic) numbers.

Using this arbitrary-precision
oating-point number representation, we could re-

alize our interpretation of exact computation with reduced size of numerical objects.

For example, to determine the sign of a non-zero rational number, we simply approxi-

mate it in terms of our arbitrary-precision
oating-point representation which does not

contain 0. If the rational number has a numerator and a denominator of length O(n)

and O(d) bits, respectively, then we need consider a arbitrary-precision
oating-point

number whose mantissa is of length 1 bit and exponent is of length O(lg jn� dj) bits.

Furthermore, to minimize ine�ciency, we restrict the range of error so that it

�ts some �xed-precision number representation (e.g. machine unsigned long integer).

Whenever an object happens to have error which is out of range, we truncate error as

well as mantisaa so that error will fall into the standard range. This way, we prevent

mantissa from growing rapidly.

Given this arbitrary-precision
oating-point number representation, we now in-

troduce our Expr package which embodies our interpretation of exact computation:

\precision-driven computation". The Expr package captures a set of algebraic expres-

sions involving +, �, �, = and

p

over rational numbers. An expression is expressed

as a rooted DAG (directed acyclic graph), and maintains an approximation of the ex-

pression. When the precision of the root is speci�ed, we recursively drive the precision

of each of the children nodes, so that if the subexpression rooted at the child node is

approximated to that precision then we could get the approximation of the root to the

required precision. For these approximations, we use our arbitrary-precision
oating-

point numbers, and thus, Expr package returns the interval to which the value of the

2

expression belongs while the width of the interval is controlled by the speci�ed preci-

sion. The precision could be set explicitly by users, or internal function calls such as

calls to the equality operators.

Many fundamental predicates of geometric algorithms are expressed by algebraic

expressions. For example, \P is left of the directed line segment

�!

QR" is expressed as a

sign of the signed volume (the determinant of the matrix whose entries are coordinates

of P , Q and R and 1's) of 4PQR. For these predicates, our Expr package is best

applicable. We construct the expression for the signed volume, and approximate its

value precisely enough so that we can determine its sign; but we never compute the

value itself.

In this paper, we describe the design, the algorithms, and the implementation

techniques of our package.

2 Overview

In this section, we introduce the basic elements in our Real/Expr package and raise

the issues to be addressed in this paper.

The package is written in the C++ language, and is realized as a set of C++ class

libraries. There are three major classes: the class Expr, the class Real and the class

BigFloat.

2.1 The Class Expr

The class Expr captures a set of algebraic expressions.

Formally, an instance of Expr is a rooted DAG where each leaf can store some value

in Q and each internal node represents one of the operations +, (unary and binary)

�, �, = and

p

. If every leaf of the tree rooted at e stores a value in Q then e can be

viewed as an element of a real algebraically closed �eld D which contains Q. We call

this element in D the exact value of e. Note that the exact value of e is not a data

member of Expr.

Each instance e of Expr maintains some real value x and precision p such that x

approximates the exact value of e to precision p. The precision p is set explicitly by

the user, or implicitly by the package. For example, the comparison operation e > 0

will set the necessary precision p to determine the sign of the exact value of e. To get

an approximation x of e to p, we drive the precision top-down from the node e to its

descendent leaves, and collect approximations bottom-up from leaves to the node e. In

this case, the precision of an instance is set by its parent node. Setting the necessary

precisions is the main algorithmic issue of Expr.

Another important issue is the semantics of Expr. We would like users to use our

package as a tool for symbolic computation. For this reason, we de�ne the special

semantics for assignments that is di�erent from the standard grammar of C++. Since

the \pass-by-value" rule cannot be taken, the realization of our scheme is a non-trivial

issue in the implementation of Expr.

3

2.2 The Class Real

Instances of the class Real are used for the approximate values of instances of Expr

and the exact values in leaves of some Expr trees.

The class Real encompasses a variety of number representations: machine integers

(int, long), machine (double-precise)
oating-point numbers (double), integers of

arbitrary length (BigInt) and rational numbers (Rational), as well as our arbitrary-

precision
oating-point representation BigFloat. Currently, we use GNU's Integer

and Rational for BigInt and Rational, respectively.

The main algorithmic issue here is how to de�ne the operations +, (unary and

binary) �, �, = and

p

. More speci�cally, the way to determine the type of the result

of binary operators applied to arguments of di�erent types and the way to de�ne

operations without causing over
ow or under
ow become important topics.

The implementation issue is how to realize the class that has an ability to capture

various types. We would like to implement Real operations in an object-oriented way,

that is, operations are implemented so that, given speci�c operand(s), the compiler

can choose the correct algorithm depending on the type(s) of the operand(s).

2.3 The Class BigFloat

The class BigFloat realizes arbitrary-precision
oating-point number representation

with the error component. Instances of BigFloat are intended to approximate real

numbers. If an instance of BigFloat has a non-zero error then it is actually an interval

and approximates any real number which belongs to that interval.

There are two algorithmic issues for BigFloat.

One is the design of an approximation algorithm: given a rational number and

precision, �nd a BigFloat which approximates the rational number to that precision.

The other is the design of the arithmetic operations and the function

p

for

BigFloat. Since an instance of BigFloat represents an interval, the operations must

be de�ned so that they are valid for any real number in that interval.

The class BigFloat has a member mantissa which is declared to be an integer of

arbitrary length. Accessing mantissa slows down the execution speed of the package

seriously. We show how the use of the \letter-envelope" technique helps to reduce

unnecessarily accesses to the mantissa components.

3 BigFloat

In this section, we describe our arbitrary-precision
oating-point package BigFloat

implemented as a class library in C++. In addition to the standard libraries of C++,

we assume that we have a class library of integers of arbitrary length such as GNU's

Integer.

Some basic ideas are described in [DY93].

4

3.1 De�nition

Fix any positive integer c and let B = 2

c

. For the implementation, it is convenient

to set c as follows; if the largest unsigned long is 2

L

� 1 then c =

j

L

2

k

� 2, e.g.,

L = 32) c = 14.

Each BigFloat number is a triple hm; err; expi where

� mantissa m 2 Z= f0;�1;�2; : : :g,

� error err 2 N = f0; 1; 2; : : :g,

� exponent exp 2 Z.

We say the BigFloat hm; err; expi is error-normalized (or simply normalized) if

err 2 f0; 1; : : : ; 4B � 1g :

Unless otherwise speci�ed, we assume BigFloat numbers are normalized.

BigFloat numbers are intended to be approximations for real numbers. A real

number X is said to belong to a BigFloat number hm; err; expi if

X 2 [(m� err)B

exp

; (m+ err)B

exp

] :

Let (r; a) 2 N � Z. A BigFloat hm; err; expi is said to have an error-bound [r; a] if

err � jmj 2

�r

OR

errB

exp

� 2

�a

:

3.2 Approximation

Let X be a real number and (r; a) 2 N � Z.

We say a real number

c

X approximates X to precision [r; a] and write

c

X

�

=

X[r; a]

if

�

�

�X �

c

X

�

�

� � max

n

jXj 2

�r

; 2

�a

o

:

Intuitively, this notation suggests that

c

X is the \output" for input X and [r; a]. Here,

r and a specify relative and absolute bounds on the error.

We say a BigFloat x = hm

x

; err

x

; exp

x

i approximates X to precision [r; a] and

write

x

�

=

X[r; a]

if X belongs to x and

err

x

B

exp

x

� max

n

jXj 2

�r

; 2

�a

o

:

If x approximates X then m

x

B

exp

x �

=

X[r; a], i.e.,

jX �m

x

B

exp

x

j � max

n

jXj 2

�r

; 2

�a

o

:

5

3.2.1 Approximation Algorithm

GivenR 2 Q and (r; a) 2 N�Z, we would like to compute a BigFloat x = hm

x

; err

x

; exp

x

i

with the error-bound [r; a] such that R belongs to x. Suppose

R =

N

D

where (N;D) 2 Z� Z

6=0

. Then, x will be computed by the function div (N;D; r; a).

We now describe the algorithm for div (N;D; r; a).

If N = 0 then it returns the BigFloat zero:

m

x

 0

err

x

 0

exp

x

 0:

Now, assume N 6= 0. Basically, the mantissa m

x

is computed by performing the

division jN j = jDj (up to the sign of ND denoted sgn (ND)). The mantissa m

x

is

an integer which must be long enough to have the required error-bound. Thus, we

actually shift jN j left or right and invoke the integer division so that we may control

the length of the quotient. Shifting must be done chunk by chunk, that is, c bits by c

bits.

First, suppose jN j is shifted left s � 0 chunks. Then, the integer division jN jB

s

= jDj

yields the equality

jN jB

s

=

�

jN jB

s

jDj

�

jDj+ remainder where 0 � remainder < jDj:

Thus

�

jN jB

s

jDj

�

B

�s

�

�

�

�

N

D

�

�

� =

��

jN jB

s

jDj

�

+

remainder

jDj

�

B

�s

<

��

jN jB

s

jDj

�

+ 1

�

B

�s

:

Note remainder = 0 i� jDj divides jN jB

s

. Hence, we set

m

x

 sgn (ND)

�

jN jB

s

jDj

�

err

x

(

0 if jDj divides jN jB

s

1 otherwise

exp

x

 �s:

Next, suppose jN j is shifted right t > 0 chunks. In this case, jN j is actually

truncated and the the quotient

j

jN j

jDjB

t

k

of the integer division

j

jN j

B

t

k

= jDj satis�es

�

jN j

jDjB

t

�

�

jN j

jDjB

t

<

�

jN j

jDjB

t

�

+ 1:

Thus

�

jN j

jDjB

t

�

B

t

�

�

�

�

N

D

�

�

� <

��

jN j

jDjB

t

�

+ 1

�

B

t

:

6

Hence, we set

m

x

 sgn (ND)

�

jN j

jDjB

t

�

err

x

 1

exp

x

 t:

Note err

x

is always set to be 1 in this case. We could have a slightly more precise algo-

rithm if the integer division

j

jN j

B

t

k

= jDj (i.e. truncate jN j by t chunks before dividing by

jDj) is replaced by the integer division jN j = jDjB

t

(i.e. divide jN j by jDjB

t

). Then,

like the previous case, err

x

might be set to be 0 if jDjB

t

divides jN j. Unfortunately,

this is ine�cient, since we must perform the integer division with larger operands.

It is convenient to put two cases together. We are able to do so by setting s = �t

in the �rst case. Therefore, we set

m

x

 sgn (ND)

�

jN j

jDjB

t

�

err

x

(

0 if t � 0 and jDj divides jN jB

�t

1 otherwise

exp

x

 t:

Now, we need to determine the value of t (may or may not be non-negative) which

satis�es

err

x

� jm

x

j 2

�r

OR err

x

2

ct

� 2

�a

: (1)

Since err

x

= 0 OR 1, a su�cient condition for (1) is

1 �

�

jN j

jDj2

ct

�

2

�r

OR 2

ct

� 2

�a

:

We claim that it su�ces to set

t max

��

�r+blgjN jc�blgjDjc�1

c

�

;

j

�a

c

k

�

: (2)

To see that (2) is correct, �rst, suppose t =

j

�r+blgjN jc�blgjDjc�1

c

k

. Then

c t � �r + blg jN jc � blg jDjc � 1

� �r + blg jN j � lg jDjc

= �r +

j

lg

�

�

�

N

D

�

�

�

k

:

Since r � 0, c t �

j

lg

�

�

�

N

D

�

�

�

k

� lg

�

�

�

N

D

�

�

� or equivalently

jN j

jDj2

ct

� 1:

It is not hard to show that lg bxc � blg xc 8x � 1. Using this fact,

r �

j

lg

�

�

�

N

D

�

�

�

k

� c t =

�

lg

jN j

jDj2

ct

�

� lg

�

jN j

jDj2

ct

�

7

or equivalently

1 �

�

jN j

jDj2

ct

�

2

�r

:

Next, suppose t =

j

�a

c

k

. Immediately

2

ct

� 2

�a

:

3.2.2 Properties

Fix R 2 Q and (r; a) 2 N � Z. Let x = hm

x

; err

x

; exp

x

i be the BigFloat computed by

our approximation algorithm on input R and [r; a].

Proposition 1

1.

jm

x

jB

exp

x

� jRj :

2.

x

�

=

R[r; a]:

In particular, m

x

B

exp

x �

=

R[r; a], i.e., jR�m

x

B

exp

x

j � max fjRj 2

�r

; 2

�a

g.

Proof.

1. The claim is obvious, since

jm

x

j =

�

jRj

B

exp

x

�

:

2. By de�nition

err

x

B

exp

x

� max

n

jm

x

jB

exp

x

2

�r

; 2

�a

o

;

and we have just seen jm

x

jB

exp

x

� jRj.

Q.E.D.

Proposition 2 If m

x

6= 0 then

blg jm

x

jc + c � exp

x

= blg jRjc :

Proof. If m

x

6= 0 then R 6= 0. Thus, the right hand side of the formula is well-

de�ned, and jm

x

j =

j

jRj

2

c�exp

x

k

. Hence

blg jm

x

jc =

�

lg

�

jRj

2

c�exp

x

��

=

�

lg

jRj

2

c�exp

x

�

= blg jRjc � c � exp

x

where the second equality holds since

jRj

2

c�exp

x

� 1. Q.E.D.

8

3.3 Error-Normalization

To keep the representation e�cient, we would like to normalize our BigFloat number,

i.e., maintain the error err in the range 0 � err < 4B.

Let hm

0

; err

0

; exp

0

i be a BigFloat not necessarily normalized. We could de�ne the

normalization of hm

0

; err

0

; exp

0

i to be a BigFloat hm; err; expi which satis�es

(a) 0 � err < 4B,

(b) [(m� err)B

exp

; (m+ err)B

exp

] �

h

(m

0

� err

0

)B

exp

0

; (m

0

+ err

0

)B

exp

0

i

,

and

(c') errB

exp

is minimized subject to (a) and (b).

The condition (b) states that any real number which belongs to the original

BigFloat number must also belong to the normalized BigFloat number.

Since (c') is somewhat hard to guarantee, we shall o�cially replace it by:

(c) errB

exp

� 2 err

0

B

exp

0

.

3.3.1 Error-Normalization Algorithm

If err

0

< 4B then there is nothing to do. Otherwise, let f � 1 be the integer which

satis�es

2B

f

� err

0

< 2B

f+1

or equivalently, f =

j

blg err

0

c�1

c

k

. Set

m sgn (m

0

)

�

jm

0

j

B

f

�

err

�

err

0

B

f

�

+ 2

exp exp

0

+ f:

The requirement (a) is satis�ed, since

�

err

0

B

f

�

+ 2 < 2B + 2 < 4B:

For the requirement (b), if m

0

� 0 then

(m� err)B

exp

<

��

jm

0

j

B

f

�

�

��

err

0

B

f

�

+ 1

��

B

exp

0

+f

< (m

0

� err

0

)B

exp

0

and

(m+ err)B

exp

=

���

jm

0

j

B

f

�

+ 1

�

+

��

err

0

B

f

�

+ 1

��

B

exp

0

+f

> (m

0

+ err

0

)B

exp

0

:

9

If m

0

< 0 then

(m� err)B

exp

=

�

�

��

jm

0

j

B

f

�

+ 1

�

�

��

err

0

B

f

�

+ 1

��

B

exp

0

+f

< (m

0

� err

0

)B

exp

0

and

(m + err)B

exp

>

��

�

�

jm

0

j

B

f

��

+

��

err

0

B

f

�

+ 1

��

B

exp

0

+f

> (m

0

+ err

0

)B

exp

0

:

Finally, the requirement (c) is satis�ed, because when err

0

� 4B

errB

exp

=

��

err

0

B

f

�

+ 2

�

B

exp

0

+f

�

�

err

0

+ 2B

f

�

B

exp

0

� 2 err

0

B

exp

0

:

3.4 Unary Minus Operator

Let x = hm

x

; err

x

; exp

x

i be a BigFloat. De�ne�x to be a BigFloat y = hm

y

; err

y

; exp

y

i

such that if a real X belongs to x then �X belongs to y.

Set

m

y

 �m

x

err

y

 err

x

exp

y

 exp

x

:

The correctness is obvious.

Note y does not need to be normalized, since err

y

< 4B.

3.5 Arithmetic Operators

In the following subsections, we describe how arithmetic operations are done over

BigFloat numbers.

Let x = hm

x

; err

x

; exp

x

i and y = hm

y

; err

y

; exp

y

i be BigFloat. For @ 2 f+;�; �; =g,

we would like to de�ne x@y to be a BigFloat z = hm

z

; err

z

; exp

z

i which satis�es

(a) if a real X belongs to x and a real Y belongs to y then X@Y belongs to z,

and

(b') err

z

B

exp

z

is minimized subject to (a).

As (b') is di�cult to ensure, our algorithms will only guarantee upper bounds for

err

z

B

exp

z

.

In our algorithms, we �rst de�ne a BigFloat z

0

= hm

0

; err

0

; exp

0

i whose normal-

ization would be z.

10

3.5.1 Addition and Subtraction

We would like to compute z = x� y. By symmetry, we may assume exp

x

� exp

y

.

1. If exp

x

= exp

y

then

m

0

z

 m

x

�m

y

err

0

z

 err

x

+ err

y

exp

0

z

 exp

x

:

The correctness is obvious.

If err

x

= 0 or err

y

= 0 then err

0

z

< 4B and z

0

does not need to be normalized.

2. If exp

x

> exp

y

and err

x

= 0 then we shift m

x

left by exp

x

� exp

y

chunks and

add it to m

y

to get m

0

z

so that we may avoid throwing away the error-free bits

of m

y

:

m

0

z

 m

x

B

exp

x

�exp

y

�m

y

err

0

z

 err

y

exp

0

z

 exp

y

:

The correctness for this case is also obvious.

Since err

0

z

< 4B, z

0

does not need to be normalized.

3. If exp

x

> exp

y

and err

x

> 0 then err

x

\hides" some insigni�cant bits of m

y

and

err

y

. We shift m

y

right by exp

x

� exp

y

chunks and add it to m

x

to get m

0

z

, and

add 5 to err

x

to get err

0

z

; 1 for covering the truncated bits of m

y

and 4 for err

y

:

m

0

z

 m

x

� sgn (m

y

)

�

jm

y

j

B

exp

x

�exp

y

�

err

0

z

 err

x

+ 5

exp

0

z

 exp

x

:

If m

y

� 0 then the addition and the subtraction are correct, since

(m

0

z

� err

0

z

)B

exp

0

z

=

��

m

x

�

�

jm

y

j

B

exp

x

�exp

y

��

� (err

x

+ 5)

�

B

exp

x

= (m

x

� err

x

)B

exp

x

�

��

jm

y

j

B

exp

x

�exp

y

�

� 5

�

B

exp

x

�exp

y

B

exp

y

< (m

x

� err

x

)B

exp

x

� (m

y

� err

y

)B

exp

y

and

(m

0

z

+ err

0

z

)B

exp

0

z

=

��

m

x

�

�

jm

y

j

B

exp

x

�exp

y

��

+ (err

x

+ 5)

�

B

exp

x

= (m

x

+ err

x

)B

exp

x

�

��

jm

y

j

B

exp

x

�exp

y

�

� 5

�

B

exp

x

�exp

y

B

exp

y

> (m

x

+ err

x

)B

exp

x

� (m

y

� err

y

)B

exp

y

:

The correctness for the case m

y

< 0 is similar.

11

Note the result of addition or subtraction of two error-free BigFloat numbers is

also error-free.

Proposition 3

err

z

B

exp

z

� 6max ferr

x

B

exp

x

; err

y

B

exp

y

g :

Proof.

1. If exp

x

= exp

y

then

err

z

B

exp

z

� 2 err

0

z

B

exp

0

z

= 2 (err

x

B

exp

x

+ err

y

B

exp

y

)

� 4max ferr

x

B

exp

x

; err

y

B

exp

y

g :

2. If exp

x

> exp

y

and err

x

= 0 then

err

z

B

exp

z

� 2 err

0

z

B

exp

0

z

= 2 err

y

B

exp

y

:

3. If exp

x

> exp

y

and err

x

= 1 or 2 then

err

z

B

exp

z

= err

0

z

B

exp

0

z

(since err

0

z

= err

x

+ 5 < 4B)

� 6 err

x

B

exp

x

: (since err

0

z

� 6 err

x

)

4. If exp

x

> exp

y

and err

x

� 3 then err

0

z

= err

x

+ 5 < 3 err

x

. Thus

err

z

B

exp

z

� 2 err

0

z

B

exp

0

z

< 6 err

x

B

exp

x

:

Q.E.D.

3.5.2 Multiplication

To compute z = x � y, we let

m

0

z

 m

x

m

y

err

0

z

 jm

x

j err

y

+ err

x

jm

y

j+ err

x

err

y

exp

0

z

 exp

x

+ exp

y

:

To see that this is correct, it is enough to show

(m

0

z

� err

0

z

)B

exp

0

z

� min

8

>

>

>

<

>

>

>

:

(m

x

+ err

x

)B

exp

x

(m

y

+ err

y

)B

exp

y

(m

x

+ err

x

)B

exp

x

(m

y

� err

y

)B

exp

y

(m

x

� err

x

)B

exp

x

(m

y

+ err

y

)B

exp

y

(m

x

� err

x

)B

exp

x

(m

y

� err

y

)B

exp

y

9

>

>

>

=

>

>

>

;

(3)

12

and

(m

0

z

+ err

0

z

)B

exp

0

z

� max

8

>

>

>

<

>

>

>

:

(m

x

+ err

x

)B

exp

x

(m

y

+ err

y

)B

exp

y

(m

x

+ err

x

)B

exp

x

(m

y

� err

y

)B

exp

y

(m

x

� err

x

)B

exp

x

(m

y

+ err

y

)B

exp

y

(m

x

� err

x

)B

exp

x

(m

y

� err

y

)B

exp

y

9

>

>

>

=

>

>

>

;

: (4)

The inequalities (3) and (4) amount to the relatively obvious inequalities

m

0

z

� err

0

z

�

8

>

>

>

<

>

>

>

:

(m

x

+ err

x

) (m

y

+ err

y

)

(m

x

+ err

x

) (m

y

� err

y

)

(m

x

� err

x

) (m

y

+ err

y

)

(m

x

� err

x

) (m

y

� err

y

)

9

>

>

>

=

>

>

>

;

� m

0

z

+ err

0

z

: (5)

It is easy to see that (5) holds whatever the signs of m

x

and m

y

.

Note the result of multiplication of two error-free BigFloat numbers is also error-

free. In particular, z

0

does not need to be normalized.

Proposition 4

err

z

B

exp

z

� 6max

8

>

<

>

:

jm

x

jB

exp

x

err

y

B

exp

y

err

x

B

exp

x

jm

y

jB

exp

y

err

x

B

exp

x

err

y

B

exp

y

9

>

=

>

;

:

Proof.

err

z

B

exp

z

� 2 err

0

z

B

exp

0

z

= 2 (jm

x

jB

exp

x

err

y

B

exp

y

+ err

x

B

exp

x

jm

y

jB

exp

y

+ err

x

B

exp

x

err

y

B

exp

y

)

� 6max fjm

x

jB

exp

x

err

y

B

exp

y

; err

x

B

exp

x

jm

y

jB

exp

y

; err

x

B

exp

x

err

y

B

exp

y

g :

Q.E.D.

3.5.3 Division

We would like to compute z = x=y. We may assume jm

y

j > err

y

, because otherwise

0 belongs to y and (by de�nition) the operator is not de�ned.

The mantissa of the result is computed by calling the function div (m

x

; m

y

; r) for

some r 2 N. Here, div (m

x

; m

y

; r) is de�ned to be div (m

x

; m

y

; r;1) which was de�ned

in Section 3.2.1 Approximation Algorithm.

Let

I

x=y

= fX=Y jX and Y are real, X belongs to x and Y belongs to yg :

If err

x

> 0 or err

y

> 0 then I

x=y

is not a singleton and we can estimate the size

of the interval I

x=y

. Using this estimate, we choose a suitable r for the function call

div (m

x

; m

y

; r).

If err

x

= err

y

= 0 then I

x=y

= fZ

0

g, a singleton, and (unless m

y

divides m

x

) it

is impossible to �nd an error-free BigFloat z to which Z

0

belongs. In this case, r is

arti�cially speci�ed to be some global constant r

default

which users can change.

We now describe the algorithm in several cases.

13

(a) CASE err

x

= err

y

= 0:

Let hm

00

z

; err

00

z

; exp

00

z

i = div (m

x

; m

y

; r

default

). Then, we set

m

0

z

 m

00

z

err

0

z

 err

00

z

exp

0

z

 exp

x

� exp

y

+ exp

00

z

:

Note z

0

does not need to be normalized, since err

0

z

� 1.

(b) CASE err

x

> 0 or err

y

> 0:

(b-1) CASE jm

x

j � err

x

:

If jm

x

j � err

x

then 0 belongs to x. Thus, we set

m

0

z

 0

err

0

z

�

jm

x

j+err

x

jm

y

j�err

y

�

exp

0

z

 exp

x

� exp

y

:

The correctness follows from

�

�

�

�

(m

x

�err

x

)B

exp

x

(m

y

�err

y

)B

exp

y

�

�

�

�

�

(jm

x

j+err

x

)B

exp

x

(jm

y

j�err

y

)B

exp

y

� err

0

z

B

exp

0

z

:

(b-2) CASE jm

x

j > err

x

:

Let hm

00

z

; err

00

z

; exp

00

z

i = div (m

x

; m

y

; r).

First, we will show how to estimate r. In this case,

I

x=y

=

�

(jm

x

j�err

x

)B

exp

x

(jm

y

j+err

y

)B

exp

y

;

(jm

x

j+err

x

)B

exp

x

(jm

y

j�err

y

)B

exp

y

�

:

Since

B

exp

x

B

exp

y

does not a�ect the choice of r, it is convenient to use

J

x=y

= I

x=y

B

exp

y

B

exp

x

=

�

jm

x

j�err

x

jm

y

j+err

y

;

jm

x

j+err

x

jm

y

j�err

y

�

instead of I

x=y

. Note

jm

x

j

jm

y

j

2 J

x=y

. By Proposition 1,

�

�

�

�

jm

x

j

jm

y

j

� jm

00

z

jB

exp

00

z

�

�

�

�

�

jm

x

j

jm

y

j

2

�r

:

Thus, r speci�es an upper bound for the distance between

jm

x

j

jm

y

j

and jm

00

z

jB

exp

00

z

. It is

enough to choose r so that

jm

00

z

jB

exp

00

z

2 J

x=y

; (6)

because a larger r does not decrease the error of z

0

substantially. To ensure (6), it

su�ces to have

jm

x

j

jm

y

j

2

�r

�

jm

x

j

jm

y

j

�

jm

x

j�err

x

jm

y

j+err

y

; (7)

14

because

jm

x

j

jm

y

j

�

jm

x

j

jm

y

j

2

�r

� jm

00

z

jB

exp

00

z

=

�

jm

x

j

jm

y

jB

exp

00

z

�

B

exp

00

z

�

jm

x

j

jm

y

j

<

jm

x

j+err

x

jm

y

j�err

y

:

Hence, we are interested in the smallest r so that (7) holds. As getting the \smallest"

r is di�cult, we shall only compute some upper bound. Since

jm

x

j

jm

y

j

�

jm

x

j�err

x

jm

y

j+err

y

=

jm

x

jerr

y

+err

x

jm

y

j

jm

y

j(jm

y

j+err

y

)

=

jm

x

j

jm

y

j+err

y

�

err

x

jm

x

j

+

err

y

jm

y

j

�

�

jm

x

j

2jm

y

j

�

err

x

jm

x

j

+

err

y

jm

y

j

�

�

jm

x

j

2jm

y

j

max

�

err

x

jm

x

j

;

err

y

jm

y

j

�

;

it su�ces to have

2

�r

�

8

>

>

>

>

<

>

>

>

>

:

1

2

1

jm

y

j

if err

x

= 0 and err

y

> 0

1

2

1

jm

x

j

if err

x

> 0 and err

y

= 0

1

2

max

�

1

jm

x

j

;

1

jm

y

j

�

if err

x

> 0 and err

y

> 0:

Hence, we set

r

8

>

<

>

:

blg jm

y

jc + 2 if err

x

= 0 and err

y

> 0

blg jm

x

jc+ 2 if err

x

> 0 and err

y

= 0

min fblg jm

x

jc ; blg jm

y

jcg+ 2 if err

x

> 0 and err

y

> 0

(8)

and

m

0

z

 m

00

z

exp

0

z

 exp

x

� exp

y

+ exp

00

z

:

Next, we compute err

0

z

.

1

It must satisfy

(m

0

z

� err

0

z

)B

exp

0

z

�

(m

x

�err

x

)B

exp

x

(m

y

�err

y

)B

exp

y

� (m

0

z

+ err

0

z

)B

exp

0

z

or equivalently

m

0

z

� err

0

z

�

m

x

�err

x

(m

y

�err

y

)B

exp

00

z

� m

0

z

+ err

0

z

:

(9)

1

We could have

err

0

z

�

jm

x

j+err

x

jm

y

j�err

y

�

jm

x

j�err

x

jm

y

j+err

y

�

B

exp

x

B

exp

y

=

2(jm

x

jerr

y

+err

x

jm

y

j)

jm

y

j

2

�err

2

y

B

exp

x

B

exp

y

:

But this error-bound is unnecessarily large and expensive to compute.

15

Since we assume that jm

x

j > err

x

and jm

y

j > err

y

, the signs of m

x

� err

x

and

m

y

� err

y

are the same as those of m

x

and m

y

, respectively. Dividing both sides of

(9) by sgn (m

z

) = sgn (m

x

m

y

),

jm

0

z

j � err

0

z

�

jm

x

j�err

x

(jm

y

j�err

y

)B

exp

00

z

� jm

0

z

j+ err

0

z

:

(10)

We claim that it su�ces to set

err

0

z

2

6

6

6

j

jm

x

j

B

exp

00

z

k

+

j

err

x

B

exp

00

z

k

+ � � jm

y

j jm

0

z

j+ err

y

jm

0

z

j

jm

y

j � err

y

3

7

7

7

(11)

where

� =

(

0 if exp

00

z

� 0

2 if exp

00

z

> 0.

Note the quantity

j

jm

x

j

B

exp

00

z

k

�jm

y

j jm

0

z

j is the remainder of the integer division

�

jm

x

j

B

exp

00

y

�

= jm

y

j,

and it has already been computed by div (m

x

; m

y

; r). If

j

jm

x

j

B

exp

00

z

k

+

j

err

x

B

exp

00

z

k

is replaced

by

j

jm

x

j+err

x

B

exp

00

z

k

then we could have � � 1, but we must perform another integer division

to get it.

To see that (11) implies (10), we have

err

0

z

�

j

jm

x

j

B

exp

00

z

k

+

j

err

x

B

exp

00

z

k

+��jm

y

jjm

0

z

j+err

y

jm

0

z

j

jm

y

j�err

y

�

jm

x

j+err

x

(jm

y

j�err

y

)B

exp

00

z

� jm

0

z

j

�

�

�

�

�

jm

x

j�err

x

(jm

y

j�err

y

)B

exp

00

z

� jm

0

z

j

�

�

�

�

where the last inequality is proven as follows:

Let

D

+

=

�

�

�

�

jm

x

j+err

x

(jm

y

j�err

y

)B

exp

00

z

� jm

0

z

j

�

�

�

�

and D

�

=

�

�

�

�

jm

x

j�err

x

(jm

y

j+err

y

)B

exp

00

z

� jm

0

z

j

�

�

�

�

:

Actually,

D

+

=

jm

x

j+err

x

(jm

y

j�err

y

)B

exp

00

z

� jm

0

z

j

since

jm

x

j+err

x

(jm

y

j�err

y

)B

exp

00

z

>

jm

x

j

jm

y

jB

exp

00

z

�

�

jm

x

j

jm

y

jB

exp

00

z

�

= jm

0

z

j, and

D

�

= jm

0

z

j �

jm

x

j�err

x

(jm

y

j+err

y

)B

exp

00

z

because of our choice of r. Obviously

max

n

D

+

; D

�

o

�

�

�

�

�

jm

x

j�err

x

(jm

y

j�err

y

)B

exp

00

z

� jm

0

z

j

�

�

�

�

;

16

but max fD

+

; D

�

g = D

+

, since

D

+

�D

�

=

jm

x

j+err

x

(jm

y

j�err

y

)B

exp

00

z

+

jm

x

j�err

x

(jm

y

j+err

y

)B

exp

00

z

� 2 jm

0

z

j

=

2(jm

x

jjm

y

j+err

x

err

y

)

(

jm

y

j

2

�err

2

y

)

B

exp

00

z

� 2 jm

0

z

j

�

2jm

x

jjm

y

j

jm

y

j

2

B

exp

00

z

� 2 jm

0

z

j

= 2

jm

x

j

jm

y

jB

exp

00

z

� 2

�

jm

x

j

jm

y

jB

exp

00

z

�

� 0:

Proposition 5

1. If err

x

= err

y

= 0 then

err

z

B

exp

z

�

jm

x

jB

exp

x

jm

y

jB

exp

y

2

�r

default

:

2. If either err

x

= 0 and

jm

y

j

2

� err

y

> 0

or jm

x

j > err

x

> 0 and err

y

= 0

or jm

x

j > err

x

> 0 and

jm

y

j

2

� err

y

> 0 then

err

z

B

exp

z

� 12

jm

x

jB

exp

x

jm

y

jB

exp

y

max

�

err

x

jm

x

j

;

err

y

jm

y

j

�

:

Proof.

1. This is immediate from de�nition for div (m

x

; m

y

; r

default

) (see Section 3.2.1 Ap-

proximation Algorithm).

2. Since err

z

B

exp

z

� 2 err

0

z

B

exp

0

z

, it is enough to show

err

0

z

B

exp

0

z

� 6

jm

x

jB

exp

x

jm

y

jB

exp

y

max

�

err

x

jm

x

j

;

err

y

jm

y

j

�

:

We will consider three cases. The cases follow the logic of the algorithms for

division.

(a) Suppose m

x

= err

x

= 0 and

jm

y

j

2

� err

y

> 0.

(This is the case (b-1) of the algorithm.)

Then, err

0

z

= 0.

(b) Suppose either jm

x

j > err

x

> 0 and err

y

= 0

or jm

x

j > err

x

> 0 and

jm

y

j

2

� err

y

> 0 and blg jm

x

jc � blg jm

y

jc.

(This is the case (b-2) of the algorithm when r is set to be blg jm

x

jc+ 2 in

(8).)

In this case, we see from (2) that

exp

00

z

=

�

�blgjm

y

jc�3

c

�

:

17

Then

c � exp

00

z

� � (blg jm

y

jc + 1)� 2 < 0:

Thus

B

exp

00

z

= 2

c�exp

00

z

<

1

4jm

y

j

:

Hence

B

exp

0

z

=

B

exp

x

B

exp

00

z

B

exp

y

<

jm

x

jB

exp

x

jm

y

jB

exp

y

1

4jm

x

j

: (12)

From (11)

err

0

z

<

jm

x

j+err

x

(jm

y

j�err

y

)B

exp

00

z

� jm

00

z

j+ 1 (since � = 0)

<

jm

x

j+err

x

(jm

y

j�err

y

)B

exp

00

z

�

jm

x

j

jm

y

jB

exp

00

z

+ 2

=

jm

x

j

(jm

y

j�err

y

)B

exp

00

z

�

jm

x

j+err

x

jm

x

j

�

jm

y

j�err

y

jm

y

j

�

+ 2

� 2

jm

x

j

jm

y

jB

exp

00

z

�

err

x

jm

x

j

+

err

y

jm

y

j

�

+ 2:

Therefore

err

0

z

B

exp

0

z

< 2

jm

x

j

jm

y

jB

exp

00

z

B

exp

0

z

�

err

x

jm

x

j

+

err

y

jm

y

j

�

+ 2B

exp

0

z

< 2

jm

x

jB

exp

x

jm

y

jB

exp

y

�

err

x

jm

x

j

+

err

y

jm

y

j

�

+ 2

jm

x

jB

exp

x

jm

y

jB

exp

y

1

4jm

x

j

(by (12))

= 2

jm

x

jB

exp

x

jm

y

jB

exp

y

�

err

x

jm

x

j

+

1

4jm

x

j

+

err

y

jm

y

j

�

� 6

jm

x

jB

exp

x

jm

y

jB

exp

y

max

�

err

x

jm

x

j

;

err

y

jm

y

j

�

:

(c) Suppose either jm

x

j > err

x

= 0 and

jm

y

j

2

� err

y

> 0

or jm

x

j > err

x

> 0 and

jm

y

j

2

� err

y

> 0 and blg jm

x

jc > blg jm

y

jc.

(This is the case (b-2) of the algorithm when r is set to be blg jm

y

jc+ 2 in

(8).)

In this case, (2) gives us

exp

00

z

=

�

blgjm

x

jc�2blgjm

y

jc�3

c

�

:

Then

c � exp

00

z

� blg jm

x

jc � 2 (blg jm

y

jc + 1)� 1:

Thus

B

exp

00

z

= 2

c�exp

00

z

<

jm

x

j

2jm

y

j

2

:

Hence

B

exp

00

z

jm

x

j

<

1

2jm

y

j

2

�

1

4jm

y

j

(13)

where the last inequality follows from jm

y

j � 2. Also

B

exp

0

z

=

B

exp

x

B

exp

00

z

B

exp

y

<

jm

x

jB

exp

x

jm

y

jB

exp

y

1

2jm

y

j

: (14)

18

From (11)

err

0

z

<

jm

x

j+err

x

(jm

y

j�err

y

)B

exp

00

z

+

�

jm

y

j�err

y

� jm

00

z

j+ 1

<

jm

x

j+err

x

(jm

y

j�err

y

)B

exp

00

z

+

2

jm

y

j�err

y

�

jm

x

j

jm

y

jB

exp

00

z

+ 2

=

jm

x

j

(jm

y

j�err

y

)B

exp

00

z

�

jm

x

j+err

x

jm

x

j

+

2B

exp

00

z

jm

x

j

�

jm

y

j�err

y

jm

y

j

�

+ 2

� 2

jm

x

j

jm

y

jB

exp

00

z

�

err

x

jm

x

j

+

1

2jm

y

j

+

err

y

jm

y

j

�

+ 2: (by (13))

Therefore

err

0

z

B

exp

0

z

< 2

jm

x

jB

exp

x

jm

y

jB

exp

y

�

err

x

jm

x

j

+

1

2jm

y

j

+

err

y

jm

y

j

�

+ 2

jm

x

jB

exp

x

jm

y

jB

exp

y

1

2jm

y

j

(by (14))

= 2

jm

x

jB

exp

x

jm

y

jB

exp

y

�

err

x

jm

x

j

+

err

y

jm

y

j

+

1

jm

y

j

�

� 6

jm

x

jB

exp

x

jm

y

jB

exp

y

max

�

err

x

jm

x

j

;

err

y

jm

y

j

�

:

This proposition does not cover the cases 0 = jm

x

j < err

x

or 0 < jm

x

j � err

x

since there is no upper bound for err

0

z

in terms of x and y, nor does it cover

the cases 2 err

y

> jm

y

j > err

y

> 0 since we may assume that non-exact y

can be recomputed so that it will have the error-bound [r; a] with r � 1 and

a � �blg jm

y

jc+ 1.

Q.E.D.

3.6 Squareroot

Let x = hm

x

; err

x

; exp

x

i be a BigFloat withm

x

� 0. De�ne sqrt (x) to be a BigFloat

y = hm

y

; err

y

; exp

y

i such that 8 real X � 0, if X belongs to x then

p

X belongs to y.

For x = hm

x

; err

x

; exp

x

i with m

x

< 0, sqrt (x) is not de�ned.

3.6.1 Algorithm for sqrt (x)

Let x = hm

x

; err

x

; exp

x

i be a BigFloat with m

x

� 0. We would like to compute a

BigFloat y = sqrt (x).

De�ne the function sqrt (X;A) as follows:

For X 2 N and A 2 Z, sqrt (X;A) returns an error-free BigFloat z = hm

z

; 0; exp

z

i

such that

�

�

�

p

X �m

z

B

exp

z

�

�

� � 2

�A

.

The function sqrt (x) will be computed by calling sqrt (X;A) for some X and A.

Let

I

p

x

=

�

q

� j � is non-negative real and � belongs to x

�

:

If err

x

> 0 then I

p

x

is not a singleton and we can estimate the size of the interval

I

p

x

. Using this estimate, we choose a suitable A for the function call sqrt (X;A).

19

If err

x

= 0 then I

p

x

= f�

0

g, a singleton, and (unless m

x

is a prefect square) it

is impossible to �nd an error-free BigFloat y to which �

0

belongs. In this case, A is

arti�cially speci�ed by some default precision.

Let

� =

(

0 if exp

x

is even

1 if exp

x

is odd.

We now describe the algorithm in several cases. In each case, we �rst de�ne a

BigFloat y

0

=

D

m

0

y

; err

0

y

; exp

0

y

E

whose normalization would be y.

(a) CASE m

x

� err

x

:

If m

x

� err

x

then 0 belongs to x. Thus, we set

m

0

y

 0

err

0

y

(

0 if err

x

= 0

2 (bsqrt ((double) err

x

)c + 1) 2

�

d

c

2

e

if err

x

> 0.

exp

0

y

exp

x

��

2

Here, double sqrt (double d) is the function in the standard library of C++ to compute

p

d for d � 0 which is correctly rounded as outlined in the IEEE 754
oating-point

standard [PH90] [Gol91].

The correctness follows from

err

0

y

B

exp

0

y

> 2

p

err

x

p

B

�

r

B

exp

x

B

�

>

q

2 err

x

B

exp

x

�

q

(m

x

+ err

x

)B

exp

x

:

(b) CASE m

x

> err

x

= 0:

We would like to compute y

0

such that

err

0

y

B

exp

0

y

� 2

�a

default

�1

where a

default

is some global constant which users can change.

Let hm

z

; 0; exp

z

i = sqrt

�

m

x

B

�

; a

default

+ 1 + c �

exp

x

��

2

�

and

p = a

default

+ 1 + c �

exp

x

��

2

+ c � exp

z

:

If p � 0 then 2

�p

� 1. Thus, we set

m

0

y

 m

z

err

0

y

 2

�p

exp

0

y

 exp

z

+

exp

x

��

2

:

The correctness is obvious.

20

If p > 0 then 2

�p

< 1. We shift 2

�p

left

l

p

c

m

chunks to get err

0

y

so that err

0

y

� 1.

Thus

m

0

y

 m

z

B

d

p

c

e

err

0

y

 2

�p

B

d

p

c

e

exp

0

y

 exp

z

+

exp

x

��

2

�

l

p

c

m

= �

l

a

default

+1

c

m

:

The correctness is also obvious.

(c) CASE m

x

> err

x

> 0:

Let hm

z

; 0; exp

z

i = sqrt

�

m

x

B

�

; A

�

for some A.

First, we will show how to estimate A. In this case,

I

p

x

=

�

q

(m

x

� err

x

)B

exp

x

;

q

(m

x

+ err

x

)B

exp

x

�

:

It is convenient to use

J

p

x

=

I

p

x

p

B

exp

x

��

=

�

q

(m

x

� err

x

)B

�

;

q

(m

x

+ err

x

)B

�

�

instead of I

p

x

. Note

p

m

x

B

�

2 J

p

x

. By de�nition for sqrt

�

m

x

B

�

; A

�

, A speci�es an

upper bound for the distance between

p

m

x

B

�

and m

z

B

exp

z

. It is enough to choose A

so that

m

z

B

exp

z

2 J

p

x

; (15)

because a larger A does not decrease the error of y

0

substantially. Since m

x

> err

x

,

q

m

x

B

�

�

q

(m

x

� err

x

)B

�

>

q

(m

x

+ err

x

)B

�

�

q

m

x

B

�

: (16)

Hence, to ensure (15), it su�ces to have

q

(m

x

+ err

x

)B

�

�

q

m

x

B

�

� 2

�A

: (17)

We are interested in the smallest A such that (17) holds. As getting the \smallest" A

is di�cult, we shall only compute some upper bound. Since m

x

> err

x

> 0,

1 +

err

x

m

x

> 1 +

err

x

2m

x

+

err

2

x

16m

2

x

=

�

1 +

err

x

4m

x

�

2

:

Hence

r

1 +

err

x

m

x

� 1 >

err

x

4m

x

:

Therefore

q

(m

x

+ err

x

)B

�

�

p

m

x

B

�

=

p

m

x

B

�

�

q

1 +

err

x

m

x

� 1

�

>

err

x

p

B

�

4

p

m

x

= 2

lg err

x

�2�

1

2

lgm

x

+�

c

2

> 2

blg err

x

c�

b

1

2

(blgm

x

c+1��c)

c

�3

:

(18)

21

Hence, we set

A �blg err

x

c +

j

1

2

(blgm

x

c+ 1� � c)

k

+ 3:

Next, we compute err

0

y

. It must satisfy

�

m

0

y

� err

0

y

�

B

exp

0

y

�

q

(m

x

� err

x

)B

exp

x

�

�

m

0

y

+ err

0

y

�

B

exp

0

y

:

Considering (16), it su�ces to set err

0

y

so that

q

m

x

B

exp

x

�

q

(m

x

� err

x

)B

exp

x

+ 2

�A

r

B

exp

x

B

�

� err

0

y

B

exp

z

:

Since 1 > 1�

err

x

m

x

> 0,

1�

q

1�

err

x

m

x

< 1�

�

1�

err

x

m

x

�

=

err

x

m

x

:

Hence

q

m

x

B

exp

x

�

q

(m

x

� err

x

)B

exp

x

+ 2

�A

r

B

exp

x

B

�

=

p

m

x

B

exp

x

�

1�

q

1�

err

x

m

x

�

+

err

x

p

B

�

4

p

m

x

r

B

exp

x

B

�

(by (18))

<

err

x

p

B

exp

x

p

m

x

+

err

x

p

B

exp

x

4

p

m

x

< 2

err

x

p

B

exp

x

p

m

x

:

Therefore, err

0

y

must be set so that

2

err

x

p

B

exp

x

p

m

x

� err

0

y

B

exp

0

y

:

Let

q = �1� dlg err

x

e+

j

1

2

blgm

x

c

k

� �

l

c

2

m

+ c � exp

z

:

Note if q � 0 then

2 err

x

p

B

�

p

m

x

B

exp

z

� 1.

If q � 0 then we set

m

0

y

 m

z

err

0

y

 2 err

x

2

�

b

1

2

blgm

x

c

c

+�

d

c

2

e

�c�exp

z

exp

0

y

 exp

z

+

exp

x

��

2

:

This is correct, because

err

0

y

� 2 err

x

1

p

m

x

p

B

�

1

B

exp

z

� 1

and

err

0

y

B

exp

0

y

� 2

err

x

p

B

�

p

m

x

B

exp

z

B

exp

z

p

B

exp

x

p

B

�

= 2

err

x

p

B

exp

x

p

m

x

:

22

If q > 0 then 2

�q

< 1. We shift 2

�q

left

l

q

c

m

chunks to get err

0

y

so that err

0

y

� 1.

Thus

m

0

y

 m

z

B

d

q

c

e

err

0

y

 2

�q

B

d

q

c

e

exp

0

y

 exp

z

+

exp

x

��

2

�

l

q

c

m

=

exp

x

��

2

�

&

�1�dlg err

x

e+

b

1

2

blgm

x

c

c

��

d

c

2

e

c

'

:

The correctness is similar to the previous case. Note y

0

does not need to be normalized,

since err

0

y

< B.

Proposition 6

1. If err

x

= 0 then

err

y

B

exp

y

� 2

�a

default

:

2. If err

x

> 0 then

2

err

y

B

exp

y

� 16

q

err

x

B

exp

x

:

Proof.

1. If m

x

= err

x

= 0 then err

0

y

= 0.

If m

x

> err

x

= 0 then

err

y

B

exp

y

� 2 err

0

y

B

exp

0

y

� 2 � 2

�a

default

�1

:

2. If m

x

� err

x

and err

x

> 0 then

err

y

B

exp

y

� 2 err

0

y

B

exp

0

y

� 2 (

p

err

x

+ 2) 2

�

d

c

2

e

r

B

exp

x

B

�

� 2 (

p

err

x

+ 2

p

err

x

) 2

p

B

�

r

B

exp

x

B

�

= 12

q

err

x

B

exp

x

:

If m

x

> err

x

> 0 and q = �1�dlg err

x

e+

j

1

2

blgm

x

c

k

� �

l

c

2

m

+ c � exp

z

� 0 then

err

y

B

exp

y

� 2 err

0

y

B

exp

0

y

= 2 � 2 err

x

2

�

b

1

2

blgm

x

c

c

+�

d

c

2

e

�c�exp

z

B

exp

z

p

B

exp

x

p

B

�

< 2 � 2 err

x

2

p

m

x

2

p

B

�

1

B

exp

z

B

exp

z

p

B

exp

x

p

B

�

= 16

r

err

x

m

x

q

err

x

B

exp

x

< 16

q

err

x

B

exp

x

:

2

If c is even then we could replace 16 by 8, because

�

c

2

�

=

c

2

, i.e., 2

�

d

c

2

e

=

p

B

�

. Note we set

c =

�

L

2

�

� 2 where 2

L

� 1 is the largest unsigned long. In almost all systems, L is some positive

power of 2 (typically L = 32), and hence, c is even.

23

If m

x

> err

x

> 0 and q > 0 then

err

y

B

exp

y

= err

0

y

B

exp

0

y

= 2

1+dlg err

x

e�

b

1

2

blgm

x

c

c

+�

d

c

2

e

�c�exp

z

B

d

q

c

e

B

exp

z

p

B

exp

x

p

B

�

B

d

q

c

e

< 2 � 2 err

x

2

p

m

x

2

p

B

�

1

B

exp

z

B

exp

z

p

B

exp

x

p

B

�

= 16

r

err

x

m

x

q

err

x

B

exp

x

< 16

q

err

x

B

exp

x

:

Q.E.D.

3.6.2 Algorithm for sqrt (X;A)

We now describe the algorithm for sqrt (X;A) de�ned above.

We simulate Newton's method to compute

p

X over BigFloat numbers. First, we

introduce some functions which will be used in our algorithm.

For X 2 N, error-free BigFloat numbers y = hm

y

; 0; exp

y

i with m

y

> 0 and

z = hm

z

; 0; exp

z

i with m

z

� 0, and A 2 Z, de�ne

Q

X

(y; A) =

D

m

0

q

; 0; exp

0

q

� exp

y

E

where

D

m

0

q

; err

0

q

; exp

0

q

E

= div (X;m

y

;1; A� c � exp

y

) ;

H(z) =

Dj

m

z

2

k

; 0; exp

z

E

;

N

X

(y; A)
= H (y +Q

X

(y; A)) ;

S

X

(y) =

1

2

�

m

y

B

exp

y

+

X

m

y

B

exp

y

�

:

Note the function S

X

(y) yields a fraction, not a BigFloat.

Lemma 7

1.

X

m

y

B

exp

y

� 2

�A

�

X

m

y

B

exp

y

� B

b

�A

c

c

< Q

X

(y; A) �

X

m

y

B

exp

y

:

(19)

2.

S

X

(y)� 2

�A

� S

X

(y)� B

b

�A

c

c

< N

X

(y; A) � S

X

(y):

(20)

Proof.

1. By de�nition (see Section 3.2.1 Approximation Algorithm),

Q

X

(y; A) =

6

6

6

4

X

m

y

B

b

�A

c

c

+exp

y

7

7

7

5

B

b

�A

c

c

:

24

Thus

X

m

y

B

exp

y

� B

b

�A

c

c

=

0

@

X

m

y

B

b

�A

c

c

+exp

y

� 1

1

A

B

b

�A

c

c

< Q

X

(y; A)

�

X

m

y

B

b

�A

c

c

+exp

y

B

b

�A

c

c

=

X

m

y

B

exp

y

:

2. By de�nition of BigFloat addition,

1

2

(m

y

B

exp

y

+Q

X

(y; A))�

1

2

B

min

f

exp

y

;

b

�A

c

cg

� H (y +Q

X

(y; A))

�

1

2

(m

y

B

exp

y

+Q

X

(y; A)) :

By (19)

1

2

(m

y

B

exp

y

+Q

X

(y; A))�

1

2

B

min

f

exp

y

;

b

�A

c

cg

>

1

2

�

m

y

B

exp

y

+

X

m

y

B

exp

y

�B

b

�A

c

c

�

�

1

2

B

min

f

exp

y

;

b

�A

c

cg

�

1

2

�

m

y

B

exp

y

+

X

m

y

B

exp

y

�

� B

b

�A

c

c

and

1

2

(m

y

B

exp

y

+Q

X

(y; A)) �

1

2

�

m

y

B

exp

y

+

X

m

y

B

exp

y

�

:

Q.E.D.

Lemma 8

1.

p

X lies between m

y

B

exp

y

and

X

m

y

B

exp

y

, i.e.,

�

m

y

B

exp

y

�

p

X

�

�

X

m

y

B

exp

y

�

p

X

�

� 0: (21)

2. If m

y

B

exp

y

�

p

X then

m

y

B

exp

y

� S

X

(y) �

p

X (22)

where the equalities hold i� m

y

B

exp

y

=

p

X.

Proof.

25

1. If m

y

B

exp

y

�

p

X then

X

m

y

B

exp

y

�

X

p

X

=

p

X;

and if m

y

B

exp

y

<

p

X then

X

m

y

B

exp

y

>

X

p

X

=

p

X:

2. Note S

X

(y) is the midpoint between m

y

B

exp

y

and

X

m

y

B

exp

y

, but

p

X �min

�

m

y

B

exp

y

;

X

m

y

B

exp

y

�

� max

�

m

y

B

exp

y

;

X

m

y

B

exp

y

�

�

p

X

since

�

max

�

m

y

B

exp

y

;

X

m

y

B

exp

y

�

�

p

X

�

�

�

p

X �min

�

m

y

B

exp

y

;

X

m

y

B

exp

y

��

= m

y

B

exp

y

� 2

p

X +

X

m

y

B

exp

y

=

m

2

y

B

2exp

y

�2m

y

B

exp

y

p

X+X

m

y

B

exp

y

=

(

m

y

B

exp

y

�

p

X

)

2

m

y

B

exp

y

� 0:

Q.E.D.

Now, we present the algorithm for sqrt (X;A). Since the case X = 0 or 1 is trivial,

assume X � 2. Set

y

0

= hX; 0; 0i

y

i

= N

X

(y

i�1

; A) i = 1; 2; : : : :

Note m

y

0

B

exp

y

0

�

p

X.

The iteration continues until we will �nd the smallest i 2 N such that

Q

X

(y

i

; A) + 2

�A

� m

y

i

B

exp

y

i

; (23)

and hm

y

i

; 0; exp

y

i

i will be returned. The correctness follows from the following lemmas.

Lemma 9 The condition (23) is su�cient to have

�

�

�

p

X �m

y

i

B

exp

y

i

�

�

� � 2

�A

.

Proof. There are two cases.

1. If Q

X

(y

i

; A) + 2

�A

� m

y

i

B

exp

y

i

�

p

X then

0 � m

y

i

B

exp

y

i

�

p

X � 2

�A

;

since

Q

X

(y

i

; A) + 2

�A

� m

y

i

B

exp

y

i

(by assumption)

�

p

X (by assumption)

�

X

m

y

i

B

exp

y

i

(by (21))

� Q

X

(y

i

; A) : (by (19))

26

2. Suppose

Q

X

(y

i

; A) + 2

�A

� m

y

i

B

exp

y

i

and

p

X > m

y

i

B

exp

y

i

: (24)

Actually, the �rst condition of (24) is redundant, i.e., (24) is equivalent to

p

X >

m

y

i

B

exp

y

i

. In fact, if

p

X > m

y

i

B

exp

y

i

then

Q

X

(y

i

; A) + 2

�A

>

X

m

y

i

B

exp

y

i

(by (19))

�

p

X (by (21))

> m

y

i

B

exp

y

i

: (by assumption)

If

p

X > m

y

i

B

exp

y

i

and m

y

j

B

exp

y

j

>

p

X for j = 0; 1; 2; : : : ; i� 1 then

0 <

p

X �m

y

i

B

exp

y

i

� 2

�A

;

since

S

X

(y

i�1

) >

p

X (by (22))

> m

y

i

B

exp

y

i

= N

X

(y

i�1

; A) (by (21))

> S

X

(y

i�1

)� 2

�A

: (by (20))

Q.E.D.

Lemma 10 There exists i 2 N such that (23) holds.

Proof. If m

y

j

B

exp

y

j

�

p

X then m

y

j

B

exp

y

j

� m

y

j+1

B

exp

y

j+1

, because

m

y

j

B

exp

y

j

� S

X

(y

j

) (by (22))

� N

X

(y

j

; A) (by (20))

= m

y

j+1

B

exp

y

j+1

:

Since m

y

0

B

exp

y

0

�

p

X, the sequence

n

m

y

j

B

exp

y

j

o

is non-increasing for small j. De-

pending on the behavior of

n

m

y

j

B

exp

y

j

o

, we consider several cases.

1. If 9i 2 N such that m

y

i

B

exp

y

i

= m

y

i+1

B

exp

y

i+1

and m

y

j

B

exp

y

j

> m

y

j+1

B

exp

y

j+1

for

j = 0; 1; 2; : : : ; i� 1 then

m

y

i

B

exp

y

i

= S

X

(y

i

) = N

X

(y

i

; A) = m

y

i+1

B

exp

y

i+1

:

By (19)

m

y

i

B

exp

y

i

=

X

m

y

i

B

exp

y

i

< Q

X

(y

i

; A) + 2

�A

:

Note, in this case, m

y

i

B

exp

y

i

=

p

X.

2. Suppose

n

m

y

j

B

exp

y

j

o

is strictly decreasing for all small j.

27

(a) If 9i 2 N

>0

such that

p

X > m

y

i

B

exp

y

i

and m

y

j

B

exp

y

j

>

p

X for j =

0; 1; 2; : : : ; i � 1 then we have already seen in Lemma 9 that Q

X

(y

i

; A) +

2

�A

> m

y

i

B

exp

y

i

.

(b) Otherwise, 8j 2 N m

y

j

B

exp

y

j

>

p

X. By (22), 8j 2 N

m

y

j

B

exp

y

j

> S

X

(y

j

) � m

y

j+1

B

exp

y

j+1

>

p

X:

Thus, both

n

m

y

j

B

exp

y

j

o

and fS

X

(y

j

)g are strictly decreasing for all j and

bounded from below by

p

X. Hence, both of them converge. Moreover,

lim

j!1

m

y

j

B

exp

y

j

= lim

j!1

S

X

(y

j

). Hence,

lim

j!1

m

y

j

B

exp

y

j

=

p

X;

and in particular, 9i 2 N such that (23) holds.

Q.E.D.

Finally, we claim that the convergence of

n

m

y

j

B

exp

y

j

o

is quadratic as the original

Newton's method. Let i be the smallest non-negative integer such that (23) holds. By

Lemma 10, for j = 1; 2; : : : ; i� 1; m

y

j

B

exp

y

j

>

p

X. Then

m

y

j

B

exp

y

j

�

p

X

= N

X

(y

j�1

; A)�

p

X

� S

X

(y

j�1

)�

p

X (by (20))

=

1

2

m

y

j�1

B

exp

y

j�1

+

X

m

y

j�1

B

exp

y

j�1

!

�

p

X

=

m

2

y

j�1

B

2exp

y

j�1

�2m

y

j�1

B

exp

y

j�1

p

X+X

2m

y

j�1

B

exp

y

j�1

<

1

2

p

X

�

m

y

j�1

B

exp

y

j�1

�

p

X

�

2

: (since m

y

j�1

B

exp

y

j�1

>

p

X)

Summarizing:

if X = 0 then return h0; 0; 0i

else if X = 1 then return h1; 0; 0i

else

y hX; 0; 0i

loop

q Q

X

(y; A)

if y � q + 2

�A

then return hm

y

; 0; exp

y

i

y H(y + q)

end loop

28

3.7 Implementation

We use the well-known \letter-envelope" technique [Cop92]. Any BigFloat number is

associated with two instances, one belongs to the \envelope" class BigFloat and the

other belongs to the \letter" class BigFloatRep.

The \envelope" class BigFloat is de�ned as follows:

class BigFloat

{

BigFloatRep* rep;

// private member functions come here.

public:

// public member functions come here.

};

The \letter" class BigFloatRep is de�ned as follows:

class BigFloatRep

{

friend class BigFloat;

BigInt m;

unsigned long err;

long exp;

unsigned int refCount;

// private member functions come here.

};

Here, BigInt is the class of integers of arbitrary length. In the previous sections, we

assume that the exponent exp 2 Z. In the implementation, however, we declare exp

to be long for e�ciency.

No member of BigFloatRep is declared to be public. Thus, the members of

BigFloatRep can be accessed only via BigFloat.

The only data member of BigFloat is a pointer rep to the \letter" where the

values of components are stored. The member or friend functions of BigFloat are

implemented as implicit calls to the corresponding member functions of BigFloatRep.

For example,

BigFloat x, y;

x + y;

is compiled as follows (see Figure 1):

The binary operator

29

x + y

z.rep->add(*x.rep, *y.rep)

x.operator +(y)

class BigFloat

class BigFloatRep

Figure 1: The
ow for x + y.

BigFloat BigFloat :: operator +(const BigFloat) const

is called with the implicit argument x and the explicit argument y. It constructs

BigFloat z where the result is going to be stored, and calls the member function of

BigFloatRep

void BigFloatRep :: add(const BigFloatRep, const BigFloatRep)

with the implicit argument *z.rep and the explicit arguments *x.rep and *y.rep.

The \letter-envelope" technique allows us to do memory-management e�ciently

since multiple \envelopes" can share the single \letter". For example, consider the

function

BigFloat BigFloat :: abs() const

which returns the absolute value of the *this. If BigFloat x has a non-negative

mantissa then the values of the components of x and x.abs() are the same. Thus,

x.abs() could be implemented as a BigFloat whose rep is identical to x.rep rather

than a copy of x. Compared to a brute-force implementation, we now reduce the

number of BigInt instances by one (see Figure 2).

x.abs()x

< m, err, exp >

x

< m, err, exp > < m, err, exp >

x.abs()

Implementation with

Letter-envelope Technique
Brute-force Implementation

Figure 2: If a brute-force implementation is used, the components of x and x.abs() are

distinct, even though their components store the same values. If the \letter-envelope"

technique is used, x and x.abs() can share their components.

The class BigFloatRep has the private data member refCount which counts how

many \envelopes" points to *this. When an instance of BigFloat x is about to be

destroyed, x.rep->refCount is decremented, and if it reaches 0 then *x.rep is also

destroyed.

30

4 Real

In this section, we describe the Real package implemented as a class library in C++.

In addition to the standard libraries of C++, we assume that we have a class library

of integers of arbitrary length and a class library of rational numbers such as GNU's

Integer and Rational as well as our class BigFloat.

The class Real is used to represent numerical objects in the Expr package. The

class has the ability to capture various types of number representations, namely, built-

in machine types and some arbitrary length number types including BigFloat.

4.1 De�nition

4.1.1 Construction

De�ne

KernelType = fint; long; double; BigInt; Rational; BigFloatg :

Here, int, long and double are the standard C++ types, BigInt is the type of arbitrary

length integers and Rational is the type of rational numbers.

A Real x is de�ned to be a numerical object X of type t 2 KernelType.

We say X is the kernel of x.

4.1.2 Semantics

Any Real number is associated with a triple hT; V; Erri where

� T 2 RealType = (KernelType n fBigFloatg) [fExBigFloat; AppBigFloatg,

� V 2 Q,

� Err 2 Q

�0

.

Here, ExBigFloat is the type of error-free BigFloat numbers and AppBigFloat is

the type of BigFloat numbers with positive errors. As one would expect, there is a

natural type coercion among the types in RealType. It is as follows:

int < long <

(

double

BigInt

)

< ExBigFloat < Rational < AppBigFloat: (25)

Note double resides between long and ExBigFloat, that is, a double can be a kernel

of some Real only if it is exact.

For any Real x, hT

x

; V

x

; Err

x

i is set as follows:

� If the kernel of x is the BigFloat X = hm

X

; err

X

; exp

X

i then

T

x

=

(

ExBigFloat if err

X

= 0

AppBigFloat if err

X

> 0

V

x

= m

X

B

exp

X

Err

x

= err

X

B

exp

X

:

31

� If the kernel of x is X whose type is t 6= BigFloat then

T

x

= t

V

x

= X

Err

x

= 0:

A Real x is said to be error-free if Err

x

= 0. Hence, a Real x is error-free, unless

T

x

is AppBigFloat.

On the other hand, a Real x with T

x

= AppBigFloat is intended to be an ap-

proximation for some real number. A real number X is said to belong to a Real x

if

X 2 [V

x

� Err

x

; V

x

+ Err

x

] :

Let (r; a) 2 N � Z. A Real x is said to have an error-bound [r; a] if

Err

x

� max

n

jV

x

j 2

�r

; 2

�a

o

:

The most signi�cant bit (MSB) �

x

of a Real x is de�ned to be

(

blg jV

x

jc if V

x

6= 0

�1 if V

x

= 0.

4.2 Approximation

Let X be a real number and (r; a) 2 N � Z. We say a Real x approximates X to

precision [r; a] and write

x

�

=

X[r; a]

if X belongs to x and

Err

x

� max

n

jXj 2

�r

; 2

�a

o

:

If x approximates X then V

x

�

=

X[r; a], i.e.,

jX � V

x

j � max

n

jXj 2

�r

; 2

�a

o

:

4.2.1 Approximation Algorithm

Given R 2 Q and (r; a) 2 N � Z, we would like to compute a Real x with the error-

bound [r; a] such that R belongs to x.

If r = a =1 then x is the Real whose kernel is R.

Otherwise, x is the Real whose kernel is the BigFloat X with error-bound [r; a]

such that R belongs to x (de�ned in Section 3.2.1).

32

4.2.2 Properties

Proposition 11 Fix R 2 Q and (r; a) 2 N � Z. Let x be the Real computed by our

approximation algorithm on input R and [r; a].

1.

jV

x

j � jRj : (26)

2.

x

�

=

R[r; a]: (27)

In particular, V

x

�

=

R[r; a], i.e., jR � V

x

j � max fjRj 2

�r

; 2

�a

g.

3. If R 6= 0 then

�

x

= blg jRjc : (28)

Proof. If T

x

6= ExBigFloat or T

x

6= AppBigFloat then the claims are trivial.

If T

x

= ExBigFloat or T

x

= AppBigFloat then the claims follow from Proposition

1 and 2. Q.E.D.

4.3 Arithmetic Operators and Squareroot

Over Real, the arithmetic operators +, (unary and binary) �, � and = as well as the

function sqrt() are de�ned.

4.3.1 Unary Minus

Let x be Real whose kernel is X. We de�ne �x as follows:

1. Suppose T

x

= int. Note, in this case, �X may not �t in int. Thus, �x is the

Real whose kernel is

3

(

�X if �X �ts in int

�(long)X if �X does not �t in int.

Here, (t)X stands for X to which the casting operator () is applied so that the

result has type t.

2. Suppose T

x

= long. Again, �X may not �t in long. Thus, �x is the Real

whose kernel is

(

�X if �X �ts in long

�(BigInt)X if �X does not �t in long.

3. Suppose T

x

� double or BigInt. Then, �x is the Real whose kernel is �X.

3

By de�nition, int � long. If a system assumes that int = long then long must be replaced by

BigInt.

33

4.3.2 Uni�er

We need the concept of uni�ers to de�ne the binary operators.

Let s and t 2 RealType. We say u 2 RealType uni�es s and t if s � u and t � u

where � is de�ned as in (25). If u uni�es s and t, u is called a uni�er of s and t. For

example, both ExBigFloat and AppBigFloat are the uni�ers of double and BigInt.

The most general uni�er (MGU) of s and t is de�ned to be u 2 RealType such

that

� u uni�es s and t,

� 8 uni�er u

0

of s and t, u

0

6< u.

For example, the MGU of double and BigInt is ExBigFloat.

Note, as long as both s and t 2 RealType, their MGU is uniquely determined.

4.3.3 Addition, Subtraction and Multiplication

We now de�ne the binary operators +, � and � over Real.

Let x and y be Real whose kernels are X and Y , respectively. Further, let u be

the MGU of T

x

and T

y

.

For @ 2 f+;�; �g, we de�ne x@y as follows:

1. Suppose u = int, i.e., T

x

= T

y

= int. Note @ de�ned in int is not over
ow-free.

Thus, x@y is the Real whose kernel is

8

>

<

>

:

X@Y if X@Y �ts in int

(long)X@(long)Y if X@Y does not �t in int but �ts in long

(BigInt)X@(BigInt)Y if X@Y does not �t in long.

2. Suppose u = long. Again, @ de�ned in long is not over
ow-free. Thus, x@y is

the Real whose kernel is

(

(long)X@(long)Y if (long)X@(long)Y �ts in long

(BigInt)X@(BigInt)Y if (long)X@(long)Y does not �t in long.

3. Suppose u = double. Then, @ de�ned in double is neither over
ow-free nor

under
ow-free. Moreover, even when @ does not cause over/under
ow, the result

may be rounded (an exception \inexact" is caused). Since we assume that a non-

exact double cannot be a kernel of Real, we must use @ in BigFloat when the

result of @ in double is rounded. Thus, x@y is the Real whose kernel is

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

(double)X@(double)Y

if (double)X@(double)Y does not cause exceptions:

over
ow or under
ow or inexact

(BigFloat)X@(BigFloat)Y

if (double)X@(double)Y causes an exception:

over
ow or under
ow or inexact.

34

4. Suppose BigInt � u � Rational. Set v 2 KernelType to be

(

BigFloat if u = ExBigFloat

u otherwise.

Then, @ de�ned in v is over
ow-free. Thus, x@y is just the Real whose kernel

is (v)X@(v)Y .

5. Suppose the one of T

x

and T

y

is Rational and the other is AppBigFloat.

WLOG, we may assume that T

x

= Rational and T

y

= AppBigFloat. Al-

though u = AppBigFloat, we cannot simply say that x@y is the Real whose

kernel is (BigFloat)X@(BigFloat)Y , because Rational cannot be casted into

BigFloat. Instead, we �rst compute an approximation

b

x of x to some precision

so that T

bx

= AppBigFloat, then we de�ne x@y to be the Real whose kernel is

c

X@Y where

c

X is the kernel of

b

x.

We now state how much precision is speci�ed to get

b

x.

(a) If @ = + or � then

b

x

�

=

x [1;�blgErr

y

c].

Note

Err

bx

� Err

y

; (29)

since Err

bx

� 2

blgErr

y

c

� Err

y

.

(b) If @ = � then

b

x

�

=

x [max fblg jV

y

jc � blgErr

y

c ; 0g+ 1;1].

Note, by (26),

jV

bx

jErr

y

� jV

x

jErr

y

;

and

Err

bx

jV

y

j � jV

x

jErr

y

;

since Err

bx

� jV

x

j 2

�(blgjV

y

jc+1)+blgErr

y

c

�

jV

x

jErr

y

jV

y

j

, and

Err

bx

Err

y

� jV

x

jErr

y

:

because Err

bx

� jV

x

j 2

�1

. All together,

max fjV

bx

jErr

y

; Err

bx

jV

y

j ; Err

bx

Err

y

g � jV

x

jErr

y

: (30)

6. If T

x

= T

y

= AppBigFloat then x@y is the Real whose kernel is X@Y .

For example, if x = hExBigFloat; X; 0i and y = hRational; R; 0i then x + y =

hRational; (Rational)X +R; 0i where + is the addition de�ned in Rational.

35

4.3.4 Division

To de�ne the binary operator = over Real, we must clarify the semantics of =.

Let x and y be Real whose kernels are X and Y , respectively. We would like

to de�ne z = x=y so that x = y � z. Unfortunately, in some types, the operator =

does not satisfy this condition. For example, if X and Y are both int then X=Y is

sgn (X Y)

j

�

�

�

X

Y

�

�

�

k

which is di�erent from

X

Y

(unless Y jX). Hence, we �rst cast X and Y

to be Rational or BigFloat where = is appropriately de�ned.

Let u be the MGU of T

x

and T

y

. We de�ne x=y as follows:

1. If u 2 fint; long; BigInt; Rationalg then x=y is the Real whose kernel is

(Rational)X=(Rational)Y .

2. Suppose u = double or ExBigFloat. Then, x=y is the Real whose kernel is

(BigFloat)X=(BigFloat)Y . We could use the division in Rational, but con-

structing Rational from double or BigFloat is expensive, in general.

3. Suppose that one of T

x

and T

y

is Rational and the other is AppBigFloat.

WLOG, we may assume that T

x

= Rational and T

y

= AppBigFloat. Again,

instead of casting X into BigFloat, x must be approximated by

b

x so that

T

bx

= AppBigFloat. We set

b

x

�

=

x [max fblg jV

y

jc � blgErr

y

c ; 0g+ 1;1] and

c

X to be the kernel of

b

x. Then, x=y is the Real whose kernel is

c

X=Y .

Note

j

V

bx

j

jV

y

j

Err

bx

j

V

bx

j

�

jV

x

j

jV

y

j

Err

y

jV

y

j

;

since Err

bx

� jV

x

j 2

�(blgjV

y

jc+1)+blgErr

y

c

�

jV

x

jErr

y

jV

y

j

, and

j

V

bx

j

jV

y

j

Err

y

jV

y

j

�

jV

x

j

jV

y

j

Err

y

jV

y

j

;

by (26). Hence

j

V

bx

j

jV

y

j

max

(

Err

bx

j

V

bx

j

;

Err

y

jV

y

j

)

�

jV

x

j

jV

y

j

Err

y

jV

y

j

: (31)

4. If T

x

= T

y

= AppBigFloat then x=y is the Real whose kernel is X=Y .

4.3.5 Squareroot

Let x be Real whose kernel is X. Since there is no type where

p

X can be com-

puted exactly, we use the function BigFloat sqrt (BigFloat hm

X

; err

X

; exp

X

i) which

computes

q

hm

X

; err

X

; exp

X

i for m

X

� 0 (see Section 3.6).

1. Unless T

x

= Rational then sqrt (x) is de�ned to be the Real z whose kernel is

sqrt ((BigFloat)X).

36

2. If T

x

= Rational then, once again, x must be approximated by

b

x so that T

bx

=

AppBigFloat. We set

b

x

�

=

x [1; 2 a

default

+ 8] and

c

X to be the kernel of

b

x.

Then, sqrt (x) is de�ned to be the Real z whose kernel is sqrt

�

c

X

�

.

Note

q

Err

bx

� 2

�a

default

�4

: (32)

4.3.6 Properties

Proposition 12 Let x and y be Real.

1. If a real X belongs to x then �X belongs to �x.

2. For @ 2 f+;�; �; =g, if a real X belongs to x and a real Y belongs to y then

X@Y belongs to x@y.

3. If a real X � 0 belongs to x then

p

X belongs to sqrt (x).

Proof. Clear from de�nitions. Q.E.D.

Proposition 13 Let x, y and z be Real.

1. If z = x� y then

Err

z

� 6 max fErr

x

; Err

y

g : (33)

2. If z = x � y then

Err

z

� 6 max fjV

x

jErr

y

; Err

x

jV

y

j ; Err

x

Err

y

g : (34)

3. Suppose z = x=y.

(a) If Err

x

= Err

y

= 0 then

Err

z

�

jV

x

j

jV

y

j

2

�r

default

(35)

where r

default

is some global constant which users can change.

(b) If either Err

x

= 0 and

jV

y

j

2

� Err

y

> 0

or jV

x

j > Err

x

> 0 and Err

y

= 0

or jV

x

j > Err

x

> 0 and

jV

y

j

2

� Err

y

> 0 then

Err

z

� 12

jV

x

j

jV

y

j

max

�

Err

x

jV

x

j

;

Err

y

jV

y

j

�

: (36)

4. Suppose z = sqrt (x).

37

(a) If Err

x

= 0 then

Err

z

� 2

�a

default

(37)

where a

default

is some global constant which users can change.

(b) If Err

x

> 0 then

Err

z

� 16

q

Err

x

: (38)

Proof. If T

z

6= ExBigFloat or T

z

6= AppBigFloat then the claims are trivial.

If either T

z

= ExBigFloat or T

z

= AppBigFloat but neither T

x

nor T

y

is Rational

then the claims follow from Proposition 3, 4, 5 and 6.

Otherwise one of T

x

and T

y

is Rational and the other is AppBigFloat. WLOG, we

may assume T

x

= Rational and T

y

= AppBigFloat. In this case, x is approximated

by

b

x and z is de�ned to be the result of the BigFloat operation applied to

b

x and y.

1. If z = x� y then

Err

z

� 6 max fErr

bx

; Err

y

g (by Proposition 3)

� 6Err

y

: (by (29))

2. If z = x � y then

Err

z

� 6 max fjV

bx

jErr

y

; Err

bx

jV

y

j ; Err

bx

Err

y

g (by Proposition 4)

� 6 jV

x

jErr

y

: (by (30))

3. If z = x=y and

jV

y

j

2

� Err

y

> 0 then

Err

z

� 12

j

V

bx

j

jV

y

j

max

(

Err

bx

j

V

bx

j

;

Err

y

jV

y

j

)

(by Proposition 5)

� 12

jV

x

j

jV

y

j

Err

y

jV

y

j

: (by (31))

4. If z = sqrt (x) then

Err

z

� 16

q

Err

bx

(by Proposition 6)

� 2

�a

default

: (by (32))

Q.E.D.

4.4 Implementation

For the implementation, we use the class inheritance scheme of the C++ language, as

well as the \letter-envelope" technique. From the class Real, we derive several classes,

each of which corresponds to the number types that Real incorporates.

38

class Real

{

Real* rep;

// other members here.

};

class RealInt : public class Real

{

friend class RealLong;

friend class RealDouble;

friend class RealBigInt;

friend class RealBigFloat;

friend class RealRational;

int ker; // kernel

// other members come here.

};

// other inherited classes come here.

Now, consider the following program segment:

double X = 1.0;

BigInt Y = 1;

Real x = X;

Real y = Y;

x + y;

x + y

x.rep->operator +(y)

x.rep->operator +(y)

y.rep->addDouble(*x.rep)

y.rep->addDouble(*x.rep)

x.operator +(y)

class Real

class RealDouble class RealBigInt

Figure 3: The
ow for x + y.

Then, x + y is compiled as follows (see Figure 3):

39

1. The binary operator

Real Real :: operator +(const Real) const

is called with the implicit argument x and the explicit argument y.

2. Determine T

x

. The operator + applied to the \envelope" x calls the operator +

for its \letter" *x.rep:

virtual Real Real :: operator +(const Real) const

is called with the implicit argument *x.rep and the explicit argument y. By the

virtual function mechanism, the compiler �nds that T

x

= double, and actually

Real RealDouble :: operator +(const Real) const

is called.

3. Determine T

y

. \Swap" the implicit and explicit arguments and do the same as

before: the member operator + of RealDouble calls

virtual Real Real :: addDouble(const RealDouble) const

with the implicit argument *y.rep and the explicit argument *x.rep. Again,

by the virtual function mechanism, the compiler �nds that T

y

= BigInt, and

actually

Real RealBigInt :: addDouble(const RealDouble) const

is called.

4. Now, x + y turns out to be an addition for double and BigInt. Since the MGU

of double and BigInt is ExBigFloat,

Real(BigFloat(*x.rep) + BigFloat(*y.rep)).

is returned.

5 Expr

In this section, we describe the Expr package implemented as a class library in C++.

In addition to the standard library of C++, we assume that we have our class Real.

The class Expr captures a set of algebraic expressions.

40

5.1 De�nition

5.1.1 Node of Expr Tree and Exact Value

An Expr e is a node of some rooted DAG. If Expr e is a leaf of some rooted DAG then

it is

� a parameter node which can store some value in Q.

If Expr e is an internal node of some rooted DAG then it is either

� a unary minus node which has one child f and represents �f , or

� a binary operator node which has two children f and g and represents f@g for

@ 2 f+;�; �; =g, or

� a squareroot node which has one child f and represents

p

f .

A non parameter node is called an operator node.

Let e and f be Expr. The tree rooted at e and the tree rooted at f could share

some subtrees. Hence, a single node may have several parent nodes. This is why we

de�ne an instance of Expr to be a node of some DAG, and not a node of some simple

tree.

Any Expr e is associated with an exact value �e de�ned as follows:

1. Suppose e is a parameter node. If e stores a value x 2 Q then �e = x. Otherwise,

�e is an indeterminate value denoted !

e

.

2. If e is a unary minus node whose child is f then �e = �

�

f .

3. If e is a binary operator node which has two children f and g and represents

f@g for @ 2 f+;�; �; =g then �e =

�

f@�g.

4. If e is a squareroot node whose child is f then �e = �

�

f .

If every leaf of the tree rooted at e has the exact value in Q then �e is the element of

some algebraically closed �led D containing Q.

In this paper, we may use the same symbol e for an instance of Expr, a tree rooted

at e and its exact value. The context should make our intent clear. For example, in

the statement \if e is a parameter then e 2 Q", the �rst e is meant to be the instance

of Expr and the second e is the exact value of the instance.

5.1.2 Approximation

Let e be Expr and (r; a) 2 N �Z. We say Real

b

e approximates e to precision [r; a] and

write

b

e

�

=

e[r; a]

if e belongs to

b

e and

Err

be

� max

n

jej 2

�r

; 2

�a

o

:

41

If

b

e

�

=

e[r; a] then V

be

�

=

e[r; a], i.e.,

je� V

be

j � max

n

jej 2

�r

; 2

�a

o

:

Each Expr e maintains

� an approximate value

b

e in Real, and

� precision [r; a] where r 2 N and a 2 Z

so that

b

e

�

=

e[r; a]. Precision can be set explicitly by users or implicitly by some

function call. Whenever precision [r; a] of Expr e is speci�ed, we recompute the ap-

proximate value

b

e of e so that

b

e

�

=

e[r; a].

5.1.3 Semantics of Assignments

In the Expr package, assignment is somewhat subtle as we now explain.

The copy rule of C++ is \pass by value". Thus, the assignment x = y assigns the

current actual value of y to the actual value of x. We do not want to apply this copy

rule to assignment operators over instances of Expr. Consider the following program:

Expr a, b, c;

Expr D = b * b - 4 * a * c;

// at this point, the exact value of D is !

2

b

� 4!

a

!

c

.

a = 3;

b = 7;

c = 3;

// at this point, the exact value of D is still !

2

b

� 4!

a

!

c

,

// although we expect it to be 13.

If we follow the standard semantics of C++, then the exact value of D at the end of the

program is !

2

b

�4!

a

!

c

. We would like to have special semantics where the exact value

of e becomes 13 at the end of the program.

De�ne the semantics of the assignment operator = for Expr so that the following

holds:

Fix a scope S. Let e, f and g be Expr and x be Real. Further, let � be an algebraic

expression which involves +, (unary and binary) �, �, = and

p

.

1. Suppose, in S, there are statements of the form

e = � (f) (39)

f = x: (40)

If (40) precedes (39), and in between (40) and (39) there is no assignment state-

ment whose left operand is f then, as in the standard C++ semantics, the exact

value of e becomes � (x) when (39) is stated. If (39) precedes (40), and in be-

tween (39) and (40) there is no assignment statement whose left operand is e

then, unlike the standard C++ semantics, the exact value of e becomes � (x) when

(40) is stated.

42

2. Suppose, in S, there are statements of the form

e = � (f) (41)

f = g: (42)

If (42) precedes (41), and in between (42) and (41) there is no assignment state-

ment whose left operand is f then, as in the standard C++ semantics, the exact

value of e becomes the exact value of � (g) when (41) is stated. If (41) precedes

(42), and in between (41) and (42) there is no assignment statement whose left

operand is e then, unlike the standard C++ semantics, the exact value of e be-

comes the exact value of � (g) when (42) is stated.

Note our new semantics for the assignment operator causes a side-e�ect:

Fix a scope S. Let e and f be Expr and � be an algebraic expression which involves

+, (unary and binary) �, �, = and

p

. Suppose, in S, there is a statement of the form

e = � (f) :

Then, in the rest of S, until e is assigned to be something else, whenever the assignment

operator whose left operand is f is stated, the exact value of e is changed.

The assignment of the form e = � (e) is not de�ned. Also, the operators +=, -=,

*= and /= are not de�ned.

5.2 Implementation

To realize the semantics described above, again, we use the full power of the \letter-

envelope" technique.

There are two basic classes, the class Expr for \envelopes" and the class ExprRep

for \letters". From ExprRep, we derive three classes, ParamRep, UnaryOpRep and

BinOpRep. From UnaryOpRep, we derive two classes, NegRep and SqrtRep. From

BinOpRep, we derive four classes, AddRep, SubRep, MultRep and DivRep. (See Figure

4.) It is clear what each of those classes represents.

ParamRep UnaryOpRep

NegRep

SqrtRep

ExprRep

DivRepSubRep

AddRep MultRep

BinOpRep

Expr

Figure 4: Expr, ExprRep and the classes inherited from ExprRep

The class ExprRep is derived from the class Expr. Thus, an instance of the class

ExprRep could point to another instance of the class ExprRep.

43

class Expr

{

protected:

Expr* rep;

// other members come here.

};

class ExprRep : public class Expr

{

friend class Expr;

friend class ParamRep;

friend class UnaryOpRep;

friend class BinOpRep;

private:

unsigned refCount;

protected:

Real appValue; // approximate value

// other members come here.

};

// the inherited classes come here.

5.2.1 Node

A node of Expr tree is realized as a chain that consists of 0 or 1 \envelope" (Expr)

followed by 1 or more \letter(s)" (ExprRep) (see Figure 5).

The last letter in the chain speci�es the type of the node, e.g., if the last letter in

the chain is NegRep then the chain represents a unary minus node. The approximate

value and the precision of the chain reside in the last letter.

ExprRepExprRepExpr

Figure 5: The chain of Expr. Arrows indicate rep pointers.

The last letter in the chain is characterized as an ExprRep where rep == this

holds. Hence, given a chain of Expr, its last letter is detected as follows: starting

from any instance of Expr or ExprRep in the chain, follow the chain until reaching the

instance where rep == this holds.

44

5.2.2 Construction

A new parameter node e which stores x 2 Q is a chain of one Expr and one ParamRep

which contains Real x.

Expr

e Real x

ParamRep

A new unary minus node e which represents �f is a chain of one Expr and one

NegRep whose child is *f.rep.

ExprRepExprRep

NegRep

e

Expr

Expr

f

A new binary operator node e which represents f@g is a chain of one Expr and one

letter of some derived class of BinOpRep (depending on @) whose children are *f.rep

and *g.rep.

ExprRepExprRepExpr

f

e

Expr

ExprRepExpr

g

ExprRep

BinOpRep

A new squareroot node e which represents

p

f is a chain of one Expr and one

SqrtRep whose child is *f.rep.

ExprRepExprRepExpr

f

e

Expr SqrtRep

45

5.2.3 Assignment

Let e and f be Expr and x be Real.

The assignment operation e = x is done as follows:

1. Suppose *e.rep is ParamRep. Then, *e.rep can store x. We cut the chain

headed by e at *e.rep and destroy the instances in the chain headed by e.rep->rep

(if exist), and set e.rep->exValue to be x.

Expr

e Real x
X

ParamRep ExprRep

2. Suppose *e.rep is UnaryOpRep or BinOpRep. Then, e.rep cannot store x. First,

we cut the chain headed by e at the *e.rep and destroy the instances in the chain

headed by e.rep->rep (if exist). Then, we cut the link(s) from to its child(ren)

(if exists) and destroy the chain(s) headed by *e.rep's child(ren). Finally, we

construct a new ParamRep which will store x, and make both e and the current

*e.rep point to this newly constructed ParamRep.

Expr

e

ExprRep

ExprRep

Real x

ParamRep

ExprRep

or BinOpRep
UnaryOpRep

X

X

X

The assignment operation e = f is done as follows:

First, we cut the chain headed by e at the *e.rep and destroy the instances in the

chain headed by e.rep->rep (if exist). Then, we cut the link(s) from to its child(ren)

(if exist(s)) and destroy the chain(s) headed by *e.rep's child(ren). Then, we set

e.rep->rep to be *f.rep.

Expr

e

ExprRep

ExprRepExprRep

ExprRep ExprRepExpr

f

ExprRep

X

or BinOpRep
UnaryOpRep

X

46

6 Root Bound

In this section, we describe our algorithm to determine whether or not a given Expr

is exactly 0. The algorithm is based on the theory of the root bounds for polynomials

over an algebraically closed �eld. The missing proofs for the theorems are found in

[Yap97].

6.1 Notations

Fix an algebraically closed �eld D . Any Expr e can be viewed as an element of D , i.e.,

9E(X) 2 D [X] such that E(e) = 0.

Write

E(X) =

m

X

i=0

e

i

X

i

where e

m

6= 0.

We say E(X) is of degree m and write degE = m. The leading coe�cient of E(X) is

e

m

.

Let �

1

; : : : ; �

m

2 D (not necessarily distinct) be all the roots of E(X). Then

E(X) = e

m

m

Y

i=1

(X � �

i

):

De�ne

jjEjj

1

=

m

X

i=0

je

i

j

jjEjj

2

=

v

u

u

t

m

X

i=0

je

i

j

2

jjEjj

1

= max fje

0

j ; � � � ; je

m

jg :

Note jjEjj

1

� jjEjj

2

� jjEjj

1

.

6.2 Root Bound

In this subsection, we describe Landau's root bound theorem and introduce our algo-

rithm to determine whether or not a given Expr e is exactly 0, provided the 2-norm of

E(X) 2 D [X] such that E(e) = 0 is known.

6.2.1 Landau's Root Bound

We start from Landau's root bound theorem which gives us an upper bound for the

magnitude of any root of E(X):

Theorem 14 (Landau) For any root � of E(X) =

P

m

i=0

e

i

X

i

2 D [X] with e

m

6= 0,

j�j �

jjEjj

2

je

m

j

:

47

Let E(X) =

P

m

i=0

e

i

X

i

2 D [X] with e

m

6= 0. De�ne the tail coe�cient of E(X) to

be e

t

which satis�es

e

t

6= 0 and
e

i

= 0 i = 0; : : : ; t� 1:

Such t always exists, since e

m

6= 0. Obviously, t � m.

Lemma 15 Let E(X) =

P

m

i=0

e

i

X

i

with e

m

6= 0 be a polynomial in D [X] whose tail

coe�cient is e

t

. Then, E(X) has a non-zero root in D i� t < m.

Proof. We show that the only root of E(X) is 0 i� t = m.

If the only root of E(X) is 0 then E(X) = e

m

X

m

.

Conversely, the equation e

m

X

m

= 0 where e

m

6= 0 has the only solution 0 over the

integral domain D . Q.E.D.

Theorem 16 Let E(X) =

P

m

i=0

e

i

X

i

with e

m

6= 0 be a polynomial in D [X] whose tail

coe�cient is e

t

. For any non-zero root � of E(X)

j�j �

je

t

j

jjEjj

2

:

Proof. De�ne

F (X) = X

m

E

�

1

X

�

= X

m

m

X

i=t

e

i

�

1

X

�

i

=

m�t

X

j=0

e

m�j

X

j

:

Suppose E(X) has a non-zero root. By lemma 15, t < m. Hence, deg F = m� t �

1, and for any non-zero root � of E(X),

1

�

is a root of F (X).

Since jjF jj

2

= jjEjj

2

and the leading coe�cient of F (X) is the tail coe�cient of

E(X), applying Landau's root bound for

1

�

yields

�

�

�

1

�

�

�

� �

jjEjj

2

je

t

j

;

or equivalently

j�j �

je

t

j

jjEjj

2

:

Q.E.D.

Corollary 17 Let � be a root of E(X) 2 Z[X]. Then

� 6= 0 i� j�j �

1

jjEjj

2

:

Proof. The su�cient condition is trivial.

The necessary condition is immediate from Theorem 16. Q.E.D.

48

6.2.2 Algorithm

Let e be Expr and E(X) 2 Z[X] such that E(e) = 0. De�ne a length bound l

e

of e to

be a positive integer which satis�es

l

e

� blg jjEjj

2

c :

Note

1

jjEjj

2

> 2

�l

e

�1

.

Proposition 18 e = 0 i� 0 belongs to

b

e where

b

e

�

=

e [1; l

e

+ 2].

Proof. The necessary condition is trivial.

Suppose 0 belongs to

b

e, i.e., jV

be

j � Err

be

. Then

jej � je� V

be

j+ jV

be

j � 2Err

be

:

Since

b

e

�

=

e [1; l

e

+ 2], Err

be

� 2

�l

e

�2

. Hence

jej � 2

�l

e

�1

<

1

jjEjj

2

:

By Corollary 17, e = 0. Q.E.D.

Proposition 18 suggests the algorithm to determine whether or not a given Expr e

is exactly 0. We simply compute

b

e

�

=

e [1; l

e

+ 2]. If jV

be

j � Err

be

then e is exactly 0.

Otherwise, e 6= 0.

6.3 Resultant

To invoke our algorithm to determine whether or not a given Expr e is exactly 0, we

must calculate the length bound l

e

of E(X) 2 Z[X] such that E(e) = 0. In this

subsection, we describe the method of �nding such an E(X).

6.3.1 Sylvester Resultant

Let F (X) and G(X) be polynomials in D [X] of degree m and n, respectively. Write

F (X) =

P

m

i=0

f

i

X

i

and G(X) =

P

n

i=0

g

i

X

i

where f

m

g

n

6= 0.

The Sylvester matrix syl

X

(F;G) of F and G with respect to X is the (m + n)

dimensional square matrix which is de�ned to be

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

f

m

f

m�1

� � � f

0

f

m

� � � f

1

f

0

.

.

.

� � �

.

.

.

f

m

� � � f

0

g

n

g

n�1

� � � g

0

g

n

� � � g

1

g

0

.

.

.

� � �

.

.

.

g

n

� � � g

0

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

49

The Sylvester resultant res

X

(F;G) of F and G with respect to X is de�ned to be

det (syl

X

(F;G)) :

Let �

1

; : : : ; �

m

and

1

; : : : ;

n

be the roots of F and G, respectively.

The following lemma is a well-known property of the Sylvester resultant which is

sometimes used as an alternative de�nition of the Sylvester resultant.

Lemma 19 (Poisson's De�nition for Resultant)

res

X

(F;G) = f

n

m

m

Y

i=1

G (�

i

) = g

m

n

n

Y

j=1

F (

j

) = f

n

m

g

m

n

m

Y

i=1

n

Y

j=1

(�

i

�

j

) :

Theorem 20

1.

res

Y

(F (X � Y); G(Y)) = f

n

m

g

m

n

m

Y

i=1

n

Y

j=1

(X � (�

i

�

j

)) : (43)

2.

res

Y

�

Y

m

F

�

X

Y

�

; G(Y)

�

= f

n

m

g

m

n

m

Y

i=1

n

Y

j=1

(X � �

i

j

): (44)

Proof.

1.

res

Y

(F (X � Y); G(Y)) = g

m

n

n

Y

j=1

F (X �

j

)

= g

m

n

n

Y

j=1

f

m

m

Y

i=1

(X �

j

� �

i

)

!

= f

n

m

g

m

n

m

Y

i=1

n

Y

j=1

(X � (�

i

�

j

)) :

2.

res

Y

�

Y

m

F

�

X

Y

�

; G(Y)

�

= g

m

n

n

Y

j=1

m

j

F

�

X

j

�

= g

m

n

n

Y

j=1

m

j

f

m

m

Y

i=1

�

X

j

� �

i

�

!

= f

n

m

g

m

n

n

Y

j=1

m

Y

i=1

�

j

�

X

j

� �

i

��

= f

n

m

g

m

n

m

Y

i=1

n

Y

j=1

(X � �

i

j

):

Q.E.D.

50

Proposition 21 Algebraic numbers are closed under taking the inverse, addition and

multiplication. In fact, algebraic numbers form a �eld.

Proof. Let � and
 2 D . Then, 9F (X) and G(X) 2 Z[X] so that F (�) = G(
) = 0.

If � 6= 0 then

1

�

is a root of

X

degF

F

�

1

X

�

(45)

(see the proof for Theorem 16). By (43), � �
 is a root of

res

Y

(F (X � Y); G(Y)) : (46)

By (44), �
 is a root of

res

Y

�

Y

deg F

F

�

X

Y

�

; G(Y)

�

: (47)

Finally, if F (X) and G(X) are both in Z[X] then so are (45), (46) and (47), because

of their constructions. Q.E.D.

6.3.2 Algorithms

Fix any Expr e. We would like to �nd E(X) 2 Z[X] such that E(e) = 0. They are

computed recursively by traversing the Expr tree e bottom-up from the leaves to the

root e.

1. Suppose e is a leaf. Then, the exact value e 2 Q is known. Writing e =

p

q

where

(p; q) 2 Z� Z

6=0

with gcd(p; q) = 1, we �nd that

E(X) = qX � p: (48)

2. Suppose e is of the form e = �f for some Expr f . By assumption, F (X) =

P

m

i=0

f

i

X

i

2 Z[X] with f

m

6= 0 such that F (f) = 0 is known. Then

E(X) = F (�X) =

m

X

i=0

(�1)

i

f

i

X

i

: (49)

The correctness is obvious.

3. Suppose e is of the form e = f@g for some Expr f and g and for some @ 2

f+;�; �; =g. By assumption, F (X) and G(X) 2 Z[X] such that F (f) = G(g) = 0

are known.

(a) If e = f + g then

E(X) = res

Y

(F (X � Y); G(Y)) (50)

or

E(X) = res

Y

(G(X � Y); F (Y)) : (51)

The correctness is immediate from (46).

51

(b) If e = f � g then

E(X) = res

Y

(F (X + Y); G(Y)) (52)

or

E(X) = H(�X) where H(X) = res

Y

(G(X + Y); F (Y)) : (53)

The correctness for (52) is immediate from (46). Also, by (46), g � f is a

root of H(X). Hence, f � g = �(g � f) is a root of H(�X).

(c) If e = f � g then

4

E(X) = res

Y

�

Y

degF

F

�

X

Y

�

; G(Y)

�

: (54)

The correctness is immediate from (47).

(d) If g 6= 0 and e = f=g then

E(X) = res

Y

�

Y

degF

F

�

X

Y

�

; Y

degG

G

�

1

Y

��

: (55)

The correctness is proven as follows:

Since g 6= 0, by (45),

1

g

is a root of X

degG

G

�

1

X

�

. By (47),

f

g

= f

1

g

is a

root of (55).

4. Suppose e is of the form e = sqrt (f) for some Expr f with f � 0. By assumption,

F (X) =

P

m

i=0

f

i

X

i

2 Z[X] with f

m

6= 0 such that F (f) = 0 is known. Then

E(X) = F

�

X

2

�

=

m

X

i=0

f

i

X

2i

: (56)

This is correct, since

E(e) =

m

X

i=0

f

i

�

q

f

�

2i

=

m

X

i=0

f

i

f

i

= 0:

6.4 Degree-Length Bound

In the previous subsection, we described the method, for a given Expr e, of �nding

E(X) 2 Z[X] such that E(e) = 0. We would like to compute the length bound l

e

of E(X). The naive approach is just to calculate all the coe�cients of E(X) and

use them to get blg jjEjj

2

c. This is ine�cient both in terms of space and time: To

�nd E(X), for each descendent f of e, we must �nd a polynomial F (X) 2 Z[X]

such that F (f) = 0, but the degree and the magnitudes of the coe�cients of those

polynomials easily become huge. To avoid these problems, we compute an upper bound

for blg jjEjj

2

c which may not be tight, but could be gotten much more e�ciently. In

fact, we compute it without knowing any coe�cient of E(X).

4

We could also have

E(X) = res

Y

�

Y

degG

G

�

X

Y

�

; F (Y)

�

:

But unlike the addition or subtraction, having this alternative choice will not a�ect our algorithm.

Hence, we can safely ignore it.

52

6.4.1 Generalized Hadamard Bound

We are going to use the generalized version of Hadamard Bound [GG74] which gives

us an upper bound for the 2-norm of the determinant of a matrix over C [X]:

Theorem 22 (Generalized Hadamard Bound) Let P (X) = [P

j;k

(X)] be an n di-

mensional square matrix over C [X]. Then

jjdetP (X)jj

2

�

n

Y

j=1

v

u

u

t

n

X

k=1

jjP

j;k

(X)jj

2

1

: (57)

Proposition 23 Let F (X) =

P

m

j=0

f

j

X

j

and G(X) =

P

n

j=0

g

j

X

j

2 Z[X] with f

m

g

n

6=

0.

1. If E(X) = res

Y

(F (X � Y); G(Y)) then

degE � mn and jjEjj

2

�

�

jjF jj

2

2

m+1

�

n

jjGjj

m

2

: (58)

2. If E(X) = res

Y

�

Y

m

F

�

X

Y

�

; G(Y)

�

then

degE � mn and jjEjj

2

� jjF jj

n

2

jjGjj

m

2

: (59)

Proof.

1.

F (X � Y) =

m

X

j=0

f

j

(X � Y)

j

=

m

X

j=0

f

j

j

X

k=0

j

k

!

X

j�k

(�Y)

k

=

m

X

k=0

0

@

(�1)

k

m

X

j=k

f

j

j

k

!

X

j�k

1

A

Y

k

:

For each of the upper n rows of syl

Y

(F (X � Y); G(Y)), any non-zero element

in the row is a polynomial (in X) of degree at most m, and for each of the lower

m rows, all the elements in the row are constants. Hence, degE � mn.

For each of the upper n rows of syl

Y

(F (X � Y); G(Y)), the square root of the

sum of the squared 1-norm of the elements in the row is bounded from above as

v

u

u

u

t

m

X

k=0

�

�

�

�

�

�

�

�

�

�

�

�

(�1)

k

m

X

j=k

f

j

j

k

!

X

j�k

�

�

�

�

�

�

�

�

�

�

�

�

2

1

�

v

u

u

u

t

m

X

k=0

0

@

m

X

j=k

jjF jj

1

j

k

!

1

A

2

�

m

X

k=0

m

X

j=k

jjF jj

1

j

k

!

= jjF jj

1

m

X

j=0

j

X

k=0

j

k

!

53

= jjF jj

1

m

X

j=0

2

j

� jjF jj

1

2

m+1

� jjF jj

2

2

m+1

:

For each of the lower m rows of syl

Y

(F (X � Y); G(Y)), the square root of the

sum of the squared 1-norm of the elements in the row is

v

u

u

t

n

X

j=0

jg

j

j

2

= jjGjj

2

:

Applying (57) to E(X),

jjEjj

2

�

�

jjF jj

2

2

m+1

�

n

jjGjj

m

2

:

2. Let f

t

be the tail coe�cient of F (X). Then

Y

m

F

�

X

Y

�

=

m�t

X

j=0

f

m�j

X

m�j

Y

j

:

For each of the upper n rows of syl

Y

�

Y

m

F

�

X

Y

�

; G(Y)

�

, any non-zero element

in the row is a polynomial (in X) of degree at most m, and for each of the lower

m rows, all the elements in the row are constants. Hence, degE � mn.

For each of the upper n rows of syl

Y

�

Y

m

F

�

X

Y

�

; G(Y)

�

, the square root of the

sum of the squared 1-norm of the elements in the row is

v

u

u

t

m�t

X

j=0

jjf

m�j

X

m�j

jj

2

1

=

v

u

u

t

m�t

X

j=0

jf

m�j

j

2

=

v

u

u

t

m

X

k=t

jf

k

j

2

= jjF jj

2

:

For each of the lower m rows of syl

Y

�

Y

m

F

�

X

Y

�

; G(Y)

�

, the square root of the

sum of the squared 1-norm of the elements in the row is

v

u

u

t

n

X

j=0

jg

j

j

2

= jjGjj

2

:

Applying (57) to E(X),

jjEjj

2

� jjF jj

n

2

jjGjj

m

2

:

Q.E.D.

54

6.4.2 Algorithms

Let e be Expr and E(X) 2 Z[X] such that E(e) = 0. De�ne a degree-length bound of

e to be a pair (d

e

; l

e

) 2 N

>0

� N which satis�es

d

e

� degE and l

e

� blg jjEjj

2

c :

By Proposition 18, e = 0 i� 0 belongs to

b

e where

b

e

�

=

e [1; l

e

+ 2].

Fix any Expr e. Let E(X) 2 Z[X] such that E(e) = 0. We would like to �nd a

degree-length bound (d

e

; l

e

) of e. The bounds are computed recursively by traversing

the Expr tree e bottom-up from the leaves to the root e.

1. Suppose e is a leaf. Then, by (48), E(X) = pX � q where (p; q) 2 Z� Z

6=0

such

that e =

p

q

and gcd(p; q) = 1. Thus

degE = 1 and jjEjj

2

=

q

p

2

+ q

2

:

Hence, we set

d

e

 1

l

e

 max fblg jpjc ; blg jqjcg+ 1 �

j

1

2

+ lg (max fjpj ; jqjg)

k

=

j

1

2

�

1 + lg (max fjpj ; jqjg)

2

�k

=

j

1

2

lg (2max fp

2

; q

2

g)

k

�

j

lg

p

p

2

+ q

2

k

:

2. Suppose e is of the form e = �f for some Expr f . Assume (d

f

; l

f

) is known. Let

F (X) 2 Z[X] found in Section 6.3.2 such that F (f) = 0. Then, d

f

� degF and

l

f

� blg jjF jj

2

c. By (49), E(X) = F (�X). Thus

degE = deg F and jjEjj

2

= jjF jj

2

:

Hence, we set

d

e

 d

f

l

e

 l

f

:

3. Suppose e is of the form e = f@g for some Expr f and g and for some @ 2

f+;�; �; =g. Assume (d

f

; l

f

) and (d

g

; l

g

) are known. Let F (X) and G(X) 2 Z[X]

found in Section 6.3.2 such that F (f) = G(g) = 0. Then, d

f

� degF , l

f

�

blg jjF jj

2

c, d

g

� degG and l

g

� blg jjGjj

2

c.

(a) Suppose e = f + g. If, as (50), E(X) = res

Y

(F (X � Y); G(Y)) then, by

(58),

degE � degF degG and jjEjj

2

�

�

jjF jj

2

2

degF+1

�

degG

jjGjj

deg F

2

:

55

Thus

blg jjEjj

2

c = bdegG (lg jjF jj

2

+ degF + 1) + degF lg jjGjj

2

c

� bdegG (lg jjF jj

2

+ degF + 1)c+ bdegF lg jjGjj

2

c+ 1

� degG (blg jjF jj

2

c+ deg F + 1) + degG� 1

+degF blg jjGjj

2

c + degF � 1 + 1:

If, as (51), E(X) = res

Y

(G(X � Y); F (Y)) then, by (58),

degE � degG degF and jjEjj

2

�

�

jjGjj

2

2

degG+1

�

degF

jjF jj

degG

2

:

Thus

blg jjEjj

2

c � degF (blg jjGjj

2

c + degG+ 1) + degF � 1

+degG blg jjF jj

2

c+ degG� 1 + 1:

Hence, we set

d

e

 d

f

d

g

l

e

 d

f

l

g

+ d

g

l

f

+ d

f

d

g

+min fd

f

; d

g

g+ d

f

+ d

g

� 1:

(b) Suppose e = f � g. If, as (52), E(X) = res

Y

(F (X + Y); G(Y)) then, by

(58),

degE � degF degG and jjEjj

2

�

�

jjF jj

2

2

degF+1

�

degG

jjGjj

deg F

2

:

If, as (53), E(X) = H(�X) where H(X) = res

Y

(G(X + Y); F (Y)) then,

by (58),

degE = degH � degG deg F

and

jjEjj

2

= jjHjj

2

�

�

jjGjj

2

2

degG+1

�

degF

jjF jj

degG

2

:

Hence, we set

d

e

 d

f

d

g

l

e

 d

f

l

g

+ d

g

l

f

+ d

f

d

g

+min fd

f

; d

g

g+ d

f

+ d

g

� 1:

(c) If e = f � g then, by (54), E(X) = res

Y

�

Y

deg F

F

�

X

Y

�

; G(Y)

�

. By (59),

degE � degF degG and jjEjj

2

� jjF jj

degG

2

jjGjj

degF

2

:

Thus

blg jjEjj

2

c = bdegG lg jjF jj

2

+ deg F lg jjGjj

2

c

� bdegG lg jjF jj

2

c + bdegF lg jjGjj

2

c+ 1

� degG blg jjF jj

2

c+ degG� 1

+degF blg jjGjj

2

c + degF � 1 + 1:

Hence, we set

d

e

 d

f

d

g

l

e

 d

f

l

g

+ d

g

l

f

+ d

f

+ d

g

� 1:

56

(d) If g 6= 0 and e = f=g then, by (55), E(X) = res

Y

�

Y

deg F

F

�

X

Y

�

; H(Y)

�

where H(Y) = Y

degG

G

�

1

Y

�

. Since degH � degG and jjHjj

2

= jjGjj

2

, by

(59),

degE � degF degH � degF degG

and

jjEjj

2

� jjF jj

degH

2

jjHjj

degF

2

� jjF jj

degG

2

jjGjj

deg F

2

:

Hence, we set

d

e

 d

f

d

g

l

e

 d

f

l

g

+ d

g

l

f

+ d

f

+ d

g

� 1:

4. Suppose e is of the form e = sqrt (f) for some Expr f with f � 0. Assume

(d

f

; l

f

) is known. Let F (X) 2 Z[X] found in Section 6.3.2 such that F (f) = 0.

Then, d

f

� deg F and l

f

� blg jjF jj

2

c. By (56), E(X) = F (X

2

). Thus

degE = deg

2

F and jjEjj

2

= jjF jj

2

:

Hence, we set

d

e

 d

2

f

l

e

 l

f

:

7 Precision-Driven Algorithm

In this section, we describe our algorithm to compute an approximation of a given

Expr to a given precision.

Let e be Expr. Whenever precision p

e

is given, for each child f of e, we compute the

precision p

f

of f so that if f is approximated by

b

f to p

f

then

b

e which is computed by

applying Real operation to

b

f will be an approximation of e to the required precision

p

e

. Thus, in our algorithms, the precisions are propagated top-down from e to the

leaves, whereas approximate values are collected bottom-up from the leaves to e.

7.1 Approximation

Let e be Expr and (r; a) 2 N �Z. We say Real

b

e approximates e to precision [r; a] and

write

b

e

�

=

e[r; a]

if e belongs to

b

e and

Err

be

� max

n

jej 2

�r

; 2

�a

o

:

If

b

e

�

=

e[r; a] then V

be

�

=

e[r; a], i.e.,

je� V

be

j � max

n

jej 2

�r

; 2

�a

o

:

57

7.1.1 Properties

Lemma 24 Fix Expr e and (r; a) 2 N � Z. Let

b

e

�

=

e[r; a].

1. If a � �blg jejc then

jV

be

j � 2 jej : (60)

2. If r � 1 and a � �blg jejc + 1 then

jV

be

j �

jej

2

: (61)

3. If r � 1 and a � �blg jejc + 1 then

jV

be

j � Err

be

: (62)

Proof.

1. If jV

be

j � jej then there is nothing to prove.

Suppose jV

be

j > jej. Since r � 0 and a � �blg jejc, max fjej 2

�r

; 2

�a

g � jej.

Then

jV

be

j � jej+ Err

be

� jej+max fjej 2

�r

; 2

�a

g � 2 jej :

2. If jV

be

j � jej then there is nothing to prove.

Suppose jV

be

j < jej. Since r � 1 and a � �blg jejc + 1, max fjej 2

�r

; 2

�a

g �

jej

2

.

Then

jV

be

j � jej � Err

be

� jej �max fjej 2

�r

; 2

�a

g �

jej

2

:

3. Again, max fjej 2

�r

; 2

�a

g �

jej

2

. Together with (61),

Err

be

� max fjej 2

�r

; 2

�a

g �

jej

2

� jV

be

j :

Q.E.D.

7.2 Most Signi�cant Bit

Let e be Expr. The most signi�cant bit (MSB) �

e

of e is de�ned to be

(

blg jejc if e 6= 0

�1 if e = 0.

Note

2

�

e

� jej < 2

�

e

+1

:

Here, we mean 2

�1

= 0 by convention. We write �

e

= sgn (e).

58

The MSB �

e

of e plays an important role in our precision driven algorithm. If

non-trivial �

e

is known then each of the relative and absolute precisions of e could be

\translated" to the other. Moreover, a non-trivial �

e

actually tells us whether or not

e is exactly 0, i.e, if e is exactly 0 then �

e

= �1. Since we usually do not know the

exact value of e, the MSB itself is hard to compute. Instead, we compute an upper

bound �

+

e

and a lower bound �

�

e

for the MSB �

e

of e. We also compute the sign �

e

of

e which is helpful to compute �

+

e

and �

�

e

.

We now describe how to compute �

+

e

, �

�

e

and �

e

.

We will consider two cases:

(a) When e is newly constructed or gets some new substructure.

(b) When e has been approximated at least once to precision [r; a] with r � 1 and

a � ��

e

+ 1.

This idea comes from the following observation:

If e has never approximated, then we use a static algorithm to compute �

+

e

and

�

�

e

. These bounds may not be tight. Thus, once we get some approximation of e, we

try to re�ne �

+

e

and �

�

e

.

7.2.1 Algorithms for MSB

Let e be Expr. We would like to compute an upper bound �

+

e

and a lower bound �

�

e

for the MSB �

e

of e, as well as the sign �

e

of e. They are computed recursively by

traversing the Expr tree e bottom-up from the leaves to the root e.

(a) Suppose e is newly constructed or gets some new substructure.

1. Suppose e is a leaf. Then, the exact value e 2 Q is known. Thus, we set

�

+

e

= �

�

e

 blg jejc

�

e

 sgn (e):

2. Suppose e is of the form e = �f for some Expr f . By assumption, �

+

f

, �

�

f

and

�

f

are known. Then

2

�

f

� j�f j = jf j < 2

�

f

+1

:

Thus, we set

�

+

e

 �

+

f

�

�

e

 �

�

f

�

e

 ��

f

:

3. Suppose e is of the form e = f@g for some Expr f and g and for some @ 2

f+;�; �; =g. By assumption, �

+

f

, �

�

f

, �

f

, �

+

g

, �

�

g

and �

g

are known.

(a) Suppose e = f � g. There are several cases depending on �

f

and �

g

.

59

i. If either e = f + g and �

f

�

g

> 0 or e = f � g and �

f

�

g

< 0 then

2

max

f

�

f

; �

gg

< 2

�

f

+ 2

�

g

� jf j+ jgj = jf � gj

<

2

�

f

+1

+ 2

�

g

+1

� 2

max

f

�

f

; �

gg

+2

:

Thus, we set

�

+

e

 max

n

�

+

f

; �

+

g

o

+ 1

�

�

e

 max

n

�

�

f

; �

�

g

o

�

e

 �

f

:

ii. If either e = f + g and �

f

�

g

< 0 or e = f � g and �

f

�

g

> 0 then

jjf j � jgjj = jf � gj < 2

max

f

�

f

+1; �

g

+1

g

:

Thus, we set

�

+

e

 max

n

�

+

f

; �

+

g

o

:

To get �

�

e

and �

e

, we consider three sub-cases.

A. Suppose �

�

f

� �

+

g

� 2. Then

jf � gj = jf j � jgj

> 2

�

�

f

� 2

�

+

g

+1

=

�

2

�

�

f

��

+

g

�1

� 1

�

2

�

+

g

+1

� 2

�

�

f

��

+

g

�2

2

�

+

g

+1

(since �

�

f

� �

+

g

� 1 � 1)

= 2

�

�

f

�1

:

Thus, we set

�

�

e

 �

�

f

� 1

�

e

 �

f

:

Intuitively, the above means that �

g

is much smaller than �

f

so

that, even though f � g is performed, g cannot cancel out �

f

.

B. Suppose �

�

g

� �

+

f

� 2. By a similar argument to the previous case,

jf � gj = � jf j+ jgj > 2

�

�

g

�1

:

Thus, we set

�

�

e

 �

�

g

� 1

�

e

(

�

g

if e = f + g

��

g

if e = f � g.

60

C. Otherwise, �

f

and �

g

are almost the same, and most (possibly all)

of the signi�cant bits of f and g will cancel out with each other.

Unfortunately, there is no way to predict how many of them will

cancel out, and we cannot �nd �

�

e

or �

e

by just using statically

obtained quantities. We must use the algorithm which will be de-

scribed later.

iii. If �

f

6= 0 but �

g

= 0 then f � g = f . Thus, we set

�

+

e

 �

+

f

�

�

e

 �

�

f

�

e

 �

f

:

iv. If �

f

= 0 but �

g

6= 0 then jf � gj = jgj. Thus, we set

�

+

e

 �

+

g

�

�

e

 �

�

g

�

e

(

�

g

if e = f + g

��

g

if e = f � g.

v. If �

f

= �

g

= 0 then f � g = 0.

(b) If e = f � g then

2

�

f

+�

g

� jf j jgj < 2

�

f

+�

g

+2

:

Thus, we set

�

+

e

 �

+

f

+ �

+

g

+ 1

�

�

e

 �

�

f

+ �

�

g

�

e

 �

f

�

g

:

(c) Suppose e = f=g. If �

g

= 0 then e is not well-de�ned. Otherwise

2

�

f

��

g

�1

<

�

�

�

�

f

g

�

�

�

�

< 2

�

f

��

g

+1

:

Thus, we set

�

+

e

 �

+

f

� �

�

g

�

�

e

 �

�

f

� �

+

g

� 1

�

e

 �

f

�

g

:

4. Suppose e is of the form e = sqrt (f) for some Expr f . By assumption, �

+

f

, �

�

f

and �

f

are known. If �

f

= �1 then e is not well-de�ned. Otherwise

2

b

�

f

2

c

� 2

�

f

2

�

p

f < 2

�

f

+1

2

� 2

b

�

f

2

c

+1

:

Thus, we set

�

+

e

$

�

+

f

2

%

�

�

e

$

�

�

f

2

%

�

e

 �

f

:

61

(b) Suppose e has been approximated by

b

e to precision [r; a] with r � 1 and a �

��

e

+ 1.

The following proposition suggests that we could re�ne �

+

e

and �

�

e

when a suitable

approximation of e is known.

Proposition 25

�

be

+ 1 � �

e

� �

be

� 1:

Proof. By (61),

jej � 2 jV

be

j < 2

�

be

+ 2

:

By (60),

jej �

j

V

be

j

2

� 2

�

be

� 1

:

Q.E.D.

We now could have the algorithm to re�ne �

+

e

and �

�

e

:

�

+

e

 min

n

�

+

e

; �

be

+ 1

o

�

�

e

 max

n

�

�

e

; �

be

� 1

o

:

7.3 Precision-Driven Algorithm

Let Expr e and (r

e

; a

e

) 2 N�Z. We would like to compute Real

b

e such that

b

e

�

=

e [r

e

; a

e

].

There are several cases depending on the type of e.

1. Suppose e is a leaf. Then, the exact value e 2 Q is known. We simply call the

approximation algorithm to compute

b

e 2 Real with the error-bound [r

e

; a

e

] such

that e belongs to

b

e. By (27) in Proposition 11,

b

e

�

=

e[r; a].

2. Suppose e is of the form e = �f for some Expr f . The computation of

b

e consists

of two phases:

(a) Set r

f

 r

e

and a

f

 a

e

, and make a recursive call to compute

b

f

�

=

f [r

e

; a

e

].

(b) Set

b

e �

b

f .

By Proposition 12,

�

�

�e�

�

�V

b

f

�

�

�

� = je� V

be

j � max fjej 2

�r

e

; 2

�a

e

g :

3. Suppose e is a binary operator node of the form e = f@g for some Expr f and

g and for some @ 2 f+;�; �; =g. The computation of

b

e consists of two phases:

(a) Determine (r

f

; a

f

) and (r

g

; a

g

) 2 N � Z so that

�

�

�

�

e� V

f

[

r

f

;a

f

]

@g[r

g

;a

g

]

�

�

�

�

� max

n

jej 2

�r

e

; 2

�a

e

o

;

and make recursive calls to compute

b

f

�

=

f [r

f

; a

f

] and

b

f

�

=

g [r

g

; a

g

].

62

(b) Compute

b

f@

b

g to get

b

e.

4. Suppose e is of the form e = sqrt (f) for some Expr f with f � 0. The compu-

tation of

b

e consists of two phases:

(a) Determine (r

f

; a

f

) 2 N � Z so that

�

�

�

�

e� sqrt

�

V

f

[

r

f

;a

f

]

�

�

�

�

�

� max

n

jej 2

�r

e

; 2

�a

e

o

;

and make a recursive call to compute

b

f

�

=

f [r

f

; a

f

].

(b) Compute sqrt

�

b

f

�

to get

b

e.

Since phase (b) of the algorithms for binary operator nodes and sqrt nodes is just

the Real operation (and its correctness immediately follows from Proposition 12), we

will concentrate on phase (a).

7.3.1 Addition and Subtraction

Consider an Expr of the form e = f � g. Given (r

e

; a

e

) 2 N � Z, we would like to

determine (r

f

; a

f

) and (r

g

; a

g

) 2 N � Z so that

�

�

�

�

e� V

f

[

r

f

;a

f

]

�g[r

g

;a

g

]

�

�

�

�

� max

n

jej 2

�r

e

; 2

�a

e

o

: (63)

Proposition 26 To ensure (63), it su�ces to set

r

f

 max

n

�

+

f

� �

�

e

+ r

e

+ 4; 0

o

; a

f

 a

e

+ 3;

r

g

 max

n

�

+

g

� �

�

e

+ r

e

+ 4; 0

o

; a

g

 a

e

+ 3:

(64)

Proof. By (33), it is enough to show

6max

n

Err

b

f

; Err

bg

o

� max

n

jej 2

�r

e

; 2

�a

e

o

:

By symmetry, we may assume max

n

Err

b

f

; Err

bg

o

= Err

b

f

. If Err

b

f

� jf j 2

�r

f

then

6Err

b

f

� 6 jf j 2

�r

f

� 6 jf j 2

�

(

�

+

f

+1

)

+�

�

e

�r

e

�3

< jej 2

�r

e

:

If Err

b

f

� 2

�a

f

then

6Err

b

f

� 6 � 2

�a

f

� 6 � 2

�a

e

�3

� 2

�a

e

:

Q.E.D.

63

7.3.2 Lower Bound for MSB

We now describe the algorithm to set �

�

e

and �

e

for Expr e when e is of the form

either f + g with �

f

�

g

< 0 or f � g with �

f

�

g

> 0, and neither �

�

f

� �

+

g

� 2 nor

�

�

g

� �

+

f

� 2. In this case, �

f

and �

g

are almost the same, and �

e

becomes very tiny

(possibly �1). To get �

�

e

and �

e

, we must eventually compute an approximation of

e to some precision.

Setting

r

f

 max

n

�

+

f

+ l

e

+ 6; 0

o

; a

f

 l

e

+ 5;

r

g

 max

n

�

+

g

+ l

e

+ 6; 0

o

; a

g

 l

e

+ 5;

we compute

b

f

�

=

f [r

f

; a

f

] and

b

g

�

=

g [r

g

; a

g

] by our precision-driven algorithm. Note

max fjf j 2

�r

f

; 2

�a

f

g � 2

�l

e

�5

and max fjgj 2

�r

g

; 2

�a

g

g � 2

�l

e

�5

. Thus,

max

n

Err

b

f

; Err

bg

o

� 2

�l

e

�5

:

By (33),

Err

be

� 6max

n

Err

b

f

; Err

bg

o

� 6 � 2

�l

e

�5

< 2

�l

e

�2

:

Hence,

b

e

�

=

e [1; l

e

+ 2].

By Proposition 18, if 0 belongs to

b

e then e = 0.

Unless 0 belongs to

b

e then e 6= 0. Thus, we could set

�

�

e

 blg (jV

be

j � Err

be

)c

�

e

 sgn (V

be

):

7.3.3 Multiplication

Consider an Expr of the form e = f � g. Given (r

e

; a

e

) 2 N � Z, we would like to

determine (r

f

; a

f

) and (r

g

; a

g

) 2 N � Z so that

�

�

�

�

e� V

f

[

r

f

;a

f

]

�g[r

g

;a

g

]

�

�

�

�

� max

n

jej 2

�r

e

; 2

�a

e

o

: (65)

Proposition 27 To ensure (65), it su�ces to set

r

f

 r

e

+ 4; a

f

 max

n

��

�

f

+ 1; �

+

g

+ a

e

+ 5

o

;

r

g

 r

e

+ 4; a

g

 max

n

��

�

g

+ 1; �

+

f

+ a

e

+ 5

o

:

(66)

Proof. By (34), it is enough to show

6max

n

�

�

�V

b

f

�

�

�Err

bg

; Err

b

f

�

�

�V

bg

�

�

� ; Err

b

f

Err

bg

o

� max

n

jej 2

�r

e

; 2

�a

e

o

: (67)

Observe r

f

� 4 and a

f

� ��

�

f

+ 1. Then, by (62), Err

b

f

�

�

�

�V

b

f

�

�

�. Thus

Err

b

f

Err

bg

�

�

�

�V

b

f

�

�

�Err

bg

:

64

Hence, to have (67), we only need to show

6max

n

�

�

�V

b

f

�

�

�Err

bg

; Err

b

f

�

�

�V

bg

�

�

�

o

� max

n

jej 2

�r

e

; 2

�a

e

o

:

We claim

6

�

�

�V

b

f

�

�

�Err

bg

� max

n

jej 2

�r

e

; 2

�a

e

o

:

Since a

f

� ��

�

f

+ 1, by (60),

�

�

�V

b

f

�

�

� � 2 jf j. If Err

bg

� jgj 2

�r

g

then

6

�

�

�V

b

f

�

�

�Err

bg

� 6 � 2 jf j jgj 2

�r

g

� 12 jf � gj 2

�r

e

�4

� jej 2

�r

e

:

If Err

bg

� 2

�a

g

then

6

�

�

�V

b

f

�

�

�Err

bg

� 6 � 2 jf j 2

�a

g

� 12 jf j 2

�

(

�

+

f

+1

)

�a

e

�4

< 2

�a

e

:

Similarly

6Err

b

f

�

�

�V

bg

�

�

� � max

n

jej 2

�r

e

; 2

�a

e

o

:

Q.E.D.

7.3.4 Division

Consider an Expr of the form e = f=g. Given (r

e

; a

e

) 2 N � Z, we would like to

determine (r

f

; a

f

) and (r

g

; a

g

) 2 N � Z so that

�

�

�

�

e� V

f

[

r

f

;a

f

]

=g[r

g

;a

g

]

�

�

�

�

� max

n

jej 2

�r

e

; 2

�a

e

o

: (68)

Proposition 28 To ensure (68), it su�ces to set

r

f

 min fr

e

+ 7; max f�

+

e

+ a

e

+ 8; 2gg ; a

f

 ��

�

f

+ r

f

;

r

g

 min fr

e

+ 7; max f�

+

e

+ a

e

+ 8; 2gg ; a

g

 ��

�

g

+ r

g

;

r

default

 max fr

default

; min fr

e

+ 6; �

+

e

+ a

e

+ 7gg :

(69)

Proof. First, note max fjf j 2

�r

f

; 2

�a

f

g = jf j 2

�r

f

and max fjgj 2

�r

g

; 2

�a

g

g =

jgj 2

�r

g

. Thus, we only need to consider the case where f and g are both bounded by

their relative precisions.

Next, observe r

f

� 2, a

f

� ��

�

f

+ 2, r

g

� 2 and a

g

� ��

�

g

+2. Then, by (60) and

(61),

jf j

2

�

�

�

�V

b

f

�

�

� � 2 jf j and

jgj

2

�

�

�

�V

bg

�

�

� � 2 jgj : (70)

65

Moreover,

Err

b

f

�

�

�

�

V

b

f

�

�

�

2

; (71)

because Err

b

f

� jf j 2

�r

f

�

�

�

�V

b

f

�

�

� 2

�r

f

+1

�

�

�

�

V

b

f

�

�

�

2

. Similarly

Err

bg

�

j

V

bg

j

2

: (72)

Now, we show that (68) holds. There are two cases.

1. Suppose Err

b

f

= Err

bg

= 0. By (35), it is enough to show

12

�

�

�

V

b

f

�

�

�

j

V

bg

j

r

default

� max

n

jej 2

�r

e

; 2

�a

e

o

:

But, by (70),

12

�

�

�

V

b

f

�

�

�

j

V

bg

j

r

default

� 12

2 jf j

jgj

2

r

default

� 48 jejmax

�

2

�r

e

�6

; 2

�

(

�

+

e

+1

)

�a

e

�6

�

� max

n

jej 2

�r

e

; 2

�a

e

o

:

2. Suppose Err

b

f

> 0 or Err

bg

> 0. Since (71) and (72) hold, by (36), it is enough

to show

12

�

�

�

V

b

f

�

�

�

j

V

bg

j

max

8

<

:

Err

b

f

�

�

�V

b

f

�

�

�

;

Err

bg

�

�

�V

bg

�

�

�

9

=

;

� max

n

jej 2

�r

e

; 2

�a

e

o

:

If Err

b

f

� jf j 2

�r

f

and Err

bg

� jgj 2

�r

g

then, by (70),

12

�

�

�

V

b

f

�

�

�

j

V

bg

j

max

8

<

:

Err

b

f

�

�

�V

b

f

�

�

�

;

Err

bg

�

�

�V

bg

�

�

�

9

=

;

� 12

2 jf j

jgj

2

max

8

<

:

Err

b

f

jf j

2

;

Err

bg

jgj

2

9

=

;

� 96 jejmax

�

2

�r

e

�7

; 2

�

(

�

+

e

+1

)

�a

e

�7

�

� max

n

jej 2

�r

e

; 2

�a

e

o

:

Q.E.D.

66

7.3.5 Squareroot

Consider an Expr of the form e = sqrt (f). Given (r

e

; a

e

) 2 N � Z, we would like to

determine (r

f

; a

f

) 2 N � Z so that

�

�

�

�

e� sqrt

�

V

f

[

r

f

;a

f

]

�

�

�

�

�

� max

n

jej 2

�r

e

; 2

�a

e

o

: (73)

Proposition 29 To ensure (73), it su�ces to set

r

f

 2 r

e

+ 8; a

f

 2 a

e

+ 8;

a

default

 max fa

default

; min f��

�

e

+ r

e

; a

e

gg :

(74)

Proof. There are two cases.

1. Suppose Err

b

f

= 0. By (37), it is enough to show

2

�a

default

� max

n

jej 2

�r

e

; 2

�a

e

o

:

But

2

�a

default

� max

n

2

�

�

e

�r

e

; 2

�a

e

o

� max fjej 2

�r

e

; 2

�a

e

g :

2. Suppose Err

b

f

> 0. By (38), it is enough to show

16

q

Err

b

f

� max

n

jej 2

�r

e

; 2

�a

e

o

:

If Err

b

f

� jf j 2

�r

f

then

16

q

Err

b

f

� 16

q

jf j 2

�r

f

= 16

q

jf j 2

�r

e

�4

= jej 2

�r

e

:

If Err

b

f

� 2

�a

f

then

16

q

Err

b

f

� 16

p

2

�a

f

= 16 � 2

�a

e

�4

= 2

�a

e

:

Q.E.D.

67

8 Conclusion

Most geometric algorithms are designed under the assumption that all the numerical

quantities are real (algebraic) numbers and they can be computed exactly. Thus, their

implementations are quite di�cult and often practically impossible.

As an typical example, we consider the problem of the sign determination of de-

terminants of square matrices. Many geometrical predicates such as \left of line" or

\on circle" can be reduced into this problem.

For this problem, several robust implementations are proposed. Some of them

are based on
oating-point arithmetic, and therefore, every implementation can work

correctly with some speci�c inputs and under some limited conditions. A user must

carefully choose the appropriate implementation which satis�es his/her request, and

probably some adjustments need to be done.

Our Real/Expr package may relax these annoying conditions to some extent. By

using the Real/Expr package, the user can have a simple implementation, namely,

expand the determinant to get the algebraic expressions for it, and apply the inequality

operator. The elements of the input matrix could be of any type from which an

instance of Real can be constructed. In particular, the inputs could be arbitrarily

long. Moreover, the same implementation can be used for matrices of any dimension

although it is not practical for dimensions above 6.

We would also like to say that the algorithms we use to determine the sign of

expressions may be more e�cient than the other exact computation package where

the naive implementation of the exact computation is taken.

We conclude that users can use our Real/Expr package to implement the exact

algorithms in the very general situation. More speci�cally, the Real/Expr package has

the following signi�cant points:

� Users can implement the exact algorithms without being constrained by the

restrictions caused by �xed-precision arithmetic.

� Users can expect better performance than the traditional exact computation

tools where all numerical quantities are computed exactly.

� Users can deal with algebraic expressions involving the squareroots.

We expect the Real/Expr package will be used in the following situations.

Under some circumstances, the Real/Expr package may be a primary candidate

to implement algorithms. The implementation could be an almost straightforward

interpretation of the underlying algorithm.

Nevertheless,
oating-point arithmetic is fast. It is quite natural to choose
oating-

point arithmetic to implement algorithms. Then, the robustness (or exactness) needs

to be ensured. In this situation, users can embed the Real/Expr package in their

implementation at some critical points where exactness is important.

Finally, users may use the Real/Expr package as a veri�er of
oating-point imple-

mentation.

68

9 Acknowledgements

First of all, I would like to thank Prof. Chee Yap for his supervision, and to Prof.

Marsha Berger for being a reader of my paper.

Also, I would like to express my appreciation to Arieh Listowsky for his com-

ments, to Catalin Floristean for having discussions, and to Fabian Monrose who kept

encouraging me.

References

[Cop92] James O. Coplien. Advanced C++ programming styles and idioms. Addison-

Wesley Publishers, Co., Reading, MA., 1992.

[DY93] T. Dub�e and Chee Yap. A Basis for Implementing Exact Geometric Algo-

rithms (extended abstract), Sep 1993. The electronic copy is available via

ftp://cs.nyu.edu/pub/local/yap/exact/basis.ps.gz.

[GG74] A. J. Goldstein and R. L. Graham. A Hadamard-type bound on the coe�-

cients of a determinant of polynomials. SIAM Review, 16:394{395, 1974.

[Gol91] David Goldberg. What Every Computer Scientist Should Know About Float-

ing Point Arithmetic. ACM Computing Surveys, 23(1):5{48, Mar 1991.

[PH90] David A. Patterson and John L. Hennessy. Computer Architecture: a quanti-

tative approach. Morgan Kaufmann Publishers, Inc., San Mateo, CA., 1990.

(with an appendix on Computer Arithmetic by David Goldberg).

[Yap97] Chee Yap. Fundamental Problems in Algorithmic Algebra. Princeton Uni-

versity Press, Princeton, NJ., 1997. The electronic copy is available via

ftp://cs.nyu.edu/pub/local/yap/algebra-bk/.

69

