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We propose to design new algorithms for motion planning problems using the well-
known Domain Subdivision paradigm, coupled with “soft” predicates. Unlike the traditional 
exact predicates in computational geometry, our primitives are only exact in the limit. We 
introduce the notion of resolution-exact algorithms in motion planning: such an algorithm 
has an “accuracy” constant K > 1, and takes an arbitrary input “resolution” parameter ε > 0
such that: if there is a path with clearance Kε, it will output a path with clearance ε/K ; 
if there are no paths with clearance ε/K , it reports “NO PATH”. Besides the focus on soft 
predicates, our framework also admits a variety of global search strategies including forms 
of the A* search and probabilistic search.
Our algorithms are theoretically sound, practical, easy to implement, without implement-
ation gaps, and have adaptive complexity. Our deterministic and probabilistic strategies 
avoid the Halting Problem of current probabilistically complete algorithms. We develop 
the first provably resolution-exact algorithms for motion-planning problems in SE(2) =
R

2 × S1. To validate this approach, we implement our algorithms and the experiments 
demonstrate the efficiency of our approach, even compared to probabilistic algorithms.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

A central problem of robotics is motion planning [4,20,21,10]. In the early 80’s there was strong interest in this problem 
among computational geometers [15,32]. This period saw the introduction of strong algorithmic techniques with complexity 
analysis, and the careful investigation of the algebraic configuration space (C-space). In particular, Schwartz and Sharir [31]
showed that the method of algebraic cell decomposition is a universal solution for motion planning. We introduced the 
retraction method in [24,33,34]. In the first survey of algorithmic motion planning [40], we also showed the universality 
of the retraction method. This method is now commonly known as the road map approach, popularized by Canny [8] who 
showed that its algebraic complexity is in single exponential time. Typical of algorithms in Computational Geometry, these 
exact motion planning algorithms assume a computational model in which exact primitives are available in constant time. 
Implementing these primitives exactly is non-trivial (certainly not constant time), involving computation with algebraic 
numbers.

In the 1990s, interest shifted back to more practical techniques. Today, the dominant approach is based on sampling, 
usually combined with randomization. The most well-known representative of the sampling approach is the probabilistic 
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roadmap method (PRM) [19]. The idea is to compute a partial road map by random sampling of the C-space. PRM offers a 
computational framework for a large class of algorithms. Moreover, many variants1 of the basic framework have been devel-
oped (see [21,10]). Most sampling methods take sample points in configuration space, but the recent paper from Halperin’s 
group [29] takes sample (parametrized) subsets of configuration space. In an invited talk at the IROS 2011 Workshop on 
Progress and Open Problems in Motion Planning.2 J.C. Latombe stated that the major open problem of such Sampling Meth-
ods is that they do not know how to terminate when there is no free path. In practice, one would simply time-out the 
algorithm, but this leads to issues such as “Climber’s Dilemma” [16, p. 4] that arose in the work of Bretl (2005). We call this 
the halting problem of PRM, viewed as the ultimate form of what is popularly known as the “Narrow Passage Problem” [10, 
p. 216]. Latombe’s talk suggested promising approaches such as Lazy PRM [3]. The theoretical foundation of PRM is based 
on two principles: probabilistic completeness, and fast convergence under certain “expansiveness” assumptions [18] about 
the environment. It is unclear how to check these assumptions on specific environments. For a comprehensive overview of 
motion planning, see Lavalle [21] and Choset et al. [10].

In this paper, we turn to a third popular approach [46] for motion planning, which we call Subdivision Methods. The 
general idea is to subdivide some bounded domain B0, typically a subset of Rd . In motion planning, the domain is a subset 
of configuration space. In its simplest form, the subdivision of B0 can be represented as a subdivision tree, which is a gen-
eralization of binary trees (d = 1) or quad-trees (d = 2). An early reference for this approach is Brooks and Lozano-Perez [5]. 
Recent subdivision references include [46,2,45,12,26]. Manocha’s group has been active and highly successful in producing 
practical subdivision algorithms for a variety of tasks, not just in motion planning (e.g., [38,36]). Domain subdivisions are 
sometimes known as “cell decomposition” (e.g., [46]), but we reserve “cell decomposition” for the approaches based on par-
titioning the configuration space into algebraic “cells” with bounded combinatorial complexity that are directly correlated 
with the combinatorial features on the obstacles (e.g., [30,40]). In contrast to such cells, the boxes in subdivision approaches 
are more related to “resolution”. Nevertheless, subdivision that takes into account combinatorial complexity may be seen in 
[45,46]. Such kinds of subdivision algorithms offer tantalizing opportunities for new kinds of complexity analysis. Examples 
of such analysis may be seen in [28,35,7].

¶1. Contributions of this paper Although subdivision algorithms have been widely used by practitioners, their theoretical 
foundations have so far been lacking. This paper begins this task.

The notion of “resolution completeness” is widely used in the motion planning literature [10] but rarely analyzed (Sec-
tion 5 discusses some issues). Our first contribution is to introduce the concept of resolution-exact (or ε-exact) planners. 
Such planners accept an input resolution parameter ε > 0. The planner has an accuracy constant K > 1, independent of 
the input, such that if there is a path of clearance Kε, it will output a path with clearance ε/K ; if there is no path of clear-
ance ε/K , it will output “NO PATH”. As this paper shows, our definition allows us to devise planners that avoid the halting 
problem of PRM. Moreover, Section 5 notes that the usual concept of “resolution completeness” does not automatically solve 
the halting problem. But in what sense have we “solved” the halting problem? To be sure, we are not solving the halting 
problem for exact motion planning—this would require exact computation, something we wish to avoid in robotics. Instead, 
ε-exactness weakens the requirements for the “NO PATH” output. But is this just a trick to solve the halting problem by 
fiat? No, we argue that our weakening is not only justifiable, but desirable: good engineers know the limits of accuracy in 
their sensors, actuators, robot dimensions, etc. Path planning that depends on accuracy beyond these limits is not realistic, 
even dangerous. Note that when we output “NO PATH”, we guarantee that there exists no path with clearance Kε (this is 
the contrapositive of the statement just mentioned above: “if there is a path of clearance Kε, it will output a path with 
clearance ε/K ”); no similar guarantees can come from PRM. With this information, users can choose ε based on engineering 
limits so that when we declare “NO PATH”, no further search is warranted.

Our second contribution is the introduction of soft primitives for designing resolution-exact planners. Briefly, soft prim-
itives are suitable numerical approximations of exact (hard) primitives. Such primitives are perhaps nascent in previous 
literature. But by making this idea explicit, we open up many new possibilities, as well as lay the groundwork for a 
systematic investigation of such algorithms. Such primitives are relatively easy to implement correctly (i.e., there are no 
“implementation gaps” in such algorithms).

Third, we design new planners based on soft predicates. These algorithms are the first explicit examples of resolution-
exact planners. Our algorithms can use various search strategies, including probabilistic ones. Halting is guaranteed even in 
our probabilistic planners.

Our final contribution is the development and implementation of the first resolution-exact algorithms for rigid robots 
with configuration space SE(2) = R

2 × S1. Our experiments demonstrate their effectiveness.

2. On numerical computational geometry

Computational Geometry (CG) has traditionally concentrated on Exact Methods. The attractive features of exact algo-
rithms are well-known. The drawback of such methods is exposed when we start to implement the algorithms. The inability 

1 A partial list includes Expansive-Spaces Tree planner (EST), Rapidly-exploring Random Tree planner (RRT), Sampling-Based Roadmap of Trees planner 
(SRT).

2 http :/ /www.cse .unr.edu /robotics /tc-apc /ws-iros2011. Sept. 30, 2011, San Francisco.

http://www.cse.unr.edu/robotics/tc-apc/ws-iros2011
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of Exact Methods to have wider impact on robotics and fields of Computational Sciences and Engineering (CS&E) despite 
the fact that geometric reasoning is central in these fields calls for a re-examination of our assumptions. We argue that 
Subdivision Algorithms, when3 combined with soft primitives, offer a pathway for CG’ers to design new algorithms based 
on numerical approximations that are both practical and theoretically sound. Our soft primitives do not entail error analysis 
in the style of numerical analysis; rather, we rely on interval methods [22]. Algorithms in “Numerical CG” in this sense are 
distinctly different from the usual exact algorithms (see [43] for a general discussion).

One limitation of numerical primitives is that they are only complete in the limit. They also cannot detect degeneracies 
unless we use zero bounds [42]. Luckily for us, this is not an issue for resolution-exact planners and many other applications. 
But there are some problems (e.g., subdivision methods for Voronoi diagrams [39]) for which it is a challenge to handle 
degeneracies using only soft predicates. On the other hand, numerical methods have the advantage of greater generality, 
being applicable to non-algebraic problems where exact solutions are generally unknown (see a rare exception in [9]). 
Numerical CG will open up completely new areas for CG’ers.

The conventional wisdom of roboticists (see Choset et al. [10, p. 202]) is that Subdivision Methods are effective only 
up to “medium” degrees of freedom (DOFs) while Sampling Methods can be effective for much higher DOFs. This remark 
is borne out by currently implemented planners. But we do not see any inherent reason for this gap. Use of randomness 
is not a reason—as we will see, it is easy to deploy random search strategies in Subdivision Methods. We believe that the 
current reach of Subdivision Methods in motion planning can be greatly extended with better (perhaps randomized) search 
strategies. More generally, does the supposed limitation of subdivision extend beyond motion planning? Pessimistic views of 
subdivision often assume that the size of subdivision trees is exponential in the inverse resolution 1/ε. This only shows that 
adaptivity in subdivision is critical. Some recent examples [28,6,35] suggest that adaptive approaches can guarantee optimal 
tree sizes, even in the worst case sense. Also the exploitation of Newton-type techniques in subdivision is very promising 
(e.g., [27]). All these point to many new opportunities for algorithmic development in Numerical CG.

3. Subdivision motion planning

In this section, we illustrate our approach with a basic motion planning problem. Fix a rigid robot R0 ⊆ R
d and an 

obstacle set � ⊆ R
d . Both R0 and � are closed sets. Initially we assume R0 is a d-dimensional ball of radius r0 > 0.

Suppose we want to compute a motion from an initial configuration α to some final configuration β . One of the best 
exact solutions when R0 is a ball is based on roadmaps (i.e., retraction approach). Historically, the case d = 2 was the 
first exact roadmap algorithm [24]. For polygonal �, the roadmap is efficiently computed as the Voronoi diagram of line 
segments [41,13]. For d = 3, it is clear that a similar exact solution is possible. But here we see the limitations of exact 
solutions: there is no known exact algorithm for the Voronoi diagram of polyhedral obstacles [17,39]. The configuration 
space or Cspace is Rd when R0 is a ball. In general, we write Cspace(R0) for the configuration of a robot R0. Let α, β ∈ Cspace . 
The footprint of R0 at α is the set R0[α] comprising those points in Rd occupied by R0 in configuration α (where R0 is 
centered at α). We say α is free if R0[α] ∩ � is empty; it is semi-free if it is not free but R0[α] does not intersect the 
interior of �. Thus α is semi-free if R0[α] is just touching � without penetrating it. Finally α is stuck if it is neither free 
nor semi-free. Thus, every configuration is classified as free, stuck or semi-free. We extend this classification to any set 
B ⊆ Cspace: we say B is free (resp., stuck) if every α ∈ B is free (resp., stuck). Otherwise, B is mixed (i.e., contains at least 
one semi-free configuration). We thus defined the (exact) classification predicate C : 2Cspace → {FREE, STUCK, MIXED}. This 
classification goes back to the beginning of subdivision motion planning in Brooks and Perez [5]. Our goal in soft primitive 
design is to avoid this exact predicate.

Let Cfree = Cfree(R0, �) ⊆ Cspace denote the set of free configurations. A motion from α to β is a continuous map μ :
[0, 1] → Cspace with μ(0) = α and μ(1) = β . We call μ a free motion or more simply, a path, if its range {μ(t) : t ∈ [0, 1]}
is contained in Cfree . For sets A, B ⊆R

d , define their separation to be Sep(A, B) := inf{‖a − b‖ : a ∈ A, b ∈ B}. The clearance
of a configuration γ ∈ Cspace is the separation between R0[γ ] and �. The clearance of a path μ is the minimum clearance 
of μ(t) for t ∈ [0, 1].

¶2. Subdivision trees Our main data structure is a subdivision tree T rooted at a box B0 ⊆ R
d . The nodes of T are subboxes 

of B0, where boxes are closed subsets of full dimension d, and each internal node B is split into 2i (i = 1, . . . , d) congruent 
subboxes which form the children of B . We remark that boxes B are axes-parallel and not assumed to be square, with width
w(B) and length �(B) defined to be the lengths of the shortest and longest side (resp.). For convergence, we must assume 
that the aspect ratio �(B)/w(B) ≥ 1 is bounded. Any box that can be obtained as a descendant of B0 in a subdivision tree 
is said to be aligned. Let m(B) denote the midpoint and radius r(B) be the distance from m(B) to any corner of B . For 
any real number s > 0, let s · B (or sB) denote the congruent box centered at m(B) with radius s · r(B). Two boxes B, B ′ are
adjacent if B ∩ B ′ is a facet F of B or of B ′ , where facets refer to faces of co-dimension 1. Also, let Dm(r) denote the closed 
ball centered at m with radius r.

3 Subdivision Algorithms could also be combined with hard primitives. But to exploit the full power of Subdivision Methods we must consider soft 
primitives.
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To allow domains of arbitrarily complex geometry, the input to our algorithm is an initial subdivision tree T0 whose 
leaves are arbitrarily marked ON or OFF. The set of ON-leaves forms a subdivision of the region-of-interest ROI(T ) of the 
tree. Subsequently, T can be expanded at any ON-leaf B , by splitting B into 2i (1 ≤ i ≤ d) congruent subboxes who become 
the children of B .

¶3. A subdivision FindPath algorithm Our algorithm is given ε > 0 and an initial T0 rooted at B0. The algorithm is 
parametrized by two subroutines: a classification predicate C(B) for boxes, and a subroutine Split(B, ε) which returns 
a subdivision of B into 2i (for some i = 0, . . . , d) congruent subboxes; the split subroutine is said to fail if w(B) ≤ ε (in this 
case i = 0). Recall that we assume the aspect ratio �(B)/w(B) to be bounded. We use T to search for a path in B0 ∩ Cfree

as follows. Let V (T ) denote the set of free leaves in ROI(T ). We define an undirected graph G(T ) with a vertex set V (T )

and edges connecting pairs of adjacent free boxes. We maintain the connected components of G(T ) using the well-known
Union-Find data structure on V (T ): given B, B ′ ∈ V (T ), Find(B) returns the index of the component containing B , and 
Union(B, B ′) merges the components of B and of B ′ .

We associate with T a priority queue Q = QT to store all the mixed leaves B with width w(B) > ε. Let T .getNext()
remove a box in Q of highest “priority”. This priority is discussed below. We denote by BoxT (α) (resp. BoxT (β)) the leaf 
box in T containing α (resp. β). Let B be BoxT (α) or BoxT (β) or a leaf box returned by T .getNext(). We will expand 
B as follows: first call Split(B, ε). If Split(B, ε) fails, we return fail (note that it never fails if B is a box returned 
by T .getNext()). Otherwise, each of the subboxes B ′ returned by Split(B, ε) is made a child of B . We label B ′ with the 
predicate C(B ′). If C(B ′) = FREE, we insert B ′ into V (T ) and into the union-find structure, and for each B ′′ ∈ V (T ) adjacent 
to B ′ , we add an edge (B ′, B ′′) to the graph G(T ) and call Union(B ′, B ′′). Finally, if C(B ′) = MIXED and w(B ′) > ε, we insert 
B ′ into Q . Thus, mixed boxes of width ≤ ε are discarded (effectively regarded as STUCK). Now we are ready to present a 
simple but useful subdivision algorithm:

FindPath:
Input: Configurations α,β , tolerance ε > 0, box B0 ∈R

d .
Output: Path from α to β in Free(R0,�) ∩ B0.

Initialize a subdivision tree T with only a root B0.
1. While (BoxT (α) �= FREE)

If (Expand BoxT (α) fails) Return(“No Path”).
2. While (BoxT (β) �= FREE)

If (Expand BoxT (β) fails) Return(“No Path”).
3. While (Find(BoxT (α)) �= Find(BoxT (β)))

If QT is empty, Return(“No Path”)
(*) B ← T .getNext()

Expand B
4. Compute a channel P from BoxT (α) to BoxT (β).

Generate a path P from P and Return(P )

In Step 4, the channel P is a sequence (B1, . . . , Bm) of boxes where Bi, Bi+1 are adjacent. We also call P an F-channel
since the Bi ’s are all free. We easily convert an F-channel into a path (or trajectory) which is a parametrized path P :
[0, 1] → Cfree from α to β . It is also easy to produce P that satisfies reasonable constraints such as smoothness. This ability 
to generate a path is a benefit of subdivision methods over pure algebraic methods. Freeness is essential for our use of the 
extremely efficient Union-Find data structure. The use of Union-Find was proposed in [21].

In contrast to F-channels, Zhu–Latombe [46] uses M-channels (comprised of FREE or MIXED leaf boxes). Their idea is to 
attempt to find an F-channel along the “shortest” M-channel, by expanding all the MIXED boxes in the channel. Subsequent 
researchers (Barbehenn–Hutchinson [2] and Zhang–Manocha–Kim [45]) continued this approach. Barbehenn and Hutchinson 
[2,1] introduced the highly efficient Dijkstra or the related A* search. The challenge in their approach is how to efficiently 
update the A*-structure after expansions along the M-channel.

The routine T .getNext() in Step (*) is not fully specified; the correctness of our planner also does not depend on 
T .getNext(). Nevertheless, it is critical for performance. There are many possible strategies for implementing getNext(). 
For instance, getNext() may return a random box in the queue, or use the BFS strategy. We can implement a Dijkstra-like or 
A* strategy by letting getNext() return a mixed leaf that is adjacent to the connected component of BoxT (α). By alternating 
between two or more of these strategies, we get hybrid strategies. Another idea is to use some entropy criteria. Recent work 
on shortest-path algorithms in GIS road systems offers many other heuristics.

Our FindPath algorithm is not our claim to novelty. Nevertheless, it has interesting features, including great potential for 
adaptivity through its getNext() strategy. In contrast, non-adaptive uniform grid approaches (e.g., [21, p. 185]) are widely 
used. Although grids are superficially similar to subdivisions, grids use point-based operations while our theory is based on 
box (interval) operations (see Section 4). Uniform grid translates into breadth-first search strategy for getNext(), but we can 
do much better.
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Fig. 1. (a) Domains W +(B) and W −(B). (b) Condition (S1) holds. (For interpretation of the colors in this figure, the reader is referred to the web version 
of this article.)

4. Let us design soft predicates!

The preceding FindPath is based on the exact predicate C(B). Our main interest in the Subdivision Method lies in its 
ability to replace C(B) by some “soft” version ˜C(B) which is easy to compute and correct in the limit. We now formalize 
this.

¶4. Soft predicates Let ˜C(B) be a box predicate that returns a value in {FREE, STUCK, MIXED}. We call ˜C a soft version of 
C if two conditions hold:

(A1) It is conservative, i.e., ˜C(B) �= MIXED implies ˜C(B) = C(B).
(A2) It is convergent, i.e., if {Bi : i = 1, 2, . . . , ∞} converges to a configuration γ , then ˜C(Bi) = C(γ ) for large enough i.

We need a quantitative measure of the convergence rate. Let 0 ≤ σ ≤ 1 and B be any class of boxes. A soft version ˜C
of C is said to be σ -effective (or have effectivity factor σ ) for B if C(B) = FREE implies ˜C(σ B) = FREE for all B ∈ B
(recall that σ B is the congruent box centered at m(B) with radius σ · r(B)). One might imagine a stronger condition that 
C(B) �= MIXED implies ˜C(σ B) �= MIXED for all B ∈ B, but our current definition suffices for our main Theorem A. For 
example, we will prove that our soft predicates below are effective for any class B of boxes with bounded aspect ratio.

We now design soft predicates ˜C assuming � ⊆ R
d is a polyhedral set, and the boundary of � is partitioned into a 

simplicial complex comprising relatively open cells of each dimension. For simplicity, assume d = 2. These cells are called
features of �. The features of dimensions 0 and 1 are called corners and edges (resp.). Each box B is associated with three 
sets: its outer domain W +(B), inner domain W −(B), and feature set φ(B). When the robot R0 ⊆ R

2 is a ball of radius r0, 
W +(B) ⊆ R

2 and W −(B) ⊆ R
2 are defined as the disks Dm(B)(r0 + r(B)) and Dm(B)(r0 − r(B)), respectively. See Fig. 1(a). If 

r0 < r(B), then W −(B) is empty. Also, φ(B) comprises the features of � that intersect W +(B). We call B simple if one of 
the following conditions holds:

(S0) Its feature set φ(B) is empty. Equivalently, no feature of � intersects its outer domain W +(B).
(S1) Some feature of � intersects its inner domain W −(B). Thus (S1) holds in Fig. 1(b) because of the red triangle obstacle.

The soft predicate ˜C can now be defined: for our purposes, we only need to define ˜C(B) for aligned boxes B . Thus we can 
use induction by depth. If B is non-simple, declare ˜C(B) = MIXED. Else if (S1) holds, declare ˜C(B) = STUCK. Otherwise, (S0) 
holds and clearly B is either free or stuck, and we define ˜C(B) = C(B) accordingly.

We now come to computing ˜C(B), but only in the context where B is a leaf of a subdivision tree. Observe if B ′ is a child 
of B , then W +(B ′) is contained in W +(B). This implies the following distributional approach of computing φ(B) is valid: 
when we expand B , we can distribute the features in φ(B) to each of its children. Note that a feature can be given to more 
than one child, or to no child (when it intersects no W +(B ′)). Moreover, we can check the conditions (S1) and (S0) during 
this distribution. Finally, if (S0) holds, we determine ˜C(B) as follows: ˜C(B) = FREE (resp. STUCK) iff m(B) is outside (resp. 
inside) the obstacle �. To decide between these two cases, note that by a linear search of the non-empty set φ(B.parent), 
we can find the feature f in φ(B.parent) that is closest to m(B). We have 2 possibilities: (1) f is an edge. Assume that 
edges are oriented so that we can decide using a orientation test whether m(B) is inside or outside � in the neighborhood 
of f . (2) f is a corner. We call f a convex (resp., concave) corner if, for any sufficiently small ball D centered at f , the set 
D ∩ � is a convex (resp., concave) set. Every corner is either convex or concave. Moreover, f is convex iff m(B) is outside 
� (iff B is free).

Suppose � is given as the union of a set of polygons that may overlap (this situation arises in Section 7). Moreover, φ(B)

is defined to comprise features in these (possibly overlapping) polygons. We extend the above FREE/STUCK test for (S0) as 
follows: again linearly search φ(B.parent), and for each obstacle polygon S appearing in φ(B.parent), find the feature 
f ⊆ ∂ S that is closest to m(B). Then m(B) is outside � (and B is free) iff m(B) is outside all such polygons S .
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Fig. 2. Effectivity factor 1/
√

2.

Lemma 1. The predicate ˜C is a soft version of C for the ball robot R0 ⊆ R
2 . When boxes are squares, ˜C has an effectivity factor 

σ = 1/
√

2. More generally, if our boxes have aspect ratio at most α ≥ 1, then the effectivity factor is σ = 1/
√

1 + α2 .

Proof. To see the effectivity factor for square boxes, suppose that C(B) = FREE for some square B . Referring to Fig. 2, we 
see that the region bounded by the outer four red segments and the outer four red circular arcs does not intersect the 
obstacle set �. Clearly, the dotted circle also does not intersect �. Note that this dotted circle is centered at m(B) with 
radius r(B) = r + r0, and it is the boundary of the outer domain W +(σ B) of box σ B whose radius is r, where r = r(B)/

√
2. 

This means that σ = 1/
√

2 and we have ˜C(σ B) = FREE. Therefore, ˜C has an effectivity factor σ = 1/
√

2. In general, let B
be a rectangular box with dimensions 2w × 2αw . If B is free, there is a disc centered at m(B) of radius w + r0 that does 
not intersect �. This disc is the outer domain of σ B where σ = 1/

√
1 + α2. �

The proof easily generalizes to ball robots in every dimension. We can now use the soft predicate ˜C instead of the exact 
predicate C to get a resolution-exact algorithm. This will be proved below. Of course, doing this for the disc robot is no 
great achievement since the exact algorithm is actually quite practical too. But it lays the groundwork for generalization to 
more complicated robots for which exact methods are no longer viable.

¶5. Implementability We claim that our algorithm is easy to implement correctly. We have designed our predicates so that 
they are reduced to comparison of “distances” between sets. In particular, a feature f is in φ(B) iff

Sep(m(B), f ) ≤ r(B) + r0 (1)

where Sep(A, B) is the separation between sets A and B . Notice that (1) is a comparison of two exact (!) expressions. There 
are implicit square roots in these expressions, so an exact implementation would be expensive. But we are not obliged to 
implement soft predicates exactly—this cannot be said for hard predicates. We provide a simple implementation method: 
for any numerical expression x, let (x) or x denote any closed interval [a, b] that contains x. If the interval has width 
at most 2−p , we also write p(x). Assume that for any expression x and any given p, we can compute some p(x). This can be 
achieved with any software bigFloat package (e.g., GMP [14], MPFR [23]). We define the “lax comparison” � on intervals 
whereby [a, b] � [a′, b′] holds iff a ≤ b′ . Note that the “strict comparison” would be b ≤ a′ . We implement the test (1) using 
this lax comparison:

p(Sep(m(B), f )) � p(r(B) + r0) (2)

where p = − lg r(B). Let ̂C(B) be the “implemented” version of ˜C(B).

Lemma 2. ̂C(B) is a soft predicate for C(B).

Proof. Recall that φ(B) is the set of features belonging to the box B . Suppose ̂φ(B) is the set of features that belong to B
when we use the lax comparison �. The key observation is that x ≤ y implies p x � p y. This shows that φ(B) ⊆ ̂φ(B). 
The lax comparison (2) implies that

Sep(m(B), f ) − r(B) ≤ (r(B) + r0) + r(B)

or, Sep(m(B), f ) ≤ 3 · r(B) + r0. This shows that the extra features in ̂φ(B) must intersect the disc W +(3B) (the outer 
domain of 3B). If a sequence of boxes Bi converges to a point q as i → ∞, we see that ̂φ(Bi) → φ(q). This implies that the 
approximate classification ̂C(Bi) also converges to C(q). �
¶6. Improvements We can improve the convergence of our soft predicates. In practice, and typical of subdivision approaches, 
such improvements can be quite significant (e.g., see [39]). Let us define the set φ(B) slightly differently, by recognizing two 
regimes for boxes. In the “small B regime”, i.e., r(B) < r0, we compute φ(B) as before. In the “large B regime”, i.e., r(B) ≥ r0, 
we can define φ(B) to comprise those features that intersect the box αB where α = 1 + √

2r0/r(B). Checking if a feature 
intersects αB is simple. This new definition should generally result in smaller sizes for φ(B). For a simple implementation, 
condition (S1) could be omitted; its role is to provide an early stuck decision.



C. Wang et al. / Computational Geometry 48 (2015) 589–605 595
5. Resolution exactness

We have designed some non-trivial algorithms under our scheme. We now clarify what sort of algorithms these are. 
Informally, our algorithms are “resolution complete”. There are slightly variant definitions, but a typical (e.g., [37]) definition 
says “a planner is resolution complete if it finds a path if one exists provided the resolution parameters are selected small 
enough”. This definition does not4 say what happens if there is no path. Some formulations appear to assume that the 
resolution is not given but the planner has to search for it. Of course, this search would not terminate if there is no path. 
Our algorithms in Section 4 (and in Section 6 as well) have an explicit input ε > 0, called the resolution parameter. It is 
essential that ε be different from 0. To use this parameter, we recall the concept of “clearance”. Here is an attempt to define 
resolution completeness with a converse: (i) if there is a path with clearance ε, the planner will find a free path, and (ii) if there 
is no path with clearance ε, it will report “NO PATH”. Taken together, this pair of statements cannot be the correct, as it implies 
that, with sufficient resolution, we can detect the case where the clearance is exactly ε, a feat that only Exact Methods can 
achieve (in which case we might as well design algorithms with ε = 0). What is missing in current discussions of resolution 
completeness is the concept of an accuracy constant K > 1. We say that a planner is resolution-exact if there exists an 
(accuracy) constant K > 1 that is independent of the input (but may depend on the algorithm) such that:

• If there is a path with clearance Kε, it outputs a path with clearance ε/K .
• If there is no path with clearance ε/K , it reports “NO PATH”.

What if the maximum clearance of free paths lies strictly in the range (ε/K , Kε]? According to this definition, the planner is 
free to report a path or “NO PATH”. In our Theorem A below, we prove that this cannot be avoided! This indeterminacy is the 
necessary price to pay for resolution-exactness. In our view, this price is not a serious one because the user has the option to 
decrease the ε parameter as desired. Of course, if we decrease ε to ε/K , the indeterminacy will reappear for input instances 
that only have paths with clearance in the range (ε/K 2, ε]. But as argued in Section ¶1 there is no infinite regress if we 
know some hard engineering limits of how much clearance a path should have.

The result of Theorem A below concerns our algorithm Exact FindPath in Section ¶3 in the 2D case, assuming that all 
boxes are squares and we use the exact classifier predicate C(B). Recall that in our Exact FindPath algorithm, we subdivide 
a box only if its width w(B) is larger than the input resolution parameter ε > 0. So the smallest boxes in the subdivision 
tree T have width t with ε/2 < t ≤ ε. Now consider the “full expansion” of the subdivision tree T whose leaves are of the 
smallest size possible. Recall from Section ¶3 that a channel is a sequence (B1, . . . , Bm) where Bi, Bi+1 are adjacent. We are 
interested in a free channel where α ∈ B1 and β ∈ Bm .

Lemma 3. If there exists a motion μ with clearance δ = √
2ε, then our Exact FindPath algorithm outputs a path with clearance ε/4.

Proof. Consider the “full expansion” of T as mentioned above, where the leaves have a width t with ε/2 < t ≤ ε. Consider 
the subset A of such leaves that cover μ. We claim that each leaf box in A is free: let p be a point in μ and B� be the leaf 
box where p lies; since the diagonal of B� is 

√
2t ≤ √

2ε = δ, B� lies entirely within the “clearance region” of p and thus 
B� is free. Therefore, A consists of free leaf boxes of width t that covers μ; in other words, A is a free channel � that 
covers μ.

Since there exists a free channel � connecting α and β , our Exact FindPath algorithm will find some free channel �′
connecting α and β (�′ is not necessarily �, but at least � exists as a candidate to be found by our algorithm). This can 
be justified as follows: consider the subdivision tree T produced by our algorithm. It produces a subdivision of ROI(T ), and 
for each free box B in A, there is a corresponding free leaf B∗ in T that contains B . These free leaves B∗ , after pruning 
redundancies, yield a free channel �∗ that covers �. By definition of the correctness of any path finding algorithms, a free 
channel �′ connecting α and β will be found iff there exists a free channel �∗ connecting α and β .

Note that �′ consists of free aligned boxes connecting from B(α), the free (aligned) box containing α, to B(β), the free 
(aligned) box containing β . Since each free box in �′ has width at least t , we can construct a rectilinear path P , from the 
box center a of B(α) to the box center b of B(β), through the free boxes in �′ where each point of P is away from the box 
boundary by a distance at least t/2 (see Fig. 3 for an example), and thus P has clearance t/2 > ε/4.

Our final reported path P f is given by P f = αa ∪ P ∪ bβ . It remains to show that αa has clearance ε/4 (and similarly 
for bβ by the same argument). The key point is to use the fact that α belongs to μ and thus has a clearance δ = √

2ε. We 
consider the following two cases.

Case (1): The width of B(α) is t . Then for any point q ∈ αa, d(α, q) is at most half of the diagonal of B(α), i.e., d(α, q) ≤√
2t/2 ≤ √

2ε/2 = δ/2. However, α has clearance δ, and thus q ∈ αa has clearance δ − d(α, q) ≥ δ/2 > ε/4.
Case (2): The width of B(α) is at least 2t . We refer to Fig. 4, where the boundaries of the inner box and of B(α) are 

apart by a distance t/2. Clearly, any point of αa lying inside the inner box has clearance at least t/2 > ε/4. Now consider 
the portion of αa outside the inner box. Without loss of generality, suppose such portion lies in the green shaded rectangle 

4 In Computer Science, “completeness” concepts typically have some “if-and-only-if” connotation. Otherwise, they might be qualified as “partial com-
pleteness”. E.g., “partial correctness” of programs, or “partial decidability” of problems, etc.
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Fig. 3. Path P from a to b with clearance t/2 > ε/4. A canonical path P∗ consists of αa,bβ and essential path P , with essential clearance t/2.

Fig. 4. Segment αa has clearance ε/4.

and the slope of αa is in the range [0, 1] (for other cases the slopes are in the ranges (1, ∞), [−1, 0), and (−∞, −1)

and symmetric arguments apply). Note that w = t/2 and h ≤ w (since the slope of αa is in [0, 1]), the diagonal of the 
green shaded rectangle is at most 

√
2t/2 ≤ √

2ε/2 = δ/2, i.e., any point q ∈ αa lying in the green shaded rectangle has 
d(α, q) ≤ δ/2. Since α has clearance δ, such q has clearance δ − d(α, q) ≥ δ/2 > ε/4. Therefore, every point of αa has 
clearance ε/4. �

We define an essential path to be a path from the center a of a free box B(α) containing α to the center b of a free box 
B(β) containing β (e.g., path P in Fig. 3). A canonical path P∗ consists of line segments αa,bβ , and an essential path P
from a to b. Note that the major task in motion planning is to find an essential path P , while making P canonical by adding 
αa and bβ is straightforward. We define the essential clearance of a canonical path to be the clearance of its essential path 
(see Fig. 3).

Lemma 4. If there is no free canonical path with essential clearance ε/4, then our Exact FindPath algorithm reports “NO PATH”.

Proof. We prove the contrapositive: When our Exact FindPath algorithm finds a path, there exists a free canonical path 
with essential clearance ε/4. Indeed, when our algorithm finds a free path, it finds a set of free aligned boxes connecting 
from B(α) to B(β). Since each such free box has width at least t , we can construct an essential path, which is a rectilinear 
path P where each point of P is away from the box boundary by a distance at least t/2 (see Fig. 3). Clearly αa ∪ P ∪ bβ is 
a free canonical path with essential clearance at least t/2 = ε/4. �

Putting together Lemmas 3 and 4, we have the following results for 2D, assuming that all boxes are squares and we use 
the exact classifier predicate C(B).

Theorem A (Hard predicate). Let K0, k0 ≥ 1 and consider our planner Exact FindPath.

(i) For K0 = √
2, if there is a path with clearance K0ε, then our planner outputs a path with clearance ε/4.

(ii) For k0 = 4, if there is no free canonical path of essential clearance ε/k0, then our planner reports “NO PATH”.

The results in (i) and (ii) are tight in the following sense:

(i′) If K0 <
√

2, there are obstacle inputs � admitting paths with clearance K0ε, but our planner reports “NO PATH”.
(ii′) If k0 < 4, there are obstacle inputs � admitting no paths of clearance ε/k0 but our planner outputs a path.
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Fig. 5. Proof of Theorem A (i′).

Fig. 6. Proof of Theorem A (ii′). (For interpretation of the colors in this figure, the reader is referred to the web version of this article.)

Proof. (i) and (ii) are Lemmas 3 and 4 respectively.
(i′). Consider any K0 <

√
2. We can have an obstacle input � such that it admits a path with clearance K0ε, where α

lies in the aligned box B = B(α) of our subdivision tree, with width w(B) = ε, but the robot center cannot be placed in the 
red shaded triangle region (see Fig. 5). Note that the diagonal of B is 

√
2ε and α can still have clearance K0ε. However, 

B is a mixed box with w(B) = ε and thus the expansion of B fails. Therefore, our planner reports “NO PATH”.
(ii′). Suppose k0 < 4. Let δ := 4 − k0. We now construct an input for our algorithm. Let

B0 = [−4,4] × [−4,4], r0 < 1.9, ε = 4 − (δ/2),

α = (−3,1), β = (3,1),

and � is the union of two half spaces, {(x, y) ∈ R
2 : y ≤ −u − r0} and {(x, y) ∈ R

2 : y ≥ 2 + u + r0} for some small u ∈
(0, 2 − r0) to be determined. See Fig. 6, where � is shown in yellow.

Using an exact classification predicate, we will subdivide until we obtain a “linear” channel of boxes from B(α) to B(β)

(shown in green in Fig. 6). Note that each box in this channel has width 2 and the straightline path from α to β has 
clearance 1 + u. So our algorithm will output the straightline path from α to β . Note that this path has clearance 1 + u
(which is in fact the largest clearance possible, but the algorithm does not actually know this clearance). We shall choose u
to fulfill

1 + u <
ε

k0
= 4 − (δ/2)

4 − δ
, (3)

i.e., the largest clearance of any paths, 1 + u, is less than ε/k0, so that � admits no paths of clearance ε/k0. Here (3) is 
true iff u < (1/2)(δ/k0). Note that the ratio δ/k0 could be large, but recall that u ∈ (0, 2 − r0) (where r0 < 1.9) from our 
construction. So we can pick u = min{(1/3)(δ/k0), 1.9 − r0} to fulfill both conditions. �

Theorem A implies an accuracy factor K = 4, but it is clear that K can be reduced by adjusting our algorithm to use the 
resolution parameter ε in a more equitable way.

The general form of this result is perhaps no surprise, but the accuracy constants might not be what we initially expect, 
since we are talking about an “exact algorithm”. There are several sources for loss of accuracy: first, subdivision boxes are 
“aligned” with the integer grid in the sense that their coordinates are dyadic numbers. Second, the width of our smallest 
boxes, the ε-MIXED boxes, lies between ε/2 and ε. The third is the use of soft predicates. In particular, what is the accuracy 
of our prototype algorithm in Section ¶3 when using the soft predicates of Section ¶4? Recall from Lemma 1 that when 
boxes are squares, our soft predicate ˜C has an effectivity factor σ = 1/

√
2. In our algorithm, we can replace our input 
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resolution parameter with ε̄ = σε, i.e., we split boxes until the smallest box width is between ε̄/2 and ε̄ (between σε/2
and σε).

Lemma 5. If there exists a motion μ with clearance δ = √
2ε, then our algorithm using soft predicate ˜C outputs a path with clearance 

σε/4.

Proof. This is a “soft version” of Lemma 3. Consider the “full expansion” of our subdivision tree T ; now the smallest boxes 
have width σ t (instead of t). Look at the subset A of such leaf boxes that cover μ. For each such leaf box B� , let B�/σ
be the box centered at m(B�) with width t . We claim that B�/σ is free: let p be a point on μ that lies in B�; clearly 
p also lies in B�/σ . Since the diagonal of B�/σ is 

√
2t ≤ √

2ε = δ, B�/σ lies entirely within the “clearance region” of p
and thus B�/σ is free. Therefore, we have C(B�/σ ) = FREE. By the effectivity factor σ for ˜C , C(B�/σ ) = FREE implies 
˜C(B�) = ˜C(σ (B�/σ )) = FREE. Therefore, we can use ˜C to classify each B� to be free, and thus to classify A as a free 
channel covering μ. This is the same as the free channel A covering μ in the proof of Lemma 3, but now each channel 
box has width σ t rather than t . The rest of the proof of Lemma 3 carries over, with the reported path having a clearance 
σε/4 rather than ε/4. �
Lemma 6. If there is no free canonical path with essential clearance σε/4, then our algorithm using soft predicate ˜C reports “no path”.

Proof. This is a “soft version” of Lemma 4. Again we prove the contrapositive: When our algorithm finds a path, there exists 
a free canonical path with essential clearance σε/4. The proof of Lemma 4 carries over, but now each free aligned box has 
width σ t rather than t , and thus the essential clearance is at least σ t/2 = σε/4. �

We re-state Lemmas 5 and 6 together in the following.

Theorem B (Soft predicate). With the same assumptions as Theorem A, but with the exact predicate C(B) replaced by a soft predicate 
˜C(B) with effectivity factor σ , we have:

(i) For K0 = √
2, if there is a path with clearance K0ε, then our planner outputs a path of clearance σε/4.

(ii) For k0 = 4, if there is no free canonical path with essential clearance σε/k0, then we report “NO PATH”.

This implies that the accuracy factor K now becomes 4/σ . In general, we have:

Corollary. If the Exact version of our planner has an accuracy factor of K , then the Soft version of our planner using a soft predicate 
with effectivity factor σ has an accuracy factor of K/σ .

6. Rotational degree of freedom

In this section we develop resolution-exact algorithms for the case where robot R1 ⊆ R
2 has a simple shape: R1 is a 

triangle that is contained in a circumscribing disc R0 of radius r0. Now, Cspace = S E(2) = R
2 × S1. Each box B ⊆ Cspace is 

decomposed as R × 
 where R ⊆ R
2 is a rectangle and 
 ⊆ S1 is an angular range. We also write m(R), r(R), w(R) to 

denote the previously defined m(B), r(B), w(B). Two boxes B = R × 
 and B ′ = R ′ × 
′ are adjacent iff R and R ′ are 
adjacent, and 
 and 
′ are adjacent in the circular geometry of S1.

¶7. ε-smallness We discuss the issue of splitting B = R × 
: we can obviously simply split B into 8 congruent children. 
However there are two issues. First of all, we may want to avoid splitting the angular range when B is in the “large regime”: 
as long as w(R) ≥ r0, we can approximate R1 by the disc R0 and ignore the rotational degree of freedom. So B is split into 
4 children (based on splitting R but not 
). When B is in the “small regime”, i.e., w(R) < r0, we begin to split the angular 
range. But here, we want to treat 
 differently from R . To understand this, recall that we previously do not split a box R
when w(R) ≤ ε. Let us say that R is ε-small if w(R) ≤ ε. We need a similar criterion for 
: say 
 is ε-small if |
| ≤ ε/r0. 
This assumes that angles are in radians, and 
 is represented as an interval [θ1, θ2] ⊆ [0, 2π ]; also |
| is defined as θ2 − θ1. 
Finally, we say that B = R × 
 is ε-small if both R and 
 are ε-small. We now define our procedure Split(B, ε) as 
follows: to split B , we split R and 
 separately. These are not split if they are already ε-small. Thus, splitting B will result 
in 2i children for i = 0, 1, 2, 3. The following justifies our definition of ε-smallness:

Lemma 7. Assume 0 < ε ≤ π/2. If B = R × 
 is ε-small and R is a square, then the Hausdorff distance between the footprints of R1
at any two configurations in B is at most (1 + √

2)ε.
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Fig. 7. Shaded areas represent round triangles: (i) aa′bb′cc′ with 3 straight edges, (ii) ab′cc′ with 2 straight edges. In (i), the round triangle aa′bb′cc′ is 
T ∩ D where T is the triangle (A, B, C) and D is the (white) disk.

Fig. 8. Enclosing circle of enclosing rectangle for obtuse triangle: their rotation. (For interpretation of the colors in this figure, the reader is referred to the 
web version of this article.)

Proof. This result uses the fact that if we rotate R1 by θ about the center of R0, then the vertices of R1 move by at most 
2r0 sin(θ/2) ≤ r0θ ≤ ε since sin θ ≤ θ for θ in the said range. Also, the translational distance between any two configurations 
in B is at most 

√
2ε. �

¶8. Soft predicate for rotation We now design a soft version ˜C of C . The strategy follows the case of disc robot: we define the 
feature set φ(B) associated with a box B = R × 
 as comprising those features of � that intersect the set W +(B) where 
W +(B) is a “round triangle” associated with B . We call RT a round triangle if it is given as the intersection of a disc D
with a triangular region T (see Fig. 7).

For any real number s, we denote the s-expansion of various shapes S ⊆ R
2 by (S)s . If S = D(m, r) is a disc, 

(D)s := D(m, r + s). If S a convex polygon P , then (P )s is the polygon obtained by shifting each defining line of its edges in 
an outward normal direction by a distance of s. Typically, P is a triangle or a box. Finally, if S is a round triangle RT = D ∩ T , 
then (RT)s = (D)s ∩ (T )s . Note that (RT)s depends on the representation D and T . Usually we have s ≥ 0; if s < 0, then RT
is shrunk and (RT)s may be the empty set.

Consider a configuration (m, θ) ∈ Cspace; the footprint R1[m, θ] is a triangle in Dm(r0). Let RT(m, 
) be the convex hull 
of the union of these footprints as θ ranges over 
. Note that RT(m, 
) is a round triangle. In Fig. 7, we show RT(m, 
) for 
two choices of R1. We define the outer domain W +(B) to be the r(B)-expansion of RT(m(B), 
). As before, the feature set
φ(B) is defined as those features of � that intersect W +(B). Finally, we define ˜C(B) using φ(B) as before. Computing ˜C(B)

in the context of expanding a subdivision tree is also similar.

Lemma 8. ˜C is a soft version of C for the robot R1 . Also ˜C is effective for the class of squares.

¶9. Improvements We can improve by providing some heuristic for quick detection of stuck boxes, in analogy to Property 
(S1) for a disc robot. For any box B , we can define an inner domain W −(B) such that if any feature intersects W −(B), then 
B is stuck. Indeed W −(B) can be defined to be a suitable triangle: in Fig. 7(i), W −(B) is the triangle bounded by the lines 
ab′ , bc′ and ca′ .

Our definition of R0 as the circumscribing circle for R1 can lead to extremely large radius r0 when R1 is a very thin 
obtuse triangle. We describe an alternative: when R1 is obtuse, we will define R0 as the smallest disc containing R1. Choose 
the robot origin to be the center of this new R0. Thus, the longest side of R1 will be a diameter of R0, and one vertex of 
R1 will be in the interior of R0. This is illustrated in Fig. 8 where the red and blue vertices of R1 define a diameter of the 
circle C , but the green vertex lies on a concentric inner circle C ′. The interior of C ′ is pink in this figure. If we slightly rotate 
the robot R1 counter-clockwise about the center of C , the boundary of the area swept by R1 will include a small arc of C ′ . 
The convex hull of this swept area will comprise of 3 arcs, two arcs from C and one arc from C ′ . We can again construct a 
soft predicate based on such a convex hull, but this variation has not been implemented.
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Fig. 9. Subdivision for disc robot. Color scheme: Green = FREE, Red = STUCK, Yellow = ε-large MIXED, Grey = ε-small MIXED. (For interpretation of the 
references to color in this caption, the reader is referred to the web version of this article.)

Fig. 10. Subdivision for triangular robot: translational boxes show blended colors. (For interpretation of the references to color in this caption, the reader is 
referred to the web version of this article.)

7. Experimental results

We have implemented in C++ the planner for disc and triangle robots described in this paper. Our code, data and 
experiments are freely distributed with the Core Library5 and is available on our project web page. The platform for 
the experiments was a Linux Fedora 16 OS with a 3.4 GHz Intel Quad Core CPU, and 16 GB RAM. Our current implementation 
does not apply the technique of “lax comparison” in Section ¶5. Instead, we use machine arithmetic. This is because in our 
examples, the subdivision boxes are large enough that machine arithmetic suffices. In the future, we plan to provide error 
estimates to justify this expedient.

Figs. 9 and 10 show the GUI interface of our implementation of the disc and triangle robots, respectively. Since Cspace =
R

2 for a disc, it is straightforward to visualize the box classification in a subdivision, as illustrated in Fig. 9. For a triangle 
robot, each box B ⊆ Cspace = R

2 × S1 has the form B = Bt × Br where Bt is the translational component. The color of B is 
projected onto Bt . We display a blended color of all boxes that project to Bt .

We implemented the following three search strategies: Breadth First Search (BFS), Random (RAN), and Greedy Best First 
(GBF). In BFS and Random, we follow the original scheme described in Section ¶3, where a union-find data structure is 
used to determine if the leaf boxes BoxT (α) and BoxT (β) belong to the same connected component of the adjacency 

5 http :/ /cs .nyu .edu /exact /core /download /core/.

http://cs.nyu.edu/exact/core/download/core/
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Fig. 11. Bugtrap.

Fig. 12. Input200: 200 random triangles.

graph comprising the FREE-leaves in T . The MIXED-leaves of width > ε are stored in a priority queue Q as candidates for 
expansion. The only difference between these two strategies is that BFS picks a box in Q with the maximum size to expand, 
while Random picks a random box in Q to expand.

In GBF, we do not use a union-find data structure; rather, we maintain a set Sα of leaves of T which are FREE and 
connected to BoxT (α). Boxes in Sα are said to be “marked”. A path is detected as soon as BoxT (β) is marked. Initially, 
BoxT (α) is the only marked box. The priority queue Q contains all the FREE- or MIXED-leaves of T that are on the 
“fringe” of Sα (a “fringe box” is unmarked but adjacent to some marked box). The priority of a box B in the queue is the 
“distance” from B to β . In case of a disc robot, this “distance” is the Euclidean distance from m(B) to β ∈ R

2. In case of 
a triangle robot, let B = Bt × A where Bt ⊆ R

2 is the translational component of B , and A an angular range. Similarly, 
β = (βt , θ) where βt ∈ R

2. Then “distance” is the Euclidean distance between m(Bt) and βt . Moreover, Q is a min-priority 
queue, so that box with the smallest distance to β has highest priority. We terminate with “NO PATH” if Q is empty; 
otherwise let B be a box extracted from Q for expansion. There are two cases: (1) If B is free, we mark B (i.e., add it to 
the set Sα ) and for each neighbor B ′ of B , we push B ′ into Q if it is unmarked and is either FREE or MIXED. (2) If B is 
mixed, we first check its width. If the width is ≤ ε, we discard B . Otherwise we expand B , and for each child B ′ of B , we 
push B ′ into Q if it is adjacent to a marked box and is either FREE or MIXED.

We use four input files: bugtrap, input150, input200, input300. Each file represents the environment as a set of polygons 
(not necessarily disjoint) within a 512 × 512 bounding box. The file inputNNN (where NNN = 150, 200 or 300) contains 
NNN randomly generated triangles. Three of these environments are shown in Figs. 11, 12, 13. The polygons edges are 
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Fig. 13. Input300: 300 random triangles.

shown in white (Fig. 11) or in blue (Figs. 12, 13). The paths found by our GBF search strategy are also shown (“NO PATH” 
in Fig. 11). We can see that the triangles may overlap, which can be handled by our approach easily.

In the following we present Table 1. The top shows the statistics of running our planners for disc and triangle robots on 
each input. The starting and ending configurations α and β are shown as (x, y) for disc robot and (x, y, θ) for triangle robot. 
The disc robot is specified as disc(r, Z ) where r is the robot radius and Z ∈ {BFS, GBF, RAN} indicates the search strategy. 
Similarly, the triangle robot is specified by tri(r, Z ). Whenever the randomized strategy Z = RAN is used, the statistics is 
the average of 5 runs; these are reproducibly encoded in Makefile targets in Core Library. Of the 3 strategies, we see 
that GBF is consistently the fastest. We have columns reporting the number of free, stuck, and mixed boxes. There were 
two kinds of mixed boxes: those of width > ε and the rest. Note that when the number of mixed boxes of width > ε is 
zero (last column), this implies ‘NO PATH’. Excluding the cases of “Expanding BoxT (α) fails” and “Expanding BoxT (β) fails” 
(trivial cases of ‘NO PATH’), the converse is true only for the BFS or Random search strategy.6 We explicitly mark the entries 
in the last column with an asterisk (*) to indicate ‘NO PATH’.

We also directly compared our triangle robot with the GBF strategy (the instances of the top-table entries in bold, also 
shown in Figs. 11–13) with PRM and RRT, and show the results in the bottom table. For PRM, we ran the benchmark 
package OOPSMP [25], and the running times are shown as preprocessing, query, and total times in the bottom table. For 
RRT, we ran OOPSMP (denoted “RRT-OOP” in the table), the code by Prof. Jyh-Ming Lien (denoted “RRT-JML” in the table) 
of the robotics group in George Mason University, and the MSL library from Prof. Steven Lavalle’s group in University of 
Illinois (UIUC). MSL did not seem to work well for our datasets of bounding boxes 512 × 512 (all its examples are of small 
bounding boxes 100 × 100) so we do not include its results in the table.

We remark that our only parameter is ε > 0. For PRM, OOPSMP requires user-chosen parameters like number of sample 
points, budgeted times for preprocessing and query, with default values 5000 points, 5 s and 5 s. Ideally, one would like 
to have an automatic process to find an optimal number of sample points that can result in a free path (if one exists). 
Unfortunately, the PRM of OOPSMP is poorly designed for such experiments, since each run needs user interactions to 
specify the parameters and other settings, and hence we were not able to make the process automatic. We did experiment 
with one instance, on bugtrap with triangle robot of radius 22 (i.e., the instance with No. 7, bugtrap (22), in the two tables): 
we first tried with 1000 sample points (33 ms), no path found, then increased for another 1000 samples (another 34 ms) 
to get 2000 samples, still no path. We then repeated the incremental process: another 1000 samples were added (another 
34 ms) to get 3000 samples total, no path; finally, after adding 1000 more samples (another 36 ms, 4000 samples total), 
a free path was found (via query) in 3 ms. Overall, the incremental sampling up to 4000 points took 137 ms overall, plus 
the final query time of 3 ms, thus a total of 140 ms (plus much longer user interaction time!). For all other runs of PRM, 
we just used the default values (5000 samples), and increased the number of samples if 5000 was not enough to find a 
path. For RRT, the RRT of OOPSMP (RRT-OOP) does not allow the user to fine-tune any parameters, while RRT-JML provides 
additional flexibility to adjust parameters such as step size and goal bias, for which we tried for each instance to find 
reasonable values to use; the resulting number of samples are also shown in the table.

From the top portion of the bottom table, we see that our running times are competitive with PRM and RRT: among the 
8 instances listed, we are the fastest in 4 of them, and the second fastest in another 3 of them; for the remaining instance 

6 We do not include the instances of such trivial cases of ‘NO PATH’ in our tables here.
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Table 1
In the top table, the effect of increasing ε is seen in the first three rows. The ‘NO PATH’ instances are marked with “(*)” in the last column. In the bottom 
table, each row is an instance of the row in the top table with the corresponding line number (the “No.” entry). Among the running times of various 
methods, the winner is shown in bold, and our results marked with “†” are the second fastest. The ‘NO PATH’ instances are marked with “(*)” in the first 
column.

No. Obstacle 
(input)

Robot 
(radius)

α
(x, y, θ)

β

(x, y, θ)

eps Time 
(ms)

Free Stuck Mixed 
≤ ε

Mixed 
> ε

1 bugtrap disc(14, GBF) 200,350 60,50 1 16 3867 2076 3403 462
2 disc(14, GBF) 200,350 60,50 2 10 1779 943 1750 275
3 disc(14, GBF) 200,350 60,50 4 5 854 460 801 151 (*)
4 disc(15, GBF) 200,350 60,50 0.5 30 8036 4193 6887 913
5 disc(25, GBF) 200,350 60,50 1 18 3260 1709 2984 415 (*)

6 tri(14, GBF) 200,350,0 60,50,0 5 245 19 394 26 31 121 220
7 tri(22, GBF) 200,350,0 60,50,0 5 482 39 482 1556 57 546 3880
8 tri(50, GBF) 200,350,0 60,50,0 5 746 55 864 4153 79 411 9025 (*)

9 input150 disc(7, RAN) 200,270 20,20 2 428 6892 10 082 8027 1955

10 tri(7, GBF) 200,270,0 20,20,0 5 10 945 0 1334 360
11 tri(7, BFS) 200,270,0 20,20,0 5 1349 152 841 366 0 608 432
12 tri(7, RAN) 200,270,0 20,20,0 5 315 32 179 1028 101 322 32 477
13 tri(7, GBF) 325,425,0 20,20,0 5 216 10 233 129 19 382 1389

14 input200 disc(5, BFS) 130,460 20,20 2 16 2590 4891 0 5636
15 disc(5, GBF) 130,460 20,20 2 15 283 99 230 131

16 tri(5, GBF) 130,460,0 20,20,0 2 89 16 866 160 0 29 602
17 tri(5, BFS) 130,460,0 20,20,0 2 1742 182 866 1036 0 747 445
18 tri(5, RAN) 130,460,0 20,20,0 2 3940 331 830 7044 0 1 408 722

19 input300 disc(7, BFS) 230,210 480,10 4 23 3785 11 284 7465 0 (*)
20 disc(7, BFS) 230,210 480,10 1 35 6439 15 339 0 11 052
21 disc(3, GBF) 230,210 480,10 1 29 3986 1760 3529 1001

22 tri(7, GBF) 230,210,0 480,10,0 4 32 5212 0 0 11 686
23 tri(7, BFS) 230,210,0 480,10,0 4 2101 110 005 667 0 899 054
24 tri(7, RAN) 230,210,0 480,10,0 4 7470 371 119 8539 0 2 694 907
25 tri(7, GBF) 10,500,0 480,10,0 4 478 25 893 106 42 274 2245

No. Obstacle 
input file 
(robot radius)

Tri(GBF) 
Time 
(ms)

PRM RRT-JML RRT-OOP 
Time 
(ms)

No. of 
samples

Prep. 
(ms)

Query 
(ms)

Total
(ms)

No. of 
samples

Step 
size

Goal 
bias

Time
(ms)

6 bugtrap (14) 245 5000 256 3 259 37 009 0.05 0.5 922 277
7 bugtrap (22) 482 † 5000 270 3 273 156 276 0.01 0.1 24 092 796
8 (*) bugtrap (50) 746 125 000 32 368 7 32 375 500 000 0.01 0.1 134 912 60 000

10 input150 (7) 10 5000 176 2 178 4309 0.05 0.5 270 17
13 input150 (7) 216 5000 176 2 178 7635 0.05 0.5 375 62
16 input200 (5) 89 5000 203 5 208 18 757 0.05 0.5 1624 151
22 input300 (7) 32 † 5000 145 0.3 145.3 3538 0.05 0.5 398 14
25 input300 (7) 478 † 5000 145 0.3 145.3 57 619 0.05 0.5 2390 945

Obstacle 
input file 
(robot radius)

Disc(GBF) 
Time 
(ms)

PRM RRT-JML RRT-OOP 
Time 
(ms)

No. of 
samples

Prep. 
(ms)

Query 
(ms)

Total
(ms)

No. of 
samples

Step 
size

Goal 
bias

Time
(ms)

4 bugtrap (15) 30 25 000 2135 9 2144 N/A 3979
5 (*) bugtrap (25) 18 125 000 22 594 3 22 597 N/A 60 000

15 input200 (5) 15 5000 23 438 7 23 445 N/A 2335
21 input300 (3) 29 5000 765 2 767 N/A 1129

we are the third. In some cases we are much faster than all others. In particular, for the instance of ‘NO PATH’ (No. 8), 
our method stopped and reported ‘NO PATH’ easily in 746 ms, while for PRM we gave up after trying 125 000 samples 
(32 375 ms), for RRT-JML we gave up after trying the run of 500 000 samples (1 34 912 ms), and for RRT-OOP we gave up 
after using up the maximum allowed run-time of 60 000 ms. Clearly our method is much more advantageous.

Finally, we compared our disc robot with PRM and RRT-OOP (we do not have the RRT-JML code for disc robot). For both 
PRM and RRT-OOP, the robot must be a polygon; we approximated the disc robot by a same-radius regular 20-gon. The 
results are shown in the bottom portion of the bottom table. Note that for the row of No. 4, PRM used 25 000 samples since 
no path was found for 5000 samples. For the row of No. 5, which is an instance of ‘NO PATH’, for PRM we gave up after 
using 125 000 samples, and for RRT-OOP we gave up after using up the maximum allowed run-time of 60 000 ms. From the 
table, we can see that clearly our method is significantly faster than all others in all instances.



604 C. Wang et al. / Computational Geometry 48 (2015) 589–605
8. Conclusions

The motion planning literature has a bipolar nature—many algorithms are theoretically sound but unimplementable, oth-
ers are practical but lack theoretical foundations or proper implementation. The dominant approach based on randomization 
offer some theoretical guarantees but they have issues: there are no guarantees in case of NO PATH, and “expansiveness” 
assumptions [18] are non-verifiable. This paper takes up the classic subdivision paradigm to develop a theoretically sound 
alternative. To aid the development of such algorithms, we introduce soft predicates and demonstrated their use in subdivi-
sion planners. We introduced the concept of resolution-exact planners, and designed the first examples of such algorithms. 
We also show the inherent indeterminacy of resolution-exactness. Finally, our implementations validate the claims that our 
theory is practical; the experiments demonstrate that our approach is competitive with PRM in speed, despite our much 
stronger guarantees.

According to Zhang et al. [45], implementations of exact motion planning algorithms are only known for simple planer 
robots (like ladders or discs) and up to 3 degrees of freedom. Thus it is important to pay attention to implementability. We 
propose to give up exactness for the weaker notion of resolution-exactness. Little is lost by this step, since exact algorithms 
are ill-matched to the inherent inaccuracies of physical systems. But we have much to gain: Subdivision algorithms are more 
holistic, integrating the concerns of topological correctness with geometric accuracy into one algorithm.

The techniques of this paper can be extended to robots with complex geometry (e.g., the “gear” robot [45]). We could 
decompose the complex robot geometry into a union of (possibly overlapping) triangles. If we now have soft predicates for 
each of the triangle robots, we could compose them into a soft predicate for the complex robot. This remarkable decompo-
sition property of soft predicates has no analogue in exact algorithms. A subtlety is that the triangle robots are not free to 
choose its origin; this freedom was exploited in Section 6 above. This extension will be described in a followup work.

Several open problems are raised by this research. (1) Clearly, a more general theory of subdivision planners can be 
developed; see our companion paper [44] where many of the ideas here are generalized. (2) We can extend our work to 
subdivision of SE(3) = R

3 ×SO(3), and believe this too can be competitive with PRM. Note that no general exact algorithms 
have been implemented for SE(3). (3) Note that we have not tried to compute the connected components of STUCK boxes. 
Doing this can lead to fast termination in the case of “NO PATH”. However, maintaining this information runs into interesting 
issues of computational topology. Edelsbrunner and Delfinado’s work on computing the Betti number of a 3-complex offers 
some clues here [11]. (4) General investigation of various search strategies, including probabilistic ones is needed.

We plan to explore other variants of our search strategies with an eye to simplicity, implementability, and correctness. 
Our approach can be extended to more demanding motion planning problems such as kinodynamic problems or those with 
differential constraints.

Acknowledgements

We thank Prof. Jyh-Ming Lien and his student Zhonghua Xi for sharing their RRT code with us, which was used to 
conduct some of the experiments in this paper.

References

[1] M. Barbehenn, S. Hutchinson, Efficient search and hierarchical motion planning by dynamically maintaining single-source shortest paths trees, IEEE 
Trans. Robot. Autom. 11 (2) (1995).

[2] M. Barbehenn, S. Hutchinson, Toward an exact incremental geometric robot motion planner, in: Proc. Intelligent Robots and Systems 95, vol. 3, IEEE/RSJ 
Intl. Conf., 5–9 Aug 1995, Pittsburgh, PA, USA, 1995, pp. 39–44.

[3] R. Bohlin, L. Kavraki, A randomized algorithm for robot path planning based on lazy evaluation, in: P. Pardalos, S. Rajasekaran, J. Rolim (Eds.), Handbook 
on Randomized Computing, Kluwer Academic Publishers, 2001, pp. 221–249.

[4] M. Brady, J. Hollerbach, T. Johnson, T. Lozano-Perez, M. Mason, Robot Motion: Planning and Control, MIT Press, 1982.
[5] R.A. Brooks, T. Lozano-Perez, A subdivision algorithm in configuration space for findpath with rotation, in: Proc. 8th Intl. Joint Conf. on Artificial 

Intelligence, vol. 2, San Francisco, CA, USA, Morgan Kaufmann Publishers Inc., 1983, pp. 799–806.
[6] M. Burr, F. Krahmer, SqFreeEVAL: an (almost) optimal real-root isolation algorithm, J. Symb. Comput. 47 (2) (2012) 153–166.
[7] M. Burr, F. Krahmer, C. Yap, Continuous amortization: a non-probabilistic adaptive analysis technique, Electron. Colloq. Comput. Complex. TR09 (De-

cember 2009) 136.
[8] J. Canny, Computing roadmaps of general semi-algebraic sets, Comput. J. 36 (5) (1993) 504–514.
[9] E.-C. Chang, S.W. Choi, D. Kwon, H. Park, C. Yap, Shortest paths for disc obstacles is computable, in: 21st ACM Symp. on Comp. Geom., June 5–8, Pisa, 

Italy, 2005, pp. 116–125.
[10] H. Choset, K.M. Lynch, S. Hutchinson, G. Kantor, W. Burgard, L.E. Kavraki, S. Thrun, Principles of Robot Motion: Theory, Algorithms, and Implementations, 

MIT Press, Boston, 2005.
[11] C. Delfinado, H. Edelsbrunner, An incremental algorithm for Betti numbers of simplicial complexes on the 3-sphere, Comput. Aided Geom. Des. 12 

(1995) 771–784.
[12] B. Donald, P. Xavier, Provably good approximation algorithms for optimal kinodynamic planning: robots with decoupled dynamics bounds, Algorithmica 

14 (1995) 443–479.
[13] S.J. Fortune, A sweepline algorithm for Voronoi diagrams, Algorithmica 2 (1987) 153–174.
[14] GNU MP Homepage, Since 1991, GNU MP (=GMP) is a free C++ library for arbitrary precision arithmetic on integers, rationals and floating point 

numbers, URL http :/ /gmplib .org.
[15] D. Halperin, L. Kavraki, J.-C. Latombe, Robotics, in: J.E. Goodman, J. O’Rourke (Eds.), Handbook of Discrete and Computational Geometry, CRC Press LLC, 

1997, pp. 755–778, Chap. 41.
[16] K. Hauser, Motion planning for legged and humanoid robots, PhD thesis, Department of Computer Science, Stanford University, 2008.

http://refhub.elsevier.com/S0925-7721(15)00028-0/bib626172626568656E6E2D6875746368696E736F6E3A73696E676C652D736F757263653A3935s1
http://refhub.elsevier.com/S0925-7721(15)00028-0/bib626172626568656E6E2D6875746368696E736F6E3A73696E676C652D736F757263653A3935s1
http://refhub.elsevier.com/S0925-7721(15)00028-0/bib626172626568656E6E2D6875746368696E736F6E3A696E6372656D656E74616C2D706C616E6E65723A3935s1
http://refhub.elsevier.com/S0925-7721(15)00028-0/bib626172626568656E6E2D6875746368696E736F6E3A696E6372656D656E74616C2D706C616E6E65723A3935s1
http://refhub.elsevier.com/S0925-7721(15)00028-0/bib6C617A792D70726D3A3031s1
http://refhub.elsevier.com/S0925-7721(15)00028-0/bib6C617A792D70726D3A3031s1
http://refhub.elsevier.com/S0925-7721(15)00028-0/bib62726164792B343A726F626F742D6D6F74696F6E3A626Bs1
http://refhub.elsevier.com/S0925-7721(15)00028-0/bib62726F6F6B732D706572657A3A7375626469766973696F6E3A3833s1
http://refhub.elsevier.com/S0925-7721(15)00028-0/bib62726F6F6B732D706572657A3A7375626469766973696F6E3A3833s1
http://refhub.elsevier.com/S0925-7721(15)00028-0/bib627572722D6B7261686D65723A7371667265653A3132s1
http://refhub.elsevier.com/S0925-7721(15)00028-0/bib627572722D6B7261686D65722D7961703A636F6E74696E756F7573416D6F72743A3039s1
http://refhub.elsevier.com/S0925-7721(15)00028-0/bib627572722D6B7261686D65722D7961703A636F6E74696E756F7573416D6F72743A3039s1
http://refhub.elsevier.com/S0925-7721(15)00028-0/bib63616E6E793A726F61646D61703A3933s1
http://refhub.elsevier.com/S0925-7721(15)00028-0/bib6368616E672B343A636F6D70757461626C653A3035s1
http://refhub.elsevier.com/S0925-7721(15)00028-0/bib6368616E672B343A636F6D70757461626C653A3035s1
http://refhub.elsevier.com/S0925-7721(15)00028-0/bib63686F7365742D6574616C3A626Bs1
http://refhub.elsevier.com/S0925-7721(15)00028-0/bib63686F7365742D6574616C3A626Bs1
http://refhub.elsevier.com/S0925-7721(15)00028-0/bib64656C66696E61646F2D6564656C733A62657474693A3935s1
http://refhub.elsevier.com/S0925-7721(15)00028-0/bib64656C66696E61646F2D6564656C733A62657474693A3935s1
http://refhub.elsevier.com/S0925-7721(15)00028-0/bib646F6E616C642D7861766965723A6B696E6F313A3935s1
http://refhub.elsevier.com/S0925-7721(15)00028-0/bib646F6E616C642D7861766965723A6B696E6F313A3935s1
http://refhub.elsevier.com/S0925-7721(15)00028-0/bib666F7274756E653A766F72s1
http://gmplib.org
http://refhub.elsevier.com/S0925-7721(15)00028-0/bib686B6C3A726F626F746963733A6372633937s1
http://refhub.elsevier.com/S0925-7721(15)00028-0/bib686B6C3A726F626F746963733A6372633937s1
http://refhub.elsevier.com/S0925-7721(15)00028-0/bib6861757365723A6C65676765643A746865736973s1


C. Wang et al. / Computational Geometry 48 (2015) 589–605 605
[17] M. Hemmer, O. Setter, D. Halperin, Constructing the exact Voronoi diagram of arbitrary lines in three-dimensional space, in: Algorithms—ESA 2010, in: 
Lecture Notes in Computer Science, vol. 6346, Springer, Berlin/Heidelberg, 2010, pp. 398–409.

[18] D. Hsu, J.-C. Latombe, H. Kurniawati, On the probabilistic foundations of probabilistic roadmap planning, Int. J. Robot. Res. 25 (7) (2006) 627–643.
[19] L. Kavraki, P. Švestka, C. Latombe, M. Overmars, Probabilistic roadmaps for path planning in high-dimensional configuration spaces, IEEE Trans. Robot. 

Autom. 12 (4) (1996) 566–580.
[20] J.-C. Latombe, Robot Motion Planning, Kluwer Academic Publishers, 1991.
[21] S.M. LaValle, Planning Algorithms, Cambridge University Press, Cambridge, 2006.
[22] R.E. Moore, Interval Analysis, Prentice Hall, Englewood Cliffs, NJ, 1966.
[23] MPFR Homepage, Since 2000, MPFR is a C++-library for multi-precision floating-point computation with exact rounding modes, URL http :/ /www.mpfr.

org/.
[24] C. Ó’Dúnlaing, C.K. Yap, A “retraction” method for planning the motion of a disc, J. Algorithms 6 (1985) 104–111. Also, Chap. 6 in: Sharir, Schwartz, 

Hopcroft (Eds.), Planning, Geometry, and Complexity, Ablex Pub. Corp., Norwood, NJ, 1987.
[25] E. Plaku, K. Bekris, L. Kavraki, OOPS for motion planning: an online open-source programming system, in: IEEE Intl. Conf. Robotics and Automation, 

2007, pp. 3711–3716.
[26] J.H. Reif, H. Wang, Nonuniform discretization for kinodynamic motion planning and its applications, SIAM J. Comput. 30 (2000) 161–190.
[27] M. Sagraloff, When Newton meets Descartes: a simple and fast algorithm to isolate the real roots of a polynomial, in: Proc. ISSAC 2012, 2012, 

pp. 297–304.
[28] M. Sagraloff, C.K. Yap, A simple but exact and efficient algorithm for complex root isolation, in: I.Z. Emiris (Ed.), 36th Int’l Symp. Symbolic and Alge. 

Comp., June 8–11, San Jose, California, 2011, pp. 353–360.
[29] O. Salzman, M. Hemmer, B. Raveh, D. Halperin, Motion planning via manifold samples, in: Proc. European Symp. Algorithms (ESA), 2011.
[30] J.T. Schwartz, M. Sharir, On the piano movers’ problem: I. The case of a two-dimensional rigid polygonal body moving amidst polygonal barriers, 

Commun. Pure Appl. Math. 36 (1983) 345–398.
[31] J.T. Schwartz, M. Sharir, On the piano movers’ problem: II. General techniques for computing topological properties of real algebraic manifolds, Adv. 

Appl. Math. 4 (1983) 298–351.
[32] J.T. Schwartz, M. Sharir, J. Hopcroft (Eds.), Planning, Geometry and Complexity of Robot Motion, Ablex Series in Artificial Intelligence, Ablex Publishing 

Corp., Norwood, New Jersey, 1987.
[33] M. Sharir, C. O’D’únlaing, C. Yap, Generalized Voronoi diagrams for moving a ladder I: topological analysis, Commun. Pure Appl. Math. XXXIX (1986) 

423–483. Also: NYU-Courant Institute, Robotics Lab., No. 32, Oct 1984.
[34] M. Sharir, C. O’D’únlaing, C. Yap, Generalized Voronoi diagrams for moving a ladder II: efficient computation of the diagram, Algorithmica 2 (1987) 

27–59. Also: NYU-Courant Institute, Robotics Lab., No. 33, Oct 1984.
[35] V. Sharma, C. Yap, Near optimal tree size bounds on a simple real root isolation algorithm, in: 37th Int’l Symp. Symbolic and Alge. Comp., ISSAC’12, 

July 22–25, 2012, Grenoble, France, 2012, pp. 319–326.
[36] G. Varadhan, S. Krishnan, T. Sriram, D. Manocha, Topology preserving surface extraction using adaptive subdivision, in: Proc. Symp. on Geometry 

Processing, SGP’04, 2004, pp. 235–244.
[37] G. Varadhan, D. Manocha, Star-shaped roadmaps—a deterministic sampling approach for complete motion planning, in: Robotics: Science and Systems, 

2005, pp. 25–32.
[38] G. Varadhan, D. Manocha, Accurate Minkowski sum approximation of polyhedral models, Graph. Models 68 (4) (2006) 343–355.
[39] C. Yap, V. Sharma, J.-M. Lien, Towards exact numerical Voronoi diagrams, in: 9th Proc. Int’l. Symp. of Voronoi Diagrams in Science and Engineering, 

ISVD, Rutgers University, NJ, June 27–29, 2012, IEEE, 2012, pp. 2–16, Invited talk.
[40] C.K. Yap, Algorithmic motion planning, in: J. Schwartz, C. Yap (Eds.), Advances in Robotics, in: Algorithmic and Geometric Issues, vol. 1, Lawrence 

Erlbaum Associates, 1987, pp. 95–143.
[41] C.K. Yap, An O (n logn) algorithm for the Voronoi diagram for a set of simple curve segments, Discrete Comput. Geom. 2 (1987) 365–394. Also: 

NYU-Courant Institute, Robotics Lab., No. 43, May 1985.
[42] C.K. Yap, Robust geometric computation, in: J.E. Goodman, J. O’Rourke (Eds.), Handbook of Discrete and Computational Geometry, 2nd edition, Chapman 

& Hall/CRC, Boca Raton, FL, 2004, pp. 927–952, Chap. 41.
[43] C.K. Yap, In praise of numerical computation, in: S. Albers, H. Alt, S. Näher (Eds.), Efficient Algorithms, in: Lect. Notes in C.S., vol. 5760, Springer-Verlag, 

2009, pp. 308–407.
[44] C.K. Yap, Soft subdivision search in motion planning, in: Proceedings, Robotics Challenge and Vision Workshop, RCV 2013, 2013, Best Paper Award, 

sponsored by Computing Community Consortium (CCC); in: Robotics Science and Systems Conference, RSS 2013, Berlin, Germany, June 27, 2013, 2013, 
The full paper is available from http://cs.nyu.edu/exact/papers/.

[45] L. Zhang, Y.J. Kim, D. Manocha, Efficient cell labelling and path non-existence computation using C-obstacle query, Int. J. Robot. Res. 27 (11–12) (2008).
[46] D. Zhu, J.-C. Latombe, New heuristic algorithms for efficient hierarchical path planning, IEEE Trans. Robot. Autom. 7 (1991) 9–20.

http://refhub.elsevier.com/S0925-7721(15)00028-0/bib68656D6D65722D7365747465722D68616C706572696E3A766F72646961672D33646C696E65733A3130s1
http://refhub.elsevier.com/S0925-7721(15)00028-0/bib68656D6D65722D7365747465722D68616C706572696E3A766F72646961672D33646C696E65733A3130s1
http://refhub.elsevier.com/S0925-7721(15)00028-0/bib6873752D6C61746F6D62652D6B75726E6961776174693A666F756E646174696F6E733A3036s1
http://refhub.elsevier.com/S0925-7721(15)00028-0/bib6B736C6F3A70726Ds1
http://refhub.elsevier.com/S0925-7721(15)00028-0/bib6B736C6F3A70726Ds1
http://refhub.elsevier.com/S0925-7721(15)00028-0/bib6C61746F6D62653A726F626F742D6D6F74696F6E3A626Bs1
http://refhub.elsevier.com/S0925-7721(15)00028-0/bib6C6176616C6C653A706C616E6E696E673A626Bs1
http://refhub.elsevier.com/S0925-7721(15)00028-0/bib6D6F6F72653A626Bs1
http://www.mpfr.org/
http://refhub.elsevier.com/S0925-7721(15)00028-0/bib6F64756E2D7961703A646973633A3835s1
http://refhub.elsevier.com/S0925-7721(15)00028-0/bib6F64756E2D7961703A646973633A3835s1
http://refhub.elsevier.com/S0925-7721(15)00028-0/bib4F4F50534D50s1
http://refhub.elsevier.com/S0925-7721(15)00028-0/bib4F4F50534D50s1
http://refhub.elsevier.com/S0925-7721(15)00028-0/bib726569662D77616E673A6E6F6E756E69666F726D3A3030s1
http://refhub.elsevier.com/S0925-7721(15)00028-0/bib73616772616C6F66663A6E6577746F6E2D6465736361727465733A3132s1
http://refhub.elsevier.com/S0925-7721(15)00028-0/bib73616772616C6F66663A6E6577746F6E2D6465736361727465733A3132s1
http://refhub.elsevier.com/S0925-7721(15)00028-0/bib73616772616C6F66662D7961703A636576616C3A3131s1
http://refhub.elsevier.com/S0925-7721(15)00028-0/bib73616772616C6F66662D7961703A636576616C3A3131s1
http://refhub.elsevier.com/S0925-7721(15)00028-0/bib48616C706572696E2D4553413131s1
http://refhub.elsevier.com/S0925-7721(15)00028-0/bib737331s1
http://refhub.elsevier.com/S0925-7721(15)00028-0/bib737331s1
http://refhub.elsevier.com/S0925-7721(15)00028-0/bib737332s1
http://refhub.elsevier.com/S0925-7721(15)00028-0/bib737332s1
http://refhub.elsevier.com/S0925-7721(15)00028-0/bib7373683A726F626F742D6D6F74696F6E3A626B2D3837s1
http://refhub.elsevier.com/S0925-7721(15)00028-0/bib7373683A726F626F742D6D6F74696F6E3A626B2D3837s1
http://refhub.elsevier.com/S0925-7721(15)00028-0/bib6F64756E2D7368617269722D7961703A766F72493A3836s1
http://refhub.elsevier.com/S0925-7721(15)00028-0/bib6F64756E2D7368617269722D7961703A766F72493A3836s1
http://refhub.elsevier.com/S0925-7721(15)00028-0/bib6F64756E2D7368617269722D7961703A766F7249493A3837s1
http://refhub.elsevier.com/S0925-7721(15)00028-0/bib6F64756E2D7368617269722D7961703A766F7249493A3837s1
http://refhub.elsevier.com/S0925-7721(15)00028-0/bib736861726D612D7961703A6E6561722D6F7074696D616C3A3132s1
http://refhub.elsevier.com/S0925-7721(15)00028-0/bib736861726D612D7961703A6E6561722D6F7074696D616C3A3132s1
http://refhub.elsevier.com/S0925-7721(15)00028-0/bib766172616468616E2B333A61646170746976653A3034s1
http://refhub.elsevier.com/S0925-7721(15)00028-0/bib766172616468616E2B333A61646170746976653A3034s1
http://refhub.elsevier.com/S0925-7721(15)00028-0/bib766172616468616E2D6D616E6F6368613A737461722D7368617065643A3035s1
http://refhub.elsevier.com/S0925-7721(15)00028-0/bib766172616468616E2D6D616E6F6368613A737461722D7368617065643A3035s1
http://refhub.elsevier.com/S0925-7721(15)00028-0/bib766172616468616E2D6D616E6F6368613A6D696E6B6F77736B693A3036s1
http://refhub.elsevier.com/S0925-7721(15)00028-0/bib7961702D736861726D612D6C69656E3A766F723A3132s1
http://refhub.elsevier.com/S0925-7721(15)00028-0/bib7961702D736861726D612D6C69656E3A766F723A3132s1
http://refhub.elsevier.com/S0925-7721(15)00028-0/bib7961703A616D703A3837s1
http://refhub.elsevier.com/S0925-7721(15)00028-0/bib7961703A616D703A3837s1
http://refhub.elsevier.com/S0925-7721(15)00028-0/bib7961703A766F723A3837s1
http://refhub.elsevier.com/S0925-7721(15)00028-0/bib7961703A766F723A3837s1
http://refhub.elsevier.com/S0925-7721(15)00028-0/bib7961703A637263s1
http://refhub.elsevier.com/S0925-7721(15)00028-0/bib7961703A637263s1
http://refhub.elsevier.com/S0925-7721(15)00028-0/bib7961703A7072616973653A3039s1
http://refhub.elsevier.com/S0925-7721(15)00028-0/bib7961703A7072616973653A3039s1
http://cs.nyu.edu/exact/papers/
http://refhub.elsevier.com/S0925-7721(15)00028-0/bib7A68616E672D6B696D2D6D616E6F6368613A706174682D6E6F6E2D6578697374656E63653A3038s1
http://refhub.elsevier.com/S0925-7721(15)00028-0/bib7A68752D6C61746F6D62653A68696572617263686963616C3A3931s1
http://www.mpfr.org/

	On soft predicates in subdivision motion planning
	1 Introduction
	2 On numerical computational geometry
	3 Subdivision motion planning
	4 Let us design soft predicates!
	5 Resolution exactness
	6 Rotational degree of freedom
	7 Experimental results
	8 Conclusions
	Acknowledgements
	References


