
Preserving Geometric Properties in Reconstructing Regions

from Internal and Nearby Points

Ernest Davis∗

Dept. of Computer Science
New York University
davise@cs.nyu.edu

October 21, 2011

Abstract

The problem of reconstructing a region from a set of sample points is common in many
geometric applications, including computer vision. It is very helpful to be able to guarantee
that the reconstructed region “approximates” the true region, in some sense of approximation.
In this paper, we study a general category of reconstruction methods, called “locally-based
reconstruction functions of radius α,” and we consider two specific functions, Jα(S) and Fα(S),
within this category. We consider a sample S, either finite or infinite, that is specified to be
within a given Hausdorff distance δ of the true region R, and we prove a number of theorems
which give conditions on R, δ that are sufficient to guarantee that the reconstructed region is
an approximation of the true region. Specifically, we prove:

1. For any R, if F is any locally-based reconstruction method of radius α where α is small
enough, and if the Hausdorff distance from S to R is small enough, then the dual-Hausdorff
distance from F (S) to R, the Hausdorff distance between their boundaries, and the measure
of their symmetric difference are guaranteed to be small.

2. If R is r-regular, then for any ǫ, φ > 0, if α is small enough, and the Hausdorff distance
from S to R is small enough, then each of the regions Jα(S) and Fα(S) is ǫ-similar to R

and is an (ǫ, φ)-approximation in tangent of R.

Keywords: Shape reconstruction, locally-based reconstruction method, Hausdorff distance, ǫ-similar,
approximation in tangent.

1 Introduction

The problem of inferring a geometric shape from a sample of points is a significant one in a number
of applications, including computer vision, computer-aided manufacturing, geographical information
systems, and robotic manipulation. The problem, as it stands, is obviously underdefined, and so
different applications and circumstances may call for different solutions.

∗Thanks to Sara Grundel, Abhijit Guria and Delin Yang for their assistance with this research. Thanks also
to the reviewers for many helpful suggestions and corrections. This research was supported in part by NSF grant
#IIS-0534809.
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One major desideratum of any reconstruction method is that, if a sample S is drawn from some
underlying (presumably unknown) region R, then the reconstruction F (S) should resemble or ap-
proximate R. Obviously, this cannot always be done (e.g. if S consists of a single point), but it
seems reasonable to hope that, if S is a dense sampling of R, as compared to the size of significant
features of R, then the reconstruction F (S) should approximate R to some comparable accuracy. A
weak form of this hope is an asymptotic statement: For any “well-behaved” region R, F (S) can be
guaranteed to be an arbitrarily good approximation of R if S is a sufficiently dense sampling of R.
Again, there are a number of different forms that such a theorem can take, since there are numerous
different geometric features of R that might be important to preserve in F (S), and a number of
different notions of what it means for F (S) to “approximate” R. Which geometric features are
important or which definitions of approximate are relevant depends on the application.

There are also different kinds of point samples. The points may be sampled from the boundary of
the region R, or from the interior of R, or they may be be required only to be close to region R; not
surprisingly, much stronger results can be obtained if the points are guaranteed to be on the surface
[2]. The sample may or may not be extracted from a predetermined grid of test points. The sample
may include only positive points, or both positive and negative points (that is, points specified to
be outside the region). The points may be the result of a random sampling following some specified
distribution (e.g. uniform), or they may be required to be sufficiently dense in R. The sample may
be required to be finite or may be allowed to be infinite. In this paper, we consider S to be a sample
of positive points that is within a specified Hausdorff distance δ of R — that is, every point in S
is within δ of some point in R and vice versa. We do not consider random sampling, probabilistic
issues, or negative points. A sample may be either finite or infinite.

All of our results and proofs apply in the same way in Euclidean space of arbitrary finite dimension.

In this paper we study a number of reconstruction methods and give sufficient conditions under
which they preserve geometric properties or give accurate approximations. Specifically, we define
a broad class of reconstruction methods called locally-based region constructors with radius α. We
single out two particular reconstruction methods within this class, denoted Jα(S), and Fα(S), both
parameterized by a positive distance α. We prove results that give conditions on region R, sample
S, and constructor function F that are sufficient to ensure that:

1. The reconstructed region F (S) is close to R in terms of the dual-Hausdorff distance, the
Hausdorff distance between the boundaries, and the measure of the symmetric difference.
(theorem 12 and corollary 13).

2. The particular reconstructors Jα(S), and Fα(S) are ǫ-similar to R and are approximations in
tangent of R. (Theorems 28, 29, 44, and 45).

Section 2 briefly surveys related work on shape reconstruction from samples. Sections 3 and 4
presents basic terminology and notations. Section 5 gives the definition of a locally-based region
constructor, and gives some examples and non-examples. Section 6 proves theorem 12, that a locally-
based region constructor from a sufficiently dense sample gives a reconstruction that is accurate in
the Hausdorff metric, and a partial converse (theorem 14). Section 7 presents the definition of an
r-regular region and proves some basic properties. Section 8 presents two measures of similarity
between regions, ǫ-similarity and (ǫ, φ)-approximation in tangent. Section 9 gives the proofs of
theorem 28, that an α-ball reconstruction from a sufficiently fine sample of region R is ǫ-similar to
R. and theorem 29 that such a reconstruction is an (ǫ, φ)-reconstruction in tangent. Section 10
proves the corresponding theorems (theorems 44 and 45) for the local convex hull constructor.
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2 Related work

There is a substantial literature on reconstructing shapes from samples; [19] gives an extensive
review. One well-known and widely used shape reconstruction method is the α-shape method
introduced by Edelsbrunner. Roughly speaking, the α-shape reconstruction of sample S is computed
by finding the Delaunay triangulation of S, then take the union of all the k-dimensional simplices
that have circumradius ≤ α. This method was first proposed for two-dimensional shapes in [11],
then extended to three dimensions in [13]. A further extension [12], called “weighted α-shapes”
allows, in effect, different values of α at different points of the sample; this is appropriate when the
density of sample points varies widely across the sample. These algorithms and variants of them
are very widely used in practice; they give plausible and useful reconstructions, and the α-shape
reconstruction can be computed for all α simultaneously by computing the Delaunay triangulation,
for which fast algorithms are known.

Latecki et al. [16] give conditions under which the digitization of a region in a grid of square pixels
preserves topological properties.

Stelldinger and Köthe [18] consider the “S-reconstruction” of a region from a subset S of a fixed
grid of points G, which is the union of the cells that contain points of S in the Voronoi diagram of
G. They show that in two dimensions the S-reconstruction of a region R can be guaranteed to be
r-similar to R, but that this guarantee does not apply in dimensions 3 and higher.

Much of the more recent literature has focussed on the problem of reconstructing a surface from
surface points rather than on reconstructing a region from interior points, as in this paper and in
[11] and [13].

A number of papers have proven that the topology of a sampled region or sampled hypersurface is
preserved under various forms of reconstruction with various conditions on the sample, including
[1, 2, 3, 4, 5, 6, 7, 19, 20, 21].

Galton and Duckham present a number of different algorithms for shape reconstruction from sample
points in two dimensions [10, 15].

Geometric and computational properties of regions constructed as the union of balls around specified
centers, used here for the function Jα(S), are analyzed in [14]

Reconstruction from points can alternatively be viewed as a form of learning from positive instances;
for example, [17] adopts this viewpoint.

3 Basic definitions and terminology

Throughout this paper, k is the dimension of the geometric space.

A point is a point in R
k. We will use boldface lower case letters such as p for points, and upper case

italicized letters such as Q for sets of point.

If U and V are two sets, then we will write the set difference U minus V as U \ V .

For any region R, compl(R) is the closure of the complement of R.

Let p be a point and let Q be a compact point set. Define Ψ(p, Q) = argminq∈Qd(p,q), the closest
point to p in Q (ties broken arbitrarily). As usual d(p, Q) = minq∈Q d(p,q) = d(p,Ψ(p, Q)).

For any point x and r > 0, B(x, r) is the open ball of radius r centered at x. B̄(x, r) is the closure
of B(x, r), the closed ball of radius r centered at x.
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The radius of a bounded point set Q, radius(Q), is the minimal value of r for which there exists an
x such that B̄(x, r) ⊃ Q. The point x is denoted center(Q); clearly Q has exactly one center (the
Chebyshev center).

Lemma 1 Any bounded set Q has a unique Chebyshev center.1

Proof: For any point x, let fQ(x) = supq∈Q d(x,q). The lemma thus states that fQ attains a
minimum at a unique value. Let C = closure(convexHull(Q)).

Step 1: For any point x, fC(x) = fQ(x). Proof: Let w be any point in C. Then w is the convex
sum of a set S of points in closure(Q), so d(x,w) ≤ maxy∈S d(x,y) ≤ fQ(x). Thus fC(x) ≤ fQ(x).
The reverse inequality is immediate, since C ⊃ Q.

Step 2: fC(x) attains a minimum value over C, since f is continuous and C is compact.

Step 3: Let y be any point outside C. Let z = Ψ(x, C). Let P be the hyperplane through z

orthogonal to zx. Since C is convex, no point in C is on the same side of P as y. Thus, for every
c ∈ C, d(c, z) ≤ d(c,y).

Therefore fC has at least one global minimum in C.

Step 4: fC has a unique minimum in C. Proof by contradiction. Suppose that a and b are both
minima of fC in C. Let P be the perpendicular bisector of a and b. and let m be the midpoint of
ab. Let r = fC(a) and let δ = d(a,m). Then for any point y ∈ C,

• if y is the same closed half-plane as b, then since d(a,y) ≤ r, d(m,y) ≤
√

r2 − δ2.

• if y is the same closed half-plane as a, then since d(b,y) ≤ r, d(m,y) ≤
√

r2 − δ2.

Thus fC(m) ≤
√

r2 − δ2 < r, but this contradicts the assumption that fC was minimal at a.

The diameter of a bounded point set Q, diameter(Q) = supp,q∈Q d(p,q). Obviously radius(Q) <
diameter(Q) ≤ 2 · radius(Q) (the lower bound is not tight).

For any point set Q, the (topological) boundary of Q denoted ∂Q = closure(Q) \ interior(Q).

A region R is regular if R is equal to the closure of the interior of R.

The Minkowski sum of point sets P and Q, denoted P ⊕ Q = {p + q | p ∈ P,q ∈ Q}

4 Metrics on regions, dilations, and erosions

Definition 1 The one-sided Hausdorff distance from Q to R, dH1(Q,R) = maxq∈Q d(q, R). The
Hausdorff distance from Q to R, dH(Q,R) = max(dH1(Q,R), dH1(R,Q)). The dual-Hausdorff
distance from Q to R, dHd(Q,R) = max(dH(Q,R), dH(compl(Q), compl(R))). [8, 9]

The Hausdorff distance and the dual-Hausdorff distance are metrics over the space of compact
regions.

If dH1(R,S) ≤ p and dH1(S,R) ≤ q, then S is said to be a p − q sampling of R [19].

1I presume that this easy result has been known since at least the time of Chebyshev, but I have found it surprisingly
difficult to locate an exact statement in the literature, let alone a proof. A reviewer has pointed out to me that it is
stated and proved as lemma 7 in the appendix of the long (technical report) version of [5].
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Definition 2 For any bounded region R ⊂ R
k, let Mk(R) be the k-dimensional measure of R; e.g.

the area of a planar region or the volume of a solid region. If R and Q are bounded regions, then
define dM (R,Q) = Mk(R \ Q ∪ Q \ R), the measure of the symmetric difference of R and Q.

This is a metric over the space of bounded regular regions.

Definition 3 For any point set Q, and r > 0, the dilation of Q by r, denoted D(Q, r), is defined as
D(Q, r) = closure(

⋃

x∈Q B̄(x, r)). The erosion of Q by r, denoted E(Q, r), is defined as E(Q, r) =
{x|B(x, r) ⊂ Q}.

Note that if Q is compact then D(Q, r) and E(Q, r) are closed and bounded and hence likewise
compact.

Lemma 2 For any two bounded point sets Q,R and r > 0, R ⊂ D(Q, r) if and only if dH1(R,Q) ≤
r.

Proof: Immediate from the definition.

Lemma 3 For any region R and α > 0, E(compl(R), α) = compl(D(R,α)).

Proof: For any point x,

x ∈ E(compl(R), α)⇔
B(x, α) ⊂ compl(R)⇔

[∀y d(y,x) < α⇒y ∈ compl(R)]⇔
[∀y y ∈ R⇒d(y,x) ≥ α] ⇔
[∀y y ∈ R⇒x 6∈ B(y, α)] ⇔

x 6∈ interior(D(R,α))⇔
x ∈ compl(D(R,α)).

Lemma 4 For any regular regions Q and R,
dH1(∂Q, ∂R) ≤ max(dH1(Q,R), dH1(compl(Q), compl(R))).

Proof: Let q ∈ ∂Q. Since q ∈ Q and q ∈ compl(Q), by definition of the Hausdorff distance, there ex-
ist r1 ∈ R, r2 ∈ compl(R) such that d(q, r1) ≤ dH1(Q,R) and d(q, r2) ≤ dH1(compl(Q), compl(R)).
The line from r1 to r2 goes from R to compl(R); hence it meets ∂R at some point r. So

d(q, ∂R) ≤ d(q, r) ≤ max(d(q, r1), d(q, r2)) ≤ max(dH1(Q,R), dH1(compl(Q), compl(R)))

Lemma 5 Let R be a bounded regular region and let ǫ > 0. Then there exists δ > 0 such that
dH(R,E(R, δ)) < ǫ.

We define the function L5(R, ǫ) to be a value of δ satisfying the above condition.
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In general in sections 3-6 of this paper, in order to simplify cross-references, when lemma or theorem
n asserts, “For all x, y, z there exists w such that ...” we will define a function Ln(x, y, z) whose
value is a value of w that satisfies the lemma.

Proof by contradiction: Suppose not. Then there exists ǫ > 0 such that for every δ > 0,
dH(R,E(R, δ)) ≥ ǫ. Since E(R, δ) ⊂ R, this implies that for every δ > 0 there exists a point pδ ∈ R
such that d(pδ, E(R, δ)) > ǫ. Consider the sequence p1/2,p1/3,p1/4 . . .. Since R is compact, these
must have a cluster point w ∈ R. Since R is regular, there exists a point z ∈ interior(R) such
that d(w, z) < ǫ/2. Since z ∈ interior(R), there exists δ > 0 such that B(z, δ) ⊂ interior(R); thus
z ∈ E(R, δ). Since w is a cluster point, there exists p1/M such that 1/M < δ and d(w,p1/M ) < ǫ/2.
But then

d(p1/M , E(R, 1/M)) ≤ d(p1/M , E(R, δ)) ≤ d(p1/M ,w) + d(w, z) < ǫ

which contradicts the construction of p1/M .

Lemma 6 Let R be a bounded regular region and let ǫ > 0. Then there exists δ > 0 such that
dH(compl(R), E(compl(R), δ)) < ǫ.

We define the function L6(R, ǫ) to be a value of δ satisfying the above condition.

Proof: Let Q = closure(D(R, ǫ) \R). Clearly Q is bounded and regular, so by lemma 5 there exists
δ0 > 0 such that dH(Q,E(Q, δ0)) < ǫ. Let δ = min(δ0, ǫ).

Let x be any point in compl(R). We need to show that there exists y ∈ E(Q, δ) such that d(x,y) < ǫ.
If x ∈ Q then there exists y ∈ E(Q, δ) ⊂ E(compl(R), δ) such that d(x,y) < ǫ. If x 6∈ Q then
x 6∈ D(R, ǫ). Since δ ≤ ǫ, x ∈ E(compl(R), ǫ) so we may choose y = x.

Lemma 7 Let R be a bounded regular region and let ǫ > 0. Then there exists δ > 0 such that, for
any region Q, if dHd(R,Q) < δ then dM (R,Q) < ǫ.

Proof: See [9] theorem 8.1.

5 Locally-based region constructors

In this section, we define the class of locally-based region constructors, and illustrate the category
with some examples and non-examples.

Definition 4 Let α > 0. A function G(S), mapping a set of points S to a region in R
k is a local

region constructor basis of maximal radius α if it satisfies the following.

A. For all S, either G(S) = ∅ or radius(G(S) ∪ S) ≤ α.

B. For every point y, there exist open regions V,U1 . . . Um such that y ∈ V , and, for all y′,x1 . . .xm,
if y′ ∈ V,x1 ∈ U1 . . . and xm ∈ Um, then y′ ∈ G({x1 . . .xm}). (Here m may be equal to 1;
U1 . . . Um are not necessarily disjoint; x1 . . .xm are not necessarily distinct.)

C. G(∅) = ∅.

G is said to have diameter β if for all S either G(S) = ∅ or diameter(G(S) ∪ S) ≤ β.

Definition 5 Let G(S) be a local region constructor basis. The corresponding locally-based region
constructor is the function F (S) defined by F (S) = closure(

⋃

S′⊂S G(S′)).
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The intuition behind condition (B) of definition 4 is the constructor function can cover each point y

in space in a way that is somewhat robust with respect both to the position of y and to the sample;
there is a set S of sample points such that y ∈ interior(G(S)) and moreover y ∈ interior(G(S′))
for any set S′ close to S. We will show in theorem 14 that this is, in a certain sense, a necessary
condition to reliably achieve a reconstruction that approximates the original. The examples below
will further clarify the definition.

Example 1: Define G(S) as follows: if radius(S) ≤ α then G(S) = convexHull(S) else G(S) = ∅.
The corresponding region constructor is denoted Fα(S) =

⋃

S′⊂S G(S′); it is called the local convex
hull constructor of radius α.

Example 2: If S = {x} then G(S) = B̄(x, α); if |S| > 1 then G(S) = ∅. The corresponding
function is denoted Jα(S). This is known as the α-ball constructor [19]. Clearly Jα(S) = D(S, α) =
S ⊕ B̄(o, α), where o is the origin.

Example 3: If radius(S) ≤ α then G(S) = B̄(center(S), radius(S)), the minimal ball containing S;
else G(S) = ∅.
Example 4: G(S) is the smallest box aligned with the coordinate axes containing S, if the span of
that box in each dimension is at most 2α/

√
k. For i = 1 . . . k let Xi(s) be the coordinate of point

s in the ith dimension; let Ui(S) = maxs∈S Xi(s); and let Li(S) = mins∈S Xi(s). Define G(S) as
follows: If for all i, Ui(S) − Li(S) ≤ 2α/

√
k then G(S) = ×i[Li(S), Ui(S)]; else G(S) = ∅. (This is

actually an analogue of example 3, using the L∞ measure rather than the L2 measure.)

Example 5: Let C be any collection of open sets satisfying the conditions that

a. C covers the space; that is
⋃

O∈C
O = R

k.

b. for each region O ∈ C, diameter(O) ≤ α.

Then for any set S, if S = {x} then let G(S) be the union of all O such that x ∈ O ∈ C; if |S| > 1
then let G(S) = ∅. Note that since every point in G({x}) is within α of x, the radius of {x}∪G({x})
is at most α.

Example 2 is a special case of example 5, with C being the set of all regions of diameter at most α.

Depending on the process collecting the sample points and the application using the reconstructed
shapes, it may be reasonable to use reconstruction functions G(S) that do not necessarily include
all the sample points, or that are not convex.

Example 6: For some fixed m and α, if |S| ≥ m and radius(S) ≤ α then
G(S) = B̄(centroid(S), standardDeviation(S)); else G(S) = ∅. Imagine that one is trying to recon-
struct the spatial range of a phenomena — for instance, the habitation area of a species — and that
both the detection and the location of samples are uncertain. In that case, one might want to wait
until m observations had been made within a radius of α before concluding that the location indeed
belongs to the region, and to restrict the conclusion to the region within the standard deviation of
the center of the observations.

Example 7: Suppose that there are detectors set up at points on the plane but that the detection
process has a substantial error in the angle. In that case, for an observation at s by a sensor at p,
one might want to include the region of all points x such that |d(x,p) − d(s,p)| ≤ ǫ and such that
∠xps ≤ φ. In this case G(S) would be a non-convex region.

The proofs that each of the above examples satisfies definition 4 are trivial.

To further clarify the definition, let us give a few examples of functions F (S) that are not local
constructors with any basis. To prove these it is useful to observe two properties of locally-based
constructors.
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Definition 6 Let F (S) be a function mapping a set of points S to a set of points. F is monotonic
if, for all S1, S2, if S1 ⊂ S2 then F (S1) ⊂ F (S2). That is, adding more points to the sample does
not take away points from the reconstruction.

For any α > 0, F is α-local if the following holds: For any two samples S1, S2 and point p, if
S1 ∩ B̄(p, α) = S2 ∩ B̄(p, α) then p ∈ F (S1)⇔p ∈ F (S2). That is, if S1 and S2 are identical in the
ball of radius α around p then either p is in both F (S1) and F (S2) or it is in neither.

Lemma 8 Let G(S) be a local region constructor basis of diameter α and let F (S) be the corre-
sponding constructor. Then F is monotonic and α-local.

Proof: Monotonicity is immediate from definition 5. To prove that F is α-local, let S1 and S2 be
two samples, and let p ∈ F (S1) \ F (S2). Then there exists a set U such that U ⊂ S1, U 6⊂ S2, and
p ∈ G(U). Let u be a point in U \S2. Since G has diameter α, d(u,p) ≤ α so u ∈ B̄(p, α); thus S1

and S2 differ over B̄(p, α).

We can now prove that various functions are not locally-based reconstructor functions because they
do not satisfy one or the other of the above properties.

Non-example 1: F (S) = B̄(µ(S), σ(S)) where µ(S) is the mean and σ(S) is the standard deviation
does not have any local basis, because F is not local. The same holds for any other constructor
based on weighted sums over all the points in S.

Non-example 2: The identity function G({x}) = {x}, F (S) = S, is not a local constructor because
G does not satisfy condition 1.B. That does not in itself prove that F might not have some other
local basis; but it follows from theorem 12 below that it does not.

Non-example 3: If S = {x1,x2,x3,x4} is the set of vertices of a perfect square of side ≤ α, then
G(S) = the interior of the square defined by S; else G(S) = ∅. This does not satisfy condition 1.B.
Again one can show that the corresponding F does not satisfy theorem 12, and thus has no local
basis.

Non-example 4: The α-shape function of [11, 13] is not a local constructor corresponding to any
basis because it is not monotonic (see discussion below).

Monotonicity, it may be remarked, is not necessarily a desirable feature in a shape reconstruction
function, and non-monotonicity not necessarily a failing; but the kind of non-monotonicity exhibited
by α-shapes can be counter-intuitive. Figure 1 shows an example where the α-shape reconstruction
of the sample {a,b, c} is the triangle abc and thus includes point p, but the α-shape reconstruction
of the superset {a,b, c,d} is the union of the two triangles2 acd,bcd and does not include p, even
though the new point d is very close to p. α here is a value greater than the circumradius of adc

and bdc but less than the circumradius of triangle abd so abd is not included in the α shape. If the
application were, for example, reconstructing the habitat of a species from sightings, this would be
anomalous behavior. (Keep in mind that the sample is of interior points, not of boundary points.)

It should be noted that any local region constructor F (S) is defined for infinite S as well as finite
S; for instance S itself could be a regular region. For example, one can imagine a circumstance in
which it could be verified that each of a set of small squares lies inside a region R; the sample in
that case would be the union of a set of squares rather than a finite set of points. Figure 2 shows
the local convex hull reconstruction of one such sample. Note that the choice of the characteristic
distance α depends primarily on the characteristics of the overall region R and of the density of the
dots and not of the radius or shape of the individual dots.

2Under some definitions, the α-shape also includes the edge ab.
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Figure 1: Non-monotonicity of α-shapes
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Figure 2: Reconstruction from a sample of squares
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6 Locally-based region constructors approximate the original

region

In this section we prove that, for any locally-based region constructor, if α is chosen small enough and
the sample is chosen dense enough, then the constructor reconstructs the original region accurately,
relative to the dual-Hausdorff distance.

Lemma 9 Let F be a locally-based region constructor of diameter α. Then for any sample S,
F (S) ⊂ D(S, α).

Proof: Let G be a basis for F . By definition 4, for any set S′ and point x ∈ S′ all of G(S′) lies
within distance α of x. That is, G(S′) ⊂ D(x, α) ⊂ D(S′, α). Therefore,

F (S) =
⋃

S′⊂S

G(S′) ⊂ D(S, α)

Lemma 10 Let F be a locally-based region constructor of diameter α and let R and S be bounded
point sets. Then F (S) ⊂ D(R,α + dH1(S,R)).

Proof: Immediate from lemmas 2 and 9.

Lemma 11 Let R be a bounded set and α > 0. Let F be a locally-based region constructor of
diameter α. Then there exists δ > 0 such that, for any S if dH1(R,S) < δ then F (S) ⊃ E(R,α).

We define the function L11(R,F, α) to be a value of δ satisfying the above condition.

Proof: If E(R,α) = ∅, then the claim is trivial. For each point y ∈ E(R,α) choose open
sets V (y), U1(y) . . . Um(y) satisfying condition 1.B. For any points x1 ∈ U1(y) . . .xm ∈ Um(y),
by condition 1.A, diameter({y,x1 . . .xm}) ≤ α; hence d(y,xi) < α. Therefore Ui ⊂ R. The
collection { V (y)|y ∈ E(R,α) } is an open covering of E(R,α), which is compact; therefore,
it has a finite subcovering V = {V (y1) . . . V (yt)}. Consider the corresponding set of regions
U1(y1) . . . Um1

(y1) . . . U1(yt) . . . Umt
(yt). Let δ be the minimal radius of all these. Now, let S

be a point set such that dH1(R,S) < δ. By definition of δ, for any Ui there exists ui such
that B(ui, δ) ⊂ Ui. By the constraint on the Hausdorff distance, there exists si ∈ S such that
d(ui, si) < δ, thus si ∈ B(ui, δ) ⊂ Ui.

Now let y be any point in E(R,α). Let V (yj) be the open set in the collection V containing y.
Choose {s1 . . . sm} ⊂ S such that si ∈ Ui(yj). By condition 1.B, y ∈ G({s1 . . . sm}).

Theorem 12 Let R be a bounded regular region and let ǫ > 0. Then there exists α > 0 such that,
for any locally-based region constructor F of diameter α, there exists δ > 0 such that for any S, if
dH(S,R) < δ, then dHd(F (S), R) ≤ ǫ.

Proof: Let α1 = L5(R, ǫ) and α2 = L6(R, ǫ). Thus dH(R,E(R,α1)) < ǫ and
dH(compl(R), E(compl(R), α2)) < ǫ.

Let α = min(α1, α2/2, ǫ/2). Let F be a locally-based region constructor of diameter α. Choose
δ1 = L11(R,F, α). Let δ = min(δ1, α). Let S be any set of points such that dH(S,R) < δ.

10



By construction, and using lemma 10, we have

E(R,α1) ⊂ E(R,α) ⊂ F (S, α) ⊂ D(R,α + δ) ⊂ D(R, ǫ)

Also F (S, α) ⊂ D(R,α + δ) ⊂ D(R,α2).

Since F (S) ⊃ E(R,α1), we have dH1(R,F (S)) ≤ dH1(R,E(R,α1)) = dH(R,E(R,α1)) < ǫ.

Since F (S) ⊂ D(R, ǫ) we have dH1(F (S), R) ≤ dH1(D(R, ǫ), R) = dH(D(R, ǫ), R) ≤ ǫ.

Thus dH(R,F (S, α)) ≤ ǫ.

Since compl(D(R,α + δ)) ⊂ compl(F (S)), we have dH1(compl(R), compl(F (S))) ≤
dH1(compl(R), compl(D(R,α + δ))) = dH(compl(R), compl(D(R,α + δ))) ≤ ǫ

Since compl(F (S)) ⊂ compl(E(R,α)) = D(compl(R), α) ⊂ D(compl(R), ǫ) we have
dH1(compl(F (S), compl(R)) ≤ dH1(D(compl(R), ǫ), compl(R)) ≤ ǫ.

Thus dH(compl(R), compl(F (S, α))) ≤ ǫ.

Thus dHd(R,F (S, α)) ≤ ǫ.

Corollary 13 Let R be a bounded regular region and let ǫ > 0. Then

• There exists α > 0 such that, for any locally-based reconstructor F of radius α, there exists
δ > 0 such that for any S, if dH(S,R) < δ, then dH(∂F (S), ∂R) ≤ ǫ.

• There exists α > 0 such that, for any locally-based reconstructor F of radius α, there exists
δ > 0 such that for any S, if dH(S,R) < δ, then dM (F (S), R) ≤ ǫ.

Proof: The proof is immediate from theorem 12 and lemmas 4 and 7.

We can also show a partial converse to lemma 11: Any region constructor function that is local
and monotonic and satisfies the conclusion of lemma 11 must correspond to some local basis. Note,
however, that the condition of lemma 11 requires a diameter of α whereas the conclusion here
guarantees only a radius of α, so there is a gap here of up to a factor of 2.

Theorem 14 Let α > 0. Let F be a function from a bounded point set S to a regular region,
satisfying the following:

i. F (∅) = ∅.

ii. F is monotonic.

iii. F is α-local.

iv. For any regular region R and ǫ > 0 there exists δ > 0 such that, for any sample S, if
dH1(R,S) < δ then E(R, ǫ) ⊂ F (S).

Then F corresponds to a local reconstruction basis G(S) of radius α.

Proof: The construction of G(S) is the obvious one:

G(S) =

{

F (S) if radius(F (S) ∪ S) ≤ α
∅ otherwise.

Properties (A) and (C) of definition 4 are immediate.

11
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To show property (B), let y be any point. Let V be a neighborhood of y. Let ǫ > 0. Let
R = D(V, ǫ). Using condition (iv), choose δ > 0 such that, for any sample S, if dH(S,R) < δ
then E(R, ǫ) ⊂ F (S). Now, let X = {x1 . . .xm} be a finite sample such that dH(X,R) < δ/2.
For i = 1 . . . m, let Ui = B(xi, δ/2), and let yi be any point in Ui. Let Y = {y1 . . .ym}. Then
dH(Y,R) ≤ dH(Y,X) + dH(X,R) < δ so by hypothesis F (Y ) ⊃ E(R, ǫ) ⊃ V .

Finally, let H(S) = ∪S1⊂S G(S1); we need to show that F (S) = H(S). By monotonicity F (S) ⊃
H(S). To show the reverse, let p be any point in F (S). Let S1 = S ∩ B̄(p, α). Obviously
S ∩ B̄(p, α) = S1 ∩ B̄(p, α) so by locality p ∈ F (S1). Since radius(S1) ≤ α, G(S1) = F (S1), so
p ∈ G(S1) ⊂ H(S).

7 R-regular regions

In this section, we define r-regular regions, and discuss some basic properties.

Definition 7 Let r > 0 be a distance and let R be a topologically regular region. R is r-regular if,
for every x ∈ ∂R, there exist points y and z such that

a. x ∈ B̄(y, r) ⊂ R

b. x ∈ B̄(z, r) ⊂ compl(R)

That is, x is on the boundary of a ball of radius r inside R, and on the boundary of a ball of radius
r outside R (figure 3).

A number of slightly different definitions of “r-regularity” have been formulated in the literature;
see [19] p. 18-20. The definition here is equivalent to the one used in [19].

We will denote the unit normal to ∂R at x directed outward from R as N̂R(x) and denote the tangent
(hyper)-plane to ∂R at x as πR(x). If R is a regular region, x is a point where ∂R is smooth, and
d is a distance, then we define the function χR(x, d) = x + d · N̂R(x). Note that χR is a continuous
function of x and d at all smooth boundary points x of ∂R.

Lemma 15 Let r > 0 and let R be an r-regular region. Let x be a point on ∂R and let y and z be
points satisfying definition 7. Then

a. ∂R is smooth at x;

b. y = χR(x,−r) and z = χR(x, r).

Proof: See [16] theorem 1 p. 137. The proof given there is stated for two-dimensional space, but
works for arbitrary dimension, as does the proof of lemma 16.

12



Lemma 16 Let R be an r-regular region, and let 0 < q ≤ r. Then

∂E(R, q) = {χR(x,−q)|x ∈ ∂R}

E(R, q) = R \ {χR(x,−t)|x ∈ ∂R, 0 ≤ t < q}
∂D(R, q) = {χR(x, q)|x ∈ ∂R}

D(R, q) = R ∪ {χR(x, t)|x ∈ ∂R), 0 < t ≤ q}

Proof See [16] proposition 4, p. 139.

Lemma 17 Let p ∈ R
k be a point, and let C ⊂ R

k be a compact set. If there is a unique closest
point to p in C, then Ψ(·, C) is continuous at p.

Proof of the contrapositive. Suppose that Ψ(·, C) is not continuous at p. Let z = Ψ(p, C).
Then there exists ǫ > 0 such that for every δ > 0, there exists xδ such that d(p,xδ) < δ and
d(Ψ(xδ, C), z) > ǫ. For i = 1, 2, . . . let yi = Ψ(x1/i, C). Since C is compact and since yi ∈ C the
sequence y1,y2 must have a cluster point; call this y. Clearly, since d(yi, z) > ǫ, it follows that
d(y, z) ≥ ǫ; thus y 6= z. Since yi is the closest point in C to x1/i, it follows that d(x1/i,yi) ≤
d(x1/i, z) ≤ d(x1/i,p) + d(p, z) < d(p, z) + 1/i. Therefore d(p,yi) ≤ d(p,x1/i) + d(x1/i,yi) ≤
d(p, z) + 2/i. Since y is a cluster point of the yi, one can choose large i such that d(yi,y) + 2/i is
arbitrarily small. Hence d(p,y) ≤ d(p, z). Hence y is a second point in C equally close to p.

Lemma 18 Let R be an r-regular region, and let A be the open annulus interior(D(R, r) \E(R, r)).
Let p be a point in A. Then there is a point x ∈ ∂R which is strictly closer to p than any other
point on ∂R; that is, Ψ(p, ∂R) is uniquely defined. Moreover p = χR(x,±d(p,x))

Proof: Since ∂R is compact, for fixed p, d(p,x) attains a minimum at least one point x ∈ ∂R. Let
Q = B̄(p, d(p,x)). Since x is the closest point to p on ∂R, no part of ∂R lies inside Q. There are
thus two cases: (1) p ∈ R and Q ⊂ R; (2) p ∈ compl(R) and Q ⊂ compl(R). Choose y and z as in
definition 7.

In case 1 d(p,x) < r; otherwise p would be in E(R, r). Also Q is tangent to B̄(z, r) at x since the
former lies in R and the latter in compl(R). Hence the radius px lies along the line zx and thus
along yx. Thus p = χR(x, d(p,x)). Moreover Q is tangent to B̄(y, r) at x; since none of ∂R is
inside B̄(y, r), the rest of ∂R must lie outside Q and thus be further from p than x.

Case 2 is exactly analogous to case 1, switching the roles of y and z; switching the roles of R and
compl(R); and replacing −N̂R(x) by N̂R(x).

Lemma 19 Let R be an r-regular region, and let x,q ∈ ∂R. If d(x,q) ≤ r then d(q, πR(x)) ≤
d(x,q)2/2r.

Proof: (Figure 4.) If q ∈ πR(x) this is trivial, so assume not. Let y, z be as in definition 7. If the
dimension of the space k > 2, then consider only the plane containing x,y, z, and p.

Assume that q lies on the same side of πR(x) as y. Let S be the sphere of radius r centered at
y; thus, x ∈ ∂S and q 6∈ interior(S). Let m be the midpoint of qx. Let Q be the perpendicular
bisector of qx and let y′ be the intersection of Q with xy; thus d(y′,x) = d(y′,q). Let r′ = d(y′,x),
and let S′ be the sphere B̄(y′, r′); thus q ∈ ∂S′. Since y′ is on the line yx, S′ and S are tangent at
x. Since q 6∈ interior(S), S′ ⊃ S and r′ ≥ r.
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Let n be the projection of m onto xy. Since d(n,x) < d(m,x) < d(q,x) < r, n is between x and
y′.

Since xnm and xmy′ are similar right triangles, we have d(x,n)/d(x,m) = d(x,m)/d(x,y′).
But d(x,n) = d(q, πR(x))/2, d(x,m) = d(x,q)/2 and d(x,y′) = r′ ≥ r. Thus d(q, πR(x)) =
d(x,q)2/2r′ ≤ d(x,q)2/2r.

If q is on the same side of πR(x) as z then the proof is exactly analogous, substituting z for y and
using the fact that q is outside B(z, r).

Lemma 20 Let R be an r-regular region, let x,q ∈ ∂R, let u be the projection of q onto the plane
πR(x). If d(u,x) < r then d(q,u) ≤ r −

√

r2 − d2(u,x)

Proof: Let points y, z be as in definition 7. The line qu intersects the spheres B̄(y, r) and B̄(z, r)
at points that are r −

√

r2 − d2(x,u) from u, and q must lie between them, since it is not inside
either sphere.

Lemma 21 Let R be an r-regular region, let x ∈ ∂R, let p ∈ πR(x), let q = Ψ(p, ∂R). Then
d(p,q) ≤

√

r2 + d2(x,p) − r < d2(x,p)/2r.

Proof: There are two cases.

Case 1: p ∈ compl(R). Let c = χR(x,−r). Then B(c, r) ⊂ R, so the line from c to p crosses ∂R
at some point w which is either equal to p or between p and c. Since R is r-regular, d(c,w) ≥ r.
Since q = Ψ(p, ∂R), d(p,q) ≤ d(p,w). Since ∠cxp is a right angle we have

d(p,q) ≤ d(p,w) = d(c,p)−d(c,w) ≤
√

d2(c,x) + d2(x,p)−r =
√

r2 + d2(x,p)−r < d2(x,p)/2r

The last inequality is a simple algebraic transformation.

Case 2: p ∈ R. The argument is symmetric, using c = χR(x, r).

8 ǫ-similarity and (ǫ, φ)-approximation in tangent

In this section, we define three strong measures of similarity between regions, ǫ-similarity, simple
ǫ-deformation, and and (ǫ, φ)-approximation in tangent; and we prove some basic properties.
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Definition 8 Let U and V be regions and let ǫ > 0. U and V are ǫ-similar if there exists a
homemorphism Γ from R

k to R
k such that Γ(U) = V and such that, for all p ∈ R

k, d(p,Γ(p)) ≤ ǫ
[18, 19]

Lemma 22 Let R be an r-regular region. Let Q be a region such that E(R, r) ⊂ Q ⊂ D(R, r). For
any point x ∈ ∂R, the line {χR(x, t)| − µ ≤ t ≤ µ} intersects ∂Q in at least one point q.

Proof: Immediate from the fact that point χR(x,−r) ∈ E(R, r) ⊂ Q and point χR(x, r) ∈
∂D(R, r) ⊂ compl(Q).

Definition 9 Let ǫ > 0. A region Q is a simple ǫ-deformation of region R if

• For some r > ǫ, R is r-regular.

• E(R, ǫ) ⊂ Q ⊂ D(R, ǫ).

• For each x ∈ ∂R, the line {χR(x, t)| − r ≤ t ≤ r} intersects ∂Q in exactly one point q.

If this condition holds, then we write q = ImageQ,R(x). Note that x = Ψ(q, ∂R).

Lemma 23 Let Q be a simple ǫ-deformation of R. Then the function ImageQ,R(x) is a continuous
function from ∂R to ∂Q.

Proof: Define the distance-valued function over ∂R, H(x) = (ImageQ,R(x)−x) · N̂R(x), the signed
distance from x to ImageQ,R(x). Thus ImageQ,R(x) = χR(x,H(x)).

We claim that H is continuous. Proof by contradiction: Suppose that H is discontinuous at some
point b ∈ ∂R. Since H is bounded between −r and r, H has a cluster point h1 6= H(b) in the
neighborhood of b. Since ∂Q is closed, χR(b, h1) ∈ ∂Q, but then the line {χR(b, t)| − r ≤ t ≤ r}
intersects ∂Q at two different points, contrary to assumption.

Since H is continuous and since χR is continuous, ImageQ,R(x) = χR(x,H(x)) is likewise continuous.

Lemma 24 If Q is a simple ǫ-deformation of R, then Q is ǫ-similar to R.

Proof: Choose r > ǫ so that R is r-regular. Define the homeomorphism Γ(p) mapping R
k to itself

as follows:

if (1) p ∈ E(R, r) then Γ(p) = p;
else (2) if p 6∈ D(R, r) then Γ(p) = p;
else (3) if p ∈ Q \ E(R, r)

let x = Ψ(p, ∂R);
c = χR(x,−r); (Note that c ∈ ∂E(R, r)).
y = ImageQ,R(x);

Γ(p) = c + r · d(p, c)/d(y, c)N̂R(x).
end let;

else (4) if p ∈ D(R, r) \ Q
let x = Ψ(p, ∂R);

c = χR(x, r); (Note that c ∈ ∂D(R, r)).
y = ImageQ,R(x);

Γ(p) = c − r · d(p, c)/d(y, c)N̂R(x).
end let;
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That is, Γ leaves the points in E(R, r) and the points in D(R, r) unchanged (1,2). The points in
Q \ E(R, r) are moved along the line normal to ∂R with a linear factor that maps the line from
∂E(R, r) to ∂Q into the line from ∂E(R, r) to ∂R (3). The points in D(R, r) \ Q are moved along
the line normal to ∂R with a linear factor that maps the line from ∂D(R, r) to ∂Q into the line from
∂D(R, r) to ∂R (4).

It is easily checked that Γ is consistent at the three boundaries; that is, (3) agrees with (1) on
∂D(R, r) because p = c, so Γ(p) = p. (4) agrees with (2) on ∂E(R, r) because p = c so Γ(p) = p.
(3) agrees with (4) on ∂Q because p = y and Γ(p) = y.

The inverse of Γ is computed as follows:

if p ∈ E(R, r) then Γ−1(p) = p;
else if p 6∈ D(R, r) then Γ−1(p) = p;
else if p ∈ R \ E(R, r) then

c = χR(x,−r)
y = ImageQ,R(x);

Γ−1(q) = c + d(y, c)d(q, c)/rN̂R(x).
else if p ∈ D(R, r) \ R then

c = χR(x, r)
y = ImageQ,R(x);

Γ−1(q) = c − d(y, c)d(q, c)/rN̂R(x).

It follows from lemma 23 that Γ and Γ−1 are continuous. It is immediate that they are one-to-one,
that Γ maps Q to R, and that for any q ∈ Q, d(q,Γ(q)) ≤ ǫ.

Definition 10 Let O be an open set of points. Let q ∈ closure(O). A non-zero vector ~v points into
O at q if for some δ > 0, for all t ∈ (0, δ), q+ t~v ∈ O. (For q ∈ O, this holds for all ~v; the condition
is non-trivial for q ∈ ∂O.)

Lemma 25 Let R be a smooth region and let Q be a closed set of points. Suppose that there
exist points y ∈ ∂R, a ∈ compl(Q) (the closure of the complement of Q), and b ∈ Q such that
a = χR(y, a) and b = χR(y, b) where 0 < a < b. Then there exist points x ∈ ∂R, q ∈ ∂Q such that
q − x is parallel to N̂R(x) and such that −N̂R(x) does not point into interior(Q) at q.

Proof (figure 5): There are three cases to consider.

Case 1: There exists c such that a < c < b and c = χR(y, c) 6∈ Q. Since the complement of Q is open,
there is an open set around c that is outside Q. Let h > c be the maximum value such that,
for all t ∈ (c, h) χR(y, t) 6∈ Q. Since Q is closed, the point h = χR(y, h) is on ∂Q. Then by
construction −N̂R(y) does not point into interior(Q) at h.

Case 2: There exists c such that a < c < b and c = χR(y, c) ∈ interior(Q). Then for some δ > 0,
B(c, δ) ⊂ interior(Q). Since a ∈ compl(Q) and the complement of Q is open, there exists
a sequence e1, e2 . . . 6∈ Q that converge to a. For i = 1, 2 . . . let fi = Ψ(ei, R) and let
gi = χR(fi, µ). Since Ψ(·, R) and χR(·, µ) are continuous functions, the sequence f1, f2 . . .
converges to Ψ(a, R) = y, and the sequence g1,g2 . . . converges to χR(y, µ) = c. Moreover
since d(x,a) < d(x, c), for sufficiently large i, d(fi, ei) < d(fi,gi). Thus for sufficiently large i,
we have fi ∈ ∂R, ei = χR(fi, d(fi, ei)) 6∈ Q, gi = χR(fi, µ) ∈ B(c, δ) ⊂ Q. So fi, ei,gi satisfy
the conditions on y, c,b respectively in case (1), so there exists an h on the line between ei

and gi satisfying the condition, with x = fi.
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Case 3: For every c ∈ (a, b), χR(y, c) ∈ ∂Q. Then the line ab lies in ∂Q, so −N̂R(y) does not point
into interior(Q) at b.

Corollary 26 Let R be an r-regular region. Let ǫ < r. Let Q be a closed set of points such that
R ⊂ Q ⊂ D(R, ǫ). If Q is not an ǫ-deformation of R, then there exist points x ∈ ∂R, q ∈ ∂Q such
that q − x is parallel to N̂R(x) and such that −N̂R(x) does not point into interior(Q) at q.

Proof: By definition 9, if Q is not an ǫ-deformation of R, then there exists a point y ∈ ∂R such
that the line from y to χR(y, ǫ) intersects ∂Q in two points. Letting a be the nearer of these and b

be the further, the conditions of lemma 25 are satisfied.

We now define the strongest form of approximation considered in this paper, in which not only the
topology must be correct and the region occupied nearly correct, but also the surface normal must
be nearly correct, at all points of the surface where it is defined. (Many reconstruction methods,
including both of those considered here, give a region with a piecewise smooth surface, rather than
a universally smooth one, so the normal is not defined at the joins between surfaces.)

Definition 11 Let Q and R be regular regions. Let ǫ > 0 and φ > 0. Q is said to be an (ǫ, φ)-
approximation in tangent of R if there exists a homeomorphism Γ from R

k to R
k such that:

i. Γ(Q) = R.

ii. For every point q ∈ Q, d(q,Γ(q)) ≤ ǫ.

iii. For any point q ∈ ∂Q, if ∂Q is smooth at q and ∂R is smooth at Γ(q) then the angle between
N̂Q(q) and N̂R(Γ(q)) is less than or equal to φ.

(This is a generalization of the definition given in [8].)

In sections 9 and 10 we will show that, given sufficiently strong conditions on the parameter α
and the sample density δ, the two reconstructions Jα(S) and Fα(S) are guaranteed to be ǫ-similar
to the original region R; and that with even stronger conditions, they can be guaranteed to be
(ǫ, φ)-approximations in tangent. We illustrate the power of these results here by giving a natural
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example of a local reconstruction method that cannot be guaranteed to be an approximation in
tangent for any values of α and δ, and a contrived example of a method that cannot be guaranteed
to be ǫ-similar.

Non-example 5: For α > 0, let Cα be the cube [−α, α]k. Let R be a smooth region, let S be a
sample, and let φ < π/4. Then the Minkowski sum S⊕Cα is not an (ǫ, φ) approximation in tangent
of R for any ǫ, because the normals to S ⊕ Cα are all parallel to the coordinate axes and thus do
not approximate the normals of R that lie at orientations in between.

Non-example 6 (figure 6): For α > 0, let Cα be the crescent shape B̄(o, α) \ B((α/2)x̂, α/2). Let
R be a region homeomorphic to the unit disk, and let S be a finite sample. Let F = S ⊕ Cα. Then
F is not homeomorphic to R. Proof: Let p be the point in S with maximal x-coordinate. Let
q = p + α · x̂. Then the distance from q to other point in S is greater than α, so the only points in
F in a small neighborhood of F come from p ⊕ Cα. Hence the topology of F in the neighborhood
of q is the “double cusp”, which is different from the topology of R at any point. Note that S ⊕Cα

is a locally-based region constructor, and indeed satisfies theorem 12 for any δ < α/4.

9 Reconstruction by Jα(S)

As noted in example 2 p. 7, the function G({s}) = B̄(s, α) is a locally-based region constructor basis;
the corresponding region constructor Jα(S) = D(S, α) = S ⊕ B̄(o, α). This is known as “α-ball
reconstruction.” [19]

Lemma 27 Let R be an r-regular region. Let α < r and let δ < α(r − α)/(2r − α). Then for any
set of points S, if dH(S,R) ≤ δ then Jα(S) is an (α + δ)-deformation of R.

Proof by contradiction (Figure 7): Suppose not. Let Q = Jα(S). Since α > δ, by lemma 2
R ⊂ interior(Q). Any point in Q is within α of a point in S and thus within α + δ of a point in
R; hence Q ⊂ D(R,α + δ). By lemma 26 if Q is not an (α + δ)-deformation of R, then there exist
points x ∈ ∂R and a ∈ ∂Q such that a − x is parallel to N̂R(x) and −N̂R(x) does not point into
interior(Q) at a.

Since a ∈ ∂Q, there exists s ∈ S such that d(a, s) = α. Since B̄(s, α) ⊂ Q and since −N̂R(x) does
not point into interior(Q) at a, it must be the case that (s−a) · N̂R(x) ≥ 0. Let w be the projection
of s onto the line xa. Then a is between x and w; that is d(a,x) ≤ d(w,x).

Let c = χR(x, r); since R is r-regular, B̄(c, r) ⊂ compl(R). If s ∈ R then d(c, s) ≥ r. If s 6∈ R. then
let b = Ψ(s, ∂R); thus d(s,b) ≤ δ. Since b ∈ R, we have d(c,b) ≥ r; hence d(c, s) ≥ r − δ. Note
that d(s,w) ≤ d(s,a) = α. Since swc is a right triangle, we have d(c,w)2 = d(c, s)2 − d(s,a)2 ≥
(r − δ)2 − α2. So d(x,a) < d(x,w) = d(c,x) − d(c,w) ≤ r −

√

(r − δ)2 − α2.
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Figure 7: Construction for Lemma 27

I claim that the last expression is less than α − δ. Proof:
Since δ < α · (r − α)/(2r − α)
we have 2rδ − αδ < rα − α2

so 4rδ − 2αδ < 2rα − 2α2

so 2rδ + α2 − 2rα − 2αδ < −2rδ − α2

so r2 + δ2 + 2rδ + α2 − 2rα − 2αδ < r2 + δ2 − 2rδ − α2

so (r + δ − α)2 < (r − δ)2 − α2

so r + δ − α <
√

(r − δ)2 − α2

so r −
√

(r − δ)2 − α2 < α − δ. Thus d(x,a) ≤ r −
√

(r − δ)2 − α2 < α − δ.

Let sx be a point in S such that d(sx,x) ≤ δ. Then d(sx,a) ≤ d(sx,x) + d(x,a) < α, so a ∈
B(sx, α) ⊂ interior(Q), but this contradicts the assumption that a ∈ ∂Q.

Theorem 28 Let R be an r-regular region, and let ǫ > 0. Let α < min(r, ǫ) and let
δ < min(ǫ − α, α(r − α)/(2r − α)). Let S be a set of points such that dH(S,R) < δ. Then Jα(S) is
ǫ-similar to R.

Proof: By lemma 27, Jα(S) is an α + δ deformation of R. By lemma 24, Jα(S) is ǫ-similar to R.

It is easily calculated that the maximal value of δ/r consistent with the above constraint is 3−2
√

2,
attained when α/r = 2 −

√
2. This same bound on δ is derived, in a somewhat different way and

setting, in both [17] and [6].3

We now show that α-ball reconstruction gives accurate approximation in the much stronger sense
that the surface normals on close points are close.

Theorem 29 Let R be an r-regular region, let ǫ > 0 and let φ > 0. Let α < min(ǫ, r) and let
δ < min(ǫ − α, α(r − α)(1 − cos φ)/2r). Then for any set S, if dH(S,R) < δ then Jα(S) is an

3I am grateful to the reviewer for drawing my attention, both to this bound, and to these papers.
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approximation in tangent (ǫ, φ) of R.

Proof: (Figure 8). Let Q = Jα(S). Since δ < α(r−α)(1−cos θ)/2r < α(r−α)/(2r−α), theorem 28
holds, so Q is ǫ-similar to R.

Let point q ∈ ∂Q such that ∂Q is smooth at q. Then there exists a point s ∈ S such that
d(s,q) = α; since ∂Q is smooth at q, the normal N̂Q(q) is parallel to the radius q − s. Let Γ
be the homeomorphism mapping Q to R constructed in theorem 28, and let x = Γ(q); then by
construction x ∈ ∂R and q = χR(x, d(x,q)). As in the proof of lemma 27, let c = χR(x, r) and let
sx be a point in S such that d(sx,x) ≤ δ. Since q 6∈ B(sx, α) ⊂ interior(Q), we have d(q,x) ≥ α−δ,
so d(c,q) = d(c,x) − d(q,x) ≤ d(c,x) − r + δ − α. As in the proof of lemma 27, d(c, s) ≥ r − δ.

The angle θ between N̂Q(q) and N̂R(x) is the complement of the angle ∠sqc. Hence by the law
of cosines d(c, s)2 = d(s,q)2 + d(q, c)2 + 2d(s,q)d(q, c) cos θ. But d(c, s) ≥ r − δ, d(s,q) = α, and
d(q, c) ≤ r + δ − α, so we have

(r + δ − α)2 + α2 + 2(r + δ − α)α cos θ > (r − δ)2

so

r2 + δ2 + α2 + 2rδ − 2rα − 2δα + α2 + 2rα cos θ + 2δα cos θ − 2α2 cos θ > r2 − 2rδ + δ2

so
4rδ − 2δα(1 − cos θ) > 2rα(1 − cos θ) − 2α2(1 − cos θ)

so 4rδ > 2rα(1−cos θ)−2α2(1−cos θ). Since δ < α(r−α)(1−cos φ)/2r, we have 2α(r−α)(1−cos φ) >
2α(r − α)(1 − cos θ), so 1 − cos φ > 1 − cos θ, so θ < φ.

10 Local convex hull constructor

In this section, we give conditions on the parameter α and the sample S sufficient to guarantee
that the output of the local convex hull constructor Fα(S) is ǫ-similar to R or an approximation in
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tangent to R.

Though conceptually simple, this reconstruction is computationally awkward, among other reasons
because it may require generating vertices that are not in S, by the intersection of two edges
(Figure 9). Edelsbrunner’s α-shapes [11] avoid this problem, by considering only simplices in the
Delaunay triangulation.

Definition 12 As in example 1, the local convex hull constructor basis of maximal radius α is the
function Gα(S) defined as follows: If radius(S) ≤ α then Gα(S) = convexHull(S), else Gα(S) = ∅.
The local convex hull constructor of radius α is the function Fα(S) = ∪S′⊂SGα(S′).

Lemma 30 Let S be a set of points, and let o be a point. If B̄(o, r) ⊂ D(S, r), then there is a
subset S′ ⊂ S such that radius(S′) ≤ r and o ∈ convexHull(S′).

Proof:4 First we note that o ∈convexHull(S). Proof by contradiction: If there is a plane P
separating o from S, then let n̂ be the normal to P pointing toward o and away from S; then the
point o + rn̂ is distance r from o but more than r from any point in S.

Therefore, construct the Delaunay triangulation of S and let S′ be the simplex containing o. Let p

be the circumcenter of S′. Thus p is equidistant from every vertex of S′; let r′ be that distance. We
claim that r′ ≤ r; proof by contradiction. Suppose that r′ > r. By the property of the Delaunay
triangulation, no point in S − S′ is inside B(p, r′). Thus p is at least r′ from every point in S; so
B(p, r′ − r) is disjoint from D(S, r) and thus from B̄(o, r). That is, d(p,o) > r′. However, since o

is in the simplex of S′ then necessarily d(o,p) ≤ r′, which completes the contradiction.

Corollary 31 For any sets of points R and S, if α > δ = dH1(R,S) then Fα(S) ⊃ E(R, δ).

Proof: If o ∈ E(R, δ) then B̄(o, δ) ⊂ R ⊂ D(S, δ). By lemma 30, there is a subset S′ ⊂ S such
that radius(S′) ≤ δ < α and o ∈convexHull(S′). Thus o ∈ Gα(S′) ⊂ Fα(S′).

Lemma 32 Let R be a region; let δ > 0; let S be a set of points such that dH(S,R) < δ; and let
o be a point in E(R, δ). Then there exists a set of points S′ ⊂ S such that radius(S′) < 2δ and
o ∈ interior(convexHull(S′)).

4Thanks to Abhijit Guria for this elegant proof.
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Proof: Let β = dH(S,R). Let p1 . . .pk+1 be any points such that o ∈ interior(convexHull({p1 . . .pk+1}))
and such that d(o,pi) < δ − β. Note that B(pi, β) ⊂ B(o, δ) ⊂ R; thus pi ∈ E(R, β). By lemma
30 there exists Si ⊂ S such that pi ∈ convexHull(Si) and radius(Si) ≤ β. Note that each point
in Si is less than δ + β from o. Let S′ = ∪iSi. Then it is immediate that radius(S′) < 2δ and
o ∈ interior(convexHull(S′)).

Lemma 33 Let R be an r-regular region and let ζ > 0. Let R′ be a subset of ∂R such that
radius(R′) < 2ζr/(4 + ζ2). Then convexHull(R′) ⊂ D(R, ζ · radius(R′)). Also, if p and q are
any two points in convexHull(R′) and u = Ψ(q, ∂R), then d(p, πR(u)) ≤ ζ · radius(R′).

Proof: Let ρ = radius(R′). First, note that since ρ < 2ζr/(4 + ζ2) we have 4ρ + ζ2ρ < 2ζr, so

−2ζρr + ζ2ρ2 < −4ρ2 so r2 − 2ζρr + ζ2ρ2 < r2 − 4ρ2 so r− ζρ <
√

r2 − 4ρ2 so r−
√

r2 − 4ρ2 < ζρ.

Let r′ be any point in R′ and let v be the projection of r′ onto πR(u). Let W be the projection
of R′ onto πR(u). Then radius(W ) ≤ ρ and q and v are both in convexHull(W ) so d(u,v) ≤ 2ρ.

By lemma 20 d(r′,v) ≤ r −
√

r2 − 4ρ2 < ζρ. Since this holds for all points r′ ∈ R′ and since
p ∈ convexHull(R′) we have d(p, πR(u)) ≤ ζρ. Since q ∈ convexHull(R′) we have likewise d(q, ∂R)
= d(q,u) = d(q, πR(u)) ≤ ζρ. but since q was an arbitrary point in convexHull(R′) this means that
convexHull(R′) ⊂ D(R, ζρ).

Corollary 34 Let R be an r-regular region and let ζ > 0. Let R′ be a subset of R such that
radius(R′) < 2ζr/(4 + ζ2). Then convexHull(R′) ⊂ D(R, ζ · radius(R′)).

(This differs from lemma 33 in that R′ can now be any subset of R, not just a subset of ∂R.)

Proof: Let q be a point in convexHull(R′); we wish to show that d(q, R) ≤ ζ · radius(R′). If q ∈ R
this is trivial. If q 6∈ R, then for each point r′ ∈ R′, draw the line from q to r′. Each such line goes
from outside R to inside R and thus must meet ∂R at some point r′′. Let R′′ be the collection of all
such points. It is immediate that radius(R′′) ≤ radius(R′) and that q ∈ convexHull(R′′) (if a plane
separates q from R′′ then it likewise separates q from R′.) Therefore, R′′ satisfies the conditions of
lemma 33, so d(q, R) ≤ ζ · radius(R′).

Lemma 35 Let R be an r-regular region and let ζ > 0. Let β = 2ζr/(4 + ζ2). Let S be a point set
and let δ = dH1(S,R) and α = radius(S). If α + δ ≤ β then convexHull(S) ⊂ D(R, (1 + ζ)δ + ζα).

Proof: Let q be a point in convexHull(S). Let R′ = {Ψ(s, R)|s ∈ S}. Thus for each r ∈ R′, there
exists s ∈ S such that d(s, r) ≤ dH1(S,R) ≤ δ. It is immediate that radius(R′) ≤ radius(S) +
dH1(S,R) < α + δ < β.

Since q ∈ convexHull(S) it can be expressed in the form q =
∑

i tisi where ti ∈ [0, 1] and
∑

i ti = 1.
Let a =

∑

i tiΨ(si, R); since d(si,Ψ(si, R)) ≤ δ, we have d(a,q) ≤ δ. Since a ∈ convexHull(R′), by
corollary 34, we have d(a, R) ≤ ζ · radius(R′). Therefore

d(q, R) ≤ d(q,a) + d(a, R) ≤ dH1(S,R) + ζ · radius(R′) = dH1(S,R) + ζ · (dH1(S,R) + radius(S))

Definition 13 A set of points S = {s1 . . . sm} is in general position if there is no affine space of
dimension m− 2 containing S (equivalently, if the vectors {s2 − s1, s3 − s1, . . . , sm − s1} are linearly
independent).
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Definition 14 Let S = {s1 . . . sm} be a set of points in general position. A point y is in the convex
interior of S if y is in the interior of convexHull(S), relative to the affine space containing S.
Equivalently, there exist t1 . . . tm such that 0 < ti < 1 for all i;

∑m
i=1

ti = 1; and
∑m

i=1
tisi = y.

Lemma 36 Let S be a set of points in general position with |S| ≤ k, and let a and b be points in the
convex interior of S. Let c be an arbitrary point. Let Sc be a set of k+1 points in general position such
that c is in the convex interior of Sc. Then the vector c−a points into interior(convexHull(Sc ∪S))
at b.

Proof: Let S = {s1 . . . sm}. and let Sc = {c1 . . . ck+1}. Then there exist u1 . . . um, v1 . . . vm,
w1 . . . wk+1 such that

• 0 < ui < 1, 0 < vi < 1 for i = 1 . . . m; 0 < wi < 1 for i = 1 . . . k + 1;

• ∑m
i=1

ui = 1;

• ∑m
i=1

vi = 1;

• ∑m
i=1

wi = 1;

• a =
∑m

i=1
uisi

• b =
∑m

i=1
visi

• c =
∑k+1

i=1
wici

Then b + t(c − a) =
∑m

i=1
visi + t · (∑k+1

i=1
wici −

∑m
i=1

uisi) =
∑m

i=1
(vi − tui)si +

∑k+1

i=1
twici. If

we choose t < mini(vi/ui) then vi − tui > 0 for all i. Also
∑m

i=1
vi − tui +

∑k+1

i=1
twi = 1. Thus

b ∈ interior(convexHull(S ∪ Sc)).

Lemma 37 Let R be an r-regular region. Let α < r and let δ < α/2. Let S be a set of points such
that dH(S,R) < δ. Let y ∈ S and let c = Ψ(y, E(R,α)). Then line(y, c) \ {y} ⊂ interior(Fα(S)).

Proof: By lemma 32, there exists Sc ⊂ S such that c ∈ interior(convexHull(Sc)) and for all s ∈ Sc,
d(s, c) ≤ 2δ < α. Let S′ = Sc∪{y}. Note that every point in S′ is within α of c; hence radius(S′) ≤
α, so convexHull(S′) ⊂ Fα(S). It is immediate that line(c,y) \ {y} ⊂ interior(convexHull(S′)).

Lemma 38 Let R be an r-regular region, let α < r and let δ < α/4. Let S be a set such that
dH(S,R) < δ. Then Fα(S) is a topologically regular set.

Proof: Let y be any point in Fα(S). Let S′ be a subset of S such that y ∈ Gα(S′). Let o =
center(S′). Let p = Ψ(o, E(R, 2δ)). By lemma 32 there exists Sp ⊂ S such that Sp ⊂ B̄(p, 2δ) and
p ∈ interior(convexHull(Sp)). Every point in Sp is within 4δ of o; hence radius(S′ ∪ Sp) ≤ α. Thus
convexHull(S′ ∪ Sp) ⊂ Fα(S). But convexHull(S′ ∪ Sp) is a regular set and contains y. Thus, y is
in the closure of the interior of convexHull(S′ ∪ Sp) and therefore in the closure of the interior of
Fα(S); so Fα(S) is regular.

Lemma 39 Let S be a set of points and let y ∈ convexHull(S). Then either y ∈ S or there is a
finite subset S′ ⊂ S such that y is in the convex interior of S′.
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Proof: Since y ∈ convexHull(S), there exists s1 . . . sk+1 and t1 . . . tk+1 such that 0 ≤ ti ≤ 1;
∑k+1

i=0
ti = 1 and

∑k+1

i=0
tisi = y. If any of the ti = 1 then all the other ti are equal to 0, and y = si.

Otherwise, just extract the points si with non-zero coefficients, and then y is the positive sum of
these.

Lemma 40 Let R be an r-regular region. Let α ≤ 2r. Let p and q be points on ∂R such that
d(p,q) = α. Let φ = sin−1(α/2r). Then the angle between πR(p) and q−p is at most φ. The angle
between N̂R(p) and N̂R(q) is at most 2φ.

Proof (figure 10): Let a = χR(p,−r) and let b = χR(p, r). Since R is r-regular, q is outside the
two disks B(a, r) and B(b, r). Restricting attention to the 2-dimensional plane containing p,q,a,b,
and fixing a,b and p, the locus of points where q is α from p and not in these disks lies in the
two arcs of the circle C of radius α around p bounded by the two disks; and it is obvious that the
angle between N̂R(p) and q − p is furthest from π/2 when q is at any of the four intersections of
the circle with one of the disks. Suppose that q is on an intersection of C with B̄(a, r) (the other
case is symmetric). Let m be the midpoint of pq. Since ∠amp is a right angle, the angle ∠map

is equal to φ and equal to the angle between πR(p) and q − p. Since both N̂R(p) and N̂R(q) form
angles with q − p between π/2 − φ and π/2 + φ, the angle between the two normals is at most 2φ.

Lemma 41 Let R be an r-regular region. Let x, z ∈ ∂R be points such that d(x, z) < r/4. Let
µ ≤ r/2, let ν ≤ 2µ and let q = χR(z, ν). Let v = q − (ν + 2µ)N̂R(x). Then v ∈ E(R,µ).

Proof (figure 11): By lemma 40 the angle φ between N̂R(x) and N̂R(z) is less than 2 sin−1(1/8).
Let u = χR(z,−2µ). By lemma 16 u = Ψ(q, E(R, 2µ)). Since u,q,v is an isoceles triangle with
apex at q where the angle is φ and d(u,q) = d(v,q) = 2µ + d(q, R) ≤ 4µ, we have d(u,v) =
2d(u,q) sin(φ/2) ≤ µ. Since u ∈ E(R, 2µ), we have v ∈ E(R,µ).

Lemma 42 Let R be an r-regular region. Let x,y ∈ ∂R. Let p = χR(x, p) and q = χR(y, q) where
p ≤ r and q ≤ r. Then d(p,q) ≥ d(x,y)

√

1 − 2max(p, q)/r.

Proof: Let β = d(x,y) and let µ = max(p, q). Let ŵ = (y−x)/|y−x|, û = N̂R(x), v̂ = N̂R(y). Let
φ = sin−1(β/2r). By lemma 40 the angles between ŵ and û and between ŵ and v̂ are each within
φ of π/2. So ŵ · û ≤ cos(π/2 − φ) = sin(φ).
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Figure 11: Construction for Lemma 41

Now d2(q,p) = (q−p)·(q−p) = (βŵ+qv̂−pû)·(βŵ+qv̂−pû) = β2−2β(ŵ ·(qv̂−pû))+|qv̂−pû|2 >
β2 − 4βµ sin(φ) = β2(1 − 2µ/r).
So d(p,q) > β

√

1 − 2µ/r.

Lemma 43 Let R be an r-regular region. Let γ < 1, let ζ < γ, let β = 2ζ/(4 + ζ2), and let
ν = (

√
17−1)/16 ≈ 0.1952. Let α < min(ν, β) ·r and let δ < min(βr−α, (1−γ)α/3, (γ−ζ)α/(1+ζ))

Let S be any set such that dH(S,R) < δ. Let y be a point in ∂Fα(S) − S. Let x = Ψ(y, R). Then
−N̂R(x) points into interior(Fα(S)) at y. Also E(R, δ) ⊂ Fα(S) ⊂ D(R, γα).

Proof: By corollary 31, Fα(S) ⊃ E(R, δ)

If S′ is a subset of S such that radius(S′) ≤ α then the conditions of lemma 35 are satisfied,so
convexHull(S′) ⊂ D(R, ((1 + ζ)δ + ζα) = D(R, γα). Hence Fα(S) ⊂ D(R, γα).

Let S1 be a subset of S such that radius(S1) ≤ α and y ∈ convexHull(S1). Let Sy be the subset
of S1 in general position such that y is in the convex interior of Sy. Let x = Ψ(y, R). Let q be
the center of Sy; note that q is also in the convex interior of Sy. Since radius(Sy) ≤ α, we have
d(y,q) ≤ α.

There are now two cases to consider: (1) q 6∈ E(R, δ): (2) q ∈ E(R, δ).

Case 1: Suppose q 6∈ E(R, δ). Let z = Ψ(q, R). Since q ∈ convexHull(Sy) ⊂ D(R, γα) we have
d(q, z) ≤ γα. Since d(y,q) ≤ α, d(y,x) ≤ γα ≤ νr, and d(q, z) ≤ γα ≤ νr, by lemma 42 we have
d(x, z) ≤ νr/

√
1 − 2ν < r/4. Let v = q − (d(q, z) + 2δ) · N̂R(x). By lemma 41 v ∈ E(R, δ). By

lemma 32 there exists a set Sv ⊂ S such that radius(Sv) ≤ δ and v ∈ interior(convexHull(Sv)). Let
s be a point in Sv. Then d(s,q) ≤ d(s,v)+ d(v,q) ≤ δ +2δ + γα ≤ α. Thus all of Sy ∪Sv is within
α of q, hence convexHull(Sy ∪ Sv) ⊂ Fα(S). Applying lemma 36 with a of lemma 36 being q here,
b being y and c being v, it follows that N̂R(x) points into interior(Fα(S)) at y.

Case 2: Suppose q ∈ E(R, δ). By lemma 32 there exists a set Sv ⊂ S such that radius(Sv) ≤ δ

and q ∈ interior(convexHull(Sv)). Let v be a point on the ray {q − t ~NR(x)|t > 0} such that
v ∈ interior(convexHull(Sv)). Continue as in case 1.

Theorem 44 Let R be an r-regular region and let 0 < ǫ < r. Let γ < 1, let ζ < γ,
let β = 2ζ/(4 + ζ2), and let ν = (

√
17 − 1)/2 ≈ 0.1952. Let α < min(νr, βr, ǫ/γ) and

let δ < min(βr − α, (1 − γ)α/3, (γ − ζ)α/(1 + ζ)) Let S be any set such that dH(S,R) < δ. Then
Fα(S) and R are ǫ-similar.

Proof: Let F = Fα(S). By lemma 43, E(R, ǫ) ⊂ E(R, δ) ⊂ F ⊂ D(R, γα) ⊂ D(R, ǫ).
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Let q be any point on ∂F , and let x = Ψ(q, R) Then the vector N̂R(x) points into interior(F ) at q,
by lemma 37, if q ∈ S, and by lemma 43 if q 6∈ S. By lemma 26, F is an ǫ-deformation of R, and
by lemma 24, F is ǫ-similar to R.

The maximum5 possible value of δ/r consistent with the above constraints is δ/r = (
√

5 − 2)/10 =
0.0236, achieved when α/r = 1/5, γ = 4 − 3

√
5/2 = 0.6459, ζ = 2

√
5 − 4 = 0.4721, β =

√
5/10 =

0.2236.

For α ≪ r, δ is bounded by α/4 + o(α), with γ = 1/4 and ζ chosen to be small. It is easily shown
that Theorem 44 is false for any δ > α, so there is a gap of a factor of 4 in establishing a tight
bound. The gap in the case where α is comparable to r is substantially larger.

We now show that, for α and δ small enough, the convex hull reconstruction α of a sample of radius
δ accurately reconstructs the surface normal as well. Unlike the above proof of theorem 44, where we
tried to formulate the conditions as weakly as the structure of the proof would allow, the collection
of constraints involved here is so convoluted and in any case so far from a necessary condition, that
we simply give one set of sufficient constraints.

Though the constant factors below are very overconservative, the order of magnitude dependence is
correct. The radius α has to be bounded by O(φr) since the normal to the region R may change by
Θ(α/r) within a face of radius α. The sample density δ has to be bounded by O(φα) since sample
points may vary within δ of ∂R, “tipping” the surface of the convex hull by an angle Θ(δ/α). By
contrast, note that in theorem 29 the choice of α is independent of φ, but δ is bounded by O(rφ2).

Theorem 45 Let R be an r-regular region, let 0 < ǫ < r and let 0 < φ ≤ π/4. Let α <
min(9ǫ/φ, φr/75) and let δ < φα/45. Let S be any set such that dH(S,R) < δ. Then Fα(S) is
an approximation in tangent (ǫ, φ) of R.

Proof: (Figure 12). Throughout this proof, the verification that the various constraints are satisfied
given the conditions are straightforward calculations that are omitted.

Let F = Fα(S).

5Thanks to Sara Grundel for carrying out this calculation.
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Let γ = φ/9, η = φ/2, ζ = tan(η)/18, β = 2ζ/(4 + ζ2). Thus φ/72 < β < 0.01465φ. It is easily
verified that the conditions of theorem 44 are satisfied, so there is an ǫ-similar homeomorphism Γ
from F to R that maps each point q ∈ ∂F to Ψ(q, R).

Let q be any interior point in a face of ∂Fα(S), let x = Γ(q) = Ψ(q, ∂R), and let Q̂ be the normal
to ∂Fα(S) at q. Let θ be the angle between Q̂ and N̂R(x). We need to show that θ < φ.

Let η = φ/2. Let Sq be the subset of S such that q is in the convex interior of Sq. Let o = center(Sq),
and let y = Ψ(o, πR(x)). By lemma 35 d(o,y) < (1 + ζ)δ + ζα ≤ α tan(η)/9. Since the line xy

is the projection of the line qo onto the plane πR(x), and since d(q,o) ≤ α we have d(x,y) ≤ α.
By lemma 40 the angle between N̂R(x) and N̂R(y) is at most 2 sin−1(α/2r) < φ/2 given the above
constraints.

Let ~W be the projection of Q̂ onto the plane πR(y): ~W = Q̂ − (Q̂ · N̂R(y))N̂R(y). If ~W = ~0, then
Q̂ = N̂R(y) which is within φ/2 of N̂R(x), so we are done. Otherwise, let Ŵ be the unit vector
~W/| ~W |. Let z = y + (α/2)Ŵ ; thus z ∈ πR(y). Let b = Ψ(z, ∂R) and let c = Ψ(z, ∂E(R, δ)). By
lemma 21 d(z,b) ≤ α2/4r < α/8.

Using lemma 32, let Sc be a subset of S such that Sc ⊂ B̄(c, δ) and c ∈convexHull(Sc). Let s be a
point in Sc. Then d(o, s) ≤ d(o,y)+d(y, z)+d(z,b)+d(b, c)+d(c, s) ≤ α/8+α/2+α/8+δ+δ ≤ α.
Thus Sc ∪ Sq all lies within α of o. Let G = convexHull(Sc ∪ Sq); then G ⊂ Fα(S). By lemma 37,

the vector ~C = c − o points inward into G from q and thus points inward into Fα(S). Therefore,
(c − o) · Q̂ < 0.

Since d(y,b) < α/2, by lemma 40 the angle between N̂R(b) and N̂R(y) is at most 2 sin−1(α/4r) < η.
Hence |(c−z) ·Ŵ | < d(c, z) sin η ≤ (d(c,b)+d(b, z)) sin η ≤ (δ+α2/4r) sin η < α/6 given the above
constraints.

Note that ~C = c−o = (c−z)+(z−y)+(y−o), and that z−y) is parallel to Ŵ and orthogonal to

N̂R(y while that y−o) is anti-parallel to N̂R(y and orthogonal to Ŵ . Therefore ~C ·Ŵ = (z−y)·Ŵ +

(c−z)Ŵ ≥ α/2−α/6 = α/3. The projection ~C ·N̂R(x) has length at most d(o,y)+d(z,b)+d(b, c) ≤
α tan(η)/9 + α tan(η)/9 + δ < α tan(η)/3. Let ~C ′ = ~C − ((Ĉ · Ŵ )Ŵ + (Ĉ · N̂R(x))N̂R(x)); thus ~C ′

is normal to both Ŵ and N̂R(x). Thus we have

0 > ~C·Q̂ = [(Ĉ·Ŵ )Ŵ+(Ĉ·N̂R(y))+C ′]·[(Q̂·Ŵ )Ŵ+(Q̂·N̂R(y))] = (Ĉ·Ŵ )(Q̂·Ŵ )+(Ĉ·N̂R(y))(Q̂·N̂R(y))

Since (Ĉ · Ŵ ), (Q̂ · Ŵ ) and (Q̂ · N̂R(y)) are all positive, we have
(Q̂ · Ŵ )/(Q̂ · N̂R(y)) < |Ĉ · N̂R(y)|/(Ĉ · Ŵ ) ≤ tan(η), so the angle between Q̂ and N̂R(y) is less than
η < φ/2. Since the angle between N̂R(y) and N̂R(x) is also less than φ/2, the angle between Q̂ and
N̂R(x) is less than φ. .

11 Conclusion

We have studied the formulation of conditions under which reconstruction of regions from samples
can be guaranteed to approximate the original region, under a number of measures of approximation.
Specifically, we have considered six measures of approximation: Hausdorff distance, Hausdorff dis-
tance between boundaries, measure of the symmetric difference, dual-Hausdorff distance, ǫ-similarity
and (ǫ, φ)-approximation in tangent. We have defined a broad class of reconstruction methods, called
locally based reconstruction methods that are guaranteed to achieve close approximation under the
first four metrics, given a sufficiently dense and accurate sample (theorem 12 and corollary 13). Con-
versely, we have shown that any local, monotonic reconstruction method that does always achieve
accurate approximation in these senses must satisfy the conditions of a locally-based approximation
metric (theorem 14). For two particular reconstruction methods, α-ball reconstruction Jα(S) and
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local convex hull reconstruction Fα(S), we have given one set of conditions on the parameter α and
on the density δ of the sample S sufficient to guarantee that the reconstruction of an r-regular region
is ǫ-similar (theorems 28 and 44), and a stronger set sufficient to guarantee that the reconstruction
is an (ǫ, φ)-approximation in tangent (theorems 29 and 45).

Two questions stand out as particular interesting for further research in this direction:

1. Can one generalize the last set of theorems, and show that there is a general class of recon-
struction methods, of which J and F are instances, that are guaranteed to achieve ǫ-similarity
and (ǫ, φ) approximation in tangent?

2. Both theorems 29 and 45 require that the density δ of the sample S be proportional to φ2

where φ is the desired accuracy of the reconstructed surface normal, and one can show that,
for these methods, this is necessary. It is not obvious that there could not be a reconstruction
method that achieved as accurate an approximation of surface normal for a much less dense
sample. It would be interesting either to formulate such a method, or to prove that no such
method exists.
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