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Abstract

We categorize in recursion-theoretic terms the expressivity of a number of first-order lan-
guages that allow quantification over regions in Euclidean space. Specifically we show the
following:

1. Let U be any class of closed regions in Euclidean space that includes all simple polygons.
Let C(x, y) be the relation, “Region x is connected to region y,” and let Convex(x) be the
property, “Region x is convex.” Then any relation over U that is analytical and invariant under
affine transformations is first-order definable in the structure 〈U , C, Convex〉.

2. Let U be as in (1), and let Closer(x, y, z) be the relation “Region x is closer to y than to
z.” Then any relation over U that is analytical and invariant under orthogonal transformations
is first-order definable in the structure 〈U , Closer〉.

3. Let U be the class of finite unions of intervals in the real line. Then any relation over
U that is analytical and invariant under linear transformations is first-order definable in the
structure 〈U , Closer〉.

4. If the class of regions is restricted to be polygons with rational vertices, then results
analogous to (1-3) hold, substituting “arithmetical relation” for “analytical relation”.

Keywords: Expressivity, spatial representation, first-order definability, analytical relation.

1 Introduction

One common approach to the study of qualitative spatial representations and reasoning is to use
a first-order language over a universe of spatial regions in 2- or 3-dimensional Euclidean space.
For example, Gotts [9] studies the first-order language with the single predicate C(x, y) (Region
x is connected to region y); Randell, Cui, and Cohn [18] study the first-order language with the
predicates C(x, y) and Conv(x) (Region x is convex); and Bennett et al. [2] study the first-order
language with the predicates C(x, y) and S(x) (Region x is a sphere). It is often argued that
by restricting the entities mentioned in the spatial language to be well-behaved, fully dimensional
regions and by excluding direct references to such other geometric entities as points, lines, surfaces,
angles, and so on, the resultant language will be better grounded philosophically, or more plausible
cognitively, or more useful representationally.

∗My thanks to Martin Davis, who pointed me toward Hinman [12] and the concept of analytical relations, and to
the reviewers, who made many helpful suggestions, especially pointing out the work of Schaefer and Stefankovic [19].
This research was supported in part by NSF grants #IIS-0097537 and #IIS-0534809

1



Schaefer and Stefankovic [19] have shown that the first-order language with the single predicate
C(x, y) over the domain of closed regular regions in Euclidean space is complete for analytical
relations. (Their theorem is actually stated in terms of the domain of closed curves, but it is
easily shown that the two theories have equal complexity.) That is, there is an encoding that
maps each integer and each set of integers into a tuple of regions in such a way that addition,
multiplication, and set membership correspond to relations over regions that can be defined as first-
order formulas over the relation C(x, y). This result characterizes the complexity of the language but
not its expressivity . For instance, it is not clear from this result whether a property like “Regions r
and s are homeomorphic” is expressible in this language, and indeed, as far as I know, the problem
is open.

Another limitation of the result is that it requires the use of regions that are “pathological”
in some respects. In particular, for the proof to work, it is necessary to include pairs of regions
whose boundaries intersect infinitely often (e.g. a region with the boundary y = x sin(1/x) and a
region with the boundary y = 0.). It is not known whether the theorem holds if the universe of
regions is restricted to polygons, for example, or to semi-algebraic regions. Certainly, the advocates
of mereology are generally unwilling to accept such regions as legitimate; indeed the existence of
such pathologies is often mentioned as a reason to reject conventional real analysis in favor of a
mereological approach.

In this problem we answer the question of expressivity for a number of structures that have
richer languages but allow much smaller universes of regions. (That is, as compared to the results
just cited, the new results of this paper use a richer language, permit a much more restricted universe,
and obtain stronger results.) Specifically, we prove the following:

1. Let U be any class of closed regions in Euclidean space of dimension at least 2, that includes
all simple polygons. Let C(x, y) be the relation, “Region x is connected to region y,” and let
Convex(x) be the property, “Region x is convex.” Then any relation over U that is analytical and
invariant under affine transformations is first-order definable in the structure 〈U , C, Convex〉. If U
is itself analytical and invariant under affine transformations, then the converse holds: that is, a
relation is first-order definable in 〈U , C, Convex〉 only if it is analytical and invariant under affine
transformations.

2. Let U be as in (1), and let Closer(x, y, z) be the relation “Region x is closer to y than to z.”
Then any relation over U that is analytical and invariant under orthogonal transformations is first-
order definable in the structure 〈U , Closer〉. If U is itself analytical and invariant under orthogonal
transformations, then the converse holds.

3. Let U be the class of finite unions of intervals in the real line. Then any relation over U that
is analytical and invariant under linear transformations is first-order definable in the structure 〈U ,
Closer〉. If U is itself analytical and invariant under linear transformations, then the converse holds.

4. If the class of regions is restricted to be polygons with rational vertices, then results analogous
to (1-3) hold, substituting “arithmetical relation” for “analytical relation”.

The class of analytical relations being an extremely broad one, the above results imply quite
directly that a whole host of familiar relations are definable in these languages. For example, it can
easily be shown that relations such as “Regions r and s are homeomorphic/diffeomorphic,” “Region
r is algebraic,” “Region r is a polygon with a prime number of vertices,” “The area of r is greater
than the area of s,” “The boundary of r has a fractal dimension of 1.5,” and so on are all analytical
relations and hence are all first-order definable in structures (1) and (2) above.

The paper proceeds as follows: In section 2, we review the definition of the class ∆1

ω of analytical
relations, and we present a number of non-geometric structures that are complete with respect to
the class. Sections 3-6 give the proofs of the above theorems. Section 7 gives some examples of
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analytical geometric relations. Section 8 reviews some related literature and section 9 suggests some
related open problems.

The theorems in this paper are, as far as I know, original here, but many parts of the proof
are previously known; they are reviewed here in order to make the paper somewhat self-contained.
Specifically: the results of section 2 are simple consequences of recursion theory and elementary
point-set topology. The results in section 3 combine results from [18], [16], and [6]. The one really
new technical innovation here is the geometric definition of integers (definitions 3.29-3.34).

Notational comment: We will use lower-case symbols, such as “x”, for variables, and symbols
starting with a upper-case letter, such as “C” or “PointOnBoundary” for relations. We will also
use standard mathematical notation for functions and relation such as x + y and x < y. We use
italicized lower case letters for variables over regions and in section 2 for variables over integers,
bold-face letters such as p for variables over points, barred letters such as r̄ for variables over real
numbers, and hatted letters such as ŝ for variables over infinite sequences. We follow the usual
rules of precedence on Boolean operators: in decreasing order of precedence ¬, ∧ and ∨, ⇒, ⇔, ≡
(definitional equivalence). The scope of a quantifier is to the end of the sentence, or as indicated
by brackets. Free variables are implicitly universally quantified, the scope being the entire sentence.
We will sometimes use semi-colons and doubled semi-colons instead of commas as separators, e.g.
“Plus(a;o, i; ;b;p, j; ; c; r,k)”. The purpose is just to increase legibility by grouping; logically, these
semi-colons mean the same as a comma. We will use letters in calligraphic font, such as L, or Greek
letters, for meta-level symbols.

The structure with domain U and signature α, β, γ . . . will be notated 〈U , α, β, γ . . .〉.

2 Analytical relations

We begin by reviewing some basic definitions and results from recursion theory that we will need.

Let SA and SB be two structures with domains UA and UB respectively. An encoding of SB in
SA is a mapping that associates each element of UB with a k-tuple of elements in UA in such a way
that each of the relations in the signature of SB corresponds to a first-order definable relation in SA.
There may be k-tuples over UA that do not encode any element of UB; if so, the property “a1 . . . ak

encodes an element of UB” must be first-order definable in SA. There may be multiple k-tuples over
UA that encode the same element of UB ; if so, the property “a1 . . . ak encodes the same element as
a′

1
. . . a′

k” must be first-order definable in SA. We thus arrive at the following definition:

Definition 1:1 Let SA and SB be structures with domains UA and UB . Let the relations R1 . . .Rq

be the signature of SB . (A k-place function in the signature of SB can be viewed as a k + 1 place
relation.) Let R0 be the equality relation over UB , {〈x, x〉 | x ∈ UB}. An encoding of SB in SA is
a k-place relation T ⊂ Uk

A and a surjection Γ from T onto UB such that for i = 0 . . . q, the inverse
image Γ−1(Ri) is first-order definable in SA. (Note that T itself is the projection of the inverse
image of the equality relation over UB, and thus first-order definable in SA.)

Let β(x1 . . . xq) be a first-order formula over SB , where x1 . . . xq are open in β. It is easily seen
that β can be translated into a formula α over SA as follows: replace every variable xi in β by the
k-variables yi,1 . . . yi,k, restricted by the formula in LA that defines T , and replace every non-logical
symbol or equality sign in β by the formula that defines it in LA. Then c1,1 . . . cq,k ∈ UA satisfy α
if and only if Γ(c1,1 . . . c1,k) . . . Γ(cq,1 . . . cq,k) satisfy β. In particular, for q = 0, α is true if and only
if β is true.

1This is somewhat less general than the definition in Hodges [13] p. 248, but it is simpler and it is sufficient for
our purposes here.
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Structure SB is (first-order) definable in SA if there exists an encoding of SB in SA. Structures
SA and SB are mutually definable if each is definable in the other. It is immediate that first-order
definability is transitive, and hence mutual definability is an equivalence relation.

A minor discrepancy between the above definition of “definability” and the actual encodings
that we will use in this paper should be noted. Definition 1 assumes that every element of UB is
encoded by a k-tuple of elements of UA where k is fixed, but our encodings will encode different
kinds of elements with tuples of different lengths. The point is somewhat important, because we
will be constructing encodings in which UA is a proper subset of UB , and in which the encoding
is the identity over UA, which requires that k = 1 on elements of UA and k > 1 on elements of
UB − UA. The discrepancy can be easily fixed in either of two ways. The more principled, but
more complicated, solution, is to define SB as a sorted structure, and allow different values of k on
different sorts. The kludgier but simpler solution is to “pad” out the encodings that are too short
so as to achieve a uniform length, and replace the condition that the function Γ is the identify over
elements UB with the condition that it is a projection onto the first element of the encoding tuple.
It makes no difference to the eventual theorems.

The class of analytical relations can be defined as follows: (This definition is adapted from
Hinman [12]; see especially section 3.5, pp. 114-124).

Definition 2: Let ω be the set of natural numbers and let ωω be the set of infinite sequences of
natural numbers (total functions from ω to ω.) For a sequence ŝ and number p let ŝ[p] be the pth
element of ŝ; thus [ ] is the two-place indexing function. Consider the structure S = 〈ω∪ωω,+, ·, [ ]〉.
A relation is analytical if it is first-order definable over S. The class of analytical relations is denoted
∆1

ω.

By Gödel’s theorem, any computable function can be expressed in the language over the natural
numbers with + and ·; hence the class of analytical relations includes all computable functions.
Likewise, it includes any function mapping sequences ŝ1 . . . ŝm to a sequence t̂ if each element of t̂
is a computable function of initial subsequences of the ŝi. (This is a sufficient condition, but by no
means a necessary one.)

Definition 3: A structure S is complete for the class of analytical relations if it is mutually definable
with the structure 〈ω ∪ ωω,+, ·, [ ]〉

Lemma 1: Let B ⊂ {0, 1}ω be the set of all infinite sequences of bits 0 and 1 with infinitely many
0’s. The structure 〈ω ∪ B,+, ·, [ ]〉 is mutually definable with 〈ω ∪ ωω,+, ·, [ ]〉

Proof: It is trivial that 〈B,+, ·, [ ]〉 is definable in 〈ω∪ωω,+, ·, [ ]〉 under the identity mapping. To
show the converse, we encode the sequence of natural numbers n1, n2 . . . as the bit string containing
n1 1’s followed by 0 followed by n2 1’s followed by 0, and so on. It is easily seen that the recovery
of the original sequence from the bit string is definable in 〈ω ∪ B,+, ·, [ ]〉.

Lemma 2: Let Bω be the set of all sequences of bitstrings. Extend the indexing function ŝ[p] to
map a sequence of bitstrings s and an integer index p to the pth bitstring in s. Then the structure
〈ω ∪ B ∪ Bω,+, ·, [ ]〉 is mutually definable with 〈ω ∪ B,+, ·, [ ]〉

Proof: Use dovetailing to encode the sequence of sequences ŝ0, ŝ1 . . . as the single sequence
ŝ0[0], ŝ0[1], ŝ1[0], ŝ0[2], ŝ1[1], ŝ2[0], . . .. The indexing function from a sequence of sequences, thus
encoded, to a sequence is defined in 〈ω ∪ B,+, ·, [ ]〉 as follows.

Index2(ŝ, i, t̂): ŝ[i] = t where s is the encoding of a sequence of sequences.
(2.1) Index2(ŝ, i, t̂) ≡ ∀j t̂[j] = ŝ[((i + j + 1)2 + (i − j) − 1)/2]

Lemma 3: Let “Integer(x̄)” be the relation over ℜ, “x̄ is an integer.” The structure 〈ℜ,+, ·, Integer〉
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is mutually definable with 〈ω ∪ B,+, ·, [ ]〉.

Proof: To define 〈ω ∪B,+, ·, [ ])〉 in 〈ℜ,+, ·, Integer〉, we encode an integer as the corresponding
real number, and a bit string b1, b2 . . . as the real number 0.b1b2 . . . in base 2. (Note that our
requirement that the bit string contain infinitely many 0’s means that we do not have to worry
about 0.011111 . . . being the same real number as 0.1000 . . . .) Integer plus and times map into real
plus and times. The extraction of the kth bit in the sequence corresponds to extraction of the kth
bit in the real number:

Floor(x̄, p): p = ⌊x̄⌋.
(2.2) Floor(x̄, p) ≡ Integer(p) ∧ p ≤ x̄ ∧ ∀q [Integer(q) ∧ q ≤ x̄] ⇒ q ≤ p.

KthBit(x̄, k, b): The kth bit of x is b.
(2.3) KthBit(x̄, k, b) ≡ Floor(x̄ · 2k, p) ∧ b = p mod 2.

Since 2, exponentiation, and mod are computable, they are definable in the language of plus
and times over the natural numbers.

To define 〈ℜ,+, ·, Integer〉, in 〈ω ∪B,+, ·, [ ]〉, we encode real number r̄ as a triple 〈s, i, b̂〉 where

the sign s is 0 if r̄ ≥ 0 and 1 otherwise; the integer part i = ⌊ |r̄| ⌋; and the bit-string b̂ is the
binary representation of |r̄| − i. To demonstrate the encoding, we will show how the sum of two
positive real numbers is defined in a formula over the corresponding bitstrings; the other definitions
are analogous.

PosLess(a, b, ĉ; d, e, f̂): The real 〈a, b, ĉ〉 is positive and less than the real 〈d, e, f̂〉.

(2.4) PosLess(a, b, ĉ; d, e, f̂) ≡
a = 0 ∧ d = 0 ∧
[b < e ∨

[b = e ∧ ∃q ĉ[q] = 0 ∧ f̂ [q] = 1 ∧ ∀p p < q⇒ĉ[p] = f̂ [p] ]

PosLeq(a, b, ĉ; d, e, f̂): The real 〈a, b, ĉ〉 is positive and less than or equal to the real

〈d, e, f̂〉.

(2.5) PosLeq(a, b, ĉ; d, e, f̂) ≡ ¬PosLess(d, e, f̂ ; a, b, ĉ).

Bits2Int(a, b, ĉ, k; p): p = ⌊r̄ · 2k⌋ where r̄ ≥ 0 is encoded as 〈a, b, c〉.

(2.6) Bits2Int(a, b, ĉ, k; p) ≡ a = 0 ∧ p = b · 2k +
∑k

i=1
ĉ[i] · 2k−i.

Since the right-hand side of the above equation is computable using only k bits of r̄, it
is definable in 〈ω ∪ B,+, ·, [ ]〉.

PlusLB/PlusUB(a, b, ĉ; d, e, f̂ ; g, h, i; k̂): Let real numbers x̄, ȳ, z̄ be represented by 〈a, b, ĉ〉,

〈d, e, f̂〉, 〈g, h, î〉, respectively. Then z̄ is a lower/upper bound for x̄ + ȳ as determined
by a calculation to k bits.

(2.7) PlusLB(a, b, ĉ; d, e, f̂ ; g, h, î; k) ≡

∃p,q Bits2Int(a, b, ĉ, k; p) ∧ Bits2Int(d, e, f̂ , k; q) ∧ Bits2Int(g, h, î, k; p + q).

(2.8) PlusUB(a, b, ĉ; d, e, f̂ ; g, h, î; k) ≡

∃p,q Bits2Int(a, b, ĉ, k; p) ∧ Bits2Int(d, e, f̂ , k; q) ∧ Bits2Int(g, h, î, k; p + q + 2).

PosPlus(a, b, ĉ; d, e, f̂ ; g, h, î): Let positive real numbers x̄, ȳ, z̄ be represented by 〈a, b, ĉ〉,

〈d, e, f̂〉, 〈g, h, î〉, respectively. Then z̄ = x̄ + ȳ.

(2.9) PosPlus(a, b, ĉ; d, e, f̂ ; g, h, î) ≡
∀k ∃m,n,p̂,q,r,ŝ

PlusUB(a, b, ĉ; d, e, f̂ ;m,n, p̂; k) ∧ PlusUB(a, b, ĉ; d, e, f̂ ; q, r, ŝ; k) ∧
PosLeq(m,n, p̂; g, h, î) ∧ PosLeq(g, h, î; q, r, ŝ)

5



Lemma 4: Let ℜω be the set of infinite sequences of real numbers. Define the function ŝ[p] to
be the pth element if s is a sequence and p is an integer and 0 otherwise. Then the structure
〈ℜ ∪ ℜω,+, ·, [ ], Integer〉 can be defined in the structure 〈ℜ,+, ·, Integer〉.

Proof: A sequence of real numbers x̄0, x̄1 . . . is encoded by:

• Using lemma 3, encode each x̄i as a triple ai, bi, ĉi.

• Using lemma 3, encode the bit string a0, a1 . . . (with associated sign and integer part equal to
0) as a real number.

• Using lemma 1, encode the integer sequence b0, b1 . . . as a bit string. Using Lemma 3, encode
this bit string as a real number.

• Using lemma 2, dovetail the bit strings ĉ0, ĉ1 . . . into a single bit string. Using lemma 3, encode
this bit string as a real number.

Thus we have encoded an infinite sequence of real numbers as three real numbers. Defining
the indexing function ŝ[p] from a sequence of reals ŝ encoded as a triple 〈a, b, ĉ〉 and an integer p to
the real ŝ[p] is just a question of undoing this encoding using the predicates that we have defined.
Note that the predicate for translating a bitstring into a sequence of natural numbers, defined in
〈ω ∪ ωω,+, ·, [ ]〉 and the dovetailing predicate “Index2” must be translated into 〈ℜ,+, ·, Integer〉,
but we have shown that that can be done.

A trivial corollary is that it is possible to encode sequences of pairs of real numbers; the sequence
〈x̄[0], ȳ[0]〉, 〈x̄[1], ȳ[1]〉 . . . can be encoded as the sequence x̄[0], ȳ[0], x̄[1], ȳ[1] . . .

PairIndex(ŝ, k, x̄, ȳ) — The pair 〈x̄, ȳ〉 is the kth pair in the sequence ŝ of real numbers.
(2.10) PairIndex(ŝ, k, x̄, ȳ) ≡ x̄ = ŝ[k + k] ∧ ȳ = ŝ[k + k + 1].

3 The Language of Connection and Convexity

We now turn to the main point of this paper; establishing the expressivity of a few small first-order
languages over a universe of spatial regions. We begin with the structure containing the two relations
“Convex(x)” (region x is convex) and “C(x, y)” (regions x and y have at least one point in common).
To simplify the exposition, in this section and section 4 we will develop our theory over regions in
the two-dimensional plane, but it is straightforward to extend the results to higher-dimensional
Euclidean space.

In this section and the next, let U be a collection of non-empty closed regions in the plane,
such that U contains every solid simple polygon. A region is regular if it is non-empty and equal
to the closure of its interior. The boundary of region R is the difference Closure(R)−Interior(R). A
polygon is a bounded, regular region whose boundary is the union of a finite set of line segments. A
polygon is simple if it is homeomorphic to a closed disk (equivalently its boundary is a simple closed
curve).

We emphasize that the only constraints on U are that all the regions in U are closed and that
all simple solid polygons are in U . For all closed regions that are not simple solid polygons — curved
regions, regions with holes, disconnected regions, pathological regions — you can choose to include
or exclude any that you wish. The object of this level of generality is so that the theorem will cover
just about any desired notion of what is a “well-behaved” region. However, it does mean that one
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B

A

A is the quadrilateral; B is the union of the two disks.

Any polygon connected to A overlaps B.

Figure 1: An anomaly in a strange universe of regions.

has to be more careful with definitions and rely less on intuition than usual. For example, in many
spatial languages over regions, one can assume that if r is a region, then there exist regions that are
proper subsets of r. But that may not be true in our universe; we can, for example, define U to be
the set of all solid polygons union the set of all lines of length 1. Another example: in most standard
universes, if a ⊂ b and a meets the boundary of b (TPP(a, b)) then a is connected to some region
outside b. But consider the universe U consisting of all polygons together with a region b that is the
union of two circles that are tangent at the origin. Let a ⊂ b be a region that meets the boundary of
b just at the origin. Then there is no region c ∈ U that is outside b and meets a, because no polygon
can squeeze its way into the cusp of the complement of b at the origin (Figure 1).

(Note that just proving Theorem 1 over the smallest universe — the set of all simple solid
polynomials — would not suffice to prove the more general result, because a structure with a
larger universe may be less expressive. For example, the theory with addition and multiplication is
undecidable over the integers but decidable over the reals.)

We begin by defining some basic topological relations:

P(x, y): Region x is a subset of region y.
(3.1) P(x, y) ≡ ∀z C(z, x) ⇒ C(z, y).

PP(x, y): Region x is a proper subset of region y.
(3.2) PP(x, y) ≡ P(x, y) ∧ ¬P(y, x).

BetweenCH(a, b, c): Region b lies in the convex hull of a ∪ c.
(3.3) BetweenCH(a, b, c) ≡

∀x [Convex(x) ∧ P(a, x) ∧ P(c, x)] ⇒ P(b, x).

ConvexSolid(x): x is a convex region with non-empty interior (i.e. not a single point or
line segment) if it contains a, b, c none of which is between the other.
(3.4) ConvexSolid(x) ≡

Convex(x) ∧
∃a,b,c P(a, x) ∧ P(b, x) ∧ P(c, x) ∧ ¬C(a, b) ∧ ¬C(b, c) ∧ ¬C(a, c) ∧

¬BetweenCH(a, b, c) ∧ ¬BetweenCH(b, c, a) ∧ ¬BetweenCH(c, a, b).

Note that definition 3.4 is correct if a, b, c are restricted to being polygons, or if they are
allowed to be arbitrary point sets, or anything in between. Note also that every region
satisfying this predicate is regular.

(3.5) Union(p, q, r): r = p ∪ q.
Union(p, q, r) ≡ ∀x C(x, r) ⇔ C(x, p) ∨ C(x, q).

Conn(r): Region r is connected.
(3.6) Conn(r) ≡ ∀p,q Union(p, q, r) ⇒ C(p, q)
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O(x, y): x and y overlap; that is, x ∩ y has a non-empty interior.
(3.7) O(x, y) ≡ ∃z ConvexSolid(z) ∧ P(z, x) ∧ P(z, y).

EC(r, s): Regions r and s are externally connected.
(3.8) EC(r, s) ≡ C(r, s) ∧ ¬O(r, s).

We next show that a point p can be encoded in terms of two convex solids a, b that meet only
at p.

Lemma 5: If a, b are convex solids and points p 6= q are both in a ∩ b, then there exist polygons
c, d such that p ∈ c ⊂ a, q ∈ d ⊂ b, and c ∩ d = ∅.

The proof is immediate. Note that the reason we require that c and d be polygons is that these
are the only kinds of regions that are required to be in U , and the reason a and b are required to be
convex solids is that the consequence is not true without that.

Lemma 6 (Adapted from Schaefer and Stefankovic [19]): If a, b are convex solids such that C(a, b),
then a and b meet in a single point if and only if the following holds: for all regions c, d in U , if
c ⊂ a, d ⊂ b, C(c, b), and C(d, a) then C(c, d).

Proof: The implication left to right is trivial, and the implication right to left is just the contra-
positive of lemma 5.

Using lemma 6, we can define the property of regions a, b being convex solid regions that meet
only at a single point; and we can therefore use such a pair as the encoding of a point.

IsPoint(a, b): Regions a and b encode a point, as above.
(3.9) IsPoint(a, b) ≡

ConvexSolid(a) ∧ ConvexSolid(b) ∧
∀c,d [P(c, a) ∧ P(d, b) ∧ C(c, b) ∧ C(d, a)] ⇒ C(c, d).

We now complete the encoding by showing how the identity relation on points and basic relations
between points and regions can be defined: Let a, b meet at the single point p and let c, d meet at
the single point q. Then p = q if and only if the following holds: For every regions w, x, y, z, if
w ⊂ a, x ⊂ b, y ⊂ c, z ⊂ d, C(w, x), and C(y, z) then C(w, y).

SamePoint(a, b; c, d): Point 〈a, b〉 is the same as point 〈c, d〉.
(3.10) SamePoint(a, b; c, d) ≡

IsPoint(a, b) ∧ IsPoint(c, d) ∧
[∀w,x,y,z P(w, a) ∧ P(x, b) ∧ P(y, c) ∧ P(z, d) ∧ C(w, x) ∧ C(y, z) ⇒ C(w, y)].

ConvexNTPP(a, b): a and b are convex regions, and a ⊂Interior(b).
(3.11) ConvexNTPP(a, b) ≡

Convex(a) ∧ Convex(b) ∧ PP(a, b) ∧
∀c [ConvexSolid(c) ∧ C(c, a)] ⇒ O(c, b).

InPt(a, b; c): Point 〈a, b〉 is in region c.
(3.12) InPt(a, b; c) ≡ ∀d,e SamePoint(d, e; a, b) ⇒ C(d, c).

IntPt(a, b; c): Point 〈a, b〉 ∈Interior(c).
(3.13) IntPoint(a, b; c) ≡
∃d,e,f,g SamePoint(d, e; a, b) ∧ P(d, f) ∧ P(e, f) ∧ ConvexNTPP(f, g) ∧ P(g, c).

BdPt(a, b; c): Point 〈a, b〉 ∈Boundary(c).
(3.14) BdPt(a, b, c) ≡ InPt(a, b; c) ∧ ¬IntPt(a, b; c).

Having defined points, it will simplify the exposition if we directly include them in the structure,
rather than always having to refer to them as pairs of convex solids. Let P be the class of points.

8



We extend the universe under consideration to be U ∪ P and add the relations InPt, and BdPt; and
and we note that we have proven that:

Lemma 7: The stucture 〈U ∪ P, C,Convex,InPt,BdPt 〉 is definable in 〈U , C,Convex 〉 under a
encoding which is the identity over all of U .

Continuing on in this new enriched language, we now turn to relations in affine geometry. Here
we are following [16] and [6] though with some differences; [16] includes half-planes as regions, which
simplified some of the definitions, and [6] works in a constraint language, which is substantially
less expressive, and therefore requires more convoluted definitions. We will use bold-face letters to
indicate variables with sort “point”.

Collinear(p,q, r): Points p,q, r are collinear if they lie on the boundaries of regions a
and b which are convex and EC.
(3.15) Collinear(p,q, r) ≡

∃a,b EC(a, b) ∧ Convex(a) ∧ Convex(b) ∧
BdPt(p, a) ∧ BdPt(p, b) ∧ BdPt(q, a) ∧ BdPt(q, b) ∧ BdPt(r, a) ∧ BdPt(r, b).

Order(p,q, r): Point q lies on the line from p to r, strictly between them.
(3.16) Order(p,q, r) ≡

Collinear(p,q, r) ∧
∃a Convex(a) ∧ InPt(p, a) ∧ InPt(q, a) ∧ ¬InPt(r, a) ∧
∃b Convex(b) ∧ InPt(r, b) ∧ InPt(q, b) ∧ ¬InPt(p, b).

Parallel(p,q, r, s): The line from p to q is parallel (and unequal) to the line from r to s.
(3.17) Parallel(p,q, r, s) ≡ ¬∃z Collinear(z,p,q) ∧ Collinear(z, r, s)

Parallelogram(p,q, r, s): Points p,q, r, s form a parallelogram (in that order).
(3.18) Parallelogram(p,q, r, s) ≡ Parallel(p,q, s, r) ∧ Parallel(p, s,q, r).

EqualVec(p,q; r, s): Vectors ~pq = ~rs.
(3.19) EqualVec(p,q; r, s) ≡

[(p = q) ∧ (r = s)] ∨
∃w,x Parallelogram(p,q,w,x) ∧ Parallelogram(w,x, r, s).

Translate(a,p,q, b): Translating region a by vector ~pq gives region b.
(3.20) Translate(a,p,q, b) ≡

∀x,y EqualVec(p,q;x,y) ⇒ [InPt(x, a) ⇔ InPt(y, b)].

VecPlus(a,b; c,d; e, f): ~ab + ~cd = ~ef .
(3.21) VecPlus(a,b; c,d; e, f) ≡ ∃g EqualVec(b,g; c,d) ∧ EqualVec(a,g; e, f)

AfCoorSys(o, i, j) Points o, i, j form an affine coordinate system if they are not collinear.
Point o is the origin, and i and j are the unit points on the x- and y-axes.

(3.22) AfCoorSys(o, i, j) ≡ ¬Collinear(o, i, j).

AfCoors(p,x,y;o, i, j): Points p has coordinates x and y in coordinate systems o, i, j.
(Figure 2).
(3.23) AfCoors(p,x,y;o, i, j) ≡

AfCoorSys(o, i, j) ∧ Collinear(o, i,x) ∧ Collinear(o, j,y) ∧ VecPlus(o,x;o,y;o,p).

Ratio(o, i,x, j,y): o, i, j are not collinear and |ox|/|oi| = |oy|/|oj| (Figure 3).
(3.24) Ratio(o, i,x, j,y) ≡

AfCoorSys(o, i, j) ∧
∃q,p AfCoors(p, i, j;o, i, j) ∧ AfCoors(q,x,y;o, i, j) ∧ Collinear(o,p,q).

At this point, we can define real arithmetic. A real number r̄ is encoded as a triple of collinear
points 〈p;o, i〉, where r̄ is the coordinate of p on the o, i axis. We use vector addition to define real
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addition and the “Ratio” predicate just defined both to define multiplication and to identify the
same real number in two different coordinate systems.

IsReal(p;o, i): p represents a real number in axis o, i.
(3.25) IsReal(p;o, i) ≡ Collinear(p,o, i) ∧ o 6= i.

SameReal(p;o, i; ;q;u,w): 〈q : u,w〉 represents the same real number as 〈p;o, i〉.
(3.26) SameReal(p;o, i; ;q;u,w) ≡

∃j,y,k,m,z EqualVec(o, j;u,w) ∧ EqualVec(o,y;u,q) ∧
Ratio(o, i,p,k,m) ∧ Ratio(o, j,y,k,m).

Plus(p;o, i; ;q;u, j; ; r;v,k): 〈p;o, i〉 + 〈q;u, j〉 = 〈r;v,k〉.
(3.27) Plus(p;o, i; ;q;u, j; ; r;v,k) ≡

∃x,y SameReal(x;o, i; ;q;u, j) ∧ SameReal(y;o, i; ; r,v,k) ∧ VecPlus(o,p;o,x;o,y).

Times(p;o, i; ;q;u, j; ; r;v,k): 〈p;o, i〉 · 〈q;u, j〉 = 〈r;v,k.
(3.28) Times(p;o, i; ;q;u, j; ; r;v,k) ≡

∃x,y SameReal(x;o, i; ;q;u, j) ∧ SameReal(y;o, i; ; r,v,k) ∧
[x = o) ∧ y = o)] ∨ SameReal(p;o, i; ;y;o,x).

(3.29) NonNeg(p;o, i) ≡ Order(o, i,p) ∨ p = i) ∨ Order(o,p, i).

(3.30) Leq(p;o, i; ;q;u, j) ≡ ∃r NonNeg(r;o, i) ∧ Plus(p;o, i; ; r;o, i; ;q;u, j).

We can now add real numbers to our universe and add to our language the functions x̄ + ȳ,
x̄ · ȳ; and the predicates x̄ ≤ ȳ, and Coors(p, x̄, ȳ;o, i, j) (The coordinates of p in frame o, i, j are
x̄, ȳ). We will assume other standard numeric constants and functions (0, 1, minus, absolute value,
etc.) when we need them.
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Finally, to represent an integer, we use a sawtooth region with regular teeth. (Figure 4).

Tooth(t;o, i, j): Region t is a single tooth in coordinate system o, i, j.
(3.31) Tooth(t;o, i, j) ≡

∀p InPt(p,r) ⇔
∃x̄,ȳ AfCoors(p, x̄, ȳ;o, i, j) ∧

0 ≤ x̄ + 1 ∧ x̄ ≤ 1 ∧ ȳ ≤ 2 ∧ 0 ≤ x̄ + ȳ ∧ x̄ ≤ ȳ.

LowerTriangle(z;o, i, j): z is the triangle below the tooth.
(3.32) LowerTriangle(z;o, i, j) ≡

∀p InPt(p, z) ⇔
∃x̄,ȳ AfCoors(p, x̄, ȳ;o, i, j) ∧ 0 ≤ ȳ ∧ ȳ ≤ x̄ ∧ x̄ + ȳ ≤ 2.

SawTooth(s;o, i, j) — s is a sawtooth region w.r.t o, i, j if (a) s is connected; (b) every
point in s is in a piece of s that is a translation of the tooth in the x direction; and (c)
every such tooth-shaped piece of s borders translations of the lower triangle that are not
in s.

(3.33) SawTooth(s,o, i, j) ≡
Conn(s) ∧
∀p InPt(p, s) ⇒

∃t,z,u,v,w,a,b Tooth(t;o, i, j) ∧ LowerTriangle(z;o, i, j) ∧
Collinear(o, i,a) ∧ Translation(t,o,a, u) ∧ P(u, s) ∧ In(p,u) ∧
Translation(z,o,a, v) ∧ EC(v, s) ∧
Plus(b;o, i; ; i;o, i; ;a;o, i) ∧ Translation(z,o,b, w) ∧ EC(w, s).

Even(r̄): The even numbers are where the sawtooth meets the x-axis.
(3.34) Even(r̄) ≡

∃s,o,i,j,p Sawtooth(s,o, i, j) ∧ InPt(p, s) ∧ AfCoor(p, r̄, 0;o, i, j).

Natural(r̄): The natural numbers are the non-negative evens divided by two.
(3.35) Natural(r̄) ≡ ∃ē Even(ē) ∧ 2 · r̄ = ē ∧ 0 ≤ r̄.

(3.36) Integer(r̄) ≡ ∃s̄ Natural(s̄) ∧ [r̄ = s̄ ∨ r̄ = −s̄].

Putting all this together with lemma 4, which states that an infinite sequence of reals and the
indexing function can be encoded in the structure 〈ℜ,+, ·,Integer〉, we conclude:

Lemma 8: The structure 〈U ∪P ∪ℜ∪ℜω, C,Convex,InPt,BdPt,Coors,+,·,Integer, [ ]) 〉 is definable
in 〈U ,C,Convex〉 under an encoding which is the identity over all of U .

Next we show that infinite sequences of points, the indexing function on such sequences, and
the closure function mapping an infinite sequence of points to a region, can all be represented. We
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will encode an infinite sequence of points as infinite sequences of pairs of reals, together with a
coordinate system, where the sequences are the x- and y-coordinates respectively of the points.

PtSeqIndex(ĉ,o, i, j; ; k̄,p): The point p is the kth element of the point sequence repre-
sented by the infinite sequence ĉ of pairs of reals.
(3.37) PtSeqIndex(ĉ, k̄,p;o, i, j) ≡ ∃x̄,ȳ PairIndex(ĉ, k̄, x̄, ȳ) ∧ Coors(p, x̄, ȳ;o, i, j).

PtInClosure(p, ĉ;o, i, j): Point p is in the closure of point sequence 〈ĉ,o, i, j〉.
(3.38) PtInClosure(p, ĉ;o, i, j) ≡

∃ū,v̄ Coors(p, ū, v̄;o, i, j) ∧
∀ē>0 ∃k̄,x̄,ȳ PairIndex(ĉ, k̄, x̄, ȳ) ∧ |(ū − x̄)| + |(v̄ − ȳ)| < ē.

RegClosure(ĉ, r;o, i, j): The closure of the sequence of points 〈c,o, i, j〉 is region r ∈ U .
(3.39) RegClosure(ĉ, r;o, i, j) ≡ ∀p InPt(p, r) ⇔ PtInClosure(p, ĉ;o, i, j).

Lemma 9: The structure 〈U ∪ P ∪ Pω ∪ ℜ ∪ ℜω, C,Convex,InPt,BdPt,Coors,+,·,Integer, [ ],
PtInClosure, RegClosure 〉 is definable in 〈U ,C,Convex〉 under a mapping which is the identity over
all of U .

We now define an analytical relation over the set of closed regions:2

Definition 4: Let C be a coordinate system (i.e. a one-to-one mapping from points in the plane onto
pairs of real numbers). Let D be the set of closed regions in the plane. For any pair of real numbers
〈x̄, ȳ〉, let At(x̄, ȳ, C) be the point in the plane with coordinates 〈x̄, ȳ〉 in C. For any sequence of real
numbers q̂ ∈ ℜω let Closure(q̂, C) be the closure of the set of points { At(q̂[1], q̂[2], C), At(q̂[3], q̂[4], C)
. . . }. An m-place relation Φ(r1 . . . rm) over D is analytical with respect to C if the relation

Θ(q̂1 . . . q̂m) ≡ Φ(Closure(q̂1, C) . . . Closure(q̂m, C))
is an analytic relation over the m sequences of real numbers q̂1 . . . q̂m; that is, the relation Θ is
definable in the structure 〈ℜ,ℜω,+, ·, Integer, [ ]〉).

Theorem 1: Let U be a universe of closed regions in the plane that includes all simple polygons.
Let Φ(r1 . . . rm) be a relation over regions in U that is analytical with respect to some coordinate
system C and that is invariant under affine transformation. Then Φ is definable in 〈U ,C,Convex〉.

Proof: Suppose that Φ is analytical with respect to coordinate system C and invariant under affine
transformations. Let points O,I,J be respectively the origin, the point 〈1, 0〉 and the point 〈0, 1〉 in
the coordinate system C. Thus, RegClosure(q̂, r,O, I,J) holds over U if and only if Closure(q̂, C)=r
and r ∈ U . By definition 4, the relation Θ(q̂1 . . . q̂m) ≡ Φ(Closure(q̂1, C) . . . Closure(q̂m, C)) is an an-
alytical function of the sequences of real numbers q̂1 . . . q̂m. By definition 1 and lemma 4, this means
that there exists a formula α(q̂1 . . . q̂m) that defines Φ over the structure 〈ℜ ∪ ℜω,+, ·, Integer, [ ]〉.
Since Φ is invariant under affine transformations, it follows that Θ defines the same relation over se-
quences of coordinates regardless of the choice of affine coordinate system. Hence, for r1 . . . rm ∈ U ,
the relation Φ(r1 . . . rm) holds if and only if

∃q̂1...q̂m,o,i,j RegClosure(q̂1, r1,o, i, j) ∧ . . . RegClosure(q̂m, rm,o, i, j) ∧ α(q̂1 . . . q̂m).
As this last formula is a first-order formula over the structure
〈U ∪ P ∪ Pω ∪ ℜ ∪ ℜω, C,Convex,InPt,BdPt,Coors,+,·,Integer, [ ], PtInClosure, RegClosure 〉,
by lemma 9 there exists a first-order formula over the structure 〈U ,C,Convex〉 that defines the same
relation over r1 . . . rm.

In contrast it may be noted that, working forward from the construction in [19], it is possible to
prove a lemma that is almost, but not quite, analogous to lemma 9 for the structure 〈U ,C〉, if U is the
set of all regular regions. The result there, described in section 1 of this paper, shows that integers,

2As far as I know, this terminology and definition is original here. It seems to me the natural extension of the
notion of an analytical relation to the space of geometric regions, though one could certainly wish for a more elegant
definition.
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sequences of integers, addition, and multiplication, can be encoded in 〈U ,C〉; one can continue on,
as we have done here, and encode reals as bitstrings, points as pairs of reals, sequences of points
as sequences of reals, and, as in lemma 11 (section 7) one may further encode closed regions as the
closure of sequences of points. However, the difference is that this encoding is not the identity over
the set of regions U and that, since apparently there is no way to define a coordinate system, there
is no way to reconnect the closure of the sequence of points back to the starting region. Thus, one
can define the relation “RegClosure(q̂, r)” between a series of reals q̂ and an encoding of a region r,
but not between q̂ and the original region. Hence the proof of the analogue of Theorem 1 breaks
down at the very last step; there is an encoding of Θ in 〈U ,C〉, but it does not define the relation
Φ; it defines a different relation. This is why the result of (Schaefer and Stefankovic, 2004) is a
complexity result but not an expressivity result.

Theorem 1 can be turned into a biconditional, if U is (very reasonably) required to be itself an
analytical class, closed under affine transformation.

Lemma 10: The relations C(x, y) and Convex(x), over the space of closed regions, are analytical
(as defined in definition 4).

Proof: Let C be a coordinate system. For any x̄, ȳ, the relation InClosure(q̂, x̄, ȳ) (coordinate pair
〈x̄, ȳ〉 is in the closure of q̂) can be defined over the structure 〈ℜ,ℜω,+, ·, Integer, [ ]〉 by the following
formula:

(3.40) ∀ē>0 ∃k̄ Integer(k̄) ∧ |q̂[2k] − x| + |q̂[2k + 1] − y| < ē.

The relation over q̂, r̂, C(Closure(q̂, C), Closure(r̂, C)) can then be defined as
∃x̄,ȳ InClosure(q̂, x̄, ȳ) ∧ InClosure(r̂, x̄, ȳ).

The property of q̂, Convex(Closure(q̂, C)) can be defined by the formula,
∀ū,v̄,x̄,ȳ,t̄ InClosure(q̂, ū, v̄) ∧ InClosure(q̂, x̄, ȳ) ∧ 0 < t < 1 ⇒

InClosure(q̂, t · ū + (1 − t) · x̄, t · v̄ + (1 − t) · ȳ).

Corollary 2: Let U and Φ be as in Theorem 1. Assume further that U is an analytic class of regions
and is closed under affine transformations. Then Φ is first-order definable in 〈U ,C,Convex〉 if and
only if Φ is analytical and invariant under affine transformations.

Proof: The implication right to left is Theorem 1. Since C(x, y), Convex(x), and U are analytical
and invariable under affine transformation, it is trivial that any relation defined by a first-order
formula over them must be analytical.

4 Language of Distance

In this section we deal with the structure over a domain U of regions with the single three-place
relation Closer(x, y, z), region x is closer to region y than it is to region z. As in section 3 we will
allow the universe U to be any collection of closed regions that contains all simple solid polygons.
Our approach will be to show that the structure 〈U ,C,Convex〉 can be defined in 〈U ,Closer〉, but
that in the latter structure one can additionally constrain a coordinate system to be orthogonal.

C(x, y): Regions x and y are connected if nothing is closer to y than x.
(4.1) C(x, y) ≡ ¬∃z Closer(x, z, y).

Again, we can use definitions 3.1 and 3.2 to define P(x, y) and PP(x, y) in terms of C.

AllCloser(a, b, c): All of region b is closer to a than c is to a.
(4.2) AllCloser(a, b, c) ≡ ∀z C(z, b) ⇒ Closer(a, z, c)
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InInterior(a, b) — Region a is in the interior of b if every region c that is entirely suffi-
ciently close to a is part of b.
(4.3) InInterior(a, b) ≡ ∃d ¬C(d, a) ∧ ∀c AllCloser(a, c, d) ⇒ P(c, b).

Regular(b): b is regular if, for every region c that is connected to b there exist regions a
in the interior of b that are arbitrarily close to c.
(4.4) Regular(b) ≡

∀c,d [C(c, b) ∧ ¬C(c, d)] ⇒ ∃a Closer(c, a, d) ∧ InInterior(a, b).

Having defined regular regions, we can now define points as in definitions 3.9-3.14, replacing
the predicate “ConvexSolid” throughout by “Regular”. As in section 3, we augment the universe U
to include points, indicated with bold-face variables, and add the predicate “InPt”.

PtCloser(p,q, r): Point p is closer to q than to r.
(4.5) PtCloser(p,q, r) ≡

∀a,b,c [Regular(a) ∧ InPt(p, a) ∧ Regular(b) ∧ InPt(q, b) ∧
Regular(c) ∧ InPt(r, c)] ⇒

∃d,e,f P(d, a) ∧ P(e, b) ∧ P(f, c) ∧ Closer(d, e, f).

Order(p,q, r): Points p,q, r lie in that order (non-strictly) on a line, if no point z is
closer to both p and r than q.
(4.5) Order(p,q, r) ≡ ¬∃z PtCloser(p, z,q) ∧ PtCloser(r, z,q).

Convex(a): a is convex.
(4.6) Convex(a) ≡ ∀p,q,r [InPt(p, a) ∧ InPt(r, a) ∧ Order(p,q, r)] ⇒ InPt(q, a)

Having defined C and Convex in 〈U ,Closer〉, we can now import all the results of section 3. All
that remains to be done is to show that one can define orthogonal coordinate systems, not just affine
coordinate systems.

EqPtDist(p,q, r): q and r are equidistant from p.
(4.7) EqPtDist(p,q, r) ≡ ¬PtCloser(p,q, r) ∧ ¬PtCloser(p, r,q).

OrthCoordSys(o, i, j): Points o, i, j defines an orthogonal coordinate system (Figure 5).
(4.8) OrthCoordSys(o, i, j) ≡

AfCoordSys(o, i, j) ∧ EqPtDist(o, i, j) ∧ ∃m EqualVec(m,o;o, i) ∧ EqPtDist(j, i,m).

Theorem 3: Let U be a universe of closed regions in the plane that includes all simple polygons. Let
Φ(r1 . . . rm) be a relation over regions in U that is analytical with respect to some coordinate system
C and that is invariant under orthogonal transformations. Then Φ is definable in 〈U ,C,Convex〉.

Proof: Exactly analogous to the proof of Theorem 1.
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Corollary 4: Let U and Φ be as in Theorem 3. Assume further that U is an analytical class of
regions and is closed under orthogonal transformations. Then Φ is first-order definable in 〈U ,Closer〉
if and only if Φ is analytical and invariant under orthogonal transformations.

Proof: Exactly analogous to the proof of Theorem 2.

5 One Dimensional Geometry

The constructions in previous sections work identically in Euclidean space of any dimension k ≥ 2.
The only changes that need to be made is that a coordinate system is specified by k +1 points; that
a point has k coordinates; and that “polygon” in the statement of the theorems must be replaced by
“k-dimensional polyhedron”, defined as a bounded, regular k-dimensional region whose boundary is
the union of finitely many faces, each of which is a subset of a k − 1 dimensional hyperplane.

The geometry of the one-dimensional line, however, is substantially different; many of the
definitions can be made much simpler, but, more importantly, some key definitions no longer work.
In particular, definitions 3.19 of “EqualVec”, in terms of parallelograms, and 3.24 of “Ratio”, in terms
of similar parallelograms, cannot be made to work in one dimension. The predicate “Convex(x)” is
useless in one-dimension; a convex region is just a connected interval. Finally, in one-dimensional
geometry, we cannot do without disconnected regions; if the universe of regions is restricted to
connected regions (i.e. intervals), then most reasonable predicates, such as “Closer” can be computed
just in terms of sums and differences over the coordinates of the endpoints; so the theory amounts to
the theory of the real numbers with addition, which is an inexpressive and easily decidable theory.

Define a simple interval in the real line to be a closed bounded interval that is not a single point,
and define a simple set to be the union of finitely many simple intervals. Let U be any universe
of closed sets in the real line that includes all simple sets. Let Closer(x, y, z) be the relation over
regions, “x is closer to y than to z.” We will show that any analytical relation over U that is invariant
under linear transformation is first-order definable over 〈U ,Closer〉.

Begin by defining the relation C(x, y) as in definition 4.1, and then defining the relations P(x, y),
PP(x, y), Union(x, y, z), Conn(x) as in definitions 3.1, 3.2, 3.4, 3.5.

Interval(x): x is a simple interval if it is a connected set with at least two points.
(5.1) Interval(x) ≡ Conn(x) ∧ ∃y,z P(y, x) ∧ P(z, x) ∧ ¬C(y, z).

O(x, y): x and y overlap.
(5.2) O(x, y) ≡ ∃z Interval(z) ∧ P(z, x) ∧ P(z, y).

EC(x, y): x and y are externally connected.
(5.3) EC(x, y) ≡ C(x, y) ∧ ¬O(x, y).

TPPInt(x, y): Interval x is a tangential partial part of interval y.
(5.4) TPPInt(x, y) ≡

Interval(x) ∧ Interval(y) ∧ PP(x, y) ∧ ∃z EC(z, x) ∧ EC(z, y).

Component(x, y): x is a connected component of y if it is a maximal connected subset
of y.
(5.5) Component(x, y) ≡ P(x, y) ∧ Conn(x) ∧ ¬∃z PP(x, z) ∧ P(z, y) ∧ Conn(z).

SameDist(a, b, c): Region a is equidistant from b and c.
(5.6) SameDist(a, b, c) ≡ ¬Closer(a, b, c) ∧ ¬Closer(a, c, b).

Concentric1(i, j): Interval i is inside interval j and has the same midpoint if i is equidis-
tant from every region EC to j. (Figure 6.)
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Figure 7: Two intervals have the same lengths

(5.7) Concentric1(i, j) ≡
Interval(i) ∧ Interval(j) ∧ P(i, j) ∧ ∀x,y [EC(x, j) ∧ EC(y, j)] ⇒ SameDist(i, x, y).

SameLengthDC(i, j): Intervals i and j are disconnected and have the same length (Fig-
ure 7).
(5.8) SameLengthDC(i, j) ≡

Interval(i) ∧ Interval(j) ∧ ¬C(i, j) ∧
∃a,b Concentric1(a, b) ∧ EC(i, a) ∧ EC(j, a) ∧ TPPInt(i, b) ∧ TPPInt(j, b).

SameLength(i, j): Intervals i and j have the same length.
(5.9) SameLength(i, j) ≡ ∃k SameLength1(i, k) ∧ SameLength1(k, j).

A point is represented by any two intervals that are EC.

IsPoint(a, b): Intervals a and b define a point.
(5.10) IsPoint(a, b) ≡ ECInt(a, b).

SamePoint(a, b; c, d): a, b determine the same point as c, d.
(5.11) SamePoint(a, b; c, d) ≡

IsPoint(a, b) ∧ IsPoint(c, d) ∧
[[ECInt(a, c) ∧ ECInt(b, d)] ∨ [ECInt(a, d) ∧ ECInt(b, c)]]

The relations InPt(a, b; r) and BdPt(a, b; r) can be defined using definitions 3.12 and 3.14.

As in previous sections, we now add points to our universe and our language. Distances between
points are measured by the lengths of the intervals that lie between them.

OppEnds(p,q, r): Points p and q are at opposite ends of interval r.
(5.12) OppEnds(p,q, r) ≡ BdPt(p, r) ∧ BdPt(q, r) ∧ p 6= q.

PtDistEq(p,q; r, s): |pq| = |rs|.
(5.13) PtDistEq(p,q; r, s) ≡

[p = q ∧ r = s] ∨
∃a,b SameLength(a, b) ∧ OppEnds(p,q, a) ∧ OppEnds(r, s, b).

VecEq(p,q; r, s): ~pq = ~rs.
(5.14) VecEq(p,q; r, s) ≡ PtDistEq(p,q; r, s) ∧ PtDistEq(p, r;q, s).
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We represent an integer k ≥ 1 by a simple region with k connected components. The relation
“a and b have the same number of connected components” is defined as a combination of two
relations. First, if each connected component of b is a subset of exactly one component of a, and
each component of a contains exactly one component of b, then a and b have the same number of
components. In this case we say that b is a shrinking of a. Second, if each component of p is the same
length as one component of q, and vice versa, then a and b have the same number of components;
in this case we say that q is a rearrangement of p. Finally, for any simple regions a and b, a and b
have the same number of components if and only if there exist p and q such that p is a shrinking of
a, q is a shrinking of b, and q is a rearrangement of p. (The construction here is similar to that of
Grzegorczyk [10].)

Bounded(r): r is a bounded region.
(5.15) Bounded(r) ≡ ∃x ∀a,b P(a, r) ∧ P(b, r) ⇒ Closer(a, b, x).

Whole(r): r is a simple region, and thus represents a whole number.
(5.16) Whole(r) ≡

Bounded(r) ∧ ∀p InPt(p, r) ⇒ ∃z PP(z, r) ∧ Interval(z) ∧ InPt(p, z).

Shrink(a, p): a can be shrunk to p, preserving the number of connected components.
(5.17) Shrink(a, p) ≡

Whole(a) ∧ Whole(p) ∧
[∀x Component(x, a) ⇒ ∃1

y Component(y, p) ∧ P(y, x)] ∧

[∀y Component(y, p) ⇒ ∃1

x Component(x, a) ∧ P(y, x)]

Rearrange(p, q): q is a rearrangement of q.
(5.18) Rearrange(p, q) ≡

[∀x Component(x, p) ⇒ ∃1

z Component(z, q) ∧ SameLength(x, z)] ∧
[∀z Component(z, q) ⇒ ∃1

x Component(x, p) ∧ SameLength(x, z)]

SameNum(a, b): Regions a and b have the same number of connected components.
(5.19) SameNum(a, b) ≡

∃p,q Shrink(a, p) ∧ Shrink(b, q) ∧ Rearrange(p, q).

Plus(x, y, z) and Times(x, y, z) can now be defined over the whole numbers:

The sum of two numbers is just their disjoint union.

(5.20) Plus(a, b, c) ≡
∃d,e SameNum(b, d) ∧ ¬C(a, d) ∧ Union(a, d, e) ∧ SameNum(e, c).

The number r is the product p · q if r ⊂ p and every connected component of p contains exactly
q components of r.

Times(p, q, r): p · q = r.
(5.21) Times(p, q, r) ≡

∃w SameNum(w, r) ∧ P(w, p) ∧
∀c,d Component(c, p) ∧ Intersect(r, c, d) ⇒ SameNum(d, q).

We represent real numbers using a point p on a coordinate axis o,u, as in section 3. A real
number p is positive if there is an interval that contains p and u but not o.

CoordSys(o,u): o,u determine a coordinate system.
(5.22) CoordSys(o,u) ≡ o 6= u.
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Figure 8: Integer to Real Conversion

RPlus(p,q, r;o,u): p + q = r, as reals in coordinate system o,u.
(5.23) RPlus(p,q, r;o,u) ≡ VecEq(o,p;q, r).

Pos(p;o,u): p is a positive real relative to o,u.
(5.24) Pos(p;o,u) ≡

∃z Interval(z) ∧ PtIn(p, z) ∧ PtIn(u, z) ∧ ¬PtIn(o, z)

Less(p,q;o,u): p < q relative to o,u.
(5.25) Less(p,q;o,u) ≡ ∃z Pos(z;o,u) ∧ RPlus(p, z,q;o,u).

(5.26) Leq(p,q;o,u) ≡ Less(p,q;o,u) ∨ p = q

To convert an integer k ≥ 1, represented as a region with k components, to the real number
k;o,u, we construct a region p whose k + 1 components all have length 1/2 and are separated by
gaps of length 1/2.

Gap(g, p): g is a gap in region p.
(5.27) Gap(g, p) ≡

¬O(g, p) ∧ Interval(g) ∧
∃i,j Component(i, p) ∧ Component(j, p) ∧ i 6= j ∧ EC(g, i) ∧ EC(g, j).

Ruler(p): p is a region with equally spaced components and gaps.
(5.28) Ruler(p) ≡

∀x,y,g Component(x, p) ∧ Component(y, p) ∧ Gap(g, p) ⇒
SameLength(x, y) ∧ SameLength(x, g).

Succ(p, q): q = p + 1.
(5.29) Succ(p, q) ≡ ∃r Interval(r) ∧ Plus(p, r, q)

BdComponent(p, r): p is an endpoint of one component of r.
(5.30) BdComponent(p, r) ≡ ∃c Components(c, r) ∧ BdPt(p, c).

Int2Real(k, i;o,u): The real number i;o,u corresponds to integer k (Figure 8).
(5.31) Int2Real(k, i;o,u) ≡

∃m,p,q Succ(k,m) ∧ Ruler(m) ∧
BdComponent(o,m) ∧ BdComponent(u,m) ∧ BdComponent(i,m) ∧
BdComponent(p,m) ∧ BdComponent(q,m) ∧
Less(o,p;o,u) ∧ Less(p,u;o,u) ∧ Less(u, i;o,u) ∧ Less(i,q;o,u) ∧
∀x BdComponent(x,m) ⇒ x = o ∨ x = p ∨ x = q ∨

[Leq(u,x;o,u) ∧ Leq(x, i;o,u)]

We define real ratio in terms of integer multiplication: For positive real a, b, c, d on a line with
origin o, ab < cd if there is some scale v in which ⌈a⌉⌈b⌉ < ⌊c⌋⌊d⌋.

PosLessTimes(a,b, c,d;o,u): ab < cd where a, b, c, d are positive real.
(5.32) PosLessTimes(a,b, c,d;o,u) ≡

∃e,f,g,h,i,j,k,v,w,x,y,z Times(e, f, g) ∧ Times(h, i, j) ∧ Plus(g, k, j) ∧ Pos(v;o,u) ∧
Int2Real(e,w;o,v) ∧ Int2Real(f,x;o,v) ∧
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Int2Real(h,y;o,v) ∧ Int2Real(i, z;o,v) ∧
Less(a,w;o,v) ∧ Less(b,x;o,v) ∧ Less(c,y;o,v) ∧ Less(d, z;o,v).

Note: In the above definition e · f = g, h · i = j, and g + k = j; since k > 0, we have
e · f < g · h. In coordinate system o,v the point w corresponds to e, x to f , y to h and
z to i; thus w · x < y · z. Finally, a < w, b < x, y < c, and z < d, so a · b < c · d.

PosTimes(p,q, r;o,u): p · q = r relative to o,u where p,q, r are positive.
(5.33) PosTimes(p,q, r;o,u) ≡

Pos(p;o,u) ∧ Pos(q;o,u) ∧
¬PosLessTimes(p,q,u, r;o,u) ∧ ¬PosLessTimes(u, r,p,q;o,u).

The extension of addition and multiplication to zero and negative reals is straightforward.

Theorem 5: Let U be a universe of closed sets in the line that includes all simple sets. Let
Φ(r1 . . . rm) be a relation over regions in U that is analytical with respect to some coordinate system
C and that is invariant under linear transformations. Then Φ is definable in 〈U ,Closer〉.

Proof: Exactly analogous to the proof of Theorem 1.

Corollary 6: Let U and Φ be as in Theorem 5. Assume further that U is an analytic class of regions
and is closed under linear transformations. Then Φ is first-order definable in 〈U ,Closer〉 if and only
if Φ is analytical and invariant under linear transformations.

Proof: Exactly analogous to the proof of corollary 2.

6 Rational Polygons

We now consider the corresponding structures where the domain is the class of polygons with vertices
with rational coordinates, as advocated by Pratt [16].

Definition 5: A relation over the natural numbers is arithmetical if it is first-order definable in the
structure 〈ω,+, ·〉.

Definition 6: Assume a fixed coordinate system C. Let U be the class of rational polygons; i.e.
simple polygons whose vertices have rational coefficients in C. Every rational point corresponds
to a pair of rational and thus a quadruple of integers. Any m-sided rational polygon r ∈ U can
be encoded as a single natural number by taking the sequence of vertices, encoding each vertex as
a quadruple of integers, and then encoding the 4m-tuple of integers as a natural number using a
standard computable encoding of finite sequences of integers ([12] p. 32). An relation m-place relation
Φ(r1 . . . rm) over U is arithmetical if the corresponding relation over the encodings of r1 . . . rm is
arithmetical.

Theorem 5: In two and higher dimensional Euclidean space, if the universe of regions is restricted to
the class of polygons with rational coefficients, then results exactly analogous to corollaries 2, 4, and
6 substituting “arithmetical” for “analytical”, and restricting the affine/orthogonal transformations
to those with rational coefficients. In one-dimensional space, if the universe of regions is restricted
to finite unions of intervals with rational endpoints, then the result analogous to Theorem 4 holds,
again substituting “arithmetical” for “analytical” and making the same restriction.

Proof sketch: To show that all relations that are first-order definable in these structures are
arithmetical, note that all these relations between regions can be computed from the coefficients
of their vertices; that these coefficients are rational numbers and thus pairs of integers; and that a
finite sequence of integers can be encoded as a single integer.

To show that all arithmetical relations can be defined in these structures, note that all the con-
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structions of sections 3-5 can be carried out using rational polygons, except that those constructions
which previously generated real numbers now generate rational numbers. Therefore, integers and
integer addition and multiplication can be represented in all these structures; an affine coordinate
system can be constructed in the structure with two-dimensional regions with relations C(x, y) and
Convex(x); and an orthogonal coordinate system can be generated in the structure with relation
Closer(x, y, z).

7 Some analytical relations over regions

In this section we demonstrate that a number of more advanced concepts from geometry and analysis
are analytical, in the sense of definition 4. Since the proofs here are straightforward, and since they
do not lead to any overarching general theorem, it will suffice just to sketch the constructions; the
reader can easily fill in the details. First, we need a couple of general lemmas. Throughout this
section let S be either the structure 〈U ,C,Convex〉 or 〈U ,Closer〉.

Lemma 12: Let D be the class of closed regions in the plane. Then D, and the relation InPt(p, d),
point p is in d, can be encoded in S.

Proof: Encode a closed region d ∈ D as a sequence of points p̂ whose closure is equal to d. The
relation InPt is then just the same as PtInClosure.

Lemma 13: The class Dω of infinite sequences of closed regions and the indexing function d̂[i] can
be encoded in S.

Proof: For each region d̂[i], pick a sequence of points that encodes d̂[i] and then dovetail the
sequences.

Theorem 7: The relation “Homeomorphic(p, q)” (regions p and q are homeomorphic) is first-order
definable in the structure S.

Proof: Since the relation is obviously invariant under affine transformations, by Theorems 1 and 3,
it suffices to show that the relation is analytical. Any continuous function over region p is determined
by its value on a countable dense set of points in p. Hence, such a function f can be encoded in terms
of a sequence of points, x1, f(x1),x2, f(x2), . . ., where x1,x2 . . . is dense in p. Given such an encoding
of f , it is easy to define the relations “q is the image of p under f”, and “f is a homeomorphism”
in terms of the relations we have defined above. The relation “p and q are homeomorphic” is then
defined as “there exists a homeomorphism f such that q = f(p).”

Theorem 8: The relation “SemiAlgebraic(r;o, i, j)” (region r is semi-algebraic relative to the co-
ordinate system o,i,j) is first-order definable in the structure S.

Proof: By Theorems 1 and 3 it suffices to show that this relation is analytical. A closed region p is
semi-algebraic relative to coordinate system C if and only if there exists a sequence of multinomials
f1,1(x, y) . . . f1,k(x, y) . . . fm,1(x, y) . . . fm,k(x, y) with integer coefficients and exponents such that a
point p is in r if and only if the coordinates of p in C satisfy the constraint
P (x, y) ≡ [f1,1(x, y) ≥ 0 ∧ . . . ∧ f1,k(x, y) ≥ 0] ∨ . . . ∨ [fm,1(x, y) ≥ 0 ∧ . . . ∧ fm,k(x, y) ≥ 0].
Each multinomial can be encoded as a sequence of integers, and therefore the entire constraint can
be encoded as a sequence of integers. Given such an encoding, it is straightforward to define the
relations “Sequence ŝ is an encoding of an algebraic constraint” and “The constraint encoded by ŝ
holds on x, y”. The property “Region r is semi-algebraic relative to the coordinate system o, i, j”
can then be defined as “There exists a sequence ŝ which is an encoding of an algebraic constraint”
etc.

Lemma 14: Let r and s be two bounded regions in the plane. The area of r is greater than the
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area of s if and only if there exist sequences of regions r1 . . . rm and s1 . . . sm such that:

• ri and rj do not overlap for i 6= j.

• ri ⊂ r for i = 1 . . . m.

• s is a proper subset of s1 ∪ . . . ∪ sm.

• si is congruent to ri for i = 1 . . . m.

Proof: If the conditions are satisfied then Area(s) <
∑

i Area(si) =
∑

i Area(ri) ≤ Area(r).

Conversely, suppose Area(r) > Area(s). Let ǫ=(Area(r)−Area(s))/2. Then there exists δ > 0
such that if G is any square grid of side δ, the total area of the squares in G that are completely
inside r is at least Area(r)−ǫ, and the total areas of the squares in G that overlap s is at most
Area(s)+ǫ. Since all the squares have equal area, the number squares completely inside r must be
greater than the number of squares overlapping s. Hence, we may choose r1 . . . rm to be all the
squares in G completely inside r and s1 . . . sm to be all the squares in G that overlap s, plus an
arbitrary choice of other squares to make up the count of m.

Theorem 9: The relation SameArea(r, s) (regions r and s have the same area) is first-order definable
in the structure S.

Proof: Since the relation is invariant under affine transformation, by Theorems 1 and 3 it suffices
to show that this relation is analytical. Using the results of section 3 and lemma 12, it is immediate
that the conditions in lemma 13 are definable in S, so the relation “The area of r is greater than
the area of s” is definable.

If r and s may be unbounded, then they have the same area if and only if for all bounded p ⊂ r
there exists bounded q ⊂ s such that Area(p)=Area(q) and vice versa.

The reader can easily continue this list to show that many, many favorite geometric relations
are analytical and therefore definable in these structures. Even relations that are often thought
of as weird or pathological — “The projection of region r is the Cantor set”, “The boundary of
region r is nowhere differentiable,” “The three-dimensional curve c = {〈x, y, t〉} where 〈x(t), y(t)〉 is
a space-filling curve in 2D” etc. — are easily shown to be analytical, and therefore expressible if the
universe U is defined to include these monsters.

8 Related Work

The study of geometric theories based around on extended regions began with de Laguna [7] and
Whitehead [21] and was greatly advanced by Clarke [5].

Tarski [20] studied a language over a universe of regions with the two primitives C(x, y) and
S(x) (x is a sphere); he was not precise as to the logic he has in mind, but his exposition includes
second-order constructions (e.g. the definition of a point in terms of a set of concentric spheres.) This
theory was made more formal by Bennett [1], who developed first- and second-order axiomatizations
of this theory and proves that the axioms are categorical.

Grzegorczyk [10] proved that the first-order language over regions with the predicate C(x, y)
is undecidable. A similar result was rediscovered independently, with a very different proof, by
Dornheim [8]. Grzegorczyk encodes an integer k as a region with k connected components. The
theorem holds even if the universe of regions is restricted to polygons (indeed, even if it is restricted
to polygons with horizontal and vertical edges.)
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The undecidability result also holds if the universe of regions is restricted to convex polygons.
The integer k is encoded as a pair of convex polygons A,B such that A − B has k connected
components. Equality, addition, and multiplication of integers can then be defined as in definitions
5.19 through 5.21, replacing SameLength(x, z) in 5.18 with AffineTransform(x, z) (x is an affine
transformation of z.)

Randell, Cui, and Cohn [18] introduced the region connection calculus (RCC), and demonstrated
that the RCC primitives and other important topological properties can be defined in the first-order
logic over regular regions with the predicate C(x, y). The expressivity of this language was further
studied by Gotts [9]. Pratt and Schoop [17] studied the expressivity of the language over the
space of polygonal region with the primitive C(x, y) and the language over the same universe with
the primitives Conn(x) and P(x, y). They prove that both languages are strong enough to specify
completely the topological relations among any n-tuple of regions. (More precisely, the first language
can achieve this over the open plane; the second can achieve it only for regions within the closed
plane.) The constraint language of RCC is known to be tractable [15].

Randell, Cui, and Cohn [18] also studied the first order language with predicate C(x, y) and
Convex(x), and presented some useful qualitative properties that could be defined in that language.
Pratt [16] proved that this language is powerful enough to express real addition and multiplication,
and demonstrated a number of meta-level properties of this and related languages. Davis, Gotts, and
Cohn [6] showed that the constraint language with the primitives EC, PP, and Convex is expressive
enough to distinguish any two regions that are not affine transformations of one another; and that
it is decidable, but of the same difficulty as solving a set of algebraic inequalities over the reals.

Bennett et al. [2] studied the first-order language over regular regions with predicates P(x, y)
and Sphere(x). (It is easily shown that this is mutually definable with our structure 〈U ,Closer〉 as
long as the universe U contains spheres.) In a further paper [3] they studied the application of this
language to representing rigid body motion. Borgo et al. [4] considered the first order language
over regions with the single predicate P(x, y); the two predicates P(x, y) and SC(x) (x is strongly
connected); and the three predicates P(x, y), SC(x) and Sphere(x).

Muller [14], systematizing the famous proposal of Hayes [11], constructs a first-order language
over four-dimensional regions of space time.

9 Open Problems

The most important open problem is the expressivity of the structure 〈U , C〉. The results of Schaefer
and Stefankovic [19] characterize its complexity, but do not address its expressivity as a geometric
language. Pratt and Schoop [17] give strong results on expressivity, but not a complete categoriza-
tion.

Another interesting problem would be to find general conditions in which analogues of Theorems
1 and 3 apply. Let Φ1 . . . Φm be a collection of relations over closed regions in the plane, and let
U be a collection of closed regions in the plane. Let H be the group of homeomorphisms of the
plane to itself such that Φ1 . . . Φm and U are invariant under H. What conditions on the Φi and U
are sufficient to determine that every analytical relation Ψ that is invariant under H is first-order
definable in the structure 〈U ,Φ1 . . . Φm〉? Theorems 1 and 3 show that this is true in the specific
case where U contains all polygons and the Φ’s are either { C, Convex } or { Closer }, but perhaps
a more general result is attainable.
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