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ABSTRACT

We present a theory that combines order of magnitude reasoning witfiomment
of qualitatve dfferential equations. Such a theory can be used to reason quelitati
about dynamical systems containing parameters of widatying magnitudes. &
present an a mathematical analysis eissanment @er orders of magnitude, including a
complete categorization of adjacent pairs of qualtatiates. V& show how this theory
can be applied to simple problems, weegin dgorithm for generating a completewen
sionment graph, and we discuss the implementation of this algorithm in a running pro-
gram.
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Order of Magnitude Reasoning in Qualitative Differential Equations

Ernest Davis

1. Introduction

Two mathematical techniques thatveaeen found particularly useful in recent work on qualitati
physical reasoning are the solution of qualitatdfferential equations through envisionment and order of
magnitude reasoning. The object of this paper is to combine thedledwories mathematically.

Envisionment and qualitate dfferential equations are used to analyze the \behaf dynamical
systems. If the pfsical structure of a dynamic system can be characterized in terms of relations between a
finite set of state variables and their detives, then the envisionment process can determine at least par
tially the behavior wer time of these variables and detives. Thestrength of the envisionment procedure
is that it can use a partial categorization of thesptal relations among the variables to der weful par
tial information about the betimr. For example, consider a block attached to a springyingoin a
straight line without friction. Gien the weak constraint that the springvays exerts a force on the block
pointed tevard its rest point, the @sionment process can predict that the block will oscillate around the
rest point. Envisionment has been applied in numeroysigad domains, including electronics, mechanics,
hydraulics, and heat transfer ([de Kleer andv8rp85], [Forbus, 85], [Williams, 85]). The clearestposi-
tion of the mathematics of the theory is [Kuipers, 85]. Envisionmefdrsuffom a number of limitations: it
is sometimes too weak mathematically to yield important inferences ([Kuipers, 85], [Struss, 87]), and its
focus on differential behavior sometimes forces much comiplé useless information to be generated
([Davis, 86]). Nonetheless, for matypes of physical inference, it is a simple anféefve mode of analy-
sis.

Order of magnitude reasoning is concerned with the analysisysfgalh systems in which one quan-
tity is much greater than another in the comparison of twvsystems of the same structure, but whickeha
corresponding quantities of very different magnitudesr example, if a ery massie Hock hits a ery
light one, order of magnitude reasoning can be used to infer that thesenldesk continues on its ay
unafected, while the light block bounced afvay from the massie me. Theidea of order of magnitude
reasoning is to approximate ary great ratio as an infinite ratio, and then to analyze the system in terms of
an algebra of infinite and infinitesimal quantities. Such an algebra has bdexdwut in [Raiman, 86] and
extended in [Dague, Raiman, andves, 87].

The natural next step is to combine these tmodes of inference so that we may reason about the
dynamical behaor of systems with quantities of widely varying magnitudes. For example, we woeld lik
to be able to reason that a very\nehblock on a spring will hae a nuch longer period of oscillation than a
much lighter block on the same sprinbhis paper presents a theory combining order of magnitude reason-
ing with envisionment of qualita dfferential equations, which supports such inferences. The theory
introduces tw technical innwations. First, each state of the system is labelled with its duration and with
the net change to each parameter during the state. Second, we formulate a number oferuieg goe
behaior of functions @er orders of magnitudes. In other respects, each of our component subtheories is
wealer than standard theories in the literature. Our theory of envisionment allows only the fixed quantity
spaces of sign and order of magnitude, not arbitrary discretizations of quantity spacesusgseirs [I85].
Our order of magnitude algebra uses only three fixed ranges of orders of magnitudes, SMALL, MEDIUM,
and LARGE, not arbitrarily manas in Raiman, 86] and [Dague, Raiman, andv&e 87]. ([Weld, 87]
presents an alternati method for making this inference, which does not assume that the ratio between the
blocks is infinite, but rather does a careful analysis of the relation between changes in in parameters and
their dervvatives. This theory is stronger than ours, in that it requires weaker assumptions in the input, but it

The problem addressed herasafirst brought to my attention by Dan Weld. | thank Dan Weld, Olivier Raiman,
Asher Meth, Ben Kuipers, Leo Jasticz, and Yumi Iwasaki for helpful discussions, and for their criticisms of
an preliminary draft of this papeFhis research was supported by NSF grant DCR-8603758.



seems to be less generally applicable.)

The paper is @anized as follows: Section 2 presents fundamental definitions and rules ¥leat go
the behavior of a solution to a set of quahtatdfferential equations. The basis of the definitions and the
justifications of the rules lie in the theory of non-standard analysis with infinitesimals. Section 3 siwows ho
these rules may be applied in the "heavy block on the spring" example and>@imles. Sectiod
presents an algorithm for constructing an envisionment graph from a set of oeatiérential equa-
tions. Section 5 discusses the CHAEPIET program, which implements this algorithm. Section 6 esak
suggestions for further work. 8\essume that the reader @nfiliar with standard theories ofvésionment,
as in [Kuipers, 85] and [de Kleer and B 85], and with non-standard analysis, as in [Robinson, 66] and
[Davis and Hersch, 72].

2. Theory
We follow [Kuipers, 85] in structuring our theory.

Quantities, devietives, and time may takvalues from within the non-standard real liRe&. We
divide this line into seen disjoint intervals: (V& use notation from [Dague, Raiman, andv&s}.)

ZERO = {0}

SMALL = { X|X >0 and X <« 1} (infinitesimals)
MEDIUM = { X|X >0 and X[1 } (standard reals)
LARGE ={ X|X > 0 and 1< X } (infinitely large reals)
-SMALL = { X|- XOSMALL }

-MEDIUM = { X|- XOMEDIUM }

-LARGE = { X|- XOLARGE }

These sets and their unions are thualitative setsNote that SMALL and LARGE span maerders of
magnitude while MEDIUM spans only one order of magnitude. Note also that there is no landmark v
separating SMALL from MEDIUM or MEDIUM from LARGE; in non-standard analysis, there is no
largest infinitesimal or smallest posti dandard real. Our theory can easily be extended to incorponate an
finite number of orders of magnitude; we might, for exampleg Have psitive aders VER'_SMALL,
SMALL, MEDIUM, LARGE, VERY_LARGE. It is not clear he to extend the theory to infinitely mgn
different orders, as in [Dague, Raiman, andd3¢e87].

Table 1 shows the basic arithmetic operations on the quaditstiues. These folle directly from
the axioms presented in [Raiman, 86Jllowing the notation of [de Kleer and Brown, 85] andiipers,
85] we define X] to be the qualitatie $t containing the alue X; for example +1] = -MEDIUM, [0] =
ZERO. If P(T) is a function of T, then we will use the notatiodP for the qualitatre value of the
derivative; that is,dP(T) =[P(T)].

An interval of R* is a st of pointsl such that, for alX, YOI, if X <Z <Y thenZOl. An intervall
is closedon the left (right) ifl has a greatest lower bound (least upper boXnand X is in|. It is open
on the left (right) if it has a greatest lower bound (least upper boXin@dhd X is not inl or if it is
unbounded on the left (right). Thus, the interval ZER dosed on both left and right; SMALL is open on
the left and neither open nor closed on the right; MEDIUM is neither open nor closed on either side; and
LARGE is neither open nor closed on the left and open on the rigbtirifervalsl andJ are adjacent if
they are disjoint and [ ] J is an interval.

We will be interested in tracing the qualitai values of a number of parametersentime
Pu(T), po(T),--- px(T) and their denvatives py(T), Po(T),- - P(T). Theparameters and time w@ltheir val-
ues from the non-standard real line. The parameters are assume@'taha is, thg are continuous, and
their dervatives ae continuous.A collection ofk such functions is calledtzehavior.

We define theinertial stateof the parameterg(T)--- px(T) to be he X-tuple of the qualitatie
states of all the parameters and their\aiies:

S=<[pu(D] - [P [Py(T] - [ P(T)] >

An inertial stateS characterizes a beviar P =< py(T)--- pi(T) > over a ime intenal | if Sis the inertial
state ofP forall T in 1.



An inertial subdivisionof an intenal | by a behwaior P is a set of subintervals of wherel , [ iff
the following conditions hold:
i. I, Ol
i.  Thereis a single inertial stat§, that characterizeB throughoutl,.
ii. 1, is maximal with respect to properties (i) and (ii).

It should be clear that, for mmntervall and behaior P, there is a unique subdivision; that the inter
vals of the subdivision are disjoint; and that their unioh.is

We ae also interested in the order of magnitude of iratlsrand of the change to a parameter an
interval. LetP =< py(T)--- px(T) > be a lehavior and letl be a time interal. We define thetime duration
of I, written AT (1), to be the maximumwer all points T;, T,Ol of [T, - T;]. We define thevariance of
parameterp(T) over |, written Ap(l), to be the maximumwver all T;, T, Ol of [p(Ty) — p(T>,)]

A specification of the qualitate values ], 0p;, Ap;, and AT is called aqualitative state We can
now state a number of basic rules that relate the qualtatates of adjacent intervals in an inertial decom-
position. LetP =< p(T)--- p(T) > be a kehavior; let p be a parameter iR; let| be an interval; and leA
andB be two adjacent intervals in the inertial subdivisionloby P. Then the following rules hold:

Change: There is a parametqy such that eithefrp(A)] #[p(B)] or dp(A) £ 0p(B). That is, some-
thing changes fron to B.

Continuity: From A to B, [p] and d p must either stay constant, or go from one qualtaget to a
bordering set, in the orderingLARGE, -MEDIUM, -SMALL, ZERO, SMALL, MEDIUM, LARGE.
(Note that variances and time durations do neehachange continuously.)

Mean value from ZERO: If [p] =ZERO in A anddp >0 in A, then [p]=SMALL in B. If
[p] =ZERO in Aanddp < 0in A, then[p] = -SMALL in B.

Mean value to ZERO: If [ p] =ZERO in B anddp < 0 in B, then [p]=SMALL in A. If[ p] =ZERO
in Banddp > 0in B, then [p] = -SMALL in A.

Mean value from non-zero: If [ p] is greater inB than inA, and is not equal to ZER in dther state,
thendp must be positie in both A andB. If[ p] is less inB than in A, and is not equal to ZER in dther
state, the@d p must be ngative in both A andB.

Variance over time: The variance ofp in A is the absolute value of the detive d p times the
duration.

Ap Oabs@p) x AT

Variance bound: The variance of a parameter issaegreater than its absolute value.
Ap < abs([p])

Variance at state change: If [p] changes from A to B then Ap(A)=abgp(B)]), and
Ap(A) =abg] p(B)]) Note the contraposite d this statement: IAp in Ais small as compared @] in A,
then [p] does not change frorA to B.

No successive instants: A and B cannot both ha duration ZERO.

Temporal topology: By the rule of continuityany transition of a parameter or degiive p from A
to B has one of the following forms:

i. p(A) =ZERO and p(B) = +SMALL;
ii. p(A) = +SMALL and p(B) =ZERO;
ii.  p(A)=+MEDIUM and p(B) = +SMALL or +LARGE;
iv. — p(A)=+SMALL or tLARGE andp(B) = +tMEDIUM;

The rule of temporal topology states that, going from one iatekvto the next interal B, only one of
these types of transitions can occlinus, for example, it is possible tovesp change from SMALL inA
to MEDIUM in B and h&e q change from-LARGE in A to -MEDIUM in B, dnce these are both transi-
tions of type (iv). It would not be possible toviegp change from SMALL inA to MEDIUM in B, and g



change from ZER in Ato SMALL in B, dnce the first is a transition of typer)i while the second is a
transition of (i).

The fundamental reason for this rule is thafedént types of transitions imply different topologies
for the intenals. If a transition of type (i) occurs from to B, then A must be closed on the right, aBd
must be open on the left. If a transition of type (ii) occurs, thamust be open on the right aBdmust be
closed on the left. If a transition of type (iii) or (iv) occurs, tiemust be neither open nor closed on the
left, and B must be neither open nor closed on the righe. dh shav that transitions of type (iii) cannot
occur together with transitions of typev)(iby the following argument: Suppose thafT) goes from
MEDIUM in Ato LARGE inB, and thatq(T) goes from SMALL inAto MEDIUM in B. Then the contin-
uous functionp(T) [g(T) would go from SMALL inAto LARGE in B, which is impossible.

Forever isalong time: If Ais unbounded on the left or on the right, so that it has no adjacent fol-
lowing state or no adjacent preceding state, fXiefA) = LARGE.

The rules of change, continuitnean value, and no succes&sinstants are the same or direct ana-
logues of standard rules from the ordinary theory of GDEKuipers, 85], [Williams, 85]).William’'s
"Epsilon Transition" rule, that a transition to zero musetfhite time, is a consequence of the rulesvabo
If pis non-zero inA and zero inB, then by the rule of "Variance at state chandey'is non-zero inA, o
by the rule of variancever time, AT cannot be zero ir\.

These rules together are afguént characterization of order of magnitude of values,velives,
variances and durations in adjecent intervals. That v@ndgivo qualitatve gatesS, and Sg satisfying the
above wles, other than the trever” rule, one can find a befiar P and two adjacent interals A and B,
such thatS, is the qualitatie date of P in A, and Si is the qualitatie date of P in B. Given a gate A satis-
fying the rules of "Variancewer time", "Variance bound" and Ufever", there is a behdor which stays
with qualitatve gate A over all time. We amit the proof of this; it imolves a long but straightforward case
analysis, enumerating all the possible values gfpamameter wer the two gates, constructing particular
functions that ehibit each of them, and showing thayamir of transitions allowed together by therdim-
sition topology" rule will occur simultaneously for our sample functions.

A stronger hypothesis seems plausible, but wehma proof:

Hypothesis 1. Given any finite sequence of qualiteéi gates such that sriwo uccessie qualitative
states satisfy the abe rles, there exists a bahar and an interval such that the qualitetgates charac-
terize the behavioner the interval.

So far, we havebeen speaking about the space of all possible behaviors. yrpawicular problem,
we will be working with qualitatie mnstraints on the problem. A homogeneous systeiinsbforder quali-
tative constaints (abbreviated QC’s) is a set of relations among the orders of magnitudes of the parameter
vaues and their derétives. ("Homogeneous" here refers to the absence of an explicit time dependence.)
That is, such a system specifies certain combinations obthesvjp;(T)] andop;(T) to be fhysically pos-
sible, and others to be impossibler Example, we might specify the relatidX = - X]; this states that the
only qualitatve gates allowed arpX] =LARGE, dX = -LARGE; [X] =MEDIUM, 0X = -MEDIUM, etc.
A behaviorP satisfies a set of Q€mly if the orders of magnitude of its parameters and theivatenes
satisfy the set at each instant of time.

Thus, if a behavior satisfies a set of Qhen all its inertial states satisfies the QC’s, aydhan
adjacent qualitate gates satisfy the rules enumeratedvebdf Hypothesis 1 abe is true then the con-
verse of this statement is &luise true:

Hypothesis 2: Given a ®t of QC5 and a finite sequence of qualitagigates, if each successipair
of states satisfies the rules aband the inertial state of each qualitatitate satisfies the QC's, then there
exist a behaior P and a time intea | such that the qualitat dates characterizB over 1, and such that
P satisfies the QG'throughoutl .

Proof gven hypothesis 1: Useypothesis 1 to construct a bei@ P and an interal | following the
qualitative sates. TherP satisfies the QG’snce the states do.

A particularly important class of qualita cnstraints are thegualitative diferential equations
(abbreviated QDE’s). LetF,---, F, be k continuousk-place functions wer the non-standard real line.
Then the system of (exact) differential equations



Pu(T) = Fa(pa(T), p2(T)- - pi(T))
P2(T) = Fo(pa(T), p2(T)- - pi(T))

Pi(T) = Fi(pa(T), p2(T)- -~ pi(T))

is guaranteed to kia C! solutions for ap given initial valuesp,(0)--- pi(0). We row dscretize the func-
tions F; to multi-valued functions5; over qualitative sts. That is, ifQ;---Q, are qualitatie \alues, we
defineG;(Q, - -- Qi) by considering all possible choices xf-- - x, from Q; - -- Qy, and taking the qualitate
value of Fi(X; - - Xy).

Gi(Qu--- Qi) = {[Fi(% - Xi)] | X 0Qq -+ X, IQy}

Thus, for example, ifF(X,Y)=X2+Y then G(SMALL,MEDIUM) = SMALLZ? + MEDIUM =
{MEDIUM}. G(MEDIUM,-MEDIUM) = MEDIUM? - MEDIUM = {-MEDIUM, -SMALL, ZERO,
SMALL, MEDIUM}.

The condition that th&; be continuous implies conditions on tBe analogous to the rule of conti-
nuity and the rule of temporal topologwen above.

A set of QDES is then the discretized form of the original exact differential equations.

0py(T) O G[py(T)]---[p(TI])
0px(T) O G([pu(T)]---[Pw(T)D)

0p(T) UGk pu(T)]---[Pu(T)])

Note that there can be befars that satisfy some system of QBEuUt do not satisfy ansystem of
homogeneous exact differential equatioRsr instance, ansolution of a set of homogeneous exacteif
ential equations that goes through tladues <0, 0, 0 ... 0> more than once must be cyclic, by the unique-
ness of solutions to the initial value problem; this does not hold for solutions to homogeneous QDE'’s.



3. Samplelnferences

We row show how these rules can be used toywdhat a heavy block on a spring will &l bng
time to reach the rest point.

Let x be the displacement of the block from its rest pointy le¢ its \elocity, and let f be the force
exeted by the spring on the block. Theygltal constraints on the system can be characterized by the fol-
lowing QDE'’s

ox =[v]
[f]=LARGEDvV
[f]=-[x]

The first equation just establishess the deviative d x. The second equation corresponds tavida’s
second lev f = ma In this casemis assumed to be LARGE, aad- dv. The third equation is a very weak
form of Hoole’s law; it states that the springkerts a force opposite to the displacement and of the same
order of magnitudé.For corvenience of exposition, we will eliminaté and rewrite the equations in the
equialent form:

ox =[v]
ov =[XJ/LARGE

Nothing in our analysis depends on this rewriting; it would go through in the sagnanwither presenta-
tion.

We row track the sequence of qualitaidates consistent with the QDBEnd with the rules enumer
ated abwe, and we shuw that aty path which brings the block to its rest point includes a state whose dura-
tion is LARGE.

We dart with the block at some finite displacement and zetocity. That is, in state ALX] =
MEDIUM, [v] = ZERO. From the differential equationdx =v must be ZERO, whil@v = -x/LARGE

Av
must be-SMALL. By variance boundAv must be ZERO. By varianceve time, therefore AT = la—v =
ZERO. Applying variance er time in the other directiolyx = AT [§x = ZERO. So we hee a (ompllete

description of Al:

Al: [x]=MEDIUM dx=ZERO Ax = ZERO
[V] = ZERO dv=-SMALL  Av=ZERO
AT = ZERO

Let A2 be the next stateSince k] = MEDIUM andAx = ZERO in Al, by variance at state change
[X] must be MEDIUM in A2. By mean value from zero and contingity must be-SMALL. From the
differential equationsix anddv must both be-SMALL. We cannot determine the variances or duration
until we look at the next state.

Let A3 be the next state. In A3, eitHed), [v], dx or dv must change. In fact, since thefeitntial
equations determingx anddv from [x] and [v], either[x] or [v] must change. By mean value at non-zero
and continuitywe nust either hee [v] change to-MEDIUM, or have [x] change to SMALL or both. &
will consider each of these in turn:

Suppose that changes te-MEDIUM in A3. Then, by the rule of variance at state change, we must
have Av = MEDIUM in A3. As we hae dated, k] must either MEDIUM or SMALL in A3. Hence, from

the differential equatiordv =[X]/[LARGE must be-SMALL in A3. By variance wer time, in A3,
Av

AT = v = LARGE. But, from the differential equationdx =[v] = MEDIUM, and, by variance \@r
time, Ax = AT Jox| = LARGE. But this contradicts the rule of bounded variance, sinces now larger
than [x]. Thus the assumption thaf] changes te-MEDIUM must hae keen false.

1. It may be asked, what does it mean to compare the order of magnitude of a force with that of a distance?. The
answer is that we are assuming here standard units of mass, distance, and time. Thus, the question being
addressed is actually a comparatme: assuming the mass is large compared to a standard mass, what does
that imply about the time, compared to a standard time?



The only option left for A3, therefore, is tha€][changes to SMALL, and that]remains—SMALL.
From the differential equations, weve@dx = —-SMALL, anddv = -SMALL. Applying the variance at state
change to A2 and A3, we mustveathat in A2,Ax = MEDIUM, and in A3,Ax = SMALL. Therefore, by

AX
variance wer time in A2, we hge AT = ol LARGE. Combiningoounded variance and varianceso
time, we find that, in A2Av=SMALL. We havenow completely characterized A2:



A2:  [x]=MEDIUM  0dx=-SMALL Ax = MEDIUM
[v] = -SMALL ov =-SMALL Av = SMALL
AT = LARGE

Thus, we hae drown that, before the block can reach the zero point, it must pass through a state of
LARGE duration, which was the desired result.

We a@annot shw in this system that the blocker will reach the rest point. Sine&T = LARGE in
A2, it is consistent with our rules that the system should stay in A2efota fact, the behavior

x(T)=1+e°"
v(T) = 3(e°" -1)

whered is a SMALL real numbertarts in Al at T=0, and then stays in A2 fome (See figure 1.)

Figure 1: A behavior that stays in A2 faee

By contrast, solutions to the correspondsggondorder QDE X(T)] = {x(T)]/LARGE cannot stay
in A2 forever; x(T) must cross the value ZER We can male the following argument by contradiction.
Supposex(T) is dways positve. ThenX(T) will always be ngaive, so x(T) will be uniformly decreasing.
Thus, if x(T) attains a alue—¢ at some timd 1, it will have value less than or equal t@ for all T > T1.
However, forT > T1,

.
X(T) - x(T1) = J X(T)dT < - g(T - T1)
1

Thus x(T) will be negadive for all T > T1+ x(T1)/e, contradicting the assumption. Thus, information is
irrecoverably lost in comerting the higher-order QDE into a first-order QDE. (Nothing in thiguarent
depends on the order of magnitude mechanism. The same loss of information happewertingdine
ordinary second-order QDE(T)] = {x(T)] to the two first order QDES ax(T) =[v(T)], ov(T) = {x(T)].)

Our rules also do not allous to fy much after what happens to the system past this statet|n f
from this starting state, the system can reaghcansistent intertial state whaes, except for the rest state
[x] = ZERO, [v] = ZERO.

In a similar waythe rules abee dlow us to 10w results such as the following:

Fast exponential growth and decay: The initial value problem (IVP)dx =LARGE[X],
[x(0)] =MEDIUM, spends a SMALL time withy] = MEDIUM, and then goes o] = LARGE forever.
The problemox = -LARGEI[¥], [x(0)] =MEDIUM, spend a SMALL time with] = MEDIUM and then
goes to k] = SMALL. It then either stays forer with [x] = SMALL, or it transits after a period of unde-
termined length tof] = ZERO, where it stays fover.

Slow exponential growth and decay: The IVP 0x =SMALL[X], [x(0)] =MEDIUM, spends a
LARGE time with x] = MEDIUM, and then goes tdx] = LARGE forever. The problem
0x = -SMALLI[X], [x(0)] =MEDIUM, spend a LARGE time withy] = MEDIUM and then goes to] =
SMALL. It then either stays fower with [x] = SMALL, or it transits after a period of undetermined length
to [X] = ZERO, where it stays fover.

Highly damped oscillation: The IVP



ox =[v] [x(0)]= MEDIUM
ov =-LARGE[V] -[x] [Vv(0)] = SMALL

corresponding to a very heavily damped harmonic oscillatmsits immediately tfx] = MEDIUM, [v] =
SMALL. It stays thus for a LARGE timegy can in the meantime takon a wde range of values) and
evantually transits to the statx]FSMALL [v]=—-SMALL, From here on in, it can oscillate indefinitely
cyclically with the absolute values of boxhandv remaining SMALL or ZERO, or it can settle foee in
ary such state, or in the statg][=[v] = ZERO.

Quickly settling control parameter: The IVP

du(T) = ~LARGE[L(T)] [u(0)] = MEDIUM
dX(T) = (MEDIUM + [u(T))X(T)  [x(0)] = MEDIUM

represents a quickly settling functiaifT) controlling a more slowly mang function x(T). The solution
has L(T)] become SMALL or ZER® in SMALL time, while x(T) remains MEDIUM. Thereafterx(T)
undegoes &ponential decay with a MEDIUM time constantestually getting to SMALL values after
LARGE time. (It takes only MEDIUM time to get toyamalue in MEDIUM but LARGE time to get to gn
value in SMALL.) Such problems are similar to those studied by Kuipers (1987).

4. Algorithm

We rext present an algorithm for constructing anvisionment grapfor a given st of QDE’s. An
ervisionment graph for a set of QDHES a dita structure that indicates the transitions possible for solutions
of the QDE. If hypothesis 2 is correct, it thus indicates all the finite characterizations of parts of solutions.
The value of evisionment graphs for this class of problems is somewhat limited, fordasons. First,
they are very lage. Sinceaall initial value problems hee lutions, ay assignment of qualitate values to
the parameters must be a possible state of the system. Thus there are7ireasal states for a system
of k parameters; in general, there will be more, since some of the QDE fun@tiovil be multi-valued.

In practice, this limits the generation of envisionments to @DEh at most three variables.

Second, the characterization of a beabaover all time may be considerably richer than its baba
ove any finite sequence of qualitad dates. For example, consider the (second-order) IVP

[XT)] =-[x(T)]  [x(0)] = MEDIUM  [X(0)] = ZERO
[U(T)] =sMEDIUM  [u(0)] = MEDIUM

We would like to sty thatx oscillates foreer in MEDIUM amounts of time, while attains LARGE walues
over LARGE amounts of timeHowever, nothing about finite sequences willee say this. In fact, there is
no allavable transition in whiclu goes from MEDIUM to LARGE.

In this case, of course, it is possible to separate thexqwations, and ge £parate histories, along
the lines suggested in [Williams, 88However, it is not clear hav this can be done in general; foraanple,
how it could be done for the equations

[X(T)] =u(M]dx(T)]  [x(Q] =[%(0)] =SMALL
[U(T)] =MEDIUM + [x]  [u(0)] = MEDIUM

Despite these difficulties, we ve dudied the construction of gisionment graphs as a natural and
simple first step ward deeper analysis. il discuss possible directions for imm@nment in section 6.
(Forhus (1987) gies a cefence of building envisionments for eentional QDE's. There, the first problem
is much alleviated, since the number of qualatialues is smalleand the second problem can be ruled
out.)

We will construct an envisionment graph whose nodes are intertial states, labelled by sets of possible
variances and durations, and whose directed arcs are transitions, labelled by sets of the passibés v
and durations that the end nodes can take, if the transition occurs. For example, figure 2 shows a piece of a
graph, with node#\ andB, and a transition fromA to B. The labels orA mean thafX] is MEDIUM in A,
0X is MEDIUM, AX is either SMALL or MEDIUM, and\T is either SMALL or MEDIUM. The labels on
B mean thaf X] is LARGE in B, thatdX is SMALL, thatAX is LARGE, and thaAT is LARGE. The
labels on the arc indicate that, if a behavior goes fiorio B, then it will have AX and AT equal to
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MEDIUM in A, andAX andAT equal to LARGE irB.



-11-

Figure 2: A labelled transition

Algorithm 1 constructs an envisionment graph from a set of @DEis clearly a sound algorithm;
that is, ifx(t) is a pssible solution to the QD&Tor all t, then ary transition ofx(t) is represented in the
graph. Soundness holds since the algorithm does nothing more than enforce the startsmign@Dfe
rules gaerning transitions. If hypothesis 2 is correct, then the algorithm is also complete; that pgatlan
through the graph represents the behavior of some solution of thes@R#E'an intenal. This may be
somavhat surprising, since constraint propagation is not, in general completevédiothe significance of
labels in this graph is dédrent than for most labelled graphs. If one goes around a cycle ilnvis®mement
graph and comes back to the same node, it need vottteasame value as before, since it corresponds to
the behavior of the function at a féifent time. Therefore, in this context, local consisyesfcthe graph is
enough to establish its global consistenc

By indexing inertial states in an array by the tuple of parameter values, step 3 of the algorithm, which
connects bordering states, can be made reasonably efficient. It doeslvet aamparing all pairs of iner
tial states, but only states thatfdifby O or+l1 in each of thek parameter values and thederivatives. It
can be shown that the procedureabmns in time at most quadratic in the number of inertial states (which
is, of course, itself exponential in the number of variables.)

5. The CHEPACHET Program

The abwee dgorithm has been implemented as a program named SEIHPT. CHEPACHET is
written in Franz Lisp and runs on a VAX/780. It is roughly 600 lines of code long, and contains 85 function
definitions, not including utility macros and comments. It has not been compiled, and has not been particu-
larly optimized for dficiengy. Input to CHERCHET is a list of parameters and a list of QBBEVhose left
side is the devetive d a parameterand whose right side is a polynomial in the parameters and the qualita-
tive values. The output of CHBEHET is a listing of the graph.

Table 2 shows the results of running CHEFHET on a number of simple QD&EIn terms of the
CPU time used (in CPU secondgclesive d garbage collection time), and the size of theigonment
graph generated. Garbage collection time was typically one-quarter to one-third of the other CPU time.

6. Further Work

Clearly, the abee analysis and the CHECHET programs are only first steps. The theory willdha
to be considerably refined before it is of/gmactical value. Some important issues to be addressed include
the following:

1. Haw can this theory be used in a goal-directeajvgo hat useful information, such as illustrated
in section 3, can be extracted without generating the whole envisionment graph? It wouldvatyreety
to fix the algorithm to generate only the states that can be attained freemaggiof initial conditions, bt
that would not necessarily impr® matters much. In the problem of the heavy brick on a spriregy state
but one (the rest state) can be reached from the starting conditiong.d¥itire states generated in a com-
plete envisionment, such as the SMALL values thatyd lie between MEDIUM and ZER values, are
not particularly significant for gnkind of inference. Can tlyebe suppressed?

2. As discussed in section 3, information is lost when a higher-order qualittiferential equation
is corverted into a system of first-order equations. Is theyeeasy way to extract that informatiorovking
directly with the higher order equations? ([De Kleer and Bab@®l] is the only substantial study of
higher-order QDE's)

3. How can behaviors wolving infinitely mary state transitions in bounded time be characterized?

4. Can the theory be extended in a reasonable way to handle waseolieorders of magnitude?
Currently once a parameter and its detive both become SMALL or both become LARGE, it becomes
impossible to say anything at all about their reatizes. Amore flexible representation might support
much more powerful inferences.
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