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ABSTRACT

We present a theory that combines order of magnitude reasoning with envisionment
of qualitative differential equations. Such a theory can be used to reason qualitatively
about dynamical systems containing parameters of widely varying magnitudes. We
present an a mathematical analysis of envisionment over orders of magnitude, including a
complete categorization of adjacent pairs of qualitative states. We show how this theory
can be applied to simple problems, we give an algorithm for generating a complete envi-
sionment graph, and we discuss the implementation of this algorithm in a running pro-
gram.
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1. Introduction

Tw o mathematical techniques that have been found particularly useful in recent work on qualitative
physical reasoning are the solution of qualitative differential equations through envisionment and order of
magnitude reasoning. The object of this paper is to combine these two theories mathematically.

Envisionment and qualitative differential equations are used to analyze the behavior of dynamical
systems. If the physical structure of a dynamic system can be characterized in terms of relations between a
finite set of state variables and their derivatives, then the envisionment process can determine at least par-
tially the behavior over time of these variables and derivatives. Thestrength of the envisionment procedure
is that it can use a partial categorization of the physical relations among the variables to derive a useful par-
tial information about the behavior. For example, consider a block attached to a spring, moving in a
straight line without friction. Given the weak constraint that the spring always exerts a force on the block
pointed toward its rest point, the envisionment process can predict that the block will oscillate around the
rest point. Envisionment has been applied in numerous physical domains, including electronics, mechanics,
hydraulics, and heat transfer ([de Kleer and Brown, 85], [Forbus, 85], [Williams, 85]). The clearest exposi-
tion of the mathematics of the theory is [Kuipers, 85]. Envisionment suffers from a number of limitations: it
is sometimes too weak mathematically to yield important inferences ([Kuipers, 85], [Struss, 87]), and its
focus on differential behavior sometimes forces much complex but useless information to be generated
([Davis, 86]). Nonetheless, for many types of physical inference, it is a simple and effective mode of analy-
sis.

Order of magnitude reasoning is concerned with the analysis of physical systems in which one quan-
tity is much greater than another, or in the comparison of two systems of the same structure, but which have
corresponding quantities of very different magnitudes.For example, if a very massive block hits a very
light one, order of magnitude reasoning can be used to infer that the massive block continues on its way
unaffected, while the light block bounces off away from the massive one. Theidea of order of magnitude
reasoning is to approximate a very great ratio as an infinite ratio, and then to analyze the system in terms of
an algebra of infinite and infinitesimal quantities. Such an algebra has been worked out in [Raiman, 86] and
extended in [Dague, Raiman, and Deves, 87].

The natural next step is to combine these two modes of inference so that we may reason about the
dynamical behavior of systems with quantities of widely varying magnitudes. For example, we would like
to be able to reason that a very heavy block on a spring will have a much longer period of oscillation than a
much lighter block on the same spring.This paper presents a theory combining order of magnitude reason-
ing with envisionment of qualitative differential equations, which supports such inferences. The theory
introduces two technical innovations. First, each state of the system is labelled with its duration and with
the net change to each parameter during the state. Second, we formulate a number of rules governing the
behavior of functions over orders of magnitudes. In other respects, each of our component subtheories is
weaker than standard theories in the literature. Our theory of envisionment allows only the fixed quantity
spaces of sign and order of magnitude, not arbitrary discretizations of quantity spaces as in [Kuipers, 85].
Our order of magnitude algebra uses only three fixed ranges of orders of magnitudes, SMALL, MEDIUM,
and LARGE, not arbitrarily many as in [Raiman, 86] and [Dague, Raiman, and Deves, 87]. ([Weld, 87]
presents an alternative method for making this inference, which does not assume that the ratio between the
blocks is infinite, but rather does a careful analysis of the relation between changes in in parameters and
their derivatives. This theory is stronger than ours, in that it requires weaker assumptions in the input, but it
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an preliminary draft of this paper. This research was supported by NSF grant DCR-8603758.
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seems to be less generally applicable.)

The paper is organized as follows: Section 2 presents fundamental definitions and rules that govern
the behavior of a solution to a set of qualitative differential equations. The basis of the definitions and the
justifications of the rules lie in the theory of non-standard analysis with infinitesimals. Section 3 shows how
these rules may be applied in the "heavy block on the spring" example and other examples. Section4
presents an algorithm for constructing an envisionment graph from a set of qualitative differential equa-
tions. Section 5 discusses the CHEPACHET program, which implements this algorithm. Section 6 makes
suggestions for further work. We assume that the reader is familiar with standard theories of envisionment,
as in [Kuipers, 85] and [de Kleer and Brown, 85], and with non-standard analysis, as in [Robinson, 66] and
[Davis and Hersch, 72].

2. Theory

We follow [Kuipers, 85] in structuring our theory.

Quantities, derivatives, and time may take values from within the non-standard real lineR *. We
divide this line into seven disjoint intervals: (We use notation from [Dague, Raiman, and Deves].)

ZERO = {0}
SMALL = { X|X > 0  and X << 1 } ( infinitesimals)
MEDIUM = { X|X > 0  and X∼1 } (standard reals)
LARGE = { X|X > 0  and 1<< X } ( infinitely large reals)
−SMALL = { X| − X∈SMALL }
−MEDIUM = { X| − X∈MEDIUM }
−LARGE = { X| − X∈LARGE }

These sets and their unions are thequalitative sets. Note that SMALL and LARGE span many orders of
magnitude while MEDIUM spans only one order of magnitude. Note also that there is no landmark value
separating SMALL from MEDIUM or MEDIUM from LARGE; in non-standard analysis, there is no
largest infinitesimal or smallest positive standard real. Our theory can easily be extended to incorporate any
finite number of orders of magnitude; we might, for example, have five positive orders VERY_SMALL,
SMALL, MEDIUM, LARGE, VERY_LARGE. It is not clear how to extend the theory to infinitely many
different orders, as in [Dague, Raiman, and Deves, 87].

Table 1 shows the basic arithmetic operations on the qualitative values. These follow directly from
the axioms presented in [Raiman, 86].Following the notation of [de Kleer and Brown, 85] and [Kuipers,
85] we define [X] to be the qualitative set containing the value X; for example [−1] = −MEDIUM, [0] =
ZERO. If P(T) is a function of T, then we will use the notation∂P for the qualitative value of the
derivative; that is,∂P(T) = [ Ṗ(T)].

An interval of R * is a set of pointsI such that, for allX,Y∈I , if X < Z < Y thenZ∈I . An interval I
is closedon the left (right) ifI has a greatest lower bound (least upper bound)X, and X is in I . It is open
on the left (right) if it has a greatest lower bound (least upper bound)X, and X is not in I or if it is
unbounded on the left (right). Thus, the interval ZERO is closed on both left and right; SMALL is open on
the left and neither open nor closed on the right; MEDIUM is neither open nor closed on either side; and
LARGE is neither open nor closed on the left and open on the right. Two intervalsI andJ are adjacent if
they are disjoint andI ∪ J is an interval.

We will be interested in tracing the qualitative values of a number of parameters over time
p1(T), p2(T),. . . pk(T) and their derivatives ṗ1(T), ṗ2(T),. . . ṗk(T). Theparameters and time take their val-
ues from the non-standard real line. The parameters are assumed to beC1; that is, they are continuous, and
their derivatives are continuous.A collection ofk such functions is called abehavior.

We define theinertial stateof the parametersp1(T) . . . pk(T) to be the 2k-tuple of the qualitative
states of all the parameters and their derivatives:

S = <[ p1(T)] . . .[ pk(T)],[  ̇p1(T)] . . .[ ṗk(T)] >

An inertial stateS characterizes a behavior P =< p1(T) . . . pk(T) >  over a time interval I if S is the inertial
state ofP for all T in I .
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An inertial subdivisionof an interval I by a behavior P is a set of subintervals ofI , where Iα ∈ iff
the following conditions hold:

i. Iα ⊆ I

ii. Thereis a single inertial stateSα that characterizesP throughoutIα .

iii. Iα is maximal with respect to properties (i) and (ii).

It should be clear that, for any interval I and behavior P, there is a unique subdivision; that the inter-
vals of the subdivision are disjoint; and that their union isI .

We are also interested in the order of magnitude of intervals and of the change to a parameter over an
interval. Let P =< p1(T) . . . pk(T) >  be a behavior and letI be a time interval. We define thetime duration
of I , written ∆T(I ), to be the maximum over all points T1,T2∈I of [T2 − T1]. We define thevarianceof
parameterp(T) over I , written ∆p(I ), to be the maximum over all T1,T2∈I of [ p(T1) − p(T2)]

A specification of the qualitative values [pi ], ∂pi , ∆pi , and ∆T is called aqualitative state. We can
now state a number of basic rules that relate the qualitative states of adjacent intervals in an inertial decom-
position. LetP =< p1(T) . . . pk(T) >  be a behavior; let p be a parameter inP; let I be an interval; and letA
andB be two adjacent intervals in the inertial subdivision ofI by P. Then the following rules hold:

Change: There is a parameterp such that either[ p(A)] ≠ [ p(B)] or ∂p(A) ≠ ∂p(B). That is, some-
thing changes fromA to B.

Continuity: From A to B, [ p] and ∂p must either stay constant, or go from one qualitative set to a
bordering set, in the ordering−LARGE, −MEDIUM, −SMALL, ZERO, SMALL, MEDIUM, LARGE.
(Note that variances and time durations do not have to change continuously.)

Mean value from ZERO: If [ p] =ZERO in A and ∂p > 0  in A, then [p]=SMALL in B. If
[ p] =ZERO in A and∂p < 0 in A, then [p] = −SMALL in B.

Mean value to ZERO: If [ p] =ZERO in B and∂p < 0  in B, then [p]=SMALL in A. If [ p] =ZERO
in B and∂p > 0 in B, then [p] = −SMALL in A.

Mean value from non-zero: If [ p] is greater inB than inA, and is not equal to ZERO in either state,
then∂p must be positive in both A andB. If [ p] is less inB than in A, and is not equal to ZERO in either
state, then∂p must be negative in both A andB.

Variance over time: The variance ofp in A is the absolute value of the derivative of p times the
duration.

∆p ⊆ abs(∂p) × ∆T

Variance bound: The variance of a parameter is never greater than its absolute value.

∆p ≤ abs([p])

Variance at state change: If [ p] changes from A to B then ∆p(A) =abs([ p(B)] ), and
∆p(A) =abs([ p(B)]) Note the contrapositive of this statement: If∆p in A is small as compared to[ p] in A,
then [p] does not change fromA to B.

No successive instants: A andB cannot both have duration ZERO.

Temporal topology: By the rule of continuity, any transition of a parameter or derivative p from A
to B has one of the following forms:

i. p(A) =ZERO and p(B) = ±SMALL;

ii. p(A) = ±SMALL and p(B) =ZERO;

iii. p(A) = ±MEDIUM and p(B) = ±SMALL or ±LARGE;

iv. p(A) = ±SMALL or ±LARGE andp(B) = ±MEDIUM;

The rule of temporal topology states that, going from one interval A to the next interval B, only one of
these types of transitions can occur. Thus, for example, it is possible to have p change from SMALL inA
to MEDIUM in B and have q change from−LARGE in A to −MEDIUM in B, since these are both transi-
tions of type (iv). It would not be possible to have p change from SMALL inA to MEDIUM in B, and q
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change from ZERO in A to SMALL in B, since the first is a transition of type (iv), while the second is a
transition of (i).

The fundamental reason for this rule is that different types of transitions imply different topologies
for the intervals. If a transition of type (i) occurs fromA to B, then A must be closed on the right, andB
must be open on the left. If a transition of type (ii) occurs, thenA must be open on the right andB must be
closed on the left. If a transition of type (iii) or (iv) occurs, thenA must be neither open nor closed on the
left, andB must be neither open nor closed on the right. We can show that transitions of type (iii) cannot
occur together with transitions of type (iv) by the following argument: Suppose thatp(T) goes from
MEDIUM in A to LARGE in B, and thatq(T) goes from SMALL inA to MEDIUM in B. Then the contin-
uous functionp(T) ⋅ q(T) would go from SMALL inA to LARGE inB, which is impossible.

Fore ver is a long time: If A is unbounded on the left or on the right, so that it has no adjacent fol-
lowing state or no adjacent preceding state, then∆T(A) = LARGE.

The rules of change, continuity, mean value, and no successive instants are the same or direct ana-
logues of standard rules from the ordinary theory of QDE’s ([Kuipers, 85], [Williams, 85]).William’s
"Epsilon Transition" rule, that a transition to zero must take finite time, is a consequence of the rules above:
If p is non-zero inA and zero inB, then by the rule of "Variance at state change,"∆p is non-zero inA, so
by the rule of variance over time,∆T cannot be zero inA.

These rules together are a sufficient characterization of order of magnitude of values, derivatives,
variances and durations in adjecent intervals. That is, given two qualitative statesSA andSB satisfying the
above rules, other than the "Forever" rule, one can find a behavior P and two adjacent intervals A and B,
such thatSA is the qualitative state ofP in A, and SB is the qualitative state ofP in B. Giv en a stateA satis-
fying the rules of "Variance over time", "Variance bound" and "Forever", there is a behavior which stays
with qualitative state A over all time. We omit the proof of this; it involves a long but straightforward case
analysis, enumerating all the possible values of any parameter over the two states, constructing particular
functions that exhibit each of them, and showing that any pair of transitions allowed together by the "Tran-
sition topology" rule will occur simultaneously for our sample functions.

A stronger hypothesis seems plausible, but we have no proof:

Hypothesis 1: Given any finite sequence of qualitative states such that any two successive qualitative
states satisfy the above rules, there exists a behavior and an interval such that the qualitative states charac-
terize the behavior over the interval.

So far, we hav ebeen speaking about the space of all possible behaviors. For any particular problem,
we will be working with qualitative constraints on the problem. A homogeneous system offirst-order quali-
tative constraints (abbreviated QC’s) is a set of relations among the orders of magnitudes of the parameter
values and their derivatives. ("Homogeneous" here refers to the absence of an explicit time dependence.)
That is, such a system specifies certain combinations of the values [pi(T)] and∂pi(T) to be physically pos-
sible, and others to be impossible. For example, we might specify the relation∂X = −[X]; this states that the
only qualitative states allowed are[X] =LARGE, ∂X = −LARGE; [X] =MEDIUM, ∂X = −MEDIUM, etc.
A behaviorP satisfies a set of QC’s only if the orders of magnitude of its parameters and their derivatives
satisfy the set at each instant of time.

Thus, if a behavior satisfies a set of QC’s, then all its inertial states satisfies the QC’s, and any two
adjacent qualitative states satisfy the rules enumerated above. If Hypothesis 1 above is true then the con-
verse of this statement is likewise true:

Hypothesis 2: Given a set of QC’s and a finite sequence of qualitative states, if each successive pair
of states satisfies the rules above and the inertial state of each qualitative state satisfies the QC’s, then there
exist a behavior P and a time interval I such that the qualitative states characterizeP over I , and such that
P satisfies the QC’s throughoutI .

Proof given hypothesis 1: Use hypothesis 1 to construct a behavior P and an interval I following the
qualitative states. ThenP satisfies the QC’s since the states do.

A particularly important class of qualitative constraints are thequalitative differential equations
(abbreviated QDE’s). LetF1,. . ., Fk be k continuousk-place functions over the non-standard real line.
Then the system of (exact) differential equations
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ṗ1(T) = F1(p1(T), p2(T) . . . pk(T))
ṗ2(T) = F2(p1(T), p2(T) . . . pk(T))

. . .

ṗk(T) = Fk(p1(T), p2(T) . . . pk(T))

is guaranteed to have C1 solutions for any giv en initial valuesp1(0). . . pk(0). We now discretize the func-
tions Fi to multi-valued functionsGi over qualitative sets. That is, ifQ1

. . .Qk are qualitative values, we
defineGi(Q1

. . .Qk) by considering all possible choices ofx1
. . . xk from Q1

. . .Qk, and taking the qualitative
value of Fi(x1

. . . xk).

Gi(Q1
. . .Qk) = {[Fi(x1

. . . xk)] | x1∈Q1
. . . xk ∈Qk}

Thus, for example, ifF(X,Y) = X2 + Y then G(SMALL,MEDIUM) = SMALL 2 + MEDIUM =
{MEDIUM}. G(MEDIUM,−MEDIUM) = MEDIUM2 − MEDIUM = { −MEDIUM, −SMALL, ZERO,
SMALL, MEDIUM}.

The condition that theFi be continuous implies conditions on theGi analogous to the rule of conti-
nuity and the rule of temporal topology given above.

A set of QDE’s is then the discretized form of the original exact differential equations.

∂p1(T) ∈ G1([ p1(T)] . . .[ pk(T)] )
∂p2(T) ∈ G2([ p1(T)] . . .[ pk(T)] )

. . .

∂pk(T) ∈ Gk([ p1(T)] . . .[ pk(T)] )

Note that there can be behaviors that satisfy some system of QDE’s but do not satisfy any system of
homogeneous exact differential equations.For instance, any solution of a set of homogeneous exact differ-
ential equations that goes through the values <0, 0, 0 ... 0> more than once must be cyclic, by the unique-
ness of solutions to the initial value problem; this does not hold for solutions to homogeneous QDE’s.
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3. Sample Inferences

We now show how these rules can be used to prove that a heavy block on a spring will take a long
time to reach the rest point.

Let x be the displacement of the block from its rest point, letv be its velocity, and let f be the force
exerted by the spring on the block. The physical constraints on the system can be characterized by the fol-
lowing QDE’s

∂x = [v]
[ f ] = LARGE⋅ ∂v

[ f ] = − [x]

The first equation just establishesv as the derivative of x. The second equation corresponds to Newton’s
second law f = ma. In this case,m is assumed to be LARGE, anda = ∂v. The third equation is a very weak
form of Hooke’s law; it states that the spring exerts a force opposite to the displacement and of the same
order of magnitude.1 For convenience of exposition, we will eliminatef and rewrite the equations in the
equivalent form:

∂x = [v]
∂v = [x]/LARGE

Nothing in our analysis depends on this rewriting; it would go through in the same way in either presenta-
tion.

We now track the sequence of qualitative states consistent with the QDE’s and with the rules enumer-
ated above, and we show that any path which brings the block to its rest point includes a state whose dura-
tion is LARGE.

We start with the block at some finite displacement and zero velocity. That is, in state A1,[x] =
MEDIUM, [v] = ZERO. From the differential equations,∂x = v must be ZERO, while∂v = −x/LARGE

must be−SMALL. By variance bound,∆v must be ZERO. By variance over time, therefore,∆T =
∆v

|∂v|
=

ZERO. Applying variance over time in the other direction,∆x = ∆T ⋅ ∂x = ZERO. So we have a complete
description of A1:

A1: [x] = MEDIUM ∂x = ZERO ∆x = ZERO
[v] = ZERO ∂v = −SMALL ∆v = ZERO
∆T = ZERO

Let A2 be the next state.Since [x] = MEDIUM and∆x = ZERO in A1, by variance at state change
[x] must be MEDIUM in A2. By mean value from zero and continuity, [v] must be−SMALL. From the
differential equations,∂x and∂v must both be−SMALL. We cannot determine the variances or duration
until we look at the next state.

Let A3 be the next state. In A3, either[x], [v], ∂x or ∂v must change. In fact, since the differential
equations determine∂x and∂v from [x] and [v], either[x] or [v] must change. By mean value at non-zero
and continuity, we must either have [v] change to−MEDIUM, or have [x] change to SMALL or both. We
will consider each of these in turn:

Suppose that [v] changes to−MEDIUM in A3. Then, by the rule of variance at state change, we must
have ∆v = MEDIUM in A3. As we have stated, [x] must either MEDIUM or SMALL in A3. Hence, from
the differential equation∂v = [x]/LARGE must be−SMALL in A3. By variance over time, in A3,

∆T =
∆v

|∂v|
= LARGE. But, from the differential equations,∂x = [v] = MEDIUM, and, by variance over

time, ∆x = ∆T ⋅ |∂x| = LARGE. But this contradicts the rule of bounded variance, since∆x is now larger
than [x]. Thus the assumption that [v] changes to−MEDIUM must have been false.

1. It may be asked, what does it mean to compare the order of magnitude of a force with that of a distance?. The
answer is that we are assuming here standard units of mass, distance, and time. Thus, the question being
addressed is actually a comparative one: assuming the mass is large compared to a standard mass, what does
that imply about the time, compared to a standard time?
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The only option left for A3, therefore, is that [x] changes to SMALL, and that [v] remains−SMALL.
From the differential equations, we have∂x = −SMALL, and∂v = −SMALL. Applying the variance at state
change to A2 and A3, we must have that in A2,∆x = MEDIUM, and in A3,∆x = SMALL. Therefore, by

variance over time in A2, we have ∆T =
∆x

|∂x|
= LARGE. Combiningbounded variance and variance over

time, we find that, in A2,∆v=SMALL. We hav enow completely characterized A2:
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A2: [x] = MEDIUM ∂x = −SMALL ∆x = MEDIUM
[v] = −SMALL ∂v = −SMALL ∆v = SMALL
∆T = LARGE

Thus, we have shown that, before the block can reach the zero point, it must pass through a state of
LARGE duration, which was the desired result.

We cannot show in this system that the block ever will reach the rest point. Since∆T = LARGE in
A2, it is consistent with our rules that the system should stay in A2 forever. In fact, the behavior

x(T) = 1 + e−δ T2

v(T) = δ (e−δ T −1)

whereδ is a SMALL real number, starts in A1 at T=0, and then stays in A2 forever. (See figure 1.)

Figure 1: A behavior that stays in A2 forever

By contrast, solutions to the correspondingsecondorder QDE[ ẍ(T)] = −[x(T)] / LARGE cannot stay
in A2 forever; x(T) must cross the value ZERO. We can make the following argument by contradiction.
Supposex(T) is always positive. Then ẍ(T) will always be negative, so ẋ(T) will be uniformly decreasing.
Thus, if ẋ(T) attains a value−ε at some timeT1, it will have value less than or equal to−ε for all T > T1.
However, for T > T1,

x(T) − x(T1) =
T

T1
∫ ẋ(T)dT < − ε(T − T1)

Thus x(T) will be negative for all T > T1 + x(T1) /ε , contradicting the assumption. Thus, information is
irrecoverably lost in converting the higher-order QDE into a first-order QDE. (Nothing in this argument
depends on the order of magnitude mechanism. The same loss of information happens in converting the
ordinary second-order QDË[x(T)] = −[x(T)] to the two first order QDE’s ∂x(T) = [v(T)], ∂v(T) = −[x(T)].)

Our rules also do not allow us to say much after what happens to the system past this state. In fact,
from this starting state, the system can reach any consistent intertial state whatever, except for the rest state
[x] = ZERO, [v] = ZERO.

In a similar way, the rules above allow us to show results such as the following:

Fast exponential growth and decay: The initial value problem (IVP)∂x =LARGE⋅[x],
[x(0)] =MEDIUM, spends a SMALL time with [x] = MEDIUM, and then goes to[x] = LARGE forever.
The problem∂x = −LARGE⋅[x], [x(0)] =MEDIUM, spend a SMALL time with [x] = MEDIUM and then
goes to [x] = SMALL. It then either stays forever with [x] = SMALL, or it transits after a period of unde-
termined length to [x] = ZERO, where it stays forever.

Slow exponential growth and decay: The IVP ∂x =SMALL⋅[x], [x(0)] =MEDIUM, spends a
LARGE time with [x] = MEDIUM, and then goes to[x] = LARGE forever. The problem
∂x = −SMALL⋅[x], [x(0)] =MEDIUM, spend a LARGE time with [x] = MEDIUM and then goes to [x] =
SMALL. It then either stays forever with [x] =  SMALL, or it transits after a period of undetermined length
to [x] = ZERO, where it stays forever.

Highly damped oscillation: The IVP
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∂x = [v] [ x(0)]= MEDIUM
∂v = −LARGE⋅[v] − [x] [ v(0)] = SMALL

corresponding to a very heavily damped harmonic oscillator, transits immediately to[x] = MEDIUM, [v] =
SMALL. It stays thus for a LARGE time, (∂v can in the meantime take on a wide range of values) and
ev entually transits to the state [x]=SMALL [ v]=−SMALL, From here on in, it can oscillate indefinitely
cyclically with the absolute values of bothx andv remaining SMALL or ZERO, or it can settle forever in
any such state, or in the state [x] = [v] = ZERO.

Quickly settling control parameter: The IVP

∂u(T) = −LARGE⋅[u(T)] [u(0)] = MEDIUM
∂x(T) = −(MEDIUM + [u(T)])⋅x(T) [x(0)] = MEDIUM

represents a quickly settling functionu(T) controlling a more slowly moving function x(T). The solution
has [u(T)] become SMALL or ZERO in SMALL time, while x(T) remains MEDIUM. Thereafter, x(T)
undergoes exponential decay with a MEDIUM time constant, eventually getting to SMALL values after
LARGE time. (It takes only MEDIUM time to get to any value in MEDIUM but LARGE time to get to any
value in SMALL.) Such problems are similar to those studied by Kuipers (1987).

4. Algorithm

We next present an algorithm for constructing anenvisionment graphfor a given set of QDE’s. An
envisionment graph for a set of QDE’s is a data structure that indicates the transitions possible for solutions
of the QDE. If hypothesis 2 is correct, it thus indicates all the finite characterizations of parts of solutions.
The value of envisionment graphs for this class of problems is somewhat limited, for two reasons. First,
they are very large. Sinceall initial value problems have solutions, any assignment of qualitative values to
the parameters must be a possible state of the system. Thus there are at least7k inertial states for a system
of k parameters; in general, there will be more, since some of the QDE functionsGi will be multi-valued.
In practice, this limits the generation of envisionments to QDE’s with at most three variables.

Second, the characterization of a behavior over all time may be considerably richer than its behavior
over any finite sequence of qualitative states. For example, consider the (second-order) IVP

[ ẍ(T)] = − [x(T)] [ x(0)] = MEDIUM ˙[x(0)] = ZERO
[u̇(T)] =MEDIUM [u(0)] = MEDIUM

We would like to say thatx oscillates forever in MEDIUM amounts of time, whileu attains LARGE values
over LARGE amounts of time.However, nothing about finite sequences will ever say this. In fact, there is
no allowable transition in whichu goes from MEDIUM to LARGE.

In this case, of course, it is possible to separate the two equations, and give separate histories, along
the lines suggested in [Williams, 86].However, it is not clear how this can be done in general; for example,
how it could be done for the equations

[ ẍ(T)] = −[u(T)] ⋅ [x(T)] [ x(0] = [ ẋ(0)] =SMALL
[u̇(T)] =MEDIUM + [ x] [u(0)] = MEDIUM

Despite these difficulties, we have studied the construction of envisionment graphs as a natural and
simple first step toward deeper analysis. We will discuss possible directions for improvement in section 6.
(Forbus (1987) gives a defence of building envisionments for conventional QDE’s. There, the first problem
is much alleviated, since the number of qualitative values is smaller, and the second problem can be ruled
out.)

We will construct an envisionment graph whose nodes are intertial states, labelled by sets of possible
variances and durations, and whose directed arcs are transitions, labelled by sets of the possible variances
and durations that the end nodes can take, if the transition occurs. For example, figure 2 shows a piece of a
graph, with nodesA andB, and a transition fromA to B. The labels onA mean that[X] is MEDIUM in A,
∂X is MEDIUM, ∆X is either SMALL or MEDIUM, and∆T is either SMALL or MEDIUM. The labels on
B mean that[X] is LARGE in B, that ∂X is SMALL, that ∆X is LARGE, and that∆T is LARGE. The
labels on the arc indicate that, if a behavior goes fromA to B, then it will have ∆X and ∆T equal to
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MEDIUM in A, and∆X and∆T equal to LARGE inB.
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Figure 2: A labelled transition

Algorithm 1 constructs an envisionment graph from a set of QDE’s. It is clearly a sound algorithm;
that is, if x(t) is a possible solution to the QDE’s for all t, then any transition ofx(t) is represented in the
graph. Soundness holds since the algorithm does nothing more than enforce the starting QDE’s and the
rules governing transitions. If hypothesis 2 is correct, then the algorithm is also complete; that is, any path
through the graph represents the behavior of some solution of the QDE’s over an interval. This may be
somewhat surprising, since constraint propagation is not, in general complete. However, the significance of
labels in this graph is different than for most labelled graphs. If one goes around a cycle in the envisionment
graph and comes back to the same node, it need not have the same value as before, since it corresponds to
the behavior of the function at a different time. Therefore, in this context, local consistency of the graph is
enough to establish its global consistency.

By indexing inertial states in an array by the tuple of parameter values, step 3 of the algorithm, which
connects bordering states, can be made reasonably efficient. It does not involve comparing all pairs of iner-
tial states, but only states that differ by 0 or±1 in each of thek parameter values and thek derivatives. It
can be shown that the procedure above runs in time at most quadratic in the number of inertial states (which
is, of course, itself exponential in the number of variables.)

5. The CHEPACHET Program

The above algorithm has been implemented as a program named CHEPACHET. CHEPACHET is
written in Franz Lisp and runs on a VAX/780. It is roughly 600 lines of code long, and contains 85 function
definitions, not including utility macros and comments. It has not been compiled, and has not been particu-
larly optimized for efficiency. Input to CHEPACHET is a list of parameters and a list of QDE’s, whose left
side is the derivative of a parameter, and whose right side is a polynomial in the parameters and the qualita-
tive values. The output of CHEPACHET is a listing of the graph.

Table 2 shows the results of running CHEPACHET on a number of simple QDE’s in terms of the
CPU time used (in CPU seconds, exclusive of garbage collection time), and the size of the envisionment
graph generated. Garbage collection time was typically one-quarter to one-third of the other CPU time.

6. Further Work

Clearly, the above analysis and the CHEPACHET programs are only first steps. The theory will have
to be considerably refined before it is of any practical value. Some important issues to be addressed include
the following:

1. How can this theory be used in a goal-directed way, so that useful information, such as illustrated
in section 3, can be extracted without generating the whole envisionment graph? It would be relatively easy
to fix the algorithm to generate only the states that can be attained from a given set of initial conditions, but
that would not necessarily improve matters much. In the problem of the heavy brick on a spring, every state
but one (the rest state) can be reached from the starting conditions. Many of the states generated in a com-
plete envisionment, such as the SMALL values that always lie between MEDIUM and ZERO values, are
not particularly significant for any kind of inference. Can they be suppressed?

2. As discussed in section 3, information is lost when a higher-order qualitative differential equation
is converted into a system of first-order equations. Is there any easy way to extract that information working
directly with the higher order equations? ([De Kleer and Bobrow, 84] is the only substantial study of
higher-order QDE’s)

3. How can behaviors involving infinitely many state transitions in bounded time be characterized?

4. Can the theory be extended in a reasonable way to handle more levels of orders of magnitude?
Currently, once a parameter and its derivative both become SMALL or both become LARGE, it becomes
impossible to say anything at all about their relative sizes. Amore flexible representation might support
much more powerful inferences.
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