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Abstract

Most physical calculations that involve the shapes of objects are carried out by approximating
the actual shape in terms of a idealized, or nominal, shape description. It then becomes a
problem to determine whether calculations based on idealized shapes in fact carry over to
actual shapes. This paper addresses the following instance of that problem, in the domain of
solid object kinematics: Suppose that it is known that the ideal shapes approximate the real
shape to a specified tolerance, or degree of accuracy. In what respects, or to what degree, can
we expect that the physical behavior will resemble the calculated behavior?

In studying this problem, we consider two definitions of “shape approximation” and three
definitions of “similarity of physical behavior,” all original to this paper. We prove a number
of theorems that give conditions that suffice to guarantee that, if the real shape of the object
is close enough to the nominal shape, then the real behavior will be close to the behavior
computed from the nominal shape. Moreover, we show that these relations are, at least in
principle, computable, if the idealized shapes are semi-algebraic.

Keywords: Shape approximation, shape tolerance, mechanical tolerance, kinematics, configuration
space, Hausdorff distance.

1 Introduction

In most computations that involve the shapes of real objects, the true shape of the objects is
approximated by a nominal or ideal shape. That is, one has a program that uses representations
of ideal spatial regions, such as polyhedra, or cubic splines, or Fourier components. One constructs
a representation in this language of a nominal shape that approximates closely the actual shape of
the object; and one uses this nominal shapes for geometric calculations; and then one hopes that
results of the calculations over the nominal shape are valid over the actual shape. For instance,
if an engineer models an airplane wing in terms of a triangulation of its surface, it is not because
he imagine that that is the actual shape of the wing, and that if he looks close enough he can
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find the edges and vertices in the physical wing; it is because he has some reason to believe that
calculations based on the triangulation will be close enough to the actual values for the real shape,
for the questions he wants to answer and the degree of precision that he requires.

There are several reasons that approximations of this kind are necessary in practice. First, the
true shape may not be precisely expressible in terms of the representation language; for example, the
representation language uses polyhedra and the true shape is a smooth curve, or the representation
language is algebraic and the true shape is a helix. Second, approximating a complex shape by a
simpler one may substantially reduce computation costs (e.g. Fleischer et al., 1992). Third, in many
cases, the true shape cannot be fully determined. For example, it may not be possible to measure
or to perceive the shape with sufficient accuracy, or the shape may be an ideal to be manufactured
using a process with some error tolerance, and so on (e.g. Joskowicz and Taylor, 1996; Requicha,
1983).

The use of this kind of approximation — which, it is worth reiterating, is ubiquitous, almost
universal, in applied geometric computation — immediately raises two questions. First, what does
it mean for one shape to approximate another? Second, how can one go from calculations based
on the nominal shape to conclusions about the actual shape? The first question is the subject of
the theory of tolerancing, which has been extensively studied, both from an engineering standpoint
(e.g. Neumann, 1994) and from a theoretical standpoint (e.g. Turner and Wozny, 1990). The
engineering community has developed a rich and powerful vocabulary for describing shape tolerance
on manufactured parts.

Much less is known about the second question, particularly for physical as opposed to purely
geometrical computations. In practice, the question is generally addressed using engineering rather
than theoretical methods. An engineer has a sense from experience of how accurate an approximation
he needs for a given application, and then can test the reliability of a calculation either by physical
experimentation or by computational techniques such as increasing the accuracy and checking to
see whether the result change much. Nonetheless, theoretical results have substantial value, as in
most domains (also, of course, substantial limitations.) Our particular interest in these results is
to study explicit shape approximations as a form of qualitative spatial information, and to study
what aspects of shapes are important in physical reasoning by determining what aspects must be
preserved under approximation in order guarantee desired physical consequences.

This paper addresses the question of the reliability of calculations based on shape approximations
for calculations in the kinematic theory of rigid solid objects (KRSO). KRSO deals with the possible
motions of a collection of solid objects that are idealized as perfectly rigid in shape. The theory is
narrow but extremely important in practical terms; for example, it is powerful enough to characterize
a large fraction of the mechanisms that are used in practice (Joskowicz and Sacks, 1991). Thus this
paper addresses the following general question: Suppose we have calculated the behavior of some
kinematic system using ideal descriptions of the shapes of the objects involved. Does it then follow
that a real mechanism, in which the shapes of the objects approximate this ideal, will have a similar
behavior? Our answer consists of three theorems of the following form: “If the actual shapes of
objects lie close enough, under a specified tolerance, to the nominal shape, then certain kinematic
properties of the actual shapes lie close to the calculated properties for the nominal shapes.” We
consider three different kinematic properties and two different shape tolerances. Since the kinematic
behavior of a system of objects is highly discontinuous as a function of the shape, these results
are far from obvious. As far as we know, this is the first result obtained that shows that physical
behaviors can be well behaved under small shape tolerances.’

To address this question, we must define what it means (a) for one shape to approximate another

IThe results of (Joskowicz, Sacks, and Srinivasan, 1997) relate to parametric tolerance; it is assumed that the
actual shape lies in a family of regions that vary in terms of a fixed, finite number of one-dimensional parameters,
such as the family of rectangles. The discussion here uses the much broader notion of shape tolerance.



and (b) for the behavior of one mechanism to be similar to the behavior of another. As regards
(a), we will consider two general criteria of shape approximation. The first, in terms of the dual-
Hausdorff distance, considers that shape A approximates B if every point in A is close to a point
in B and vice versa, and every point outside A is close to a point outside B and vice versa. The
second criterion, called “approximation in tangent”, adds the further requirement that the tangents
at corresponding points on the boundaries of A and B are close.

In addressing (b) above, we will characterize the behavioral properties of a kinematic system in
terms of its configuration space; that is, the set of physically feasible positions and orientations of
the objects. Thus, for the purposes of this paper, we will consider the behavior of two mechanical
systems to be “similar” if their respective configuration spaces are close. Again, we will consider
several different possible criteria of “closeness” between two configuration spaces; which, if any, of
these is appropriate in a given circumstance depends on the particular application and the question
being addressed.

Thus, we can reword the general question posed above: If the shapes of one system approximate
those of another system, is the configuration space of the first close to the configuration space of the
second, under the various definitions of “approximation” of shape and “closeness” of configuration
space? In this paper, we shall prove several theorems that guarantee that a sufficiently precise
approximation of shape preserves significant properties of configuration space. In particular, we
show that

e It is often possible to guarantee that every configuration in the configuration space of system A
are close to a configuration of system B by requiring that the shapes of A closely approximate
those of B in terms of the dual-Hausdorff distance. (Section 2)

e It is often possible to guarantee further that every path through the configuration space of
system A is close to a path through the configuration space of system B by requiring that the
shapes of A closely approximate those of B in terms of the dual-Hausdorff distance. (Section
3)

e It is often possible to guarantee further that each connected component of the configuration
space of A is close to a connected component of the configuration space of B by requiring that
the shapes of A approximate those of B in tangent. (Section 4)

We also show that, if the nominal shapes are semi-algebraic, then there are algorithms that
will compute a positive tolerance satisfying the theorems described above. All these results use a
reduction to Tarski’s theorem (1951) that the first-order language of algebra over real variables is
decidable. It should be noted that the straightforward expression of the tolerance theorems involve
quantifying over all regions within tolerance of the nominal shapes, and that quantification over
regions is not generally within the scope of Tarski’s theorem. Indeed, first-order language over
regions, even with very limited predicates, are generally undecidable (Grzegorczyk, 1951). Thus,
the existence of a reduction to Tarski’s theorem is not a trivial statement.

The results in this paper are primarily applicable to path-planning and manipulation. Under
many circumstances, the results here suffice to show that a kinematically feasible path has been
computed from nominal shapes, then a very similar path will be feasible for the true shape. The
application of these results to mechanical systems is more limited for the following reason: Me-
chanical systems that are used in practice generally involved very tight fits between pieces in order
to achieve a system with a small number of degrees of freedom, typically one degree of freedom.
Gears mesh closely, pistons fit tightly in cylinders, and so on. Unfortunately, it is precisely in these
circumstances that many of the results derived here tend not to apply. Nonetheless, some of the
results here apply in some such circumstances; in particular, theorems 2.3 and 3.2 demonstrate that
if the actual shapes of the objects are close enough to the nominal shapes and are contractions of



the nominal shapes, then the true configuration space for the mechanism is close (in two different
senses) to the computed configuration space.

Two appendices are attached to the paper. Appendix A summarizes the ten different spaces and
associated distance functions used in this paper. Appendix B contains the proofs of the theorems in
this paper.

1.1 Previous work

The definition and mathematical analysis of representation of shape tolerances and the implemen-
tation of tolerances as part of CAD/CAM systems has been a very active area of research in recent
years, starting with (Requicha, 1983). (Neuman 1994) presents the ASME standard for a language
of tolerances.

The languages that have been developed tend to be substantially more flexible and expressive
than the representations of tolerance that we consider in this paper; for instance, they allow for
the separate specification of tolerance in dimension, in orientation, and in form (Turner and Wozny,
1990; Moroni and Polini, 2003) and for assigning different tolerances to different parts of an object.
However, for the purposes of the kinds of analysis we are doing here, such flexibility has three
substantial drawbacks (beyond the obvious added complexity). If different parts can have different
tolerances then, first, it becomes tricky to define what happens to the tolerances at the points where
the parts are joined; and, second, one has to address the difficult issue of how to divide the actual
object into parts matching the parts of the nominal shape. Third, tolerance representations of this
kind are almost always defined with respect to a specific representational vocabulary for the nominal
shapes (e.g. as polyhedra). By contrast our analysis in this paper applies to any system of nominal
shapes satisfying minimal topological requirements (closed and bounded).

Mathematical analyses of the relation between shape tolerance and functionality are rarer, and
mostly allow only parameteric changes in positions, sizes, and orientations of features but not general
shape variation. Cazals and Latombe (1997) describe an algorithm and an implementation for
calculating the effect of positional tolerancing on the class of feasible relative positions, assuming that
orientations remain fixed. The theories presented in (Joskowicz, Sacks, and Srinivasan, 1997) and
(Kyung and Sacks, 2003) compute bounds on the tolerance in dimensional parameters of nominal
shapes sufficient to guarantee that the topology of the computed configuration space is correct.
Ostrovsky-Berman and Joskowicz (2005) have implemented a number of algorithms for calculating
assemblies for mechanical parts with specified tolerances.

Gao, Chase, and Magleby (1995) and Moroni and Polini (2003) use Monte Carlo methods to
generate random objects satisfying the tolerances, and then verify that these satisfy given functional
requirements. In (Chase et al., 1994) and (Chase, 2003) tolerances are interpreted as the standard
deviation in a normal distribution and then combine these distributions to make statistical predic-
tions about the functionality of composite systems. None of these works deal with shape variation
of a general kind; defining a natural probability distribution over the class of all shapes satisfying a
given tolerance is an unsolved problem, as far as I know.

Dabling (2001) describes a library for tolerance analysis of specific 3D joint geometries.

Nielsen (1988) discusses the process of abstracting a long, thin configuration space, such as that
generated by a gear train with a small amount of play, to an idealized configuration space of lower
dimension. This is done entirely at the level of the configuration space without reference to the
geometry of the objects; this reverses the processes considered here, so to speak.

Varadhan, Kim, Krishnan, and Manocha (2006) present an approximate algorithm that gen-
erates a topologically correct configuration space. Here it is the algorithm rather than the shape



descriptions that are approximate, but some of the methods used are similar, particularly the use of
the Hausdorff distance to measure the difference between configuration spaces.

Yap and Chang (1996) give an algorithm for testing whether an actual piece lies within a zone
tolerance of a specified nominal shape by probing. Yap (1994) discusses similar issues.

1.2 Geometric preliminaries and tolerances

We begin by defining some basic geometric primitives and some definitions of what it means for one
shape to approximate another. We use standard two- or three-dimensional Euclidean geometry. A
region is a subset of Euclidean space.

We write “d(p,q)” to denote the Euclidean distance between points p and q.

Definition 1.1: The distance between two regions d(A,B) is defined, as usual, as the minimal
distance between the two.

d(AJ B) = inprA,qu d(pa q)

Definition 1.2: Two regions overlap if their interiors have a non-empty intersection. The degree
of overlap of regions A and B, denoted “o(A,B)” is the radius of the largest sphere contained in
ANB.

Definition 1.3: We define three distance functions on regions. The Hausdorff distance from A
to B is defined as the maximum of either the maximal distance from a point p € A to B or the
maximal distance from a point q € B to A.

dp(A,B) = max(sup inf d(p, q), sup inf d(p,q))
qeAPEB peB d€A

The complement-Hausdorff distance from A to B, denoted “dg.(A,B)”, is the Hausdorff dis-

tance between the complements of A and B. The dual-Hausdorff distance from A to B, denoted

“dgqa(A,B)”, is the maximum of the Hausdorff distance and the complement-Hausdorff distance.

Example 1.1: Let A be the solid square with vertices (1,1),(—1,1)( — 1,—1),(1,—1) and let
B be the solid disk centered at the origin of radius 1.2 (Figure 1). Then the distance from the point
al = (1,1) in A to the closest point bl = (0.61/2,0.6v/2) in B is v/2 — 1.2 &~ 0.214. Moreover, this
is the greatest distance from any point in A to the closest point in B. The distance from the point
b2 = (1.2,0) in B to the nearest point a2 = (1,0) in A is 0.2. Moreover, this is the greatest distance
from any point in B to the nearest point in A. Therefore, the Hausdorff distance between A and
B, dy(A,B) = max(0.214,0.2) = 0.214.

Let A€ and B¢ be the closures of the complements of A and B respectively. Then the complement-
Hausdorff distance between A and B is equal to the Hausdorff distance between A€ and B°. (Taking
the closure does not affect the Hausdorff distance, and makes it possible to talk about maxima
rather than least upper bounds.) The distance from the point bl = (0.6y/2,0.6y/2) in B® to the
closest point a3 = (1, 0.6\/§> in A° is equal to 1 — 0.6v/2 = 0.151. Moreover, this is the greatest
distance from any point in B¢ to A°. The distance from the point a2 = (1,0) in A° to the point
b2 = (1.2,0) in B¢ is 0.2. Moreover, this is the greatest distance from any point in A€ to B¢. Thus,
the compliment-Hausdorff distance from A to B, dp.(A,B) = dg(A° B°¢) = max(0.151,0.2) = 0.2.

The dual-Hausdorff distance from A to B, dg4(A,B) = max(dp.(A,B),dy (A, B)) = 0.214.

Example 1.2: Consider the three regions shown in figure 2. A is the upper comb-like region, B
is the lower comb-like region, and R = A UB is the complete rectangle. Let ¢ be the width of a tine
of A and let h be the height of the rectangle. Let p be a point on the bottom line in the center of
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Figure 1: Hausdorff and complement-Hausdorff distances: Example 1.1

a tine of B. Then the distance from p to the nearest point in A is roughly ¢/2. Moreover, no other
point of R is further from A, and, of course, every point of A is also a point of R and is therefore
distance 0 from a point of R. Hence, the Hausdorff distance from A to R is roughly ¢/2.

On the other hand, if ¢ € A€ is a point halfway up a tine of B, then the distance from ¢ to R°
is h/2. Therefore, the complement-Hausdorfl' distance and the dual-Hausdorfl distance from A to
R is h/2.

The Hausdorff distance is well known in the literature. The dual-Hausdorff distance is original
to this paper, as far as I know; I have also analyzed its topological properties as regards continuous
changes of shape in (Davis, 2001).

Lemma 1.1. The Hausdorff distance, the complement-Hausdorff distance, and the dual-Hausdorff
distance, are all metrics over the space of compact (i.e. closed and bounded) regions.

Proof: Straightforward. 1

These three metrics define three different topologies on the space of compact regions. The dual-
Hausdorff distance is strictly finer than the other two; the Hausdorff and complement-Hausdorff are
incomparable. Therefore, if a function f from the space C of compact regions to another topological
space T (e.g. the reals) is continuous when C with respect to the topology defined by the Hausdorff
distance or with respect to the topology defined by the complement-Hausdorff distance, then it is
also continuous with respect to the topology defined by the dual-Hausdorff distance.

It can be shown that the distance function “dist(A,B)” is continuous relative to the Hausdorff
distance between A and B and that the overlap function “o(A,B)” is continuous relative to the
complement-Hausdorff distance between A and B. (See lemma B.2.2 and B.2.3 in appendix B.) The
overlap function is not a continuous function of regions using the Hausdorff metric. For example,
in figure 2, both combs A and B are close to R in the Hausdorff metric, but o(A,B) = 0, while
o(R,R) is large. Note that A and R are not close in the complement-Hausdorff metric. The function
d(A,B) between regions is not continuous with respect to the complement-Hausdorff metric; the
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Figure 2: Hausdorff and complement-Hausdorff distances: Example 1.2

example is analogous.

Given a region R and a distance €, lemma 1.2 below gives an elegant and useful characterizations
of the regions that contain R and are within Hausdorff distance € of R; and a similar characterization
of the regions that are contained in R and are within complement-Hausdorff distance € of R. First,
we need a couple of definitions:

Definition 1.4: Let x be a point and € > 0 a distance. The open ball of radius € around x, denoted
B(x, €) is defined, as usual, as the set of points y such that d(x,y) < e.

Definition 1.5: Let R be a closed region and € > 0 a distance. The uniform expansion of R by e,
denoted “expand(R,¢€),” is the closure of the union of B(x,e) for all x € R; equivalently, it is the set
of all points y such that d(y,R) < e. The uniform contraction of R by €, denoted “contract(R,¢),”
is the set of all points y such that B(y,e) C R. Equivalently, it is the set of all points y such that
d(y,R°) > e. Note that contract(R,€) may be the null set if there are no balls of radius € in R.
The expansion and contraction are often called the MMC (maximum material condition) and LMC
(least material condition) in the literature on tolerances.

Lemma 1.2: If S D R, then dg(R,S) < ¢ if and only if S C expand(R,¢). If S C R, then
dmc(R,S) < e if and only if S D contract(R,€).

The proof is immediate from the definitions. Note that the second part of the lemma holds even
if the uniform contraction of R by e is the null set. In that case, the lemma asserts that all subsets
of R lie within € of R in the complement-Hausdorff distance.

1.3 Rigid mappings and configuration space

We now develop a language for describing the motions of rigid objects under kinematic constraints.
We use the standard approach of thinking in terms of a configuration space. A configuration is a
specification of the positions of a collection of objects, and the configuration space is the set of all
configurations. A configuration is either feasible, if no two objects overlap, or infeasible if at least
one pair of objects overlaps. The kinematic properties of a given collection of objects are determined
by the space of feasible configurations of those objects.

Definition 1.6: A regular region is a subset of R™ that is non-empty, bounded, and equal to the
closure of its interior.



Figure 3: A square under two different mappings

We will assume throughout this paper that every solid object occupies a regular region. In section
4, it will be necessary to add additional constraints on the shape. Curiously, the results in sections
2 and 3 do not depend on the shapes being connected. If it were physically possible to construct an
object that was disconnected but nonetheless moved rigidly, these results would still apply.

We assume that we have a fixed collection of objects. With each object, we will associate a regular
region that is its shape in some standard position. The region that it occupies in a given situation is
then defined by the application of a particular rigid mapping, or placement, to its standard shape.

Example 1.3: Consider a square object with side length 2. We could take its standard shape
to be the square with vertices (1,1), ( —1,1)( — 1, —1), (1, —1). If it is rotated counter-clockwise by
7/6 around the upper-right corner, then the placement is given by the relation

o =xvV3/2—y/2+(3/2—/3/2).
Y =a/2+yv3/2+(1/2 - V3/2)

(Note that cos(m/6) = v/3/2 and sin(r/6) = 1/2.) The placement associated with this new posi-
tion of the object is then the pair consisting of the original square with this rigid transformation.
(Figure 3)

We will need to describe the amount of change in a configuration space as a result of changing.
The first step to this is to define a notion of the distance between the effects of mappings M; and
Ms on a fixed reference region R. (There is no useful definition of the distance between two rigid
mappings M; and M» in an absolute sense.)

Definition 1.7: Let R be a compact region and let M; and My be rigid mappings. Then the
distance between M; and M, relative to R, denoted “pR(Ml,Mg)”, is defined as the maximal
displacement of any point in R in going from M; to Mo.

pR(My, M3) = maxyer d(Mi(r), Ma(r))

Example 1.4: Let R be the square used in example 1.3, and let M; and M be the two positions
shown. Since the change from M; to Ma is a rotation about (1,1), the point in R that moves the
most from M; to M is the point furthest from (1,1), which is the lower left hand corner. This
moves from { — 1, —1) to (2 — /3, —/3), which is a distance of 2¢/3 — 2 = 1.46. Thus p®(M;, M)
= 1.46, in this case.



Lemma 1.3: For any fixed regular region R, the function p® (M7, M>) is a metric on the space of
placements.

The proof is straightforward.

1.4 Collections of objects

We now go from describing the state of a single object to describing the state of a collection of
objects. We assume that the objects are numbered 1...k, so we can describe their shapes as a
k-tuple of regions, and their positions as a k-tuple of rigid mappings. Throughout this paper, we
will indicate the ith component of a tuple V' as V[i], reserving subscripts to distinguish different
tuples.

Definition 1.8: A display is a k-tuple of regular regions. Intuitively, these are the shapes of k
objects.

Definition 1.9: A display D’ is a contraction of display D if, for i = 1...k, D'[{] C D[i]. D' is an
ezxpansion of D if D is a contraction of D’.

Definition 1.10: Display D’ is the uniform contraction (expansion) of display D by distance e if
D’[i] is the uniform contraction (expansion) of D[i] by € for each i.

Definition 1.11: A configuration is a k-tuple of rigid mappings C. Intuitively, these are the
displacements of each object from its standard position as given in a display. The configuration
space on k objects is the set of all such k-tuples.

Definition 1.12: A scenario is a pair of a display and a configuration. If (D, C) is a scenario, then,
slightly abusing notation, we will write CD[i] for C[i](D[i]), the region occupied by the ith object
in the scenario.

For readability, we will use curved angle brackets <> for displays and straight angle brackets ()
for scenarios. Thus <A, B is the display containing the two regions A, B, and (<A, B, C) is the
scenario with display <A, B) and configuration C.

Definition 1.13 We extend the metrics dy, dg., dgq to displays by taking the maximum of the
function over indices. That is, u(x,y) = max; p(x[é], y[i]), where p is one of the above functions and
x and y are displays.

For any display D, we define the metric p” over configurations as p” (C1, Cs) = max; pPl1(C,[i], Co[i]).
That is, it is the maximum distance moved by any point of any object in D in going from configu-
ration C7 to Cy. The clearance of a scenario is the minimal distance between places of two different
objects in the scenario. The mazimal overlap of a scenario is the maximal overlap of two different
objects in the scenario.

clearance(D, C)) = min;»; d(CDJi],CD[j])
overlap(D, C) = max;»; o(CDl[i], CD[j]

Definition 1.14: A scenario (D, C) is feasible if no two objects overlap; that is, overlap(D,C) =
0. (D,C) is contact-free if no two objects are in contact; that is, clearance(D,C) > 0. (D,C) is
forbidden if it is not feasible; that is overlap(D, C') > 0. For any display D, the set of configurations
C such that (D, C) is feasible is denoted “free(D)”; the set of configurations C' such that (D, C) is
forbidden is denoted “forbidden(D)”; and the set of configurations C such that (D, C)) is contact-free
is denoted “cfree(D)”.

A common tolerance measure over regions in the literature is the zone-tolerance measure, defined
in (Requicha, 1983) (see also Yap and Chang, 1996). We define the e-zone of A to be the region



within distance € of the boundary of A. Then B is within zone-tolerance € of A if the boundary of
B lies within the e-zone of A. We define the zone-tolerance measure from B to A as the maximum
€ such that B lies within the e-zone of A, or, equivalently, as the maximum distance from any
point in the boundary of B to the boundary of A. (Note that this is not symmetric in B and A.)
The zone-tolerance measure is often equal to the dual-Hausdorff distance, and never greater, but
sometimes much less.

Theorem 1.4: The dual-Hausdorfl' distance from B to A is greater than or equal to the zone-
tolerance measure from B to A.

Figure 4 shows a number of cases where the dual-Hausdorff distance from B to A is much greater
than the zone-tolerance measure. Part I shows the solid square A with a zone around its boundary
indicated by dashed lines. Parts II, III, and IV show figures iB whose boundary lies entirely in the
zone, and hence qualify as being with in the specified zone-tolerance of A, even though the Hausdorff
distance between the two regions is large. Note that in parts III and IV, it is also the case that
A is within the same zone tolerance of B. Presumably, these cases do not fall within the intended
significance of zone tolerance. Thus, the standard formal definition of zone-tolerance is flawed; our
definition here here of the dual-Hausdorff distance is probably closer to what is intended.

2 Approximation of configuration space in the Hausdorff dis-
tance

In this section, we present the first of our approximation results. We wish to say that the feasible
configuration spaces for two different display are “close”. To do this, we must define the distance
between two configuration spaces. We achieve this by generalizing the Hausdorff construction to
apply to subsets of an arbitrary metric space.

Definition 2.1: Let u be a metric over space O. Let S and 7 be subsets of O. Then the function
pr (S, T) is defined as

pr (S, T) = max(sup,e s infre7 (s, t), sup,er infees pu(s, t))

Thus, the domain of pg is 2€ x 2€ and the range is the non-negative reals union infinity. It is easily
verified that pp is a metric over the space of closed subsets of O (in the extended sense of “metric”
that allows infinite values.)

In particular, applying the Hausdorff construction to the metric p” on configurations gives a
metric pg over the space of closed regions in configuration space.

Example 2.1 (Figure 5): Let A be the square [0, 1] x [0, 1]; let B be the square [0, 0.8] x [0, 0.8]; let
C be the square [0,0.5] x [0,0.5]. Let Z be the figure [0, 6] x [0, 6] — [3.0,3.5] x [3,6] a 6 x 6 square
with a notch of width 0.5 cut out of it.

Now, let @ be any feasible configuration over {B,Z}. Then the scenario (<A, Z>, Q) may well
be infeasible. (Changing scenario (<B,Z>, Q) to (<A, Z>, Q) amounts to expanding the square
0.8 x 0.8 to 1.0 x 1.0 while keeping the shape of Z and the positions of the two objects fixed.)
However, it is intuitively clear, and indeed easily proved, that, so to speak, only one side or one
corner of A can overlap Z in ), and therefore the overlap can be removed by moving A and Z
apart, moving each a distance of at most 0.2\/5/ 2 = 0.14 (the distance from the top right corner of
A to the top-right corner of B.) Hence, the Hausdorff distance from free(<A, Z>) to free(<B, Z>)
is 0.14.

On the other hand, consider next the display <C,Z>. Let U be the configuration, “Translate
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Figure 5: Discontinuity in free(D): Example 2.1

the first object by (3.0,3.0); keep the second object fixed.” Then the scenario ((C,Z),U) places
C at the bottom of the notch of Z, and is free. It is clear that U is not at all close to any free
configuration for A,Z. That is, if you start with the scenario (<C,Z>U) and then you expand
C to A, and now you want to move A to get rid of the overlap, there is no direction to move A
in which this is easy. In fact, the closest configuration to U that is feasible over <A, Z> is the
configuration V', “Translate the first object by (4.5, 3.0); translate the second by ( — 1.5,3.0).” The
distance between configurations U and V is 1.5, and, indeed, this is the Hausdorff distance p% from
free(<A,Z-) to free(<C,Z>). (Which display D we use as reference here doesn’t matter, because
in each case we happen to be dealing with translations.)

The function “free(D)” is, in fact, discontinuous under expansion at <C, Z-; there are arbitrarily
small expansions of C or of Z in which U and all configurations close to U are infeasible. Not
coincidentally, as we shall see in theorem 2.8, the display <C, Z> has the feature that free(D) is not
equal to the closure of cfree(D); configuration U is feasible, but there are no nearby configurations
that are contact-free.

Theorem 2.1 states that the above example is characteristic of a general rule. If we start with a
display, such as <A,Z> and then shrink it by a sufficiently small amount, the Hausdorff distance
between the free spaces changes only a small amount. We see this above in shrinking A to B. If
we shrink it too much, however, there may be a large discontinuous change. This happens in the
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above example when A is contracted to C. The amount of shrinkage must be measured relative to
the complement-Hausdorff distance.

Theorem 2.1: Let D be a display. For any distance € > 0 there exists a distance ¢ > 0 such that the
following holds: if D’ is a contraction of D and the complement-Hausdorff distance dg.(D,D") < ¢
then the Hausdorff distance between the free spaces p5 (free(D), free(D’)) < e.

The proofs of theorem 2.1 and all the other theorems in this section are given in appendix A.2.

Note that theorem 2.1 would not hold if we used the Hausdorff distance from D to D’ instead of
the complement-Hausdorff distance. For instance, in figure 2, the free space for the display <R, B>
does not contain any configurations close to the configuration shown in the figure for <A, B~ even
though the Hausdorff distance from R to A is small.

Theorem 2.1 can be rephrased more elegantly with the introduction of some new terminology.
First, we observe that, though the metric p” over configuration space and the metric pg over regions
in configuration space depend on the display D, the topologies (over configuration space and over
the power set of configuration space, respectively) induced by these metrics are independent of D
(Lemma 2.2 below). We can therefore speak of the topology induced by p and the topology induced
by py, meaning the topologies induced by p” and by p for any D. In particular, if f is a function
whose range is regions of configuration space, then we will say “f is continuous with respect to py”
to mean that f is continuous with respect to pg for any display D.

Lemma 2.2: Let D and E be two displays over k objects. Then the two metrics p” and p”
induce the same topology on configuration space. Also, the two metrics pZ and pf; over regions of
configuration space induce the same topology. We therefore refer to this topology as “pg”, without
specifying a reference display.

Next we define the concepts of “continuous under contraction” and “continuous under expan-
sion”. (These are analogues of the more common notions of one-sided continuity.)

Definition 2.2: A function f(D) from the space of displays to a topological space O is continuous
under contraction (expansion) if the following holds: Let D be a display, and let U be a neighborhood
of f(D) in O. Then there exists a neighborhood V of D, such that, for every D' € V, if D’ is a
contraction (expansion) of D, then f(D’) € U. Intuitively, “f is continuous under contraction”
means that if you shrink all the shapes in D by a small amount, then you remain close to f(D).
“Function f is continuous under expansion” means that if you expand all the shapes in D by a small
amount, then you remain close to f(D).

We can now rephrase theorem 2.1 in a more elegant form:

Theorem 2.1 (rephrased): The function “free(D)”, mapping a display to a region in configuration
space, is continuous under contraction, assuming that the domain is topologized using d . and the
range is topologized using py.

In theorem 2.1, it is possible to compute the value of € given the display D and the distance §:

Theorem 2.3: Let D be a display and let § > 0 be a distance. Let E = contract(D,d). Let
€ = pH(free(D),free(E)). Then D, €, and § satisfy the conditions of Theorem 2.1; that is, if Fis a
contraction of D and d§,(F, D) < 8, then pP (free(D),free(F)) < e.

Theorem 2.3 allows you to compute € from §; that is, if you know how precisely you can manu-
facture the shape, you can compute how exactly you will match the configuration space. If you want
to go in the opposite direction — that is, you are required to achieve a desired precision € in the
configuration space, and you want to know how precisely you need to manufacture the object — then
you can use a binary search, since € is a monotonically non-decreasing function of §. Alternatively,
if the display is semi-algebraic, theorem 2.4 will show that you can express d as a semi-algebraic
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function of e.

Definition 2.3: The language of real algebra is the first-order language with equality containing
the two functions “plus” and “times” where variables range over the real numbers.

We will use extensively Tarski’s (1951) famous theorem that the language of real algebra is
decidable.

Definition 2.4: A region R is semi-algebraic in n-dimensional Euclidean space, relative to a given
coordinate system C, if there is an open formula ®(x;...x,) in the language of real algebra such
that the point with coordinates xi ...z, in C is in R if and only ®(x;...x,). A display D is
semi-algebraic with respect to C if D[i] is semi-algebraic for each i.

Example 2.2. The relation « < y is semi-algebraic, as it is defined by the formula, 37 = + 22 = v.
The unit sphere is semi-algebraic, as it is defined by the formula 2 + 3% + 22 < 1.

It is easily shown that, if D is semi-algebraic, then all the operations in theorem 2.3 are semi-
algebraic and therefore computable, by theorem 2.4.

Theorem 2.4: Assume that display D is semi-algebraic. Then there is an algebraic formula ®(e, J)
which holds if and only if Theorem 2.1 is satisfied for D, € and §. Moreover, ® is easily computable,
given the form of D. Hence, by Tarski’s theorem, for fixed semi-algebraic D, it is possible to compute
0 from € or € from §.

In practice, it is much easier to use theorem 2.3 to calculate ¢ from ¢ or vice versa than to
use theorem 2.4. The importance of theorem 2.4 is that it is more easily extended to further
computability results. For example, suppose that the shapes of D are not given exactly, but that
they are characterized in terms of some parameters, which are themselves restricted by some algebraic
constraint, such as “Object A is an h X w rectangle where w < h < 1.5w.” Then one can conclude
from theorem 2.4 that it is possible to answer questions such as, “Is a shape approximation accurate
to within 0.1 sufficient to compute a configuration space approximation accurate to within 0.5 for
all possible values of h and w? For some possible values of A and w?” No such conclusion follows
from theorem 2.3.

Theorem 2.1 guarantees that, if you have an actual set of shapes D and you want to calculate
the free space to accuracy €, you can achieve this by approximating D with a sufficiently accurate
contraction D’ and calculating the free space of D’. Unfortunately, if you are given D’ and are told
that it is an accurate approximation of D within §, that information may not justify the conclusion
that free(D’) is within e of free(D). In fact there are displays D and values of € such that this
conclusion is not justified for any semi-algebraic D’ and 4.

Theorem 2.5: There exists a display D and a distance € > 0 with the following property: Let D’
be any semi-algebraic display, and let § = dg.(D, D’). Then there exists a display F such that
dpa(E,D’) < § but ph(free(D), free(E)) > e.

That is, there are some particular displays D with corresponding fixed values of € that have
the following unfortunate property: If we construct any semi-algebraic approximation D’ within
tolerance § of D, and we calculate free(D’) and we try to estimate how close free(D) must be to
free(D'), it always appears possible that free(D) could be more than € away from free(D’). Knowing
that D is within 6 of D’ is never enough to guarantee that free(D) is close to free(D’). One such
display D contains two objects: a helical corkscrew, and an object with a hole that fits the corkscrew.
(Note that helices are not semi-algebraic.)

This may seem paradoxical in view of theorem 2.1, but it is in fact inevitable in a domain where
important functions are discontinuous, and where discontinuities appear at values that cannot be
exactly represented. Consider the following simple analogue: Suppose that you approximate a real
numbers by a rational estimate with a rational tolerance. For example, you might approximate v/2
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as “7/5+1/50” or as “99/70 & 1/10000”. Now consider the discontinuous function
2—x2 ifax?<?2
flw) = { -1 otherwise

Thus f(v/2) = 0. Now, f(p) can be made arbitrarily close to f(1/2) by choosing p to be less than
v/2 and sufficiently close to it; for example f(7/5) = 0.04. However, if the range p + r contains /2
then it necessarily contains values that are greater than v/2 for which f will have value —1.

The same kind of thing is going on in theorem 2.5 with calculating configuration space from
semi-algebraic approximations with tolerances. It is possible to find semi-algebraic contractions D’
of D for which free(D’) is arbitrarily close to free(D). However, if you consider a tolerance around
D’ large enough to include D, it will necessarily include some supersets of D’ with much smaller
free spaces, as the function “free(D)” is discontinuous under expansion.

A theorem complementary to theorem 2.1 holds for the contact-free space. The computability
results are exactly analogous to theorems 2.2 and 2.4.

Theorem 2.6: The function “cfree(D)”, mapping a display to a region in configuration space, is
continuous under expansion, using the metric dg on displays and the topology induced by py on
regions of configuration space.

Theorem 2.7: Let D be a display and let § > 0 be a distance. Let E =expand(D,d). Let
€ = ph(cfree(D),cfree(E)). If F is an expansion of D and d% (F, D) < §, then ph (cfree(D),cfree(F))
<e.

Lemma 2.8 describes the relationship between the contact-free space and the free space for a
display.
Lemma 2.8: For any display D, cfree(D) is the interior of free(D), relative to the topology induced
by metric p.

It is not the case, however, that free(D) is always the closure of cfree(D); it may be a superset of
the closure of cfree(D). For example, consider the display <C, Z> from example 2.1. The free space
of this display includes configurations where the square C is placed in the notch of Z. However, such
configurations are not “close” to any contact-free configuration of <C, Z>. Rather, they lie along a
one-dimensional “spur” of the free space that is eliminated when you take the interior to generate
the contact-free space.

Discontinuities appear in the functions “free(D)” and “cfree(D)” exactly for those displays where
free(D) is not equal to the closure of cfree(D).

Theorem 2.9: The following three statements are equivalent:

A. The functions “free(-)” is continuous at display D, using the metric d g4 on displays.
B. The function “cfree(-)” is continuous at display D, using the metric d g4 on displays.
C. free(D) is equal to the closure of cfree(D).
Much stronger results hold for the forbidden space; the function “forbidden(D)” is always con-

tinuous, and ¢ is equal to e. However, this result is much less interesting, since in practice one is
almost always interested in approximating the free space, not the forbidden space.

Theorem 2.10: For any displays D, D', p? (forbidden(D),forbidden(D’)) < dg (D, D’). Conse-
quently, the function “forbidden(D)” is continuous, if the topology of the domain is given by dg
and the topology of the range is given by py.
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In A, the configurations where the ball is on top and those where it is on the bottom are in a single
connected component of free space. In B, they are two separate connected components.

Figure 6: Free space vs. path traces

Thus, to calculate the forbidden space of a display to an accuracy e, it is at worst necessary to
use shape approximations of accuracy e. The forbidden space is a continuous function of the shapes
of the objects involved, and the maximum ratio of the change in space to the change in shape is 1.

3 Paths

In the previous section, we considered that two kinematic systems were similar if every feasible
configuration in one is close to a feasible configuration in the other. For purposes of physical
reasoning, though, it seems natural to say that physical similarity is more a matter of similarity
in the paths that can be followed rather than in the single configurations that can be attained.
Consider, for example, the system shown in figure 6, and compare the case where the ball is slightly
narrower than the gap with the case where the ball is slightly wider. There is only a slight difference
in the positions that can be attained. The position where the ball is just halfway through the gap,
which is attainable in the former case, is very close to positions where the ball is pressed against
the gap, which are attainable in the latter case. However, the motions that are possible in the two
systems are very different; in the former, the ball can pass between the top and the bottom; in the
latter, it is always stuck in one or the other half.

To characterize this kind of change in feasible motions, we first need a definition of a path and of
the distance between two paths. There is more than one possible definition, but the most reasonable,
on the whole, seems to be take a path through a space to be a continuous function from a standard
time interval [0,1] to the space, and then to take the different between paths ¢ and ¢ to be just
the maximal value over ¢ € [0, 1] of the distance from ¢(¢) to ¢ (¢). In this case, we are interested
in paths through configuration space, so the “distance” between points in the paths is given by the
metric p”. We can then use the Hausdorff construction to define the distance between two sets of
paths.
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Definition 3.1: Let U be a metric space with metric u. A path through U is a continuous function
from the real interval [0,1] into U. The set of paths through U is denoted “paths(U)” The distance
between paths ¢ and v, denoted p¢(¢, ) is defined as

pi (P, %) = maxyepo,1) u(@(t), ¥(t))

Definition 3.2: Let U be a metric space with metric . Let ® and © be two subsets of paths(U).
The Hausdorff distance between ® and © is denoted “p¢r (P, ©)” is defined, as usual, as

pie (®,0) = max(sup¢€q> infyco i (d,¥), SUPyeco infgea pe(h, 1))

In particular, for sets of paths through the configuration space of display D, we will be interested
in the case where metric p is the metric p?, so the corresponding distance between sets of paths
will be denoted ph;.

Example 3.1: In figure 6, let D be the display where the diameter of the ball is just 0.5, and let
E be the display where the diameter of the ball is 0.5001. Then paths(free(D)) contains the path ¢
where the ball goes from the lower half of the frame to the upper left hand corner. The path ¢ in
free(F) that most closely tracks ¢ goes up as close to the gap as it can manage and then stays there.
(If ¢ includes in addition some rotations of the ball, 1) will rotate the ball in parallel, to minimize
the maximal distance between corresponding points.) The maximal distance in terms of p” between
¢(t) and 1(t) is about 1.2, so this is the value of pP (¢, 1), and also the value of pL, (paths(free(D)),
paths(free(F))).

As example 3.1 illustrates, the function paths(U) is often discontinuous. However, we can show
that the function of D, paths(free(D)), is continuous under contraction of D, while the function
paths(cfree(D)) is continuous under expansion of D. We do need to add one additional technical
constraint on the spaces free(D) and cfree(D), given in definition 3.3.

Definition 3.3: A region O in a topological space is ordinarily connected if O has finitely many
connected components and every connected component of O is path-connected. A region O is
locally ordinarily connected if (i) O is ordinarily connected; and (ii) for any point p € O and any
neighborhood N of p, there exists a neighborhod S C NN of p such that ON S is ordinarily connected.
That is, O N S is ordinarily connected for arbitrarily small neighborhoods S of p.

Local ordinary connectivity of the free space is a property that can be reasonably expected of
physically realizable objects. It can only fail if either the free space has infinitely many connected
components (for example, the objects have infinitely many hooks and eyes) or one of the connected
components of the free space is not path-connected, which involves other anomalies (see the discus-
sion at the end of appendix B.) In particular, it can be shown that if the display is semi-algebraic,
then the free space is locally ordinarily connected (Mishra, 1993).

Theorem 3.1: (Analogue of theorem 2.1.) Let D be a display such that free(D) is locally ordinarily
connected. Then for any € > 0 there exists a § > 0 such that, if £ is a contraction of D and the
complement-Hausdorff distance dg.(D, E) < § then pL; (paths(free(D)), paths(free(E))) < e.

Theorem 3.2: (Analogue of theorem 2.3.) Let D be a display and let 6 > 0. Let E = contract(D, d),
and let € = pl; (paths(free(D)),paths(free(E))). If F is a contraction of D and dg.(F, D) < §, then
ph (free(D),free(F)) < e.

Theorem 3.3: (Analogue of theorem 2.4.) Let D be a semi-algebraic display and let 6 > 0. Let
€ be the maximal value of pD; (free(D),free(F)) where F is a contraction of D and dg.(F, D) < 6.
Then € can be computed to arbitrary precision.

Note that theorem 3.3 has a weaker form than theorem 2.3. In theorem 2.3, we were able to
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Figure 7: Regions not locally internally connected

assert that ¢ and § were related by a semi-algebraic relation; here, we can only assert that e is
computable to arbitrary precision from §. I conjecture that the following stronger form holds:

Given any semi-algebraic relations ®(p,q1 ...qx) and U(s,t1...t,,), and algebraic func-
tion u, the quantity

wer (paths({p | ®(p,q1-..qx)}), paths({s | ¥(s,t1...tm)}))

is a semi-algebraic function of ¢y ... qm,t1 ...ty

Theorem 3.4: (Analogue of theorem 2.7.) Let D be a display such that free(D) is locally ordinarily
connected. Then for any € > 0 there exists a > 0 such that, if F is a expansion of D and the
Hausdorff distance dg (D, E) < & then p? (paths(cfree(D)), paths(cfree(E))) < e.

Definition 3.4: A set U is locally internally connected if for every point p in U, and for every
neighborhood O of p, Int(U) N O is non-empty and path-connected.

Example 3.2: Figure 7 shows two regions that are not locally internally connected. In figure 7.A,
for every sufficiently small neighborhood N of p, Int(U) N N is disconnected. In figure 7.B, for every
sufficiently small neighborhood N of p, Int(U) N N is empty.

Theorem 3.5: For any display D, if the configuration space free(D) is locally internally connected,
then the function “paths(free(:))” is continuous at display D, using the metric d g4 on displays and
the topology p,y on sets of paths.

4 Lifting from contact and the approximation of tangents

As figure 8 illustrates, it is possible to change a system where all feasible configurations are connected
to one that contains configurations that are “stuck” using changes that can be arbitrarily small
in both the Hausdorff and complement-Hausdorff distance, and that can be either expansions or
contractions. The kinds of criteria that we have used in the previous sections thus do not suffice to
prevent this kind of change in the free space.

In terms of configuration space, what happens is that a new small “island” of free space is
created in scenario II, close to, but disconnected from, the main region of free space. If scenario II is
a contraction of scenario I, then the new island is created inside the forbidden space of I; otherwise,
it may be created by having a small pocket of forbidden space close around the island. Note that
this is consistent with the consequences of theorems 2.1 and 3.1; the new free space still lies close to
the old space, and every path through the new free space can be closely tracked by a path through
the old space and vice versa.

Fortunately, figure 4 also suggests where a solution might lie. The construction of the “hook and
eye” that so radically changes the behavior of the object requires only a small variation in terms
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Figure 8: Path tracking vs. correspondence of connected components

of the points occupied by the object, but requires a large change in the local surface normal. This
suggests that if the approximation is required to be close both in distance and in the direction of the
local surface normal, then it may be possible to infer that a small modification does not generate
new connected components in configuration space.

This is indeed possible, at least two dimensions. In this section, we will state the following result:
Given a display consisting of two-dimensional objects such that in every configuration it is possible
to separate the objects by lifting or twisting one off the other, then, with certain exceptions, if the
objects are modified by a sufficiently small amount with with sufficiently small change in boundary
direction, then the connected components of the free space remain essentially unchanged. Connected
components do not appear, disappear, merge, or split.

Constructing the formal statement of this theorem will take some work, so we begin by sketching
the general direction we will go. Our target is theorem 4.2, which has a form analogous to theorems
2.9 and 3.5. These theorems all have the following general form: “If the objects in display D have
reasonable shapes and free(D) satisfies certain normality conditions and display F approximates
D sufficiently well in a suitable measure of shape approximation then free(E) is close to free(D)
under some desired criteria for closeness of regions of configuration space.”? In theorems 2.9 and
3.5, the condition “reasonable shapes” is interpreted as “normal bounded regions” and the shape
approximation is the dual-Hausdorff distance dpg4. In theorem 2.9, the normality condition on
free(D) is that it is equal to the closure of cfree(D), and the approximation measure on regions
of configuration space is pg. In theorem 3.5, the normality condition on free(D) is that it is
locally internally connected, and the approximation measure on regions of configuration space is

b5 (paths(4), paths(B)).

In theorem 4.2, the condition “reasonable shapes” is interpreted as piecewise, smooth, cuspless
(PSC) regions (definition 4.6); roughly, that the boundary of the regions be smooth except at finitely
many corners. The approximation criterion on shapes is approzimation in tangent (definition 4.8);
roughly, every boundary point in one shape is close to a boundary point in the other shape where
the tangents are nearly the same. The normality condition on free(D) is that free(D) is always
strongly separable (definition 4.16); I have not found a simple way to describe this condition that is
close to correct. Finally, the approximation measure on regions of configuration space is connected-
component similarity in the space of paths (definition 4.17). Essentially, this condition ensure that
the tracking distance pf’H is small, and in addition that no islands of free space are opened up.

2Adding the condition that E be a contraction, or an expansion, does not seem to buy anything in this setting;
hence there are no analogues here of theorems 2.1 or 3.1.
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e and f are the forward and backward tangents at p.

Figure 9: Piecewise smooth curve (definition 4.3)

4.1 A generalization of the tangent

In this section, we develop a characterization of the local behavior of a region that generalizes the
notion of the tangent for regions with corners of various kinds.

First, some notation. We denote the complement of regions R as R, the boundary of region
R as “Bd(R)”, the interior of R as “Int(R)”, and the exterior of R (i.e. the interior of R€) as
“Ext(R)”. For any non-zero vector ¥, we will write “dir(7)” to mean the unit vector parallel to
0; dir(v) = v/ | v |. We will overload this symbol by also writing “dir(a,b)” for dir(b — a), the
direction from a to b. We will use interval-like notation to denote arcs of directions: If é and f are
unit vectors, then (é, f) denotes the open arc of vectors strictly counterclockwise between é and f
and [é, f] denotes the closed arc of vectors non-strictly counterclockwise between é and f .

Definition 4.1: A finite smooth curve is a continuous function ¢(¢) from the unit interval [0,1] to
the plane such that the derivative ¢(t) everywhere exists, is continuous, and is non-zero. Therefore,

the tangent dir(¢(t)) exists, is unique, and is continuous everywhere.

Definition 4.2: A directed cycle is a sequence of continuous curves (¢1, ¢s . .. ¢y) such that

e Fori=1...k— 1, (bz(l) = d)i-i-l(o)-
e &r(1) = ¢1(0).
e For any ¢, 7, and t1, to, if ¢;(t1) = ¢;(¢2) then either [i = j and t; = to] or [j = i+1 mod k,t; =
1,t2 = 0] or [’L :j—|—1 mod k,tQ = 1,t1 = O]
That is, the end of each curve is the beginning of the next, and the end of the last is the beginning
of the first, and the curves do not otherwise cross or meet one another.

Definition 4.3 A directed cycle ¢ = {(¢1, ¢2 ... dx) is piecewise smooth if each ¢; is a finite smooth
curve. (Figure 9)

Definition 4.4: Let ¢ = (¢1,¢2 ... ¢r) be a piecewise smooth directed cycle, and let p be a point
on ¢. The forward and backward tangents to ¢ at p, denoted “forw(¢,p)” and “back(¢,p)” are
defined as follows:

e If p = ¢;(1) for some i, then, letting j =i+ 1 mod k , forw(¢,p) = dir(q'ﬁj (0)) and back(¢, p)
— —dir(@i(1)).
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Figure 10: Curve with a cusp

e Otherwise if p = ¢;(t) for t # 0, t # 1, then forw(¢,p) = dir(gi.)l-(t)) and back(¢,p) =
—dir(¢;(t)).

Definition 4.5: A piecewise smooth directed cycle has a cusp at point x if forw (¢, x) = back(¢,x)
(Figure 10).

Cusps turn out to be problematic, and we will exclude from consideration regions that give rise
to them.

We will add a new requirement on the shape of an objects; namely, that its interior is connected.
This excludes regions that hang together on a single point, like figure 11.A. Physically, this is clearly
a plausible restriction. Regions are allowed to meet themselves at a point, as in figure 11.B, as long
as their interior is connected from some other direction. What we particularly wish to exclude is the
case where two objects “pass through” one another at a point p, as in figure 11.C, which is clearly
physically impossible. A region whose interior is connected will be said to be internally connected.

Definition 4.6: Let A be an internally connected region. A boundary cycle of A is is the boundary
of a connected component of A€, directed so that, moving forward on the boundary, the region A
is always on the left.

Clearly, a boundary cycle of A is a subset of the boundary of A. The boundary of any internally
connected region A consists of one boundary cycle counterclockwise around the outside of A and a
number of boundary cycles clockwise around internal holes of A. Two boundary cycles are either
disjoint or meet at a single point. (Figure 12)

Definition 4.7: An regular internally connected region A is piecewise smooth and cuspless (PSC)
if every boundary cycle of A is piecewise smooth and has no cusps.

4.2 Approximation in tangent

We now define a new notion of approximation of one region by another, which is sensitive to the
tangent directions.

Definition 4.8: Let ¢ and ¥ be piecewise smooth directed cycles; let € > 0 be a distance and let
«a > 0 be a dimensionless number. For any points p on ¢ and q on ¥, we say that p on ¢ corresponds
to q on ¥ with parameters (e, @) if
e d(p.q) < &
e d(forw(¢,p), forw(¢),q)) < a; and

p),
e d(back(¢, p), back(y,q)) < a.
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Figure A connectes to itself only at a point, and is not allowed.

Figure B meets itself at a point, but is internally connected,
so it is allowed.

Figure C and D pass through one another at a point.
They are not allowed.

Figure 11: Internally connected figures
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The shaded region is a PSC region.
The large circle is the outer boundary.
The small circle, the quadrilateral right of center, and the irregular curve left of center
are the boundary curves, directed as shown by the arrows.

Figure 12: PSC region with boundary curves

We say that ¢ approximates ¢ in tangent (e,«) if, for every point p on ¢ there is a point q on ¥
that corresponds (e, ) and if, for every point q on ¢ there is a point p on ¢ that corresponds (e, «).

Definition 4.9 (Figure 13:) Let A and B be PSC regions. Let ¢,a > 0. B approzimates A in
tangent (e, «) if

[ ] de(A,B) S €]

e For every boundary cycle ¢ of A there exists a boundary cycle ¢ of B, such that v approximates
¢ in tangent (e, «); and

e For every boundary cycle ¥ of B there exists a boundary cycle ¢ of A, such that v approximates
¢ in tangent (e, ).

We will sometimes omit the words “in tangent” and simply write “B approximates A (e, a).”

Example 4.1: Let A be the solid unit disc and let B be the inscribed solid regular n-gon. Then
B approximates A with parameters e = 1 — cos(n/n), a = 2sin(mw/2n). Proof: Let ¢ and ¢ be the
directed boundaries around A and B. Associate a point a on ¢ with a point b on 9 if the line b lies
on the radius o, a, where o is the center of the circle. The maximum distance from b to a occurs
when b is a midpoint of one of the sides, and is equal to 1 — cos(w/n). The maximum distance
between forw(¢, a) and forw(¢, b), and between back(¢, a) and back(y, b) occurs when b is a vertex
of the polygon, where it is equal to the distance from the direction of the side of the polygon to the
tangent of the circle. As the two vectors differ by an angle of 7/n, the distance between them is
2sin(w/2n). (Figure 14)

Example 4.2:. Let A be the unit square, and let B be the rectangle with vertices (0,0), (1.1, 0),
(1.1,0.9), (0.0,0.9). Then B approximates A with parameters ¢ = 0.1y/2, a = 0. Proof: Associate

each point (x,y) in A with the point (1.1z,0.9y) in B. Then corresponding points have exactly the
same tangents; the maximal distance between corresponding points is 0.11/2.

In example 4.2, it is also true that B approximates A with parameters ¢ = 0.1, &« = v/2.. Proof:
Associate any point a € Bd(A) with the closest point in Bd(B) and associate any point b € Bd(B)
with the closest point in Bd(A). The maximum distance from each point to its associated point

23



This region closely approximates figure 12 in tangent.

Figure 13: Approximation in tangent

a=

7N

Figure 14: Example 4.1



is then 0.1. The maximum difference between the tangents occurs at the mapping of right-angle
vertices to edge points and vice versa, where one of the tangents of the straight edge lies 90 degrees
away from the nearer side of the right-angle. The same difference is obtained at points where a point
on a horizontal side is mapped into a point on a vertical side, and vice versa.

This example illustrates that, in general, there is a tradeoff between € and «; if you look further
off for a match, you may be able to find a closer directional match. The extremes of this tradeoff
are given in the following examples:

Example 4.3: Let A and B be any two PSC regions. Let €¢; be the maximum over all boundary
curves ¢ of A of the minimum over all boundary curves ¢ of B of dg(¢,v); and let e be the
maximum over all boundary curves ¥ of B of the minimum over all boundary curves ¢ of A of
du(¢,v). Let € = max(er,e2,dpgq(A,B)). Then A approximates B in tangent with parameters
(6,2) Proof: Associate each boundary curve of A with the nearest boundary curve of B and vice
versa, and associate each point on a boundary curve with the nearest point on the corresponding
boundary curve. Then the distance between corresponding points is no greater than the above value
of €. The difference between the tangents at the two associated points can never be greater than 2,
the diameter of the unit circle.

Example 4.4: Let A and B be PSC regions with smooth boundaries, and let D be the maximum
value of dist(a,b) for a € A, b € B. Then A approximates B in tangent with parameters ¢ = D,
a = 0. Proof: Since each boundary curve ¢ is smooth, the forward tangent to ¢ achieves every
directions 4 in the unit circle, and back(¢, p) is always equal to forw(¢, p). Thus with any point a
on Bd(A) we can associate a point b on Bd(B) such that the tangents to B at b are equal to the
tangents to A at a.

Example 4.5 Let A be the solid circle of radius 1, and let B be the ring between the circle
of radius 0.5 and the circle of radius 1. Of course, the outer boundaries of the two regions are the
same, and so can be associated with one another with zero discrepancy. The question is how to
associate the inner boundary i of B with the outer boundary of ¢ of A. One way, as in example
4.3, is to associate each point in ¢ with the nearest point in ¢. The distance between corresponding
points is 0.5; since the tangents are anti-parallel, the distance between the tangents is 2. Thus,
B approximates A in tangent (0.5,2). Another approach, as in example 4.4, is to associate each
point in ¢ with the antipodal point. Then the distance between corresponding points is 1.5, but
the tangents are parallel, so B approximates A in tangent (1.5, 0.0). There is also a continuum of
intermediate solution where we associate a point p in @ with a point q in ¢ such that the angle
pPoq = a, where o is the center of the circles and « is any angle between 0 and 7. Using this, B
approximates A in tangent (1/1.25 — cos(cv), /2 + 2 cos(a)).

4.3 Local separability of regions
We next define a concept of two regions that meet at a point p being separable in a direction % in
the neighborhood of p.

Definition 4.10: Let A, B be non-overlapping PSC regions, and let p be a point in ANB. A
direction 4 is a colliding direction from A into B at p, if, in every neighborhood O of p there exist
a € Int(A)N O and b € Int(B) N O such that & = dir(b — a). Intuitively, if you move A in the
direction % and hold B still, then you will cause them to overlap in the neighborhood of p.

Definition 4.11: A direction w separates B from A at p if

e w is not a colliding direction from B into A at p; and

e — is a colliding direction from B into A at p.
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Direction w strongly separates B from A at p if w is in the interior of an arc of directions all of
which separate B from A.

That is, moving B in direction w separates it from A, and moving it in the opposite direction
— causes it to collide with A. Moreover, the same holds true in some range of angles around 4.

We denote the set of vectors that strongly separate B from A at p as “sep(B, A, p)”.

Definitions 4.12 and 4.13 and lemma 4.1 give a simple characterization of the directions that
separate B from A at any contact point p in terms of the tangents to A and B at p.

Definition 4.12: Let A and B be PSC regions that do not overlap. The boundary of A facing B,
denoted “FBdA(A,B)” is defined as follows. Let O be the connected component of A€ that contains
B. Then FBA(A, B) is the boundary cycle of A that lies on the boundary of O.

Definition 4.13 (Figure 15): Let é, f,g7 h be four directions in non-strict counterclockwise order,
such that é # f and § # h. The function sepl(é, f, g, h) is defined as follows:

i. If the angle from é to h is less than or equal to 7, then sepl(é, 1.9, ﬁ) = (g, —f)
ii. If the angle from § to f is less than or equal to , then sepl(é, f,g, fz) = (—¢, fz)

iii. If the angles from ¢ toAf, from f to g, from ¢ tOA]A”LA and from h to é are all less than or equal
to 7, then sepl(é, f, g, h) = (min(—¢, §), max(—f, h)), where min and max are in the sense of
the smaller positive rotation between the two.

iv. If the angle from h to g is less than or equal to 7, then sepl(é, f,g, fz) = (—h,—9).
v. If the angle from f to é is less than or equal to 7, then sepl(é, f.a. fL) = (f, é).
It is easily verified that in figures where two or more of these vectors are exactly angle 7w apart,
so that more than one rule applies, the different rules give the same results.

Lemma 4.1: Let A, B be regions that meet but do not overlap, and let p be a point in Bd(A) N
Bd(B). Let ¢ = FBA(A, B) and let ¢ = FBd(B, A). Then
sep(B, A, p) = sepl(forw(¢, p), back(¢, p), forw(¢, p), back(y, p)).

Definition 4.14: A motion is either (a) a unit vector 4, representing translation in the @ direction;
or (b) a pair (0,5) of a point o and a sign S = =£1 representing counter-clockwise (if S = 1) or
clockwise (if S = —1) rotation about the point o.

Definition 4.15: The flow of point p under motion M, denoted “flow(p, M)” is the direction of
motion of point p under motion M. It is defined as follows:

e If M = ¢ then flow(p, M) = ©.
o If M = (0,S) and p = o, then flow(p, M) = 0.

e If M = (0,1) and p # o, then flow(p, M) is the unit vector perpendicular to dir(o,p) and
counter-clockwise from it.

o If M = (0,—1) and p # o, then flow(p, M) is the unit vector perpendicular to dir(o, p) and
clockwise from it.

Definition 4.16: Let A and B be two non-overlapping PSC regions. Motion M strongly separates
B from A if, for every point p € A N B, flow(p, M) € sep(B, A, p).

Definition 4.17: A display D over two objects A and B is always strongly separable if D[A] and
DI[B] are both PSC regions, and, for every any feasible configuration C' over D, there exists a motion
M that strongly separates C D[B] from CDI[A].
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Dashed lines indicate the range of directions separating B from A.

Figure 15: Separating directions
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4.3.1 Connected-component similarity

Finally, we define the desired similarity measure between configuration spaces.

Definition 4.18: Let A and B be two regions in a space with metric u. Let A be the set of
connected components of A and let I be the set of connected components of B. For any connected
component C' of A, C € A and any connected component D of A, D € B, measure the distance
between C' and D as pg (C, D). Then define the connected-component similarity between A and B,
denoted “ug(A, B)” as the Hausdorff distance between A and B, relative to the metric pg. That is,

ps(A, B) = (ua)r (A, B) = max(max min ppr (C, D), max min pug (C, D))

For theorem 4.2, we will take the space to be the space of paths through configuration spaces C
and E, and the metric u to be the tracking distance pP. Then the measure we wish to constrain is
the connected-component similarity between paths(C) and paths(E), pZ(paths(D), paths(E)).

For example, in a situation like that of figure 8, the free space in A has only one connected
component, while the free space in B has two, the set of all “stuck” positions and the set of all
“unstuck” positions. The connected components of the sets of paths through these free spaces
correspond to these. The set paths(free(A)) has one connected components, containing all feasible
paths. The set paths(free(B)) has two connected components: the paths in which the two objects
are stuck, and the paths in which they are unstuck. The connected-component similarity between
paths(A) and paths(B) is thus equal to the Hausdorff tracking distance pZ}; between the set of stuck
paths in B and the feasible paths in A, which is infinite, as there are paths through free(A) that go
arbitrarily far from the stuck position. Hence, pZ(paths(A), paths(B)) = cco. (In this example, it
is also the case that pZ} (A4, B) = co. In general pg(paths(X),paths(Y)) > us(X,Y).)

4.3.2 Theorems

We can now state our main theorem:

Theorem 4.2: Let D be a display over two objects A and B that is always strongly separable, such
that free(D) is locally ordinarily connected. Then for any 1 > 0 there exist « > 0 and % > 0 such
that, if D’ is a display that approximates D in tangent (c, ), then pi% (D, D’) < n.

Some justification should be given for the restrictions placed on “strongly separable directions”
in definition 4.10, which are not obviously necessary, and which end up restricting the scope of
theorem 4.2. First, the reason that, in definition 4.2, we require, not only that a separating direction
w is not a colliding direction, but also that —w is a colliding direction, is to exclude cases like those
in figure 16. In part A of this figure, the triangular object can be moved away from the frame,
but in part B, which can be made arbitrarily close in terms of approximation in tangent, it cannot.
Though there is a range of motions, rightward with a small degree of upward, that separate the
triangle from the frame, their reverses are not colliding directions at the point p, (though, of course,
they are colliding directions elsewhere), and so the condition of the theorem fails. The condition
that —w is a colliding direction ensures that one object cannot be expanded in a direction that will
block the other.

The reason that definition 4.11 requires an open interval of separating directions is illustrated in
figures 17 and 18. Both of these illustrate cases, in (A), where one object is separable from another,
but only in one single direction. In each case, a contraction that is arbitrarily small, in terms of
“approximation in tangent,” suffices to create a “stuck” configuration in B.

For a semi-algebraic display, values satisfying theorem 4.2 can be computed using an algebraic
formula.
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Figure 16: Failure of theorem 4.2 if
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The pincer is “stuck” in (B) if the sides of the notch are steeper
than the circle through one tooth centered at the other tooth.
With a sufficiently small rotation, this can be accomplished
with an arbitrarily small and shallow notch.

Figure 17: Failure of theorem 4.2 if there is only one separating direction: I

In (A) the ball is free to move to the left.
However, a “trapped” position can be created by carving out a “notch” as in (B),
of arbitrarily small depth and change in angle.

Figure 18: Failure of theorem 4.2 if there is only one separating direction: II
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Theorem 4.3: Let D be a semi-algebraic display over two objects A and B that is always strongly
separable. Then there exists an algebraic formula ®(e, o, 1)) with the following properties:

e For any € > 0 there exists a > 0 and 1 > 0 such that ®(e, o, ¥).

o If (e, r, ) and D’ is a display that approximates D in tangent (a, ),
then pZ (paths(free(D)), paths(free(D’)) < .

e The form of ¢ can be computed from the forms of the regions in D.

It is possible to extend theorem 4.2 to systems of several objects along the following lines: Let
¢ be a continuously differentiable path through configuration space. For point p, define the relative
motion of p in object J relative to object I under path ¢ as the velocity of p under the motion of
J relative to its velocity under the motion of I: (d/dté(T)[J](p)) — (d/dtd(T)[I](p)) A motion ¢
is strongly separating in scenario (D, C) where C' = ¢(0) if, for every pair of objects I # J, and
for every point p € CD[I] N CD[J], the motion of p in J relative to I is non-zero and its direction
strongly separates C'D[J] from CD[I] at p. Display D is always strongly separable if for every
C efree(D) there exists a motion ¢ that is strongly separating in scenario (D, C).

Theorem 4.4: Let D be a display over n objects that is always strongly separable, and such that
free(D) is locally ordinarily connected. Then there exist & > 0 and ¢ > 0 such that, if D’ is a
display that approximates D in tangent (v, 1)), then pZ (paths(free(D)), paths(free(D’)) < e.

It seems plausible to conjecture that the analogous theorem holds in R* for k& > 2 as well, and,
indeed the same proof applies directly in the case of smooth shapes. It is also plausible to conjecture
that, if D’ approximates D sufficiently well in tangent, then free(D’) is homeomorphic to free(D)
and, further, that free(D’) can be made to approximate free(D) arbitrarily well in tangent. This
last result is likely to be necessary, or at least useful, in proving that small changes to a mechanism
do not change its qualitative behavior, since corners in configuration space correspond to jammed
positions of a mechanism, and it is therefore desirable to give conditions under which no such corners
can emerge. However, I have not proven either of these results.

5 Conclusions

This paper has accomplished the following:

e We have defined two original measures of shape approximation: the dual-Hausdorff distance
and approximation in tangent.

e We have defined three criteria for evaluating the similarity of the configuration spaces asso-
ciated with kinematic systems: the Hausdorff distance p¥, the Hausdorff-tracking distance
pf’H, and the path-set similarity measure p?s. These criteria are physically significant; if it
is known that the true configuration space is close to the computed space in terms of one or
another of these criteria, then it follows that there exists a feasible manipulation close to the
computed manipulation, or that the actual behavior of a mechanism will be similar to the
computed behavior (as regards behaviors that are determined purely by the kinematics of the
mechanism).

e We have stated a number of theorems giving sufficient conditions under which approximately
correct shape descriptions give rise to approximately correct configuration spaces, under the
above senses of approximation. The accuracy of the approximation is computable. As far
as we know, this is the first analysis showing any computable significant physical properties
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for objects that are allowed to vary within a general shape variation. (As discussed below in
section 1.1, previous work on computing mechanical properties from tolerances does not deal
with general shape variation; the first-order shape languages in works on qualitative physical
reasoning such as (Hayes, 1985) or (Davis,1988) are undecidable; and the physical applications
proposed for for the RCC calculus (Randell, Cui, and Cohn, 1992) are unconvincing.)

The theorems proven here are significant, more as encouragement for this line of research than
for their direct application. A central problem in “diagrammatic reasoning”? in the sense of doing
calculations based on exact shape descriptions, is the problem of knowing when inferences based on
idealized shapes are in fact valid for the actual shapes. The results in this paper establishes cases
where this can be done soundly in an important physical domain. If such results can be obtained for
other domains as well, then the power of diagrammatic reasoning, in this sense, will be significantly
increased.

In a larger setting, the results in this paper are a small contribution toward solving the problem
of geometric idealization. Russell (1948, p. 238) describes this problem as follows:

When, in surveying, we use the process of triangulation, it is admitted that our triangles
do not have accurate straight lines for their sides nor exact points at their corners, but
this is glozed over by saying that the sides are approximately straight and the corners
approximately points. It is not at all clear what this means, so long as it is maintained
that there are no exact straight lines or points to which our rough-and-ready lines and
points approximate. We may mean that sensible lines and points have approximately
the properties set forth by Euclid, but unless we can say, within limits, how close the
approximation is, such a view will make calculation vague and unsatisfactory.

One aspect of this problem, then, is to determine, for each geometric property of the idealized
shapes, whether we should expect it to hold, exactly or approximately, for the real world objects
being described. One means to making this determination is find that a property carries over from
an idealized shape to an approximate shape. This paper has studied this for kinematic properties.
That is to say, one aspect of establishing that two physical object may be reasonably described
as “square” is to establish that their kinematic interactions resemble those that we expect in the
configuration space of two ideally square objects. This paper gives reasons to expect that behavior of
approximately square objects will, in fact, often approximate the behavior of ideally square objects.

Alan Perlis (1982) wrote, “One can’t proceed from the informal to the formal by formal means,”
which is true, of course. However, one can to some extent justify the informal process of going from
an real-world problem to a highly idealized formal description by giving a formal account of the
relation between this extremely idealized formal description and a more realistic formal description.
For idealization in shape, in the domain of kinematic behavior, that is what this paper accomplishes.

References

Frédéric Cazals and Jean-Claude Latombe, “Effect of tolerancing on relative position of parts in an
assembly,” IEEE International Conference on Robotics and Automation, 1997.

Kenneth Chase, Jinsong Gao, Spencer P. Magleby, and Carl D. Sorensen, “Including Geometric
Feature Variations in Tolerance Analysis of Mechanical Assemblies”, ADCATS publication #94-3,
Brigham Young University, 1994.

3This buzzword (Glasgow, Narayanan, and Chandrasekaran, 1995) is used in a half-dozen incompatible ways, but
this seems the most common.

32



Kenneth Chase, “Basic Tools for Tolerance Analysis of Mechanical Assemblies,” in H. Geng (ed.)
Manufacturing Engineering Handbook, McGraw Hill, 2004, chapter 7.

Jeffrey Dabling, “Incorporating Geometric Feature Variation with Kinematic Tolerance Analysis of
3D Assemblies,” M.S. thesis, Brigham Young University, 2001.

Ernest Davis, “A Logical Framework for Commonsense Predictions of Solid Object Behavior”, Al
i Engineering, vol. 3, 1988. pages 125-140.

Ernest Davis, “Continuous Shape Transformations and Metrics on Regions”, Fundamenta Informat-
icae, Vol. 46, Nos. 1-2, 2001, pp. 31-54.

Rudolf Fleischer, Kurt Melhorn, Gunter Rote, Emo Welzl, and Chee Yap, “Simultaneous Inner and
Outer Approximation of Shape,” Algorithmica, vol. 8, 1992, pp. 365-389.

Jinsong Gao, Kenneth Chase, and Spencer Magleby, ” Comparison of Assembly Tolerance Analysis
by the Direct Linearization and Modified Monte Carlo Simulation Methods,” Proc. ASME Design
Engineering Technical Conference, 1995, pp. 353-360.

J. Glasgow, N.H. Narayanan, and B. Chandrasekaran, Diagrammatic Reasoning, MIT Press, 1995.

A. Grzegorczyk, “Undecidability of some Topological Theories.” Fundamenta Mathematicae vol.
38, 1951, pages 137-152

Patrick Hayes. “Naive Physics 1: Ontology for Liquids.” In Hobbs, J. and Moore, R. (eds.) Formal
Theories of the Commonsense World. Norwood, N.J.: Ablex Pubs. 1985

Leo Joskowicz, “Simplification and Abstraction of Kinematic Behaviors,” Proc. IJCAI-89,, pp.
1337-1342.

Leo Joskowicz and Elisha Sacks, “Computational Kinematics,” Artificial Intelligence, vol. 51, 1991,
pp. 381-416.

Leo Joskowicz, Elisha Sacks, and Vijay Srinivasan, “Kinematic Tolerance Analysis,” Computer-Aided
Design, Vol. 29(2), 1997.

Leo Joskowicz and Russell Taylor, “Interference-Free Insertion of a Solid Body into a Cavity: Al-
gorithms and a Medical Application,” International Journal of Robotics Research, Vol. 15, No. 3
1996.

Min-Ho Kyung and Elisha Sacks, “Nonlinear tolerance analysis of planar mechanical systems,”
Computer-Aided Design, Vol. 35, No. 10, 2003, pp. 901-911.

Bhubaneswar Mishra, Algorithmic Algebra, Springer-Verlag, New York, 1993.

G. Moroni and W. Polini, ” Tolerance-based Variations in Solid Modeling”, Journal of Computing
and Information Science in Engineering, December 2003 vol. 3 no 4 pp. 345-352.

P. Nielsen, “A Qualitative Approach to Mechanical Constraint,” Proc. AAAI-88, pp. 270-274.

Alvin G. Neumann, “The new ASME Y14.5M standard on dimensioning and tolerancing.” Manu-
facturing Review, Vol. 7, No. 1, 1994, pages 16-23.

Yaron Ostrovsky-Berman and Leo Joskowicz, “Geometric Computation for Assembly Planning with
Planar Tolerances,” IEEE International Conference on Robotics and Automation, 2005.

Alan Perlis, “Epigrams in Programming” SIGPLAN, September 1982.

D. A. Randell, Z. Cui, and A. G. Cohn (1992). “A Spatial Logic Based on Regions and Connection,”
Third Intl. Conf. on Principles of Knowledge Representation and Reasoning. pp. 165-176.

Aristides A.G. Requicha, “Towards a Theory of Geometric Tolerancing,” The International Journal

33



of Robotics Research, vol 2, no. 4, 1983, pp. 45-60.
Bertrand Russell, Human Knowledge: Its Scope and Limits. Simon and Schuster, New York. 1948.

J. Turner and M. Wozny, “The M-Space Theory of Tolerances”, Advances in Design Automation-
1990 vol. 1 ASME Publication No. DE Vol. 23-1 pp.217-225.

Gokul Varadhan, Young Kim, Shankar Krishnan, and Dinesh Manocha, “Topology Preserving Ap-
proximation of Free Configuration Space,” Prof. IEEFE Int. Conference on Robotics and Automation,
2006, pp. 3041-3048.

Chee Yap, “Exact Computational Geometry and Tolerancing Metrology,” in D. Avis and J. Bose
(eds.) Snapshots of Computational and Discrete Geometry, vol. 8, McGill School of Computer
Science, Tech. Rep. SOCS-94.50, 1994.

Chee Yap and Ee-Chien Chang, “Issues in the Metrology of Geometric Tolerancing,” in J.P. Laumond
and M. Overmars (eds.) Algorithms for Robot Motion Planning and Manipulation, A.K. Peters,
Wellesley, Mass. 1996.

Appendix A: Summary of geometric types and distances

We have dealt with a rather large number of different types of geometric entities, including both
specific and abstract categories, and corresponding measures of distance. For purposes of reference,
these are tabulated here.

1. Points in two- or three-dimensional Euclidean space. These are indicate by bold-face, lower-
case letters, such as p. We use the Euclidean distance between two points p and q, denoted

“d(p7 q)” .

2. Directions. A direction is denoted using a vector with a hat, such as ¢. By identifying a
direction with the corresponding unit vector, we use the Euclidean distance d(@,9) to measure
the distance between two directions @ and 0.

3. Sets of points in a metric space. Let O be a space with metric y, and let U and V' be subsets
of O.

a. The Hausdorff construction (definition 2.1) defines a distance measure between U and V/,
denoted pg (U, V).
b. The connected-component similarity measure pg(U, V) is another distance measure be-

tween U and V. (Definition 4.18)

4. Regions in Euclidean space. These are indicated by bold-face, upper-case letters, such as R.
We define four different measure of distance between spatial regions:

a. The Hausdorff construction applied to the Euclidean distance function gives the distance
measure dg (R, S). (Definition 1.3)
b. The complement-Hausdorff distance, dg.(R,S). (Definition 1.3)
c¢. The dual-Hausdorff distance, dg4(R, S). (Definition 1.3)
d. Approximation in tangent (a,€). (Definition 4.9)
5. Displays. A display is a tuple of regions, corresponding to the shapes of a collection of objects.

The same distance functions used for regions are extended to apply to displays. (Definition
1.13)
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6. Configurations. A configuration is a specification of the positions of a collection of objects.
We will define a distance measure, p? (C1, C2) between two configurations C, Cy. The display
D is a parameter of the distance measure; each different display defines a different distance
measure. (Definition 1.13).

7. Regions in configuration space. The Hausdorff construction, applied to the measure p?, gives
the distance measure p2 (R, S) between two regions R, S in configuration space.

8. Paths through a metric space. Greek letters are used for paths. If O is a space with metric
1, then we measure the distance between paths ¢ and v using the tracking distance, denoted
1t (d,1). (Definition 3.1)

9. Sets of paths through metric space. Let O be a space with metric p, and let U and V' be sets
of paths through O.

a. Applying the Hausdorff construction (3.a) to the tracking distance u; gives measure
perr (U, V). (Definition 3.2)
b. Applying the connected-components similarity construction (3.b) to the tracking distance

e gives measure u:s(U, V).

10. Paths and sets of paths through configuration space. We specialize the metric p in (8) and (9)
to be the metric p? defined in (6). Then we get

a. The measure pP(¢,v) between two paths ¢ and 1 in configuration space, by applying
the construction (8) to (6).
b. The measure pl; (A, B) between two sets A and B of paths through configuration space,
by applying (9a) to (6).
c. The measure p/% (A, B) between two sets A and B of paths through configuration space,
by applying (9b) to (6).
As in (6), D, a display, is a parameter of the distance measure; each different display gives a
different measure.

Appendix B: Proofs

B.0. Topological lemmas:

We begin with three simple lemmas from point-set topology that we will need.

Lemma B.0.1: Let U be a compact metric space with metric p. Let f be a non-negative continuous
function over U. Then for any e > 0 there exists a § > 0 such that, for all X, if f(X) < § then there
exists a Y such that u(X,Y) < € and f(Y) = 0. That is, any X with a very small value of f lies
close to some Y where f = 0.

Proof: Let B={Z c U |3y f(Y)=0Au(Z,Y) < €}. That is, B is all points within e of some
zero of f. Since B is open, U — B is compact, so f attains a minimum value § > 0 on U — B. This
0 then satisfies the condition of the lemma. I

Note that if f is greater than 0 everywhere on U, then since U is compact,it attains a minimum
greater than 0 on U, so the lemma is vacuously satisfied by choosing § smaller than that minimum,
for any e.
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Lemma B.0.2: Let U be a compact metric space with metric © and let f be a continuous, real-
valued function over U. Then, for any ¢ > 0, there exists a § > 0, such that every point X € U
where f(X) > 0 is within € of a point Y where f(Y) > 6.

Proof: Fix a value € > 0. For any ¢ > 0, define the set Qs = {Y | Ixf(X) > 0 A pu(X,Y) < €}.
Thus, for any b < a, @, D Q. Let W be the closure of the set {X | f(X) > 0}; then clearly
Us>0@s D W. Since W is compact, there must be a finite subcover of W, Qs1, Qs2...Qsr. Choosing
6 to be the smallest of these d;, we infer that Qs D W, which is the desired result. I

Lemma B.0.3 Let U be a compact space. For u € U and x1...x € R, let ®(u,z1...2x) be a
property of u such that
a. fO0<y; <az;fori=1...k and ®(u,z1...xx) then ®(u,y1...yx).
b. For any u € U there exists a neighborhood V' of u and values z; > 0...z; > 0 such that, for
allv eV, ®(v, 21 ...25).
Then there exist 1 > 0...x > 0 such that for all w € U, ®(u, 1 ... x).

Proof: Let U, = {u | ®(u,1/n...1/n)}. Then the collection of U, is a covering of U by open sets.
Since U is compact, this has a finite subcover. But, for n > m, U, D U,,. Thus the last U,, in the
finite subcover contains all the rest and is so equal to U. Thus ®(u,1/n...1/n) for allu e U. 1

B.1. Proofs for section 1
Theorem 1.4: The dual-Hausdorff distance from B to A is greater than or equal to the zone-
tolerance measure from B to A.

Proof: Let Z be the zone-tolerance measure from B to A. Let p be a point in Bd(B) such that
d(p,Bd(A)) = Z. There are two cases to consider: Either p is in Int(A) or p is in Ext(A).

Suppose first that p is in Int(A). Chose any € > 0. Since p €Bd(B) there is a point q €Ext(B)
such that d(p,q) < e. Let r be any point in Ext(A). Since the line segment pr goes from Int(A)
to Ext(A), it must cross Bd(A) at some point s between p and r. Since s €Bd(A) and d(p,Bd(A))
= Z, we have Z <d(p,s) < d(p,r) < d(q,r) + €, by the triangle inequality. But since r was an
arbitrary point in Ext(A), this means that d(q,Ext(A)) > Z —¢, and since € was arbitrary, it means
that Z < inf gy gy d(@.Ext(A)) < due(A,B) < dna(A,B).

The proof in the case where p is in Ext(A) is exactly analogous, reversing interiors with exteriors.

B.2. Proofs of theorems in section 2
B.2.1. Proof of theorem 2.1
Lemma B.2.1: In any space with metric p,

a. f ACBCC C D then ug(A,D) > uu(B,C).
b.fACBCDand ACC C D then pg(B,C) < max(upg(B,A), uu (B, D)).

Proof: Immediate from the definition. 1

Lemma B.2.2: For any regions R, R’ S, S/, d(R,S) < d(R/,S’) + dg(R/,R) + du (S, S).
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Proof: Straightforward. 1
Lemma B.2.3: For any regions R, R’ S, S/,

o(R,S) < o(R/,S) + max(du.(R',R), du.(S',S))

Proof: Let O be a sphere of radius o(R,S) contained in R N'S. Any point in the complement of
R’ must lie within dg.(R’, R) of the complement of R. Hence any point in O — R’ must lie within
dg.(R/,R) of the boundary of O. Similarly, any point in O — S’ must lie within dg.(S’,S) of the
boundary of O. Hence the sphere concentric with O of radius

o(R,S) — max(dg.(R/,R), dg.(S’,S)) must contain no points in the complement of R’ N'S’. So
o(R’,S’) must be at least o(R,S) — max(dg.(R’,R), du.(5,S)). 1

Lemma B.2.4: Let D and D’ be two displays. Then for any configuration C,

clearance(D, C) < clearance(D’,C) + 2dg (D, D’).
overlap(D, C) < overlap(D’,C) + dg.(D,D’).

Proof: Immediate from lemmas B.2.2 and B.2.3. 1

Lemma B.2.5: The functions “free(D)” and “cfree(D)” are monotonically non-increasing. That is,
if D' is an expansion of D, then free(D’) is a subset of free(D) and cfree(D’) is a subset of cfree(D).

Proof: Immediate. 1

Lemma B.2.6: Let D be a display, and let U be a compact region of configuration space. For any
€ > 0 there exists a d > 0 such that, for every display D’, if dg.(D, D’) < é then any configuration
in free(D’) N U is within e of some configuration in free(D).

Proof: For any display D and configuration C, let overlap” (C) = overlap((D,C)). By lemma
B.2.3, if O efree(D’) and dy.(D,D’) < 6, then overlap”(C’) < 6. Applying lemma B.0.1, with
f(z) being the function overlap” and with y being the metric p?, we infer that we can choose § so
that, for any C” in free(D) N U, if overlap”(C”) < § then there exists a configuration C' such that
pP(C,C") < € and overlap” (C) = 0, so C efree(D). 1

If T and C' are two configurations, we will write “T" o C” to mean the configuration
(T[1]o C[1],...,T[k] o C[k]).

Definition B.2.1: Let f be a function over configuration space; let U be an open region in config-
uration space; and let T' be a tuple of rigid mappings. We say that T preserves f over U if for every
configuration C € U, f(T o C) = f(C).

Definition B.2.2: Let D be a display in n-dimensional space. Let A = Zle (diameter(D[i]) + 3).
The basic configuration region of D is the set of all configurations C' such, for every i, CDJ[i] lies
inside the box [0, A]™.

Lemma B.2.7 The basic configuration region of D is compact.

Proof: A rigid mapping on n-dimensional Euclidean space can be expressed in a standard way as an
(n+1)? matrix. Hence, a configuration on a k-object display D can be viewed as a k- (n+1)? vector
dimensional vector and the configuration space as a whole is a kn(n — 1)/2 dimensional manifold of
such vectors. It is easily verified (a) that the standard topology over the manifold is the same as the
topology defined by the metric p? (Cy, Ca); (b) that a set of configurations is bounded in the manifold
if and only if it is bounded relative to the metric p”(Cy, Cs); (c) that the basic configuration region
is closed and bounded relative to the metric p”(Cy,Cy). Hence, the basic configuration region is
closed and bounded in the manifold; hence it is compact. 1
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(1) begin T = the k-tuple of identity mappings;
(2) for 4 in {&, 9,2} do /* 4 loops over the coordinate directions */
(3) begin let L be the minimum coordinate over all objects I
of the 4 coordinate of TCDII];
(4) let W be the configuration all of whose elements are the translation
MP)(P + (1 - L)a);
T:=WoT,
loop let [A, B] be any gap in T(C) in the 4 direction of size > 3;
if there is no such gap, exitloop
else let W be the configuration defined as follows:
forI=1...K do
if TC[I](D[I]) has @ coordinates less than A
then W] is the identity
else W([I] is the mapping A(V)(V — (B — (A + 3))d);
T :=WoT,
endloop
end
el =1;TP(C)=ToC

d O U R WK MO T
— N N T

]
=
-

Table 1: Computing 6 (C)

We now define two functions over configuration space. I'?(C) maps each configuration C into the
basic configuration region, in a way that preserves the relative position of nearby objects. ©P(C) is
the tuple of rigid mappings such that ©P(C) o C = T'P(C).

Definition B.2.3: Let C be any configuration over display D. We say that C has a gap in direction
@ from A to B, A < B if

e There is an object I such that maximal coordinate of C'D[I] in the @ direction is equal to A;

e There is an object J such that minimal coordinate of C'D[J] in the 4 direction is equal to B;
and

e There is no object containing any point whose @ coordinate is between A and B.

The size of this gap is B — A.

Definition B.2.4: Let C be any configuration over display D. We define the configuration O (C')
using the following algorithm: In each coordinate direction @, we begin by translating the whole
configuration so that the lowermost point in the @ direction in the scenario has coordinate 1. We
then look for gaps [A, B] of size greater than 3. We reduce any such gap to being of size exactly 3
by translating all the objects above the gap by a distance B — (A + 3), while leaving all the objects
below the gap where they are. We repeat until all such gaps are eliminated. We carry out this
procedure in the &, ¢, and 2 directions. When all this is complete, the final configuration is T'?(C')
and the combined transformations give ©”(C). Table 1 displays this algorithm in pseudo-code. It
is easily seen that this procedure gives a unique result; in particular, that the result does not depend
on the order in which gaps are reduced or coordinate directions are considered.

Definition B.2.5: The function “bclear”(C)” is defined as min(clearance(D, C),1).
Lemma B.2.8: The functions I'?(C) and ©(C) have the following properties:

38



g.

I'2(C) = 0P (C)oC.

Both T'P(C) and ©P(C) are continuous functions of C.

. If two objects are within distance 3 in C then their relative position is the same in T'?(C) as

in C.

The distance between two objects is greater than or equal to 3 in C' if and only if it is greater
than or equal to 3 in I'P(C).

I'P(C) is in the basic configuration region, a distance 1 from the boundaries of that region.

Let C be any configuration. Let U be the open ball of radius 1 around C' in configuration
space. Then the function A\(C")(©”(C)) o C’ maps U into the basic configuration region and
it preserves the functions overlap” and belear” over U.

For any configurations C, C, Cy, we have p” (0P (C) o C1, 0P (C) o Cy) = pP(Cy, Cs)

Proof:

Immediate by construction.

Within a space of configurations all of which have the same system of large gaps (gaps of
size greater than 3 in the same coordinates between the same objects), the continuity of ©F
is immediate. Moreover, in any such space, as the size of a particular gap approaches 3,
the transformation associated with closing the gap approaches the identity, which is its value
once the size of the gap becomes 3. Thus ©F is continuous. The continuity of I'P follows
immediately.

If two objects are within distance 3 in C, then there cannot be any large gaps between them.
Hence, all the intermediate transformations W move them together, thus preserving their
relative position.

If the two objects are originally on opposite sides of some large gap, that gap will be reduced
to size 3, so they are still on opposite sides of a gap of size 3, and hence at least 3 apart.
If they were distance 3 or greater apart but not on opposite sides of any gap in C, then the
transformations will move them together, their relative positions will be unchanged, and their
distance will be unchanged. The converse argument hold the same way.

The range from the minimal coordinate of any point in any object in the  direction in ' (C)
to the maximal coordinate is at most the sum of the diameters of the objects plus 3 times
K —1, where K is the number of objects. Proof: Order the objects by increasing order of their
lowest = coordinate. The lowest z coordinate of object .J is at most 3 greater than the maximal
x coordinate of some preceding object I < J, and hence at most 3 + diameter(D[I]) greater
than the minimal x coordinate of I. Moreover, the objects are placed so that the minimal
coordinate in each direction is 1. Therefore, all the objects in I'P(C) lie in the box [1, A —1]3.

Thus, T'P(C) lies in the basic configuration region, as does any configuration within distance
1 of TP(C).

The fact that U is in the basic configuration region is immediate from (e). The fact that
overlap” and bclear” are preserved is immediate from (c) and (d).

For each object i, ©P(C)[i] is just a translation. Hence, for any point p,

d([07(C) o C1](p), [O7(C) o C2](p)) = d(C1(p), C2(p)).
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Lemma B.2.9: Let D be a display. For any ¢ > 0 there exists a § > 0 such that, for every display
D' if dg.(D,D’) < ¢ then any configuration in free(D’) is within e of some configuration in free(D).
(This is the same as lemma B.2.6, but with the restriction to a compact region dropped.)

Proof: Let @ be the basic configuration region of D. Let € > 0. Let §y be chosen to satisfy lemma
B.2.6 for the value min(e, 1) over region Q. Let § < min(do, 1, min; dg.(D]i],0)). (The complement-
Hausdorff distance from a region D[i] to the empty set is well-defined and finite; it is equal to the
radius of the largest circle that can be inscribed in DJ[i].) Let display D’ be then chosen so that
dga(D,D’) < ¢ and let C’ efree(D’). Let E be the display such that E[i] = D'[i]N D[i]; then clearly
C’ efree(E). It is immediate that dg.(E, D) < dy.(D’, D) < 6. EJi] is non-empty, because of the
constraint that § < dg.(D[i],0).

By lemma B.2.8, any two objects in E that do not overlap in C’ also do not overlap in I'? (C”),
so T'P(C") efree(E). Since T'P(C’) € Q, by lemma B.2.6, there is a configuration C; €free(D)
such that p?(Cy,T'P(C")) < min(e,1). Let C = (0P(C’"))"! o Cy. By lemma B.2.9.g, p(C, ")
= pP(C1,TP(C")) < min(e,1). By lemma B.2.9.f, ©P(C") preserves overlap” on C, and hence
C efree(D). 1

Theorem 2.1: Let D be a display. For any distance € > 0 there exists a distance ¢ > 0 such that the
following holds: if D’ is a contraction of D and the complement-Hausdorff distance dg.(D,D’") < ¢
then the Hausdorff distance between the free spaces p5 (free(D), free(D’)) < e.

Proof: Showing that the Hausdorff distance is small has two parts:

a. Every configuration in free(D) is close to some configuration in free(D’). This is trivial, since
free(D) is a subset of free(D’) (lemma 2.4).

b. Every configuration in free(D’) is close to some configuration in free(D). This is lemma 2.9.

B.2.2: Proof of lemma 2.2

Lemma B.2.10: Let R and S be two compact regions. Then there exists a constant v > 0 such
that, for any rigid motions M; and Ma, pS(My, My) >~ - pR(My, My)

Proof: Let s be the diameter of S. Let a and b be two points in S such that d(a,b) = s. Let m
be the midpoint of a and b. It is easily shown that, for any point x, if x is closer to a than to b,
then d(x,b) > s/2 and d(x,b) > d(x, m); whereas if x is closer to b than to a, then d(x,a) > s/2
and d(x,a) > d(x, m).

Let e be the furthest point in R from m. We now claim that the lemma holds for the value
v =s/(s+ 2d(e,m)). Note that v < 1.

To show this, choose values for M7, Ms, and let T be the rigid transformation that transforms
M into Ma; T = MyM; .

There are now two cases to consider.

—

I. T is a translation by vector ¢. In that case, for any point x, Msy(x) — M1(x) = ¥, so
d(My(x), My (x)) =| 7 |. Thus p@ (M, M>) has the same value | 7 | for any region O, so p®(M;, My) =
pS(Mi, My) > vpS(Mi, M)

IT. T is a rotation through angle .. In two dimensions, there will be a center of rotation c; in
three dimensions, there will be an axis of rotation c. Note that, for any point x, d(M;(x), Ma(x)) =
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2sin(a/2)d(x, ¢). In either case, the following relations hold:

pS(My, Mz) > max(d(M;(a), Ma(a)),d(M; (b), M2(b))) > 2sin(a/2) max(d(a, c),d(b,c) >
2sin(a/2) max(s/2,d(m, c))

On the other hand, let f be the point in R furthest from c. Then p®(My, My) = d(M;(f), Ma(f)) =
2sin(a/2)d(f, ¢) < 2sin(a/2)d(e,c) < 2sin(a/2)(d(e, m) 4+ d(m, c)).

Thus,

pS(My, My) < max(s/2,d(m,c))
pR(My, M3) — d(e,m) + d(m,c)

It is easily shown that, for fixed s, e, m, the above fraction attains its minimum value of s/(s +
2d(e,m)) when d(m,c) = s/2. 1

Lemma 2.2: Let D and E be two displays over k objects. Then the two metrics p” and p¥
induce the same topology on configuration space. Also, the two metrics pg and pﬁ over regions of
configuration space induce the same topology.

Proof: Using lemma B.2.10, for i = 1...k, choose 7[i] such that for any rigid motions M; and Mo,
pPU (M, Ms) > ~[i] - pPl(My, M) and choose 4[i] such that for any rigid motions M; and Mo,
pPUE (M, My) > 6[i] - pPl(My, My). Let v = min;—;__;v[i] and let 6 = min;—;__ 6[i]. Then, clearly,
for any configurations Oy, Ca, p?(Cy, Cy) > yp¥(C1,Cs) and p?(Cy, Co) > 6pP(Cy, Cs). Now, for
any configuration C, for any e > 0, and for any display F, let BY’ (C, €) be the set of all configurations
C’ such that pf'(C,C’) < e. Tt follows directly from the definitions that, for any configuration C
and € > 0, BE(C,¢/v) € BP(C, €) and that BP(C,¢/8) € B¥(C,¢), so ph and pk induce the same
topology on regions of configuration space.

Also, for any region U in configuration space, for any € > 0, and for any display F, let BY (U, €)
be the set of all regions V in configuration space such that p%(V,U) < e. It follows directly from
the definitions that, for any U and ¢, B¥(U,¢/v) € BP(U, ¢) and that B” (U, ¢/5) c B¥ (U, ¢), so p&
and pg induce the same topology on regions of configuration space.

Proof of theorem 2.3

Theorem 2.3: Let D be a display and let 6 > 0 be a distance. Let E = contract(D,d). Let
€ = pP(free(D),free(E)). Then D, €, and ¢ satisfy the conditions of Theorem 2.1. That is, if F is
a contraction of D and dg.(F, D) < § then pb (free(D),free(F)) < e. (We have changed the strict
inequalities in our original statement of theorem 2.1 to non-strict inequalities.)

Proof: Let F' be a contraction of D such that dg.(F, D) < §. By lemma 1.2, F is a contraction of F'.
By lemma B.2.5, free(E) D free(F) D free(D). Hence ph(free(D),free(F)) < ph(free(D),free(E))

= €.

Proof of theorem 2.4

In all our discussions of algebraic formulas, we will assume that rigid mappings are parameterized
in terms of the coefficients of coordinate transforms relative to some fixed coordinate system (rather
than, for example, in terms of angles of rotations.)

Lemma B.2.11: The application of a rigid mapping to a point is a bilinear function of the mapping
and the coordinates of the points, and thus an algebraic function.

Proof: Specifically, in two dimensions, a rigid mapping is specified in terms of four real parameters
c1, ca,t1, to satisfying the constraint ¢ + ¢3 = 1. The application of the mapping to a point with
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coordinate x1,x2 is given by the matrix operation

c c x t
—c2 x2 to
In three dimensions, a rigid mapping is specified using nine real parameters. The constraints

and application formula are similar.
Lemma B.2.12: Let R, S be semi-algebraic regions; let D, E be a semi-algebraic displays; let P, Q
be semi-algebraic regions in configuration space. The following properties can then expressed in
algebraic formulas whose form is easily computed from the forms of R,S, D, E, P, Q.

e The property of point x, “x is in the interior of R.”

e The properties of point x and real ¢, “x is in the uniform contraction/expansion of R by €.”

e The properties of points x; . ..xy and €, “Fori = 1...k, x; is in the uniform expansion/contraction
of D[i] by €.”

The properties of distance m, “m = dg(R,S)”, “m = du.(R,S)”, and “m = dgq(R,S)”.

The properties of configuration C, “C' is in free(D)/cfree(D)/forbidden(D).”

The property of distance m, “m = ph(P,Q).”

Proof: Straightforward from the definitions. For example, cfree(D) can be defined as follows: Let
DI1]...DIk] be algebraic formulas for the standard shapes of the objects in D. A configuration C
is in cfree(D) if C[1]...Clk] satisfy the open formula

NizjVay[x € Dli} Ny € D[jl]=Clil(x) # C[5](y)

Abusing notation, we will use formulas like “C' €free(D)” to express the algebraic formula over
the coordinates of C' that expresses this relation for a fixed algebraic formula that expresses D.
It should be kept in mind, though, that ultimately everything can be expanded into a first-order
formula over real parameters.

Example B.2.1: Let D contain two objects: the circle of radius 2, w? 4+ 2% < 4 and the unit
square —1 <y <1, —1 < z < 1. Then the relation “C € free(D)” is an abbreviation for the relation
over eight real parameters, c1, cs,t1,te, d1, ds, u1, ug, given by

A+B=1ANE+d5=1A
Voglw? +22 <4 AN -1<y<1A-1<z2<1]=
[crw 4 cox + t1 # diy + doz + ur] V [—cow + 1@ + to # —day + d1z + ug)

Theorem 2.4: Assume that display D is semi-algebraic. Then there is an algebraic formula
®(e,6) which holds if and only if Theorem 2.1 is satisfied for D, e and §. Moreover, ® is easily
computable, given the form of D. Hence, by Tarski’s theorem, for fixed semi-algebraic D, it is
possible to compute § from € or € from 4.

Proof: By lemma 1.2, the desired relation ®(¢,d) is given by the formula
e = pP(free(D), free(contract(D,d)). By lemma B.2.12, this formula is algebraic if D is semi-
algebraic. 1
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Sketch of proof of theorem 2.5

Theorem 2.5: There exists a display D and a distance € > 0 with the following property: Let
D’ be a semi-algebraic display, and let 6 = dgy.(D,D’). Then there exists a display E such that
due(E,D') < & but p?(free(D), free(E)) > e.

Sketch of proof: Pick an arbitrary value of ¢ > 0. Let R be any transcendental region; for
example {(z,y) |0 <z < 7,0 <y <sin(z).}. Let T be any rectangle containing R whose boundary
is at least 2¢ from R. Let S = T — R. Let display D consist of two regions: Region A of shape R
and region B of shape S. Then free(D) contains a large space of configurations where A is outside
B, and a unique (up to identical motions on both objects) configuration where A is placed inside
the hole in B.

Choose D’ and ¢ as above. Since D’ is semi-algebraic and dg. is a semi-algebraic relation, it is
not difficult to show that, if dg.(D,D’) < § then dgy.(E,D’) < § for some proper expansion F of
D. But object A will not fit inside object B if they are expanded. So the configuration in free(D)
where A is inside B is at least e from any configuration in free(E).

Proof of theorem 2.6

Lemma B.2.13: Let D be a display, and let U be a compact region of configuration space. For any
€ > 0 there exists a ¢ > 0 such that, for every display D', if dg(D, D’) < § then any configuration
in cfree(D) N U is within e of some configuration in cfree(D’).

Proof: Applying lemma B.0.2, with f(x) being the function belear” and with g being the
metric p”, we infer that we can choose d so that, for any C' in cfree(D) N U, since bclearD(C) > 0,
there exists a configuration C’ such that p”(C,C") < € and bclear” (C') > 6. By lemma B.2.2, if

belear? (C) > § and dy (D, D') < 6, then belear”’ (C") >0, so C" ecfree(D’). 1

Lemma B.2.14: Let D be a display. For any e > 0 there exists a § > 0 such that, for every
display D', if dg (D, D’) < § then any configuration in cfree(D) is within e of some configuration
in cfree(D’). (This is the same as lemma C.2.13, dropping the restriction to a compact region of
configuration space.)

Proof: The proof is exactly analogous to the proof of lemma B.2.9 (in fact, slightly simpler):
Start with any configuration C' €cfree(D). Use lemma B.2.8 to find the mapping ©F(C) taking C
into the basic configuration region. Use lemma B.2.13 to find a configuration to find a configuration
Co €cfree(D’) within € of I'P(C). Then mapping back ¢’ = (6P (C))~! o Cy gives the desired

answer. 1

Theorem 2.6: The function “cfree(D)”, mapping a display to a region in configuration space,
is continuous under expansion, using the metric dy on displays and the topology induced by py on
regions of configuration space.

Proof: Unwrapping the definitions, this says that, if D’ is an expansion of D and is close enough
to D in the Hausdorff metric then
a. Every configuration in cfree(D) is close to some configuration in cfree(D’). This is lemma

B.2.14.

b. Every configuration in cfree(D’) is close to some configuration in cfree(D). This is trivial,
since cfree(D’) is a subset of cfree(D).
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Proof of theorem 2.7

Theorem 2.7: Let D be a display and let § > 0 be a distance. Let F = expand(D,J). Let
¢ = ph(cfree(D),cfree(E)). If F is an expansion of D and df(F, D) < 4,
then p? (cfree(D),cfree(F)) < e.

Proof: Let F be a expansion of D such that dg(F, D) < §. By lemma 1.2, F is an expansion of F.
By lemma B.2.1, free(D) D free(F) D free(E). Hence ph, (free(D),free(F)) < pZ (free(D),free(E))

= €.

Proof of lemma 2.8

We first show that blurring the position of an object is essentially equivalent to expanding it.

Lemma B.2.14: Let D be a display, C be a configuration and ¢ > 0 be a distance. Let £ =
expand(D, €). Let B”(C, €) be the set of all ¢’ such that p?(C,C") < e. Let F be the display such
that F[I] is the union of C'D[I] over all C’ € B”(C,¢). Then F = C(E).

Proof: Fix an object L. If x € F[I], then x € C'D[I] for some C’ such that p?(C,C") < e. Let
y = C’'[I]7}(x); then y € DI[I]. By definition of p?, d(C[I](y,x) < e. Since C[I] is a rigid mapping,
it follows that d(y,C[I]71(x)) = d(C[I](y),x) < e. But since y € D[I], C[I]7}(x) is in E[I] so
x € CE[I].

Conversely, if x € E[I], then let y be a point in D[I] such that d(x,y) < e. Let T be the
translation by vector x —y, and let C’ = CoT. Then pP(C,C") = d(x,y) < ¢, and C(x) = C'(y). I
Lemma 2.8 For any display D, cfree(D) is the interior of free(D).

Proof: We need to show (a) that cfree(D) C Int(free(D)) and (b) that Int(free(D)) C cfree(D).

a. Suppose C €cfree(D). Then there is a minimal distance ¢ > 0 between the regions CD[i],
CDJj] for any two objects i # j in D. Therefore for configuration C’, if p? (D', D) < €/2, then
C'DJi] is disjoint from C’D[j] so C" €free(D). Thus BP(C,¢/2) Cfree(D) so C €lnt(free(D)).

b. Suppose C €Int(free(D)). By definition, there exists an € > 0 such that B?(C,¢) € free(D).
From lemma B.2.15 it follows that C' € free(expand(D,€)). But each region D[I] is dis-
tance € from the boundaries of expand(D[I],€). Thus, since C[I](expand(D][I],e) does not
overlap C[J](expand(D]J],€), it follows that CD[I] and CD]J] are at least 2e apart. Hence
C ecfree(D).

Proof of theorem 2.9

Lemma B.2.16: For any display D and § > 0, free(expand (D, )) C cfree(D).

Proof: Let C be a configuration in free(expand(D, §)). For any objects I # J, since C[I](expand (D[], d))
does not overlap C[J](expand(D][J],d)), it follows that CDI[I] is at least 26 from CD[J]. Hence,
C ecfree(D). 1

Lemma B.2.17: For any display D and § > 0, cfree(contract(D, d)) D free(D).

Proof: Let C be any configuration in free(D). Since CD[I] does not overlap C'D[J], and since every
point in C(contract(D[I],)) is at least ¢ from the boundary of C D[I], it follows that C'(contract(D][I], d))
is separated by at least 20 from C(contract(D[J],d)). Hence C € cfree(contract(D, d)). I
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Lemma B.2.18: For any normal, compact region R, for any distance € > 0 there exists § > 0 such
that dg(contract(R,d),R) < e.

Proof: For any point x, let B(x,€/2) be the open ball of radius €¢/2 about x. Since the collection
{ B(x,¢/2) | x € R } is an open covering of R and R is compact, it has a finite subcovering {
B(x;,¢/2),i=1...n }. Since R is normal, we may choose a point y; € B(x;,¢/2) N Int(R). Thus,
every point in R is within € of one of the y;. Choose § < min; d(y;, R¢); thus B(y;,d) CR,soy; €
contract(R, d). Since every point of R is then within € of a point in contract(R,d), it follows that
dg(contract(R,d),R) < e. 1

Lemma B.2.19: For any normal, compact region R, for any distance € > 0 there exists § > 0 such
that dg.(expand(R, d),R) < e.

Proof: Let O = expand(R,2¢). Let U be the closure of O — R. Then it is easily shown that U
is compact and normal; that expand(R,¢) = O— contract(U, ¢); and that dg.(expand(R,J),R) =
dg (contract(U, ¢),U). Applying lemma B.2.18 to the region U then completes the proof. I

Lemma B.2.20: If the function “free(-)” is continuous under expansion at display D, using the
dual-Hausdorff metric d4 on displays, then it is continuous at D (without qualification).

Proof: Choose an arbitrary e > 0. Assume that the function “free(-)” is continuous under expansion
at display D, using the metric dgg on displays. Then there exists a §; > 0 such that, for any
expansion D’ of D, if dgq(D, D’) < &1, then pZ (free(D), free(D’)) < e.

By theorem 2.1, there exists a d2 > 0 such that, for any contraction D’ of D, if dg.(D, D’) < 42,
then pZ (free(D), free(D')) < e.

Let § = min(d1,02), and let D’ be any display such that dgq(D,D’) < §. Since dg.(D,D’) <
dga(D,D’) < 6, it follows from lemma 1.2 that D’ D contract(D, §). Similarly, it follows from lemma
1.2 that D’ C expand(D, §). Therefore, free(contract(D, d)) C free(D’) C free(expand(D, d)). Hence,
by lemma B.2.1, ph (free(D), free(D’)) < e. 1

Lemma B.2.21: If the function “cfree(-)” is continuous under contraction at display D, using the
dual-Hausdorff metric dg4 on displays, then it is continuous at D (without qualification).

Proof: The proof is exactly analogous to the proof of lemma B.2.20. 1

Theorem 2.9: The following three statements are equivalent:

A. The functions “free(-)” is continuous at display D, using the metric d g4 on displays.
B. The function “cfree(-)” is continuous at display D, using the metric dg4 on displays.

C. free(D) is equal to the closure of cfree(D).

Proof: We will show (I) that A implies C; (II) that C implies B; and (III) that B implies A.

I. Suppose that free(-) is continuous under expansion at display D. Using lemma 1.2, this implies
that, for any € > 0, it is possible to choose § > 0 such that pZ (free(D),free(expand(D,d)) < €. But,
by lemma B.2.16 free(expand(D,d)) C cfree(D). Hence pE(free(D),cfree(D)) = 0. That is, every
point of free(D) is arbitrarily close to a point of cfree(D), so free(D) is a subset of the closure of
cfree(D). Since free(D) is also closed and contains cfree(D), it follows that free(D) is equal to the
closure of cfree(D).

II. Let ¢ > 0. By theorem 2.1 and lemma 1.2, there exists 6 > 0 such that ph(free(D),
free(contract(D, §)) < e. Trivially, cfree(contract(D, d)) C free(contract(D,d)). Hence, by lemma
B.2.1, ph(free(D),cfree(contract(D, §)) < e.

Now suppose that free(D) is equal to the closure of cfree(D). Then p& (cfree(D),free(D)) = 0.
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By the triangle inequality,
pH (cfree(D),cfree(contract(D, §)) < ph(cfree(D),free(D)) + ph (free(D),cfree(contract(D, d)) < e.

Let D’ be any contraction of D such that dgq(D’, D) < 6. Then dg (D', D) < dgqa(D’, D) < 4.
By lemma 1.2 p2(cfree(D),cfree(D’)) < ph(cfree(D),cfree(contract(D,§)) < €. Thus, cfree(-) is
continuous under contraction at D. By lemma B.2.21, cfree(:) is continuous at D.

ITI. Suppose that cfree(-) is continuous at display D, using the metric d g4 on displays. Choose
€ > 0. Then there exists a d; such that, if dgq(D’, D) < 1, then pZ (cfree(D),cfree(D’)) < €/2. Let
D1 be a uniform contraction of D such that dgq(D1, D) < d1; such a D; exists by virtue of lemma
B.2.18. Let E be any expansion of D such that dgq(D, FE) < é;. So we have

cfree(D1) D free(D) by lemma B.2.17.
free(D) D free(E) since E is an expansion of D.
free(E) D cfree(E) trivially.

Hence, by lemma B.2.1, p2 (free(D),free(E)) < pZ(cfree(D;),cfree(E)) <
pH (cfree(Dy),cfree(D)) + ph (cfree(D),cfree(E)) < e.

Thus, free(+) is continuous under expansion. By lemma B.2.20, free(D) is continuous. I

Proof of theorem 2.10

Theorem 2.10: For any displays D, D', p&(forbidden(D),forbidden(D’)) < dg(D,D’). Conse-
quently, the function “forbidden(D)” is continuous, if the topology of the domain is given by dg
and the topology of the range is given by py.

Proof: Let C be a configuration in forbidden(D). Then there exist objects I # J and points p,q
such that p € Int(D[I]), q € Int(D[I]), and C[I](p) = C[J](q). By definition of the Hausdorff
distance between the two displays, there must exists points p’ € Int(D’[I]) and q’ € Int(D’[J]) such
that d(p,p’) < dy(D,D’) and d(q,q’) < dg (D, D’).

Let T[I] be the translation mapping point x to x + C[I](p) — C[I](p’) and let T[J] be the
translation mapping point x to x + C[J](q) — C[J](q'). Let C’ be the configuration such that
C'lI] = T[I]o Cl); C'[J] = T[J] o C[J]; and C'[K] = C[K] for K # I,J. Then C'[I|(p’) =
C'[J)(q'), so C" € forbidden(D’). Also, clearly, p?(C, C’) = max(d(p,p’), d(q,q)) < du(D,D’).

Thus every configuration in forbidden(D) is within d (D, D’) of some configuration in forbidden(D’),
and vice versa, by symmetry. The Hausdorff distance from forbidden(D) to forbidden(D’) is there-
fore at most dgy (D, D’). L

B.3: Proofs from section 3
Proof of theorem 3.1

Definition B.3.1: Let ¢ be a path in configuration space and let D be a display. We define
overlapD (¢) as the maximal value of overlapD over ¢ and clearance®” (¢) as the minimal value of
clearance®” over ¢.

Lemma B.3.1: Let O be ordinarily connected, and let C' be a connected component of O. Then
there is an open set U D C which is disjoint from any other connected component of O.

Proof: By definition of connectivity, given any two connected components C' and C’, there are
disjoint open regions V' O C and V' D C’. By the definition of ordinary connectivity, there are only
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finitely many such C’. Therefore, the intersection of all these regions V is the desired open set. I

Lemma B.3.2: Let O be a compact space with metric x4 which is locally ordinarily connected.
Then for any € > 0 there exists a 6 > 0 such that for any p,q € O, if u(p, q) < ¢ then there is a path
¢ from p to g through O such that ¢ is always within € of p.

Proof: Suppose not. Then there exists an € such that for any N we may choose points py, gy for
which p(pn,gn) < 1/N but there is no path from py to g which remains within € of py. Consider
the sequence of pairs (p1,q1), (p2,q2), (P3,q3),- .. Since O is compact, there is a subsequence of the
points py that converges to a limit point p € O. Clearly, p is the limit of the corresponding ¢j as
well.

Let U CB(p, €) be a neighborhood of p such that U N O is ordinarily connected; let S = U N O;
and let R be the connected component of S containing p. By lemma B.3.1, there is an open set U
containing R and disjoint from S — R. Since U is open, it must contain all the points py and gy in
the subsequence converging to p for all sufficiently large N. Therefore, these points must be in R.
But R is path-connected, and it lies in a sphere of radius €/2, so there must be a path from py to
qn that stays within € of py. This complete the contradiction. 1

Lemma B.3.3: Let O be a compact space with metric p which is locally ordinarily connected.
Then for any € > 0 there exists a 6 > 0 for which the following holds: Let @) be any space within
Hausdorff distance ¢ of O: ug (0, Q) < 4. Let ¢ be any path through @. Then there exists a path
¢ through O such that the path distance u:(¢,¢) < e.

Proof: By lemma B.3.2, we can choose a value J; such that, if the distance between two points
g, € O is less than &7, then there is a path from ¢ to r that lies within €/3 of ¢. I claim that if ¢ is
chosen less than min(e/3, d1/3) then the theorem holds.

Let @ and ¢ be chosen as above. We can choose a finite sequence of points (po,p1 ...pg) on ¥
such that pg is the starting point of ¥, pi is the ending point of v, and the section of the path
between p; and p;41 is always within /3 of p;. Since the Hausdorff distance from O to @ is less
than §, we may choose points ¢g,q1 ...qx in O such that each ¢; is within § of p;. Therefore, the
distance from g; to g;+1,

1(qis @iv1) < plqis pi) + (i, Piv1) + 1(Pit1, Gip1) < 01

By definition of 47, therefore, there is a path from g; to g;+1 that remains within €/3 of ¢;. Therefore,
any point on the path 1 between p; to p;+1 lies within € of the corresponding point between g; and
Gi+1- We now string together the paths between ¢; and ¢;4+1, and the proof is complete. 1

Let p, (¢, ¢’) be the path distance between paths ¢ and ¢'. Applying the Hausdorff construction
over the space of paths, we can define a distance measure p,;; between one set of paths and another.
This, in turn, defines a topology over the space of sets of paths.

Theorem 3.1: (Analogue of theorem 2.1.) Let D be a display such that free(D) is locally ordinarily
connected. Then for any € > 0 there exists a § > 0 such that, if £ is a contraction of D and the
complement-Hausdorff distance dg.(D, E) < § then pl; (paths(free(D)), paths(free(E))) < e.

Proof: What this states is, that for any D and €, § can be chosen such that, if E is a contraction of
D and dy.(D, E) < 6 then (a) every path in paths(free(D)) is near a path in paths(free(E)) and (b)
every path in paths(free(E)) is near a path in paths(free(D)). Part (a) is trivial, since paths(free(D))
is a subset of paths(free(E)).

We establish part (b) in two steps. First, consider only the space of paths that remain in the
basic configuration region. Since this region is compact (lemma B.2.7), (b) follows immediately from
lemmas B.3.3 and theorem 2.1.

Second, we use lemma B.2.8 to reduce configuration space as a whole to the basic configuration
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region, as follows: Assume w.l.o.g. that ¢ < 1. Using the first step above, choose a suitable § for
e and D. Using lemma B.2.8, construct a function I'?(C) from configuration space into the basic
configuration region over D and let ©F(C) be the transformation from C to I'P(C). Let E be any
display such that dg.(D, E) < § and let ¢ be any path in free(E). Let ¢1(T) = I'P(¢(T)), and let
O(T) = OP(¢(T)). By lemma B.2.8, ¢; stays in the compact basic configuration region. Also by
lemma B.2.8, since I'” preserves the function overlapE7 overlapE(¢1) = overlapE(¢) =0, so ¢, is
in paths(free(E)). By lemma B.3.3, there is a path 1 in paths(free(D)) such that p? (11, 1) < e.
Now, let ¥(T) = (6(T)) (11 (T)). Tt follows immediately from lemma B.2.8 that p(i, ¢) < € and
that ¢ epaths(free(D))1

Proof of theorem 3.2

Theorem 3.2: (Analogue of theorem 2.2.) Let D be a display and let § > 0.
Let € = pl); (paths(free(D)), paths(free(contract(D, d))).
If F is a contraction of D and dgy.(F, D) < §, then pL; (paths(free(D)),paths(free(F))) < e.

Proof: Immediate from lemma 1.2 and the facts that “paths” is non-decreasing and that “free” is
non-increasing, so the composition, “path(free(-))” is non-increasing.

Proof of Theorem 3.3

We begin by analyzing the tracking of paths in discrete graph structures. We then show that the
continuous problem can be mapped to a discrete problem with any desired accuracy.

Definition B.3.2: Let G and H be undirected graphs. Let ¢ = (4[0] ... ¢[k]) be a path of length
k through G; that is, each ¢[i] is a vertex, and there is an edge in G from ¢[i] to ¢[i + 1]. (We will
count the length of a path as the number of edges traversed, not the number of vertices.) A tracking
of ¢ through H consists of two parts:

i. A path ¢ = ([0]...4[m]) through H, where m > k.

ii. A non-decreasing function o (i) from the range 0...m onto the range 0... k. The requirement
that the function o is “onto” means that for every ¢ € 0...k there is a j € 0...m such that

o(j) = i

The function ¢ thus carves up the range [0...m] into k + 1 non-empty intervals, and maps the first
range to 0, the second range to 1 ...and the kth range to k + 1. For instance, if k =3 and m =6
then one could map [0,1,2] to 0; [3] to 1; [4,5] to 2, and [6] to 3.

Definition B.3.3: Let G and H be undirected graphs. Let F(U, V) be a function mapping vertices
U € G and V € H to a positive real value, the distance from U to V. Let ¢ be a path through G
and let (1, 0) be a tracking of ¢ through H. Then the tracking distance from (1, o) to ¢, denoted
as Fy(¢,1,0) is the maximum distance from a point ][] to the corresponding point ¢[o(4)].

Fi(¢,¥,0) = max F(¢[o(i)], ¥[i])

1=0...m

Definition B.3.4: Let ¢ be a path through G. Let W and Z be vertices in H. Then a best tracker
of ¢ through H from W to Z is a tracking (¢, o) of ¢ through H such that ¢ starts at W and
ends at Z for which Fy(¢,1,0) is minimal. (Since the minimum must be one of the finitely many
values in matrix F, it must be attained, so there is always a best tracker.) This minimal value of
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Figure 19: Tracking paths through graphs

Fi(¢,,0) is called the minimal tracking distance of ¢ through H from W to Z and is denoted
“min_track(¢, H, W, Z, F).”

Definition B.3.5: Let U and V be vertices in G; let W and Z be vertices in H; and let k be a positive
integer. We say that ¢ is a path of length at most k from U to V hardest to track through H from W
to Z if the minimum value of min_track(c, H, W, Z) over all paths « of length at most &k from U to V
through G is attained for o = ¢. This maximal value is denoted “hard_track(G,U,V,H, W, Z, k, F)”.

Example B.3.1: Consider the graphs shown in figure 19. Let G be the graph of vertices A
through E, in solid lines, and let H be the graph of vertices Q through Z in dotted lines. Assume that
there is a self-loop, not shown, from every vertex in H to itself. The numbers on the vertices indicate
the coordinates. For ease of calculation, we will take the distance metric F' to be the Manhattan
distance; that is, F({(z1,y1), (z2,y2)) =| xa — 1 | + | y2 — 11 |

Then we have the following;:

Let ¢ = (D,EB), let v = (Y,R,Z,U) and let o((1,2,3,4)) = (1,2,2,3). That is, ¢
associates Y with D, R and Z with E, and U with B. Then F}(¢,1),0) = max(F(S,B),
F(R,A), F(Q,A), F(UB)) = F(R,E) = 5. 9,0 is, indeed, a best tracker of ¢ in H.

The best tracker through H for the path (B,A,D) is the path (S,Q,Y) with tracking
distance 2. (The correspondence is the obvious one.) The best tracker through H for the
path (C,B,A D) is the path (V,U,T,W) with tracking distance 4.

A hardest path in G to track is the path (C,B,A,D,E,B). Note that if you try a simple
greedy strategy starting at V, you can closely track the beginning of the path (C,B,A,D,E)
with path (V,U,T,W.X), but then you are stuck; there is no way to continue to track the
path closely. In fact, a best tracker is the path (V,U,T,W,W,T) under the correspondence
V—C, U-=B, T—»A, W=D, W—E, T—B, with tracking distance 8.

Definition B.3.6: The semi-Hausdorff tracking distance from graph H to graph G relative to
distance F', denoted Fips(H,G) is the maximum over all paths ¢ through G of the minimum over
all trackings (1, o) through H of the tracking distance F:(¢,1),0). Equivalently, it is equal to the
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maximum over all £ and all starting and ending vertices U,V € H of the minimum over all starting
and ending vertices W, Z € G of hard track(G,U,V, H, W, Z, k, F).

Definition B.3.7: The Hausdorff tracking distance between G to H relative to F', denoted “Fyy (G, H)”,
is defined as max(Fypys(G, H), Figs(H,G)). the maximum of the semi-Hausdorff tracking distance
from H to G and the semi-Hausdorff tracking distance from G to H.

We define “splicing” two paths, the first of which stops where the second starts, and “splicing”
two tracking functions, in the obvious way.

Definition B.3.8: Let ¢1[0...p] and ¢2[0..q] be paths. If ¢1[p] = ¢2[0], we will say that ¢; meets
¢o. In this case, the splice of paths ¢1 and ¢-, denoted ¢1; @2, is the path ¢ of length p + ¢ such
that ¢[i] = ¢1[i] for i € [0,p] and ¢[i] = ¢a[i — p] for i € [p,p+ ql.

Definition B.3.9: Let 01 (¢) be a function from [0, k] to [0, m] and let o2(i) be a function from [0, p)
to [0,n]. Then the splice of o1 and o2, denoted o71; 09, is defined to be the function o from [0, k + p]
to [0, m + n] such that o(i) = 01(¢) for i € [0, k], and (i) = 02(i — k) + m for i € [k, k + p).

Lemma B.3.4: Let (¢1,01) be a tracker for ¢1; let (3,02) be a tracker for ¢o; and assume
meets 12 and that ¢ meets ¢o. Then Fy(¢1; d2, 132,015 02) = max(Fy(é1, 91, 01), Fi(p2, 92, 02))

Proof: Immediate from definitions B.3.3, B.3.8, and B.3.9. 1

Lemma B.3.5: Let ¢; and ¢ be paths through G that meet, of lengths p and q respectively; and
let ¢ = ¢1; 2. Let W, Z be vertices in H. Let (1), 0) be a best tracker for ¢ through G from W to
Z. Let n be the length of ¢, and let m € [0,n] be an index such that o[m] = p. Thus o associates
the path ¥[0...m] with path ¢; and path ¢[m...n] with path ¢5. Let X = ¢[m]. Let (a1,71) be
a best tracker for ¢1 from W to X and let (asg,72) be a best tracker for ¢2 from X to Z. Then
{a1; am,71;72) 1s a best tracker for ¢ through H from W to Z.

Proof: Let (8,\) be any tracker for ¢ through H from W to Z. Since (¢, o) is the best tracker
for ¢ through H from W to Z, we have Fi(¢,v,0) < Fi(¢,3,)\). By lemma B.3.4, Fi(¢,v,0)

= max(F(é1,91,01), Fi(pa,2,02)). Since (a1,v1) is a best tracker for ¢ from W to X, we
have Fy(¢1,a1,71) < Fi(¢1,%1,01) and similarly Fi(¢pa, aa,v2) < Fi(¢a,12,02). By lemma B.3.4,
Fi(¢,a,v) = max(Fy(¢1,01,71), Fi(¢2, aa,¥2)). Putting these together, we get Fy (¢, v, ) < Fi(¢, 8, ).
1

Lemma B.3.6: Let ¢; and ¢ be paths through G that meet, and let ¢ = ¢1; 2. Then for any
vertices W, Z in H,
min_track(¢, H,W, Z, F) = minx ¢y max(min_track(¢1, H, W, X, F'), min_track(¢o, H, X, Z, F)).

Proof: Immediate from lemmas B.3.4 and definition B.3.5. 1

Lemma B.3.7: Let ¢; and ¢ be paths through G that meet, of lengths p and ¢ respectively; and
let ¢ = ¢1;¢2. Let U = ¢[0], T = ¢[p], and V = ¢[p + ¢q]. Let W, Z be vertices in H. Suppose that
¢ is a path of length at most p+ ¢ from U to V hardest to track by a path from W to Z through H.
Let (¢, o) be the best tracker for ¢ from W to Z through H. Let m be an index such that o(m) = p;
and let X = 1(m). Let o be a path of length at most p from U to T through G hardest to track by
a path from W to X in H; and let as be a path of length at most ¢ from U to T through G hardest
to track by a path from X to Z in H. Then a1;as is a path of length at most p + ¢ from U to V'
hardest to track by a path from W to Z through H.

Proof: Let A be any path from U to V through G of length p + ¢q. Since ¢ is a path of
length p + ¢ from U to V hardest to track by a path from W to Z through H, we know that
min_track(¢, H, W, Z, F) = Fi(¢,1,0) > min_track(A, H,W,Z,F). By lemma B.3.4, F;(¢$,v,0)
= max(Fy(¢1,¥1,01), Ft(¢2,12,02)). Let (01,71) be the best tracker for ¢; from W to X, and let
(02, T2) be the best tracker for ¢ from X to Z. By lemma B.3.5, F;(¢, v, 0) = max(F (1,61, 71), Fr (2,02, 72))
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Let (71, m1) be the best tracker for a; from W to X, and let (2, n2) be the best tracker for a from
X to Z. Since a; and as are the hardest paths to track, we have Fy(a1,v1,m) > Fi(é1,61,71) and
Fi(ag,v2,m2) > Fi(¢a, 02, 7). But by lemma B.3.5, (y1;72,m1;72) is a best tracker for « from W to Z
through H; and by lemma B.3.4 Fy(«, 1572, 71; 12) = max(Fi(a1,71,m), Fi(a2,v2,12)). Putting all
these together, we get that min_track(«,H, W, Z, F') = Fy(a, v1;v2,m1;72) > min_track(A, H, W, Z, F).
Since A was an arbitrary path from U to V, this means that « is a hardest path from U to V through
G to track from W to Z through H. I

Lemma B.3.8: For any vertices U,V € G, vertices W, Z € H and integers p,q > 0,
hard_track(G,U,V,H W, Z,p+q,F) =
maxreg miny ey max(hard_track(G,U, T, H, W, X, p, F), hard track(G,T,V,H, X, Z,q, F))

Proof: Straightforward from the proof of lemma B.3.7. 1

Lemmas B.3.4 through B.3.8 above, which just deal with maxima and minima over lists, are
“trivial” in the sense that many mathematical papers would be content just to write down lemma
B.3.8, with the comment, “The proof is trivial.” Nonetheless, the intermixing of min’s and max’s
can get confusing enough that I thought it worthwhile to spell out the proofs.

Lemma B.3.9: Let g and h be the number of vertices in G and H, and let M = 2gh+1. Let ¢ be a
path through G from U to V' with length is greater than or equal to M. For any vertices W, Z € H,
there exists a path a through G from U to V shorter than ¢ such that min_track(«, H, W, Z, F) =
min_track(¢, H, W, Z, F)

Proof: Let (¢, 0) be a best tracker for ¢ from W to Z. Let m be the length of ; then m >| ¢ |.
We can assume without loss of generality that if i # j and o(¢) = o(j) then [i] # [j]; that is,
that the tracker does not have a cycle 9[i],¥[i + 1]...9[j] = ¥[i], all of which are mapped to the
same ¢[o(i)]. Let us now consider the pairs of corresponding vertices (p[o(1)],¥[1]) (¢[o(2)], ¥[2])

.A@[o(m)], ¥[m]). Since there are only gh different pairs of vertices, and since m >| ¢ |> 2gh + 1,
it follows there must be some pair that appears at least three times in the above list. So let us

suppose that for some p < ¢ <r, ¢[p] = Plg] = P[r] and ¢[o(p)] = ¢[o(q)] = ¢[o(r)].

Divide the path ¢ into 4 pieces; ¢1 = ¢([1...0(p)], p2 = Plo(p)...0(q)], ¢ = ¢[o(q)...o(r)],
¢a = Plo(r)...| ¢ |]. (Either the first or the last of these intervals or both may be empty. The middle
two are non-empty.) Let (81,71), (B2, 72), (B3,73), (B4, 7a) be the best trackers for these between
¢[1] and ¥[pl; ¢[p] and ¥lgl; ¥lg] and [r]; ¢[r] and w[m] respectively. Let 8 = fy: a; Bs; B4 and
T = T1;7T2;73;7a. Then by the same argument as in lemma B.3.5, (3,7) is a best tracker for ¢
between W and Z.

Suppose that Fi(¢2, B2, 72) > Fi(ps,B3,73). Then let oo = ¢1; d2; pa. Let v = Bi; B2; B4, and let
n = T1;72;74. Then clearly « is a path shorter than ¢ from U to V through G; « is a path from
W to Z in H; and Fi(a,v,n) = F(é,%,0). Moreover, by the same argument as in lemma B.3.5, v
is a best tracker for « from W to Z. Thus min_track(a, H, W, Z, F) = Fi(a,v,n) = Fi(¢,¢,0) =
min_track(¢, H, W, Z, F).

If the reverse inequality holds, F} (¢, B2, 72) < Fi(¢s, 3, 73), then the argument is exactly anal-
ogous, using the path a = ¢1; ¢3; ¢4, and likewise for v and 7. L

Now, we can put all this together into an algorithm to compute the semi-Hausdorff distance
between two graphs.

Lemma B.3.10: The function “path_tracel(G, H,F)”, shown in table 2, computes the semi-
Hausdorff distance from H to G relative to F'.

Proof: The value of B[U,U,W,Z,1] is supposed to be the value of the hardest path from U to U of
length at most 1 to track from W to Z. Since the only such path is just the vertex U, this then is the
problem of finding the lowest cost path in H from W to Z, where the “cost” of a path is measured
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as the maximum distance from U. The code in path_tracel adapts Floyd’s shortest path algorithm
to compute this.

If there is an edge U—V, then the value of B[U,U,W.,Z,1] is supposed to be the value of the best
tracker from W to Z for the edge U—V. This must have the form of a path from W to X mapped
into U, followed by an arc from X to Y, followed by a path from Y to Z mapped into V. The code
takes the minimum over all edges X—Y in H of the value of such a path.

The main loop of the program then uses lemma B.3.8 to compute the value of B[U,V,W,Z,2¥]
from B[U,T,W,X,2¢=1] and B[T,V,X,Z,2*~1]. It follows from lemma B.3.9 that the values of
hard_track(G,U,V,H,W,Z m,F) does not change for m > M. Therefore it suffices to repeat the main
loop up to k = [log(M)]. 1

We can now turn to the continuous problem.

Definition B.3.10: Let R be a region in a space with metric . A labelled undirected graph G is
a overlap graph for R if it satisfies the following:

e Each vertex U of G is labelled by a subset of R containing U, denoted “reg(U)”, and by a
point in reg(U), denoted “center(U)”. The region reg(U) must be path-connected and open
in R (i.e. the intersection of R with some open set O.)

e The union of reg(U) over all vertices U in G is equal to R.
e There is an edge in G connecting U and V' if and only if reg(U) overlaps reg(V).

e If U and V are distinct vertices of R, then center(U) # center(V).

For a vertex U of G, the radius of U is defined as sup,eyeg(uy £4(, center(U)). The mesh size of G
is defined as the maximum of the radius of U over all vertices U in G.

The gap between continuous paths through region R and paths through the overlap graph G is
bridged by functions of time that hop between the centers of vertices.

Definition B.3.11: Let R be a region and let G be an overlap graph for R. A center-hopping
function is a function «(t) from the interval [0,1] to the centers of the vertices of G such that the
following hold:

e There exists a partition of the time interval [0,1] into k subintervals Ty = [tp = 0,¢1),T> =
[tl,tg),...Tk_l = [tk_g,tk_l),Tk = [tk—latk = 1]7 where t;_1 < t; for i = 1...k —1 and
tg—1 < tg.

e Over any interval T;, « is constant and equal to the center of one of the vertices of G.

e For any two consecutive intervals T;, T;41, there is an edge in G from «(T;) to a(Tj41).

The partition T3 ... T} is said to be induced by «. Thus, the function ¢ hops through the centers
of the vertices of G, moving across edges of G from one vertex to a neighboring vertex, and staying
a finite time at each vertex except possibly the last. (The requirement that the intervals in the
partition be half-open on the right is, of course, just a matter of notational convenience.)

Definition B.3.12: Let R be a region; let G be an overlap graph for R; let ¢ be a continuous path
through R; and let « be a center-hopping function through G. We say that « is a discretization of ¢
through G if, for all ¢ € [0, 1] there is a vertex U in G such that ¢(¢) ereg(U) and «(t) =center(U).

Lemma B.3.11: Let R, G, ¢(t) be as in definition B.3.12, and let a(t) be a discretization of ¢
through G. Let 0 be the mesh size of G. Then p;(¢, @) < 4.
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function path_tracel(in G,H : graphs; F : positive real array [vertex in G, vertex in HJ)
return real;

const M=2|G| | H|;
var B[U,V: vertices in G; W,Z : vertices in H; k : 1 .. M] : real array;
/* B[U,V,W,ZK] = hard_track(G,U,V,H,W,Z,251 F) */

/* Initialize B[U,U,W Z 1] i.e. the minimum over all paths from W to Z of the maximum
of the distance from U. The algorithm is exactly analogous to Floyd’s shortest paths algorithm,
only taking the cost of a path to be the max distance from U rather than the sum of the costs of the edges. */

for U in G

for W in H do B[U,UW,W 1] := F[U,W]J;
for Win H for Z in H

if W—7 in H then B[U,U,W,Z,1] := max(F[U,W],F[U,Z])

else B[U,UW,Z,1] := oo;
for X in H
for Win H for Z in H
B[U,U,W,Z,1] := min(B[U,U,W,Z,1], max(B[U,U,W.X,1], B[U,U,X,Z,1]));

/* Initialize B[U,V,W Z,1] i.e. the best tracking distance for the arc U=V by a path
through H from W to Z. The best tracking path must consist of a path from W to X, mapped into U;
then an arc X—Y; then a path from Y to Z mapped into V; for the best possible arc X—Y. */
for Uin G for Vin G for W in H for Z in H
ifU-Vin G
then B[U,V,W Z 1] = minx_yeq max(B[U,U,W,X 1], B[V,V,Y,Z,1])
else if U#V then B[U,V,W,Z.1] = 0.
/* Use lemma B.3.10 to compute B[U,B,W,Z k] for k > 2 */
for k := 2 to [log(M)] + 1 do
for Uin G for Vin G for W in H for Z in H
do B[U,V,W Z k] := maxrcg minxe gy max(B[U,T,W X k-1], B[T,V,X,Z,k — 1])

return maxpyeG,veG minWeHyzeH B[U,V,W,Z,M]

end path_tracel.

Table 2: Computing the hardest paths to track
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Proof: Immediate from the definitions. I

Lemma B.3.12: Let R, GG, and ¢ be as in Definition B.3.12. Then there exists a discretization of
¢ through G.

Proof: For each t € [0,1], choose a vertex U such that reg(U;) contains ¢(t), and let O; C [0,1] be
the connected component of ¢~ (reg(U;)) containing t. Thus, Oy is an interval open in [0,1] such
that t € Oy and ¢(O;) Creg(U,). The collection { O; } is an open covering of the compact interval
[0,1] and thus has a finite subcovering. Let { Pi, P»...P; } be a minimal subcovering, ordered in
increasing order of upper bounds. Since the collection is minimal, there must be a time in each of
the P; that is not in any of the other P;. Therefore, P; must have the form [s; = 0,¢;), for some
time ¢1; P, must have the form (s2,t2) for some times sa, t3 such that s; < so < t1 < to; in general,
fori=2...k —1, P, must have the form (s;,t;) where s;_1 < s; < ;-1 < t;; and P} has the form
(sk, 1] where sp_1 < s < tp—1 < 1.

We can therefore let the partition be the sequence of intervals Th = [0,¢1),Th = [t1,t2) ... Tk =
[tk—1,1]; and let «(T;) be the center of the vertex originally associated with P;. It remains to be
shown that «(T;) and «(T;+1) are centers of vertices connected by an edge in G. Let U,V be the
regions such that center(U)=a(T;) and center(V)=a(T;+1). Since ¢(t;) must be an element of both
reg(U) and of reg(V), and since all the regions are open, it follows that reg(U) overlaps reg(V), and
hence there is an edge from U to V in G. 1

Lemma B.3.13: Let R be aregion and let G be an overlap graph for R. Let a(t) be a center-hopping
function in G. Then there exists a continuous path ¢ through R such that « is a discretization of ¢.

Proof: Let [0,%1),[t1,t2) ... [tk—1, 1] be the partition induced by . For i =1...k —1 let p; be a
point in the intersection reg(«fi]) N reg(afi + 1]); let po = p1 and pr, = pr—1. Then over the interval
[ti, tix1], let @(t) be a continuous path through reg(a[i]) from p; to p;y1; such a path exists since
reg(a[i]) is path-connected. L

Lemma B.3.14: Let R and S be two regions in a space with metric u. Let G be an overlap
graph for R with mesh size d¢ and let H be an overlap graph for S with mesh size dy. Let
F[U, V] = p(center(U),center(V)). Let ¢(t) be a path through R and let 1 (t) be a path through S.
Then there exist a path 6 through G, and a tracker (7,0) for € through H such that | u.(¢,v) —
F(0,7,0) |<dg+dn.

Proof: Let a(t) be a discretization of ¢ through G, and let 3(t) be a discretization of ¢ through
H. Since pu; is a metric on paths,

| /Lt(¢71/)) - ,U‘t(avﬂ) |§ )u’t((bv O[) + Mt(ﬁ)aﬂ) S 5G + 5H
by lemma B.3.11.

Let Ty ... Ty be the partition of [0,1] induced by « and let Sy...S,, be the partition of [0,1]
induced by 3. Let P; ... P, be the collection of all non-empty intersections 7; N S; sorted in order;
it is easily shown that P; is a partition of the unit interval. Let 6 be the path through G of the
successive values of . Let 7 be the path through H of the successive values of 3(P;). Let o(i) be
the index j such that P; C T;. For any vertices U,V, let F[U, V] = p(center(U),center(V)). It is
immediate from definitions B.3.1 and B.3.3 that u:(«, 3) = Fi(,7,0). Substituting in the formula
above gives the desired result. 1

Lemma B.3.15: Let R and S be two regions in a space with metric p. Let G be an overlap graph
for R with mesh size d¢ and let H be an overlap graph for S with mesh size dy. Let F[U,V] =
p(center(U),center(V)). Let 6 be a path through G and let (r, o) be a tracker for 6 through H. Then
there exist continuous paths ¢ through R and ¢ through S such that | u: (¢, ) —F: (0, 7,0) |< dg+dm.

Proof: Let m be the length of 7, and let T ...T,, be a partition of [0,1] into m sub-intervals.
Define the center-hopping functions «(7;) = 0[c(i)] and B(T;) = 7[i]. Then it is immediate from
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the definitions that u:(«, 3) = F¢(0,7,0). Construct continuous paths ¢ from « and 4 from 7 as in
lemma B.3.13. As in lemma B.3.14, we have the inequality

| Mt(¢7¢) - ,U/t(CLﬂ) |S Mt(¢7 O[) + Nt(%/%ﬁ) < 6G + 6H

so the result follows immediately. 1

Lemma B.3.16: Let R and S be two regions in a space with metric u. Let G be an overlap
graph for R with mesh size d¢ and let H be an overlap graph for S with mesh size dy. Let
F|U, V] = p(center(U),center(V)). Then | pig (R, S) — Fiu (G, H) | < dg + 6.

Proof: Immediate from definition 3.2 and lemmas B.3.14 and B.3.15. 1

Lemma B.3.17: Let U be a bounded, algebraic region in R* and let § > 0. Then it is possible to
compute an overlap graph for U of mesh size at most §.

Proof: Let §; = 5/\/%, so that J is equal to the diameter of a k-dimensional cube of side 4.
Construct all the k-dimensional open cubes of the form

mq mi + 2

mo + 2
5 s -
[2 D)

2

myg + 2

m
51] X [7251, 5

mi
51] X [751, 51]
that intersect U, where mq, mso ... my are integers. For each such cube C, compute the connected
components of CNU (there can be only finitely many). For each connected component R, construct
a vertex Ug; set reg(Ur) = R, and set center(Ug) to be any point inside R. For each pair of

connected R and S, construct an edge from Ug to Ug if and only if RN S is non-empty.

It is shown in (Mishra, 1993) that all the above calculations can be carried out exactly for
semi-algebraic regions. I

Lemma B.3.18: Any semi-algebraic region is locally ordinarily connected.

Proof: See (Mishra, 1993) for a proof that any semi-algebraic region is ordinarily connected. For
any semi-algebraic region O and point p € O, the spherical neighborhood B(p, ¢) is semi-algebraic
and therefore ordinarily connected. 1

Theorem 3.3: (Analogue of theorem 2.3.) Let D be a semi-algebraic display and let § > 0. Let
€ be the maximal value of pD; (free(D),free(F)) where F is a contraction of D and dg.(F, D) < 6.
Then € can be computed to arbitrary precision.

Proof: By theorem 3.2, the desired maximal value is equal to p2; (free(D),free(contract(D, §))). By
lemma B.2.8, it suffices to consider the intersection of these free spaces with the basic configuration
region of D, U. (The basic configuration region of contract(D, §) is a subset.) By lemma B.2.12, the
intersections UNfree(D) and UNfree(contract(D, d)) are semi-algebraic. By lemma B.3.17, overlap
graphs G and H for UNfree(D) and UNfree(contract(D, §)) can be computed, as can the distance ma-
trix F'[U,V]. By lemma B.3.10, B;y (G, H) can be computed and by lemma B.3.16, it approximates
pl; (free(D),free(contract(D, §)) to within e. 1

Proof of Theorem 3.4

Theorem 3.4: (Analogue of theorem 2.4.) Let D be a display such that free(D) is locally ordinarily
connected. Then for any € > 0 there exists a > 0 such that, if F is a expansion of D and the
Hausdorff distance dg (D, E) < & then p? (paths(cfree(D)), paths(cfree(E))) < e.

Proof: The proof is essentially identical to that of theorem 3.1 using theorem 2.6 instead of theorem
2.1.
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Proof of theorem 3.5

Lemma B.3.19:. Suppose that space U with metric p is compact and locally internally connected.
Then for any € > 0 there exists a § > 0 with the following property: Let ¢ be any path through U.
Then there is a path ¢ through contract(U, §) such that p:(¢, ) < e.

Proof: Choose ¢ > 0. For each point € U, choose an neighborhood O, of x in U such that
O, C B(z,¢/2) and O,NInt(U) is connected. Since { O, | x € U} is an open covering of U and U
is compact, there must be a finite subcovering O ... Oy of U.

For each pair of regions O;,O; that overlap, choose a point y;; € O; N O;NInt(U). For each
pair of such points y;;, yix in the same region O;, choose a path 7;x () from y;; to y;, through O;N
Int(U). Let 6 be the minimum distance from any point on any of the 7;;; to the boundary of U. It
is clear that § > 0.

Let ¢(t) be any path through U. By the same argument as in lemma B.3.12, there is a sequence of
times tg = 0,t1,¢2...tx = 1, and a sequence of regions Oy, , Oy, , . .. Oy, , such that ¢([t;, ti11)) C Op,.
Construct the path ¢(t) so that ¢(t;) = yp,_,,p, and for t € [t;, t;41], (t) follows the path 1, p.p,.. -
Since both ¢(t) and ¥(¢) are in the same neighborhood O,, for t € [t;, t;+1], and the diameter of O,,
is at most e, it follows that the distance from ¢(t) to 9 (¢) is at most e. L

Lemma B.3.20: Suppose that free(D) is locally internally connected. Let U be the basic configu-
ration region of D. Then for any € > 0 there exists a § > 0 such that
pl (paths(free(D) NU), paths(free(expand(D,§)) NU) < e.

Proof: Let ¢ > 0. Using lemma B.3.19, choose a distance d; > 0 such that, for any path ¢ in
paths(free(D) NU) there exists a path 1 in contract? (free(D) NU, &;) for which pP(¢,v) < e.
Using theorem 2.9, choose a value § > 0 such that free(expand(D,d)) D contract? (free(D),d1).
(Note that if free(D) is locally internally connected, then it is equal to the closure of cfree(D).) L

Lemma B.3.21: Suppose that free(D) is locally internally connected. Then for any € > 0 there
exists a § > 0 such that pl; (paths(free(D)), paths(free(expand(D, d))) < e.

Proof: As in the proof of theorem 3.1, we can mirror the behavior of an arbitrary path through
free(D) by a path through free(D) that remains in the basic configuration region.

Theorem 3.5: For any display D, if the configuration space free(D) is locally internally connected,
then the function “paths(free(-))” is continuous at display D, using the metric d 4 on displays and
the topology p,y on sets of paths,

Proof: By lemma B.3.21, the function “paths(free(-))” is continuous under expansion at D, and
by theorem 3.1, it is continuous under contraction. Therefore, by an argument analogous to lemma
B.2.20, it is continuous at D without qualification. 1

B.4: Proofs from section 4
Proof of theorem 4.2

Definition B.4.1: A direction W is a positive sum of directions @ and ¢ if & = au + B0 for some
a, B > 0. Direction w is a non-negative sum of directions 4 and v if W = at + B0 for some «, 3 > 0.
If U and V are two sets of directions, then the positive sum of U and V is the set of all positive
sums of all directions & € U and % € V.

Lemma B.4.1: Let A,B be non-overlapping PSC regions, and let p be a point in A N B. Let
¢=FBd(A,B) and let y=FBd(B, A). Let @ be a direction strictly between forw(¢, p) and back(¢, p)
in the counterclockwise direction, and let ¢ be a direction strictly between forw(v, p) and back (), p).
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Figure 20: Lemma B.4.1

Let w be a positive sum of —& and ©. Then w is a colliding direction from A to B at p.

Proof: Let & = (0 — ad for some § > 0, @ > 0. Since 4 is strictly between forw(¢, p) and
back(¢, p), the forward and backward tangents to ¢, and since ¢ is the boundary of the connected
component of A¢ that contains B, it follows that, for sufficiently small €,, > 0, the point p + €, is
in the interior of the far side of ¢ from B (Figure 20). Likewise, for sufficiently small €, > 0, the
point p + €, is in the interior of the far side of ¢ from A. Let ¢y = min(e,/a,€,/8). Then it is
possible to choose €; > 0 such that the open ball, B(p + aepi, €1) is in the interior of the far side of
¢ from B, and the open ball, B(p + BegV, €1) is in the interior of the far side of ¢ from A.

Let & be the perpendicular to @ (= a0 + B4). Let t be a parameter in (0,1) and define the
functions q(t) = p + aeptt + te1& and r(t) = p + Beg? + terd. Consider the space of all lines q(t) to
r(t) for t € (0,1). Every such line crosses ¢ and crosses v, and they sweep out a solid parallelogram.
Since A and B are normal, there must be some value t; such that the line from q(tg) to r(tg)
intersects both Int(A) and Int(B). Let a and b be points in the intersection of this line with Int(A)
and Int(B) respectively. Then dir(b — a) = dir(r(to) — a(to)) = dir(eo(80 — avii)) = w.

Since €y and €; can be chosen arbitrarily small, we have shown that in every neighborhood of p

there exist points a €Int(A) and b €Int(B) such that dir(b —a) = w. 1

Lemma B.4.2: Let R be a PSC region; let ¢ be a directed boundary curve of R; and let p be a
point on ¢. Let ¢ =forw(¢,p) and d =back(¢, p). Then for any € > 0 there exists § > 0 satisfying
the following: Let # be a direction counterclockwise between d and ¢ such that d(z,¢) > € and
d(&,d) > e. Then for any t € (0,8) the point p + ¢ is outside R.
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Proof: Immediate from basic properties of the boundary curve and the tangent.

Lemma B.4.3: Let ¢, f J, h be directions in non-strict counterclockwise order. If the angle between
é and f is less than or equal to 7, and if w is strictly between é and f , then w is outside the the
non-negative sum of [, h] and [—é, —f].

Proof: The non-negative sums of directions @ and ¢ are all the directions on the shorter arc
connecting @ and @, unless @ = +0. Let @ be in [—é, — f] and © be in [g, h]. If an arc goes from 4 to
o, then it must either contain all of (&, f) or none of (¢, f), as neither @ nor ¢ is in (&, f). Since —i
is in [¢, f], it follows that the arc from @ to © containing all of (é, f) must contain —@ and therefore
must have an angle of at least 7. Hence, the shorter arc connecting @ and 0 is disjoint from (é, f ). L

Corollary B.4.4: Let é, f7 g, h be directions in non-strict counterclockwise order, such that é 7'%]?
and § # h. Then there is a direction @ that is outside the non-negative sum of [g, h] and [—¢é, —f].

Proof: Either the angle from é to f or the angle from g, h is less than or equal to 7. In the former
case, choose w to be strictly between é and f and apply lemma B.4.3. In the latter case, choose w
to be strictly between —g and —h. Then — is strictly between g and h. Applylng lemma B.4.4,
with the names reversed, — is outside the non-negative sum of [¢é, f] and [—§, —h]. Therefore @ is
outside the the non-negative sum of [§, h] and [—é, —f]. 1

Lemma B.4.5: Let ¢, f g, h be directions in non-strict counterclockwise order, such that é # f and
g+ h Then the posmve sum of (g, ) and (—é,—f) contains the interior of the non-negative sum
of [§,h] and [—é, —f].

Proof: Consider the function (@, 9, o, 3) = dir(80 — «vii). Let D be the domain 4 € [é, f] b e [g,hl,
{a>0,>0}U{a>06>0} andlet O be the open domain i € (&, f), 0 € (§,h), ,3>0.
Then f(D) is the non-negative sum of [j, k] and [—¢&, —f] and f(O) the positive sum of (§, k) and
(—é,—f). Since f is continuous, and D is contained in the closure of O, f(D) is contained in the
closure of f(O). Since D and O are each connected, f(D) and f(O) are each connected. Finally, by
corollary B.4.4, D is not the entire unit circle. Hence it is easily shown that D is an arc within the
unit circle, and O must contain the entire interior of D. |

Lemma B.4.6: Let A,B be non-overlapping PSC regions, and let p be a point in A N B. Let
w be a colliding direction from A into B at p. Let ¢=FBd(A,B) and let ¥=FBd(B, A). Let é=
forw(o, p), f = back(¢,p) g= forw(¢), p), h = back(y), p). Then there exist vectors @ € (&, f) and

€ (g, h) such that w is a positive sum of ¢ and —.

Proof: Since w is a colliding direction, for every integer £ we may choose points ay, by such that
d(ag,p) < 1/k,d(bg,p) < 1/k and such that dir(by —ay) = w. Let 4, =dir(a;—p), Or =dir(by—p).
Let 4 be a cluster point of the 4. Without loss of generality, we may ignore those 4 that do not
converge on 4, and thus assume that @ is the limit of the . Similarly, let © be the limit of 0. By
the contrapositive to lemma B.4.2, @ € [é, f] and © € [j, h).

Note that, for any &, d(ax, bx) @ = d(ag, bg) - dir(by —ag) = by —a =
(b —p) — (ax —p) = d(p, by) - dir(by — p) — d(p,ax) - dir(ax —p) = d(p, by) - O — d(p, ax) - .
Thus, if we let ap = d(p,a,)/d(ag,by) and Br = d(p,b,)/d(ax,bg), we get W = By — aplix.
Therefore, if & > 0 and 3 > 0 are the limits of a and 85 then we have w = 60 — «d.

Note that a and 8 may be infinite, but only if ¢ = 4, which is only possible if (i) d =4 = é = h, or
i)o=u=g¢= f In case (i), for suﬁiaently small € > 0, it must be the case that é—ew lies between
é and f and that A + e lies between h and § g. (Note that this relies on the fact that the regions are
cuspless.) We can then write i = (1/2€)[(h + ew) — (¢ — ew))] (since é = h). Thus, we can assume
that o and 8 are in fact finite. Analogously, in case (ii), we can write & = (1/2€)(§+ew)— (f —ew))],
and again assume that o and 3 are finite.
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Thus, every colliding direction is in the non-negative sum of [—¢, — f] and [§, —h]. By definition,
every colliding direction is in the interior of the set of colliding directions. Hence, by lemma B.4.5
every colliding direction is in the positive sum of (—é, —f) and (g, —h). I

Lemma B.4.7: For any regions B, A and point p € AN B, sep(B, A, p) is an open set in the unit
circle.

Proof: Immediate from definition 4.11. L

Lemma B.4.8: Let A, B be PSC regions that meet but do not overlap, and let p be a point in
Bd(A) N Bd(B). Let é = forw(FBd(A,B), p), f = back(FBd(A,B), p), § = forw(FBd(B, A), p),
h = back(FBd(B, A), p), Then sep(B, A, p) = sepl(é, f.a, h).

Proof: From lemmas B.4.6 and B.4.7, it follows that sep(B, A, p) is the interior of the set difference
of the positive sums of (g, h) and (—é, — f) minus the positive sums of (&, f) and (—g, —h). The form

of sepl as a function of é, f, g, h is then a straightforward calculation in each of the separate cases.

L
Lemma B.4.9:

A. sepl(&f7 J, ﬁ) = —sepl(g, h,é, f)
B. If (§, h) C [—é,¢] then sepl(é, —é, §, h) = (—é,é).

C. If (¢, f) C [, —4] then sepl(é, f, g, h) C sepl(§,—q,7,§), where 7 and § are any two vectors in

D. If (&, f) D [¢, —q] then sepl(é, f,§,h) C sepl(§, —g,,§), where 7 and § are any two vectors in

Proof: Immediate from definition 4.12. I

Lemma B.4.10: Let 6 > 0, and let ¢, f, g, h and e, g, fz be two quadruples of vectors, both

in positive order, such that d(¢’,é) < 6, d(/’, f) < 9, d(g’, g) < 6, and d(W/,h) < 0. Let @ be a
vector such that B(, 8) C sepl(é, f, g, h). (B(@,0) is the set of all directions © such that d(6,a) <
6.) Then @ € sepl(é, f', §', I').

Proof: Immediate from lemma B.4.9. 1

Definition B.4.2: Let (¢, f) and (g, h) be two pairs of directions and let € > 0. We say that (j, )
resembles (é, f) within € if one of the following holds.
i. d(g,é) < eand d(h, f) < ¢ or
ii. d(g,é) < e and d(h, —é) < €; or
iii. d(g,—f) < eand d(h,f) < e

Note that this is not a symmetric relation between (&, f) and (g, h).

Lemma B.4.11: Let ¢ be a piecewise smooth cycle, and let p be a point in ¢. Then for any € > 0
there exists 0 > 0 satisfying the following: Let q be any point on ¢ such that that d(p,q) < 6. Then
the pair ( forw(¢, q), back(¢,q) ) resembles ( forw(¢, p), back(¢, p) ) within e.

Proof: It is immediate from basic properties of piecewise smooth curves that, if q lies ahead of p
on ¢, then condition (ii) of definition B.4.2 holds, and if q lies behind p on ¢, then condition (iii) of
definition B.4.2 holds. If q = p then, of course, condition (i) holds.
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Definition B.4.3: We say that a quintuple of directions (¢, f, §, h, @) is blocked if (¢, f, §, h) is in non-
strict counterclockwise order, and 4 ¢sepl(é, f , 0, iz) Let “blocked” be the set of all blocked quintu-
ples. Measure the distance between two quintuples (é, f, g, h, @) and (&, f’, g0, 4') as max(d(é, &),
A(f, f"), d(g, '), d(h, 1), d(i, @) We define the angle from blockage of a quintuple (&, f, §, h, @) as
the distance from that quintuple to the set “blocked”. That is, the angle from blockage is

min max(d(é, ), d(f, "), d(g,§), d(h, '), d(a, i)
(e, f",5' v 2’ )eblocked

It is easily shown that the set “blocked” is closed; hence this minimum is attained.

That is, the angle from blockage is the minimal change in all these vectors so that the tangent
vectors can correspond to those of two non-overlapping objects in contact, and so that @ does not
strongly separate the two objects.

Definition B.4.4: Let A and B be PSC regions that meet but do not overlap. Let ¢ = FBd(A, B),
and let ¢y = FBd(B, A), Let p be a point in ¢, and let q be a point in ¢. Let 4 be any direction.
Then the function “free_ang(A,p,B,q,4)” is defined to be the angle from blockage of ( forw(¢, p),

back(¢, p), forw(¢, q), back(vy, q), u ).

Lemma B.4.12: Let A and B be PSC regions that are strongly separable at point p € ANB. Let
@ be a direction in sep(A, B, p). Then there exist § > 0 and ¢ > 0 satisfying the following: For any
points q €FBd(A,B) and r €FBd(B, A), if d(q,p) < ¢ and d(r,p) < ¢ then free_ang(A, q,B,r,x)
> 0.

Proof: Let ¢; be a smooth curve along FBd(A, B) with the same orientation such that ¢1(0) = p.
Let ¢2 be a smooth curve along FBA(A,B) with the reverse orientation such that ¢2(0) = p. Let
11 be a smooth curve along FBd(B, A) with the same orientation such that 1 (0) = p. Let 15 be
a smooth curve along FBd(B, A) with the reverse orientation such that 12(0) = p.

Define the vector functions
a1y (1) =dir(¢1(1)), d1-(t) = —dir(d1(t)), day () = —dir(¢a(1)), da—(t) =dir(da(t)),
Pr4(t) =dir(¢1 (1)), Sr-(t) = —dir(yi(t)), Bo+ (1) = —dir(¥2(t)), Ba—(t) =dir(s2(1)).

and define the constant functions

Go+ (t) =dir($1(0)), do—(t) =dir($2(0)), Bos () =dir(¢1(0)), Bo—(t) =dir(2(0)),

That is, as ¢ goes from 0 to 1, &4 (t) and &;_(¢) are the forward and backward tangents along the
boundary of A facing B ahead of p; &4 (t) and éo- (t) are the backward and forward tangents along
the boundary of A facing B behind p; f14(t) and 51— (t) are the forward and backward tangents

along the boundary of B facing A ahead of p; and (o (t) and B2 (t) are the backward and forward
tangents along the boundary of B facing A behind p.

Finally define the function f;;(s,t) to be the angle from blockage of
(Gir(s), i (), Bj+(t), B~ (1), 4).

It is clear that the o and 3 functions are continuous, and therefore the functions f;; are also
continuous. Next, we will show that f; ;(0,0) > 0 for each ,j. Let é = forw(FBd(A4,B),p) =

14 (0) = agy(0); let f = back(FBA(A4, B),p) = as_(0) = ag_(0); let § = forw(FBd(B, A),p)
= (14+(0) = Bo+(0); and let h = back(FBd(B, A),p) = [2-(0) = By—(0). We are given that
i €sep(A, B,p) = sepl(é, f, 9, h)

There are three essentially different cases:

a. fo,0(s,t) has the constant value free_ang(A, p,B,p, @) > 0.
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h, then, by lemma B.4.9, sepl(é,—é, g, h) D sepl(é, f, g, h). Therefore @ €sepl(é, —é, g, h), so
the angle from blockage of €, —¢, g, h, @ is greater than 0.

b. f1.0(0,0) is equal to the angle from blockage of é, —é, g, h,@. If —é is not strictly between ¢ and

If —é is strictly between g and h, then the angle from blockage of €, —é, g, h, @ is at least
(1/2)min(d(—¢, §), d(—é, h)), and so is greater than 0.

c. f1,1(0,0) is equal to the angle from blockage of é, —¢, §, —g. If é = —¢ then, by lemma B.4.9,
sepl(é, —¢é, g, —g) D sepl(é, f,§, h). Therefore @i €sepl(é, —¢, §, —§), so the angle from blockage

of é,—¢, g, —g is greater than 0.

If é # —g then the angle from blockage of é, —¢é, §, —g is at least (1/2)min(d(é, §), d(é, —g)), and

so is greater than 0. (We know that é # § from the facts that é, f , 0, h are in counterclockwise

order, and that é # f and § # fL)

Since the configuration is symmetric between ¢ = 1 and ¢ = 2, between j = 1 and j = 2, and
between « and 3, it follows by analogous arguments that f; ;(0,0) is positive for each ¢, j.

Since f;;(0,0) is positive and f; ; is continuous, it follows that there exist 6;; > 0 and 7;; > 0,
such that, for any s,t,if 0 < s < 735, 0 <t < 735, then f;;(s,t) > ;5. Choose d;; > 0 such that, for
any s,t, if 4 # 0 and d(¢:(s),p) < d;; then s < 7;; and if j # 0 and d(¢;(t), p) < d;; then t < 7;.
(Since ¢; and 1); are one-to-one, their inverses are continuous.) If we choose ¢ to be the minimum
of the d;; and 6 to be the minimum of the 6;;, the conclusion of the lemma is satisfied. I

Definition B.4.6: The distance from point p to motion M, d(p, M), is equal to d(p, o) if M = (o, S)
and equal to 1 if M = . If R is a region then d(R, M) = infpcr d(p, M).

Lemma B.4.13: For any distinct points p,q and motion M, if d(p,q) < (3/5)d(p, M) then
d(flow(p, M), flow(q, M)) < (5/4) d(p,q) / d(p, M).

Proof: If M is a translation, then flow(p, M) = flow(q, M), so the statement is trivial. Let M =
(0, S). Since flow(p, M) is at right angles to op and flow(q, M) is at right angles to oq, we have
d(flow(p, M), flow(q, M)) = d(dir(o, p).dir(o, q)).

By the law of sines, d(p, q)/sin(/poq) = d(p,0)/sin(/pqo)

so sin(Zpoq) = d(p, q) sin(/pqo) / d(p,0) < d(p,a)/d(p,0) < 3/5.

Therefore cos(Zpoq) > 4/5.

So d(dir(o, p),dir(o,q)) = 2 sin((Lpoq)/2) < tan(/poq) = sin(/poq)/cos(Lpoq) <
(5/4) d(p,a)/d(p,0).

(The factor “3/5” was chosen just so that both the sine and cosine are rational, for convenience.)

Lemma B.4.14: Let A and B be non-overlapping PSC regions, and let M be a motion strongly
separating B from A. For any point p € B, there exist € > 0, > 0 such that, for any a € Int(A),
b € Int(B) if both a and b are within € of p, then d(flow(p, M), dir(b,a)) > «a.

Proof: If p is not in A, then let € < d(p, A). The condition is then satisfied vacuously, as there is
no such a. If p € A N B, then the condition is immediate from definitions 4.9, 4.10, and 4.15.

Lemma B.4.15: Let A and B be non-overlapping PSC regions, and let M be a motion strongly
separating B from A. There exist € > 0, @ > 0 such that, for any points p,b € B and a € A, if both
a and b are within € of p, then d(flow(p, M), dir(b,a)) > a. (This is the same as lemma B.4.14,
except here a and e are quantified with larger scope than p.)

Proof: We apply lemma B.0.3, taking the domain U to be B and the property ®(p, €, &) to be the
relation, “For any point b € B and a € A, if both a and b are within € of p, then the angle between
flow(p, M) and dir(b,a) is at least o.” Property (a) of lemma B.0.3 is immediate. Property (b)
requires establishing that, for any point p € B there exist 6 > 0, > 0,0 > 0, such that, if u € B
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and d(u,p) < 6 then ®(u, i, 0). We do this as follows:

For any point p € B, use lemma B.4.14 to find € > 0, > 0 such that ®(p, €, a).

Let @ = a/2 and let 6 = p < min(e/2, (3/5)d(p, M), (2/5)d(p, M)c).

Now choose u within ¢ of p and a € A, b € B such that both a and b are within g of u. Since a
and b are within € of p, dir(b, a) be at least « from flow(p, M).

By lemma B.4.13, since d(u, p) < (3/5)d(p, M), it follows that

d(flow(u, M) flow(p, M) < (5/4)(d(w, p)/d(p, M)) < (5/4)(2/3) d(p, M)a)/d(p, M) = a/2.

Thus since d(dir(b,a), flow(p, M)) > «, and d(flow(u, M) flow(p, M)) < «/2, it follows that
d(dir(b,a), flow(u, M)) > «/2. Therefore we can apply lemma B.0.3, and conclude that o and €
can be chosen uniformly over all p € B. 1

Lemma B.4.16: Let A and B be non-overlapping PSC regions, and let M be a motion strongly
separating B from A. There exist § > 0 and 6 > 0 such that, for all p € AN B, q €FBd(A),
r eFBd(B), if & =flow(p, M), d(p,q) < ¢, and d(p,r) < ¢, then free_ang(A,q,B,r,a) > 6.

Proof: We apply lemma B.0.3, taking the domain U to be A N B and the property ®(p,d,8) to
be the property, “For any q €FBd(A), r eFBd(B), if & =flow(p, M), d(p,q) < §, and d(p,r) < 4,
then free_ang(A,q,B,r, @) > 6.” Property (a) of lemma B.0.3 is immediate. Property (b) requires
establishing that, for any point p € ANB there exist a 4 > 0,3 > 0,a > 0, such that, for x € ANB,
if d(x, p) < pu, then ®(x, 3, ). We proceed as follows: For any such p, find § and 6 satisfying lemma
B.4.12.

Let « =6/2, 3 =6/2, and p = min(§/2, (3/5)d(p, M), (4/5)ad(p, M)).

Let x be any point in A N B within x4 of p and let q,r be points in A and B within § of x.

Then certainly d(p,r) < 6, so free_ang(A, q, B, r,flow(p,M)) > 6.

Moreover, by lemma B.4.13, d(flow(x,M), flow(p,M)) < a.

It then follows immediately, from definitions 4.10 and 4.11, that free_ang(A, q, B, r flow(x,M)) >
0—a=a.l

Lemma B.4.17: Let A and B be compact regions. For any € > 0 there exists a v > 0 such that if
ac€ A, be B andd(a,b) < « then there exists a point p € A NB such that d(p,a) < € and
d(p,b) < e.

Proof: Immediate from lemma B.0.1, with the compact domain U being the cross product A x B,
the function f({a,b)) = d(a, b), and the metric p((a, b), {c,d)) = max(d(a,c), d(b,d)).

Lemma B.4.18: If B approximates A in tangent (a, ) and C approximates B in tangent (u,6)
then C approximates A in tangent (1 + «, 0 + ).

Proof: If a € A is associated with b € B and b € B is associated with ¢ € C then associate a with
c. 1

Lemma B.4.19: Let A and B be non-overlapping PSC regions, and let M be a motion strongly
separating B from A. There exist § > 0, > 0 such that, if X,Y are non-overlapping PSC regions
that respectively approximate A, B in tangent (3,), then M strongly separates Y from X.

Proof: Find ¢ and 6 to satisfy lemma B.4.16. Let ¢ < 6/2, and let
D = (1/2)min((3/5) d(ANB, M), (4/5) v» d(ANB, M)). Let e = min(§/2, D). Find a value of
to satisfy lemma B.4.17 for this value of €, and let 8 = min(vy/2, D).

Now let X,Y be non-overlapping PSC regions that respectively approximate A, B in tangent
(B,%). Let p € XNY. (If there is no such point, then the statement is trivial.) Let a be a point in
FBd(A,B) that corresponds to p and let b be a point in FBd(B, A) that corresponds to p. Then
d(a,b) < 23 < 7, so there exists a point q € A N B such that d(q,a) < ¢, d(q,b) < e. Therefore,
free_ang(A, a, B, b,flow(q,M)) > 6. Now, the tangents to A at a are within ¢ of the tangents to
X at p, and the tangents to B are within 1 of the tangents to Y at p. Also, by lemma B.4.13,

62



flow(p, M) is within ¢ of flow(q, M). Therefore, free_ang(X,p,Y,p,low(p,M)) > 6 —2¢ > 0.
Since X and Y do not overlap, the tangents to X and Y at p are necessarily in proper cyclic order,
so flow(p, M) € sep(Y,X,p). I

Definition B.4.7: Let C be a configuration over the two objects A and B; let M be a motion; and
let A > 0. Then “arc(C, M,A)” is the path ¢ that starts in C, leaves A fixed and moves B along
M until the distance moved is equal to A. Formally,

i. ¢(0) = C.
i. For all T € [0,1], ¢(T)[4] = C|A].

iii. For all T € (0,1) and for all p, there exists k > 0 such that
d/dT (¢(T)[B](p)) = k-flow(¢(T)[B](p), M),

iv. Let B = CD[B]. Then p2(¢(0), 6(1)) = A.

v. For T € (0,1), p?(¢(0),#(T)) < A. (This, to prevent ¢ from traversing a full rotation before
ending up at ¢(1).)

Definition B.4.8: We say that path ¢ escapes contact over D if, for all T € (0,1] (D, ¢(T)) is
contact-free.

Lemma B.4.20: Let (D, C) be a feasible scenario over objects A and B, where CD[A] and C'D[B]
are PSC regions. Let M be a motion that strongly separates CD[B] from CD[A]. Then there exists
a A > 0 such that arc(C, M, A) escapes contact.

Proof: Find ¢, « to satisfy lemma B.4.14 for A = CD[A], B = CD[B]. If M is a translation,
then choose A = ¢. Otherwise, if M = (0, 5), let R be the maximal value of d(o,p) for p € B, and
let A = min(e, Ra). Let ¢ = arc(C, M,A). Then for any p € B, let b = C~1(p) € D[B]; and let
W(T) be the curve ¢(T")[B](b). We wish to show that W(T') does not intersect A for any T € (0, 1].
If M is a rotation with center p, then p € A, and W(T') = p for all T', so the result is immediate.
If not, for any T € (0, 1], d(W(T),p) < A. Let W(T') be the tangent to W at time T'; then, for all
T, W(T) =flow(W(T), M) which is within a of flow(p, M). Then, since W(T) — p = [ W(s)ds,
it follows that, for any T' € (0, 1], d(dir(p, W(T)), flow(p, M)) < a. By lemma B.4.14 therefore,
W(T) is not in A. 1

Lemma B.4.20 establishes that, if M strongly separates CD[B] from CD[A], as defined in defi-
nition 4.8, then there actually is a path along M that separates B from A.

Lemma B.4.21: Let D be a display and let C' and C’ be configurations over objects A and B. Let
A be the minimum of the diameters of D[A] and D[B], and let A = p?(C,C"). If 2\ < A, then C'D
approximates C'D in tangent with parameters (A, 2)\/A).

Proof: Let p and q be two points either both in D[A] or both in D[B] such that d(p,q) = A.
If there is a rotation between C' and C’ that moves directional vectors by v, then one of p and q
must be at least A/2 from the center of rotation, and therefore must move a distance at least A/2.
Since neither p nor q moves more than A, ¢ must be no more than 2\/A. 1

Corollary B.4.22: Let (D,C) be a scenario over objects A,B. For any ¢ > 0,¢ > 0, there exist
p>0,0>0,\> 0 such that, for any scenario (D', C"), if pP(C,C") < X and D’ approximates D in
tangent (u, 8), then C'D’ approximates C'D in tangent (e, ).

Proof: Let A be the minimum of the diameters of D[A], D[B]. Let 6 = ¢/2, let u = €/2, and let
A =min(A/2,¢/2,9%A/2). By lemma B.4.21, C'D approximates CD in tangent (¢/2,1/2). Clearly
C'D’ approximates C’'D in tangent (e/2,1/2). Therefore, by lemma B.4.18, C' D’ approximates C'D
in tangent (e,v). L
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Forbidden space

Forbidden space

Figure 21: Illustration for lemma B.4.23

Lemma B.4.23: Let (D, C) be a feasible scenario over objects A,B, and let M be a motion that
strongly separates CD[B] from C'D[A]. Then there exist € > 0, > 0,6 > 0 satisfying the following:
Let Dg be a display that approximates D in tangent (v, ) and let C; and Cs be feasible configurations
over Dy such that C1[A] = C2[A]=C[A], pP(C,C1) < € and pP(C,Cs) < €. Then there is a path
connecting Cy and Cj through cfree(Dy). (That is, the path lies in cfree(Dg) except at the endpoints
Ol and CQ)

Proof: (Figure 21) Find 8 and ¢ to satisfy lemma B.4.19 for A = CD[A], B = C'D[B|. Using
corollary B.4.22, find €g, y0, o such that, if D’ approximates D in tangent (v, o) and p? (C, C") < €
then C'D’ approximates CD in tangent ((,%). Using lemma B.4.20, there exists A > 0 such
that, for all T € (0,1], arc(C, M, A)(T) ecfree(D). Let ¢ =arc(C, M, min(ep/2,A)) and let o =
(1/2)clearance((D, ¢(1))) Using corollary B.4.22 again, find €1, 7, 8 such that, if D’ approximates D
(v,0) and p?(C,C") < €1 then C’D’ approximates CD (min(3, a),). Finally, let € = min(e1, €0/2).

Now, let Dy be a display that approximates D in tangent (v,8) and let C; and C5 be feasible
configurations over Dy within e of C' such that C1[A] = C3[A]=C[A]. Let ¢1, ¢2 be paths parallel to
¢ starting at Oy, Co; that is, ¢;(T) = ¢(T)C~LC; for i = 1,2. Let ¢y be the uniform translation
or rotation taking ¢1(1) into ¢2(1) through an angle less than m. We now claim that the path
b0 = (p1, a1, by ') is feasible.

We first note that, by construction CyDg approximates C'D in tangent («,1)) and therefore
dp(C1Dy,CD) < .. Let p be any point in Dy[B] and let q be a corresponding point in D[B]. Then
d(C1(p),C(q)) < @ and d(Cs(p),C(q)) < a. Since ¢, 1, P2 all move in parallel along the motion M,
it follows that, for every T' € [0,1], d(¢1(T)(p), #(T)(q)) = d(¢1(0)(p), #(0)(a)) = d(C1(p),C(a))
< «; and by the same token d(¢2(T)(p), #(T)(q)) < a. Let A = CD[A] and Ay = C'Dy[A]. Since the
position of object A is constant, Ay is the place of A along the entire path ¢;. Since dy(A, Ay) < «a,
and since clearance(D, ¢(1)) > 2a, it follows that d(¢(1)(q), Ao¢) > «, and so ¢1(1)(p) € Ap. Thus
¢1(1) is feasible, and, by the same token, so is ¢2(1).

Moreover, the trace of point p along path ¢, is either a circle of arc at most 7 or a line segment.
Hence the maximal value over Cy; on ¢ of d(Chs(p), ¢(1)(q)) is attained either at Cpy = ¢1(1) or
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at Cpyr = ¢2(1) and so is always less than «. Hence C)ps(p) is never in Ay, so the path ¢,y is feasible
over Dy.

To show that ¢; is feasible over Dy, we use proof by contradiction. Suppose ¢; is not feasible.
Let T be the maximal value such that, for all 77 € [0, T, ¢1(T") is feasible. Since free(Dy) is closed
and since ¢1(0) is feasible, ¢1(T') is feasible. Now p”(C, ¢1(T)) < pP(C,C1) + pP(C1,$1(T)) <
€+ €9/2 < e9. Hence ¢1(T)(Dy) approximates CD in tangent (5,%). Let X = ¢1(T)Do[A] and
Y = ¢1(T)Dy[B]. By lemma B.4.19 M strongly separates Y from X. By lemma B.4.20, there is a
I’ > 0 such that arc(¢,(T), M,T) escapes contact over Dy. But this path is just a continuation of
the path ¢, past time 7', which is a contradiction.

The proof for ¢- is the same as for ¢;. L
Corollary B.4.24:. If D is always strongly separable, then free(D) is locally internally connected.

Proof: Let Dy = D. Then lemma B.4.23 asserts that any two configurations in free(D) that are
sufficiently close together are connected by a path through cfree(D). L

Lemma B.4.25: Let D be a display over two objects A and B that is always strongly separable.
Then there exist € > 0,y > 0,6 > 0 satisfying the following: Let Dg be a display that approximates D
in tangent (v, 0); let C be a feasible configuration over D; and let C; and Cj be feasible configurations
over Dy such that C1[A] = C3[A] = C[A], pP(C,C1) < € and pP(C,C2) < €. Then there is a path
connecting Cy and Cy through cfree(Dy).

Proof: Let A = diameter(D[A]) + diameter(D[B]), and let us constrain € and ~ to be less than
A. We can then w.l.o.g. restrict attention to the compact space U of configurations in which the

configuration of object A is the same as in C' and and the distance from A to B is less than or equal
to 2A.

We apply lemma B.0.3 yet again, U being this compact space of configurations, and ®(C,¢,~, 0)
being the property “For any display Dy that approximates D in tangent (v, 6); and configurations
Cy and Cy that are feasible over Dy, if C1[A] = C3[A]=C[A], pP(C,C1) < € and pP(C, Cs) < ¢,
then there is a path connecting C'; and Cs that is feasible over Dy.” We must show that, if C' € U,
there exists a 6 > 0, a > 0, 8 > 0, ¥ > 0 such that, for all C’ within § of C, ®(C’, «, 5,v). By
lemma B.4.23, for any C' there exists €,, 6 such that ®(C,¢€,v,0). The result is then immediate if
we choose a =0 =€/2; 8=+, and ¢ =6. 1

We now have to generalize this to the case where object A is not fixed in C, C; and Cs. Intuitively,
this is clear, since we can just view everything from A’s reference frame. The laborious part of the
proof is showing that small distances remain small under this change of reference frame.

Lemma B.4.26: Let D be a display over two objects A and B that is always strongly separable.
Then there exist € > 0,~v > 0,6 > 0 satisfying the following: Let Dg be a display that approximates D
in tangent (v, 0); let C be a feasible configuration over D; and let C; and Cj be feasible configurations
over Dy such that p?(C,C}) < € and p”(C,Cy) < e. Then there is a path connecting C; and Cs
through cfree(Dy). (This is the same as lemma B.4.25, but dropping the condition C;[A] = Cs[A]
= C[A].)

Proof: Let A = 2 (diameter(D[A]) + diameter(D[B])). As in the proof of lemma B.4.25, we can
confine attention to configurations C' in which the diameter of CD[A] U CDI[B] is at most A, the
lemma being trivial if it is more than A. Let E=A/diameter(D[A]). Find €, 7, € to satisfy lemma
B.4.25. Let e = ¢o/(2E + 1).

Now let Dy be a display approximating D (,6) and let C; and Cs be feasible configurations
over Dy within € of C. Define the configurations C}, C} as follows

C1[A] = C[4] = CAICT ' [A]C1[A].
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=
I

CLAICT [AICB]
ClA] = ClAIC, ' [A]C4[A)
C4[B] = C[AIC; ' [A]Ca[B).

R
B
I

That is, Cf is obtained by applying the rigid transformation C[A]C; *[A] to both mappings in
Cy. Therefore, the relative positions of objects A and B in C] is the same as in Cy. Likewise, the
relative positions of objects A and B in C} is the same as in Cs.

Let A; be the transformation C[A]C; *[A]. We have pP(C}, C) = max(pP4(C}[A], C[A]), pPBl(Cy[B], C[B))).
The first of these is 0, so this is equal to p”!Bl(C}[B], C[B])). Let a be the point in D[A] such that
d(C1[A](a),Ci[A](a)) is maximal and let b be the point in D[B] such that d(C;[B](b),C}[B](b))
is maximal. Note that C{[A] = A1C1[A] and C{[B] = A1C1[B]. Thus, if we define u = C;[A]a and
v = Cy[Blb, then d(Ch [A](a), C{[4](a)) = d(u, Ay (u)) and d(C[B](b), O}[B](b)) = d(v. Ay(v).

If A is a translation then d(v, A;(v)) = d(u, A1(u)). If A is a rotation of angle a around center
o, then d(v, A1 (v)) = 2d(v, 0) sin(a/2) and d(u, A1 (u)) = 2d(u,0) sin(«/2), s
d(v,A1(v)) / d(u,A1(u)) = d(v,0) / d(u,0). It is easily shown that this cannot be greater than
2F.

Thus p”P1(C1[B |(b), C1[B](b)) = d(v,A(v)) < 2E-d(u, Ay (u)
= 2B - (Gi[A(a), O (C1,0) = 2Ee. Also pD[B](Cl[B],C[B]) <
Therefore p(C1, C = pPPI(C1[B], C[B)) < pPPI(C1[B], C1[B]) + pP(C1,C) =
Likewise p” (C%, 0) < eo.

) = 2E-d(C1[A](a), C1[A](a))
pD(Cl,C) = €.
(2F + 1)e = €.

We can therefore apply lemma B.4.25, and conclude that there is a path ¢([0,1]) from Cf to C}
through cfree(Dp). Let Chr = ¢(1/2). Let ¢1 be the path A7 (4([0,1/2] and let ¢3 be the path
A5 (é([1/2,1]. Thus, ¢ is a rigid transformation of the first half of ¢ going from Cf to A7 (¢(1/2)).
Since it is a rigid transformation of ¢(]0,1/2]), the relative positions of A and B are the same as
in ¢([0,1/2]), so ¢1 is in cfree(Dy) except at the beginning. Likewise, ¢3 is a continuous path from
ATH(é(1/2)) to Ch which goes through cfree(Dy).

Finally, since the relative positions of A and B is the same in ¢1(1) and ¢3(0), let ¢ be a
path between ¢1(1) and ¢3(0) that keeps the relative position of the two objects fixed. Then it is
immediate that the path ¢1, @2, ¢35 connects C; to Cs through cfree(Dy). L

Theorem 4.2: Let D be a display over two objects A and B that is always strongly separable, such
that free(D) is locally ordinarily connected. Then for any ¢ > 0 there exist @ > 0 and 6 > 0 such
that, if D’ is a display that approximates D in tangent («, 6),

pi% (paths(free(D)), paths(free(D’)) < e.

Proof: Find €gp,7,0 to satisfy lemma B.4.26. Let €; be the minimal distance between any two
path-connected components of free(D); since free(D) is ordinarily connected, e; > 0. Let €3 =
(1/2) min(ey,€). Since free(D) is the closure of cfree(D), use theorem 2.9 to find §y such that, if
dpa(D', D) < 8§y then pE (free(D),free(D’)) < ea. Since free(D) is locally internally connected, use
theorem 3.5 to find &; such that, if dgq(D’, D) < 61 then pl); (paths(free(D)),paths(free(D’)) < €.
Let o« = min(+y, dg, 01)

Let D' be a display that approximates D in tangent («, 6). We observe the following;

i. Since pE(free(D),free(D’)) < e2 < (1/2)eq, it follows that any configuration in free(D’) is
within e of exactly one connected component of free(D).

ii. Let U be any connected component of free(D). Let Cf and C be any configurations in free(D’)
within ez of U. Let C} be a configuration in U within ez of Cf and let C3 be a configuration
in U within ez of C4. Since C; and Cj are in U, let ¢ be a path from Cy to C2. By theorem
3.5, there is a path v through free(D’) such that pP? (¢, 1) < ez. In particular, pP (4(0),(0))
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iii.

iv.

< €2 and pP(¢p(1),(1)) < e2. Since both 1)y and C] are within es of C;, by lemma B.4.26,
there is a path vy from C7 to 1(0) through free(D’). Similarly, there is a path ¥y from (1)
to C4 through free(D’). The path 11,1, 12 thus goes from C] to C} within free(D’).

Thus, any two configurations C] and C in free(D’) within ez of U are connected by a path
through free(D’). We also know from (i) that every configuration in free(D) is within ez of
some configuration in free(D’), We can therefore conclude that for every connected component
of free(D’) there is a unique connected component of free(D) within €3, and vice versa.

By the construction of d1, it follows that we have pL; (paths(free(D)),free(D’)) < ea. It follows
from the above that any path through a connected component of free(D) must be tracked by
a path through the corresponding connected component of free(D’), since non-corresponding
connected components are at least €1 /2 away. Hence, if U and V are corresponding connected
components of free(D) and free(D'), respectively, pl; (U, V) < 2. 1

Proof of theorem 4.3

Theorem 4.3: Let D be a semi-algebraic display over two objects A and B that is always strongly
separable. Then there exists an algebraic formula ®(e, o, 1)) with the following properties:

e For any € > 0 there exists a > 0 and 1 > 0 such that ®(e, o, ¢).

e If ®(e, 1)) and D’ is a display that approximates D in tangent (a, 1), then pZ (paths(free(D)),

paths(free(D’)) < e.

e The form of ® can be computed from the forms of the regions in D.

Proof: Naturally, the construction of @ follows the proof of theorem 4.2. We define the following
formulas: (The subscripts on the formulas indicate the corresponding lemma. For example, ®4
corresponds to lemma B.4.16.)

®16(C, M, 6, 0) holds iff
for any point p € CD[A]NCDIB,
for all points q eFBd(CD[A],CD|B]) and r €FBd(CD[B], CD[A]) within ¢ of p
free_ang(C' D[A], p, CD[B], q,flow(p, M) > 6.

®19(C, M, 3,4) holds iff
there exist 9,6, D, €, and - such that
(I)IG(C; M, (57 9) and
¥ < 6/2 and D = (1/2)min((3/5)d(CD[A]NCDI[B], M), (4/5)¢-d(CD[A] N CD[B], M), and
e = min(§/2, D) and
for all points q €FBd(CD[A],CD[B]) and r €FBd(CD[A],CDI[B])
if d(q,r) < 7y then

there exists a point p € CD[A] N C'D[B] within € of both p and q; and

B = min(y, D).

Boo(C, M, A) iff
for any transformation 7',
if the motion of T is M and pP!Bl(C[B], T(C[B])) < A,
then the configuration (C[A],T(C[B])) is contact-free over D.

Bos(C,e,1, 11,0, \) holds iff
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uw>0,0>0,and A >0, and
p+A<e A<A/2and 0+ 2)\/A <,
where A is the minimum of the diameters of D[A], D[B].

$y3(C, M, €,,60) holds iff
€,7,6 > 0 and there exist 3,1, €9, 70, 0o, €1, A, T, a such that
(1)19(0, M, ﬁ, ’(/J) and @22(07 57 ’lb7 Y0, 6‘0, 60) and
(1)20(0, M, A) and
T is the transformation of motion M such that p”!Bl(C[B], T(C[B])) = min(ep/2, A) and
« is the clearance of (D, (C[A], T(C[B]))), and
Doo(min(B, @), ¥, €1,7,6) and
€ = min(ey, €9/2).

(1)25 (67 s 9) iff
for every configuration C' there exists a motion M for which ®93(C, M, €,~,0).

(I)26 (67 v, 9) iff
®a5(€0,7,0) and
there exist A, E such that
A = 2(diameter(D[A]) + diameter(D[B])), E = A/diameter(D[A]) and € = €/ (2E + 1).

D(e, o, 0) iff
(1)26 (60, Y, 6‘) and
there exists €7, €2, dg such that
€1 is the minimal distance between two path-connected components of free(D) and
€2 = (1/2) min(e, 1) and
p2 (free(D), free(contract(D,p)) < ez and
p2 (free(D), free(expand(D, dp)) < e and
a = min(y, do).

It is straightforward from the proof of theorem 4.2 that ® satisfies the conditions of theorem 4.3.
A couple of subtle points do need clarification.

First, geometric properties of combinations of D with quantified variables, such as “q eFBd(CD[A], CD[B])”
in @15 require a little care. We need to express the constraint here between q and C' as an algebraic
formula. One can show that, since D is semi-algebraic, there are only finitely many cases involved;
that each case is defined by a semi-algebraic constraint on C' and imposes a semi-algebraic constraint
on q.

Second, the form of ® departs somewhat from the proof of theorem 4.2. The constraints
pH (free(D), free(contract(D,dy)) < ez and pH(free(D), free(expand(D,dy)) < ez are sufficient to
establish the condition pZ (free(D),free(D’) < e€2; the argument is analogous to the proof of theorem
2.9. As for the definition of §; in the proof of theorem 4.2, it requires only a little more work to
show that it is, in fact, unnecessary; the condition o = min(+y, dg) suffices. 1

Proof of theorem 4.4

Theorem 4.4: Let D be a display over n objects that is always strongly separable, and such that
free(D) is locally ordinarily connected. Then there exist « > 0 and ¢ > 0 such that, if D’ is a display
that approximates D in tangent («, 1)), then the connected components of free(D’) correspond to
those of free(D).
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Sketch of proof: The proof is exactly analogous to that of theorem 4.23. We have replaced circular
motion by general continuous differentiable motion (even if we required each object to move in a
circle, their relative motion would be a cycloid). However, the flow field of any differentiable motion
at any instant is equal to the flow field of a uniform motion, and, by continuity, stays close to that
uniform motion over some time. This is sufficient to carry out the above proof. 1
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