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Abstract

This paper presents a theory of informative communications
among agents that allows a speaker to communicate to a
hearer truths about the state of the world; the occurrence of
events, including other communicative acts; and the knowl-
edge states of any agent — speaker, hearer, or third parties
— any of these in the past, present, or future — and any logi-
cal combination of these, including formulas with quantifiers.
We prove that this theory is consistent, and compatible witha
wide range of physical theories. We examine how the theory
avoids two potential paradoxes, and discuss how these para-
doxes may pose a danger when this theory are extended.
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Introduction
In constructing a formal theory of communications between
agents, the issue of expressivity enters at two different lev-
els: the scope of what can be saidabout the communica-
tions, and the scope of what can be saidin the communi-
cations. Other things being equal, it is obviously desirable
to make both of these as extensive as possible. Ideally, a
theory should allow a speaker to communicate to a hearer
truths about the state of the world; the occurrence of events,
including other communicative acts; the knowledge states of
any agent — speaker, hearer, or third parties; any of these in
the past, present, or future; and any logical combination of
these. This paper presents a theory that achieves pretty much
that.

A few examples of what can be expressed, together with
their formal representation:

1. Alice tells Bob that all her children are asleep.

∃Q occurs(do(alice,inform(bob,Q)),s0,s1)∧
∀S holds(S, Q) ⇔
[∀C holds(S,child(C,alice))⇒

holds(S,asleep(C))].
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2. Alice tells Bob that she doesn’t know whether he
locked the door.

∃Q occurs(do(alice,inform(bob,Q)),s0,s1)∧
∀S holds(S, Q) ⇔

[∃SA k acc(alice,S, SA) ∧
∃S1A,S2A S1A < S2A < SA ∧

occurs(do(bob,lockdoor),S1A, S2A)] ∧
[∃SA k acc(alice,S, SA) ∧

¬∃S1A,S2A S1A < S2A < SA ∧
occurs(do(bob,lockdoor),S1A, S2A)].

3. Alice tells Bob that if he finds out who was in the
kitchen at midnight, then he will know who killed Colonel
Mustard. (Note: The interpretation below assumes that ex-
actly one person was in the kitchen at midnight.)

∃Q occurs(do(alice,inform(bob,Q)),s0,s1)∧
∀S holds(S, Q) ⇔

∀S2 [S2 > S ∧
∃PK ∀S2A k acc(bob,S2, S2A) ⇒

∃S3A S3A < S2A ∧
midnight(time(S3A)) ∧
holds(S3A,in(PK,kitchen))]⇒

[∃PM ∀S2B k acc(bob,S2, S2B) ⇒
∃S3B,S4B S3B < S4B < S2B ∧

occurs(do(PM ,murder(mustard)),S3B, S4B)].

4. Alice tells Bob that no one had ever told her she had a
sister.

∃Q occurs(do(alice,inform(bob,Q)),s0,s1)∧
∀S holds(S, Q) ⇔

¬∃S2,S3,Q1,P1 S2 < S3 < S ∧
occurs(do(P1,inform(alice,Q1)),S2, S3)∧
∀SX holds(SX, Q1) ⇒

∃P2 holds(SX ,sister(P2,alice)).

5. Alice tells Bob that he has never told her anything she
didn’t already know.

∃Q occurs(do(alice,inform(bob,Q)),s0,s1)∧
∀S holds(S, Q) ⇔

∀S2,S3,Q1

[S2 < S3 ≤ S ∧
occurs(do(bob,inform(alice,Q1)),S2, S3)] ⇒
∀S2A k acc(alice,S2, S2A) ⇒ holds(S2A, Q1).



These representations works as follows: The expression
“do(AS,inform(AH, Q))” denotes the action of speakerAS
informing AH that fluentQ holds in the current situation.
The contentQ here is ageneralized fluent, that is, a property
of situations / possible worlds. Simple fluents are defined
by ground terms, such as “in(mustard,kitchen).” In more
complex cases, the fluentQ is characterized by a formula
“∀S holds(S, Q) ⇔ α(S)” where α is some formula open
in S. (Equivalently,Q could be defined using the lambda
expressionQ=λ(S)α(S).)

The above examples illustrate many of the expressive fea-
tures of our representation:

• Example 1 shows that the content of a communication
may be a quantified formula.

• Example 2 shows that the content of a communication
may refer to knowledge and ignorance of past actions.

• Example 3 shows that the content of a communication
may be a complex formula involving both past and present
events and states of knowledge.

• Examples 4 and 5 show that the content of a communica-
tion may refer to other communications. They also show
that the language supports quantification over the content
of a communication, and thus allows the content to be
partially characterized, rather than fully specified.

If we wish to reason about such informative actions —
e.g. to be sure that they can be executed — then we must
be sure, among other conditions, that the fluent denoting
the content of the action exists. This requires a compre-
hension axiom that asserts that such a fluent exists forany
such formulaα. Comprehension axioms often run the risk
of running into analogues of Russell’s paradox, but this one
turns out to be safe. We will discuss two paradoxes that
look dangerous for this theory, but the theory succeeds in
side-stepping these. One of these is the well-known “unex-
pected hanging” paradox. To make sure that there are no
further paradoxes in hiding that might be more destructive,
we prove that our theory is consistent, and compatible with
a wide range of physical theories.

The paper proceeds as follows: We first discuss the the-
ories of time, of knowledge, and of communication that we
use. We illustrate the power of the theory by showing how
it supports two example inferences. We describe an appar-
ent paradox and how it is avoided. We show how the theory
avoids the “unexpected hanging” problem. We present the
proof that the theory is consistent. We discuss related work
and future work and present our conclusions.

Framework
We use a situation-based, branching theory of time; an
interval-based theory of multi-agent actions; and a possible-
worlds theory of knowledge. This is all well known, so the
description below is brief.

Time and Action
We use a situation-based theory of time. Time can be either
continuous or discrete, but it must bebranching, like the sit-
uation calculus. The branching structure is described by the
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Figure 1: Axiom T.9

partial ordering “S1 < S2”, meaning that there is a timeline
containingS1 andS2 andS1 precedesS2. It is convenient
to use the abbreviations “S1 ≤ S2” and “ordered(S1, S2).”
The predicate “holds(S, Q)” means that fluentQ holds in
situationS.

Each agent has, in various situations, a choice about what
action to perform next, and the time structure includes a sep-
arate branch for each such choice. Thus, the statement that
actionE is possible in situationS is expressed by asserting
thatE occurs fromS to S1 for someS1 > S.

Following (McDermott 1982), actions are represented as
occurring over an interval; the predicate occurs(E, S1, S2)
states that actionE occurs starting inS1 and ending inS2.
However, the whole theory could be recast without substan-
tial change into the situation calculus extended to permit
multiple agents, after the style of (Reiter, 2001).

Table 1 shows the axioms of our temporal theory.
Throughout this paper, we use a sorted first-order logic with
equality, where the sorts of variables are indicated by their
first letter. The sorts are clock-times (T ), situations (S),
Boolean fluents (Q), actions (E), agents (A), and actionals
(Z). (The examples at the beginning of this paper use some
terms of other sortsad hoc; these are self-explanatory.) An
actional is a characterization of an action without specify-
ing the agent. For example, the term “puton(blocka,table)”
denotes the actional of someone putting block A on the ta-
ble. The term “do(john, puton(blocka,table))” denotes the
action of John putting block A on the table. Free variables
in a formula are assumed to be universally quantified.

Our theory does not include a representation of whatwill
happen from a given situation as opposed to whatcanhap-
pen. This will be important in our discussion of the para-
doxes.

Knowledge
As first proposed by Moore (1980,1985) and widely used
since, knowledge is represented by identifying temporal sit-
uations with epistemic possible worlds and positing a rela-
tion of knowledge accessibility between situations. The re-
lation k acc(A, S, SA) means that situationSA is accessible
fromS relative to agentA’s knowledge inS; that is, as far as
A knows inS, the actual situation could beSA. The state-
ment thatA knowsφ in S is represented by asserting thatφ
holds in every situation that is knowledge accessible fromS
for A. As is well known, this theory enables the expression



Primitives:
T 1 < T 2 — TimeT 1 is earlier thanT 2.
S1 < S2 — SituationS1 precedesS2, on the same

time line. (We overload the< symbol.)
time(S) — Function from a situation to its clock time.
holds(S, Q) — FluentQ holds in situationS.
occurs(E, S1, S2) — Action E occurs from situation

S1 to situationS2.
do(A, Z) — Function. The action of agentA doing

actionalZ.
Definitions:

TD.1 S1 ≤ S2 ≡ S1 < S2 ∨ S1 = S2.
TD.2 ordered(S1, S2) ≡

S1 < S2 ∨ S1 = S2 ∨ S2 < S1.

Axioms:

T.1 T 1 < T 2 ∨ T 2 < T 1 ∨ T 1 = T 2.
T.2 ¬[T 1 < T 2 ∧ T 2 < T 1].
T.3 T 1 < T 2 ∧ T 2 < T 3 ⇒ T 1 < T 3.

(Clock times are linearly ordered)
T.4 S1 < S2 ∧ S2 < S3 ⇒ S1 < S3. (Transitivity)
T.5 (S1 < S ∧ S2 < S) ⇒ ordered(S1, S2).

(Forward branching)
T.6 S1 < S2 ⇒ time(S1) < time(S2).

(The ordering on situations is consistent with the or-
derings of their clock times.)

T.7 ∀S,T1 ∃S1 ordered(S, S1) ∧ time(S1)=T 1.
(Every time line contains a situation for every clock
time.)

T.8 occurs(E, S1, S2) ⇒ S1 < S2.
(Events occur forward in time.)

T.9 [occurs(E, S1, S2) ∧ S1 < SX < S2 ∧
SX < SY ] ⇒
∃SZ ordered(SY, SZ) ∧ occurs(E, S1, SZ).
(If action E starts to occur on the time line that in-
cludesSY , then it completes on that time line. (Fig-
ure 1))

Table 1: Temporal Axioms
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Figure 2: Axiom K.6

of complex interactions of knowledge and time; one can rep-
resent both knowledge about change over time and change
of knowledge over time.

Again following Moore (1985), the state of agentA
knowing what something isis expressed by using a quan-
tifier of larger scope than the universal quantification over
accessible possible worlds. For example, the statement, “In
situation s1, John knows who the President is” is expressed
by asserting that there exists a unique individual who is the
President in all possible worlds accessible for John from s1.

∃X ∀S1A k acc(john,s1,S1A) ⇒
holds(S1A,president(X)).

For convenience, we posit an S5 logic of knowledge; that
is, the knowledge accessibility relation, restricted to a sin-
gle agent, is in fact an equivalence relation on situations.
This is expressed in axioms K.1, K.2, and K.3 in table 2.
Three important further axioms govern the relation of time
and knowledge.

K.4. Axiom of memory: IfA knowsφ in S, then in any later
situation, he remembers that he knewφ in S.

K.5. A knows all the actions that he has begun, both those that
he has completed and those that are ongoing. That is, he
knows astandard identifierfor these actions; if Bob is
dialing (212) 998-3123 on the phone, he knows that he
is dialing (212) 998-3123 but he may not know that he is
calling Ernie Davis. At any time,A knows what actions
he can now begin.

K.6 Knowledge accessibility relations do not cross in the time
structure. I have not found any natural expression of this
axiom, but certainly a structure that violated it would be a
very odd one. (Figure 2.)

The theory includes a forms of common knowledge, re-
stricted to two agents. AgentsA1 and A2 have shared
knowledgeof φ if they both knowφ, they both know that
they both knowφ and so on. We represent this by defin-
ing a further accessibility relation, “skacc(A1, A2, S, SA)”
(SA is accessible fromS relative to the shared knowledge
of A1 andA2). This is defined as the transitive closure of
links of the form kacc(A1, ·, ·) together with links of the
form k acc(A2, ·, ·). (Of course, transitive closure cannot be
exactly defined in a first-order theory; we define an approx-
imation that is adequate for our purposes.)



Primitives:
k acc(A, SA, SB) — SB is accessible fromSA
relative toA’s knowledge inSA.
sk acc(A1, A2, SA, SB) — SB is accessible fromSA
relative to the shared knowledge ofA1 andA2 in SA.

Axioms

K.1 ∀A,SA k acc(A, SA, SA).
K.2 k acc(A, SA, SB) ⇒ k acc(A, SB, SA)
K.3 k acc(A, SA, SB) ∧ k acc(A, SB, SC) ⇒

k acc(A, SA, SC).
(K.1 through K.3 suffice to ensure that the knowl-
edge of each agent obeys an S5 logic: what he knows
is true, if he knowsφ he knows that he knows it; if
he doesn’t knowφ, he knows that he doesn’t know
it.)

K.4 [k acc(A, S2A, S2B) ∧ S1A < S2A] ⇒
∃S1B S1B < S2B ∧ k acc(A, S1A, S1B).
(Axiom of memory: If agentA knowsφ at any time,
then at any later time he knows thatφ was true.)

K.5 [occurs(do(A, Z),S1A, S2A)∧ S1A ≤ SA ∧
ordered(SA, S2A) ∧ k acc(A, SA, SB)] ⇒
∃S1B,S2B occurs(do(A, Z),S1B, S2B)∧
S1B ≤ SB ∧
[S2A < SA ⇒ S2B < SB] ∧
[S2A = SA ⇒ S2B = SB] ∧
[SA < S2A ⇒ SB < S2B] ∧
[S1A = SA ⇒ S1B = SB]
(An agent knows all the actions that he has begun,
and all the actions that are feasible now, and the state
of their completion.)

K.6 ¬∃A,S1A,S1B,S2A,S2B S1A < S2A ∧ S1B < S2B
∧ k acc(A, S1A, S2B) ∧ k acc(A, S2A, S1B).
(Knowledge accessibility links do not cross in the
time structure (Figure 2.)

K.7 sk acc(A1, A2, SA, SB) ⇔
[k acc(A1, SA, SB) ∨ k acc(A2, SA, SB) ∨
sk acc(A1, A2, SB, SA) ∨
sk acc(A2, A1, SA, AB) ∨
∃SC sk acc(A1, A2, SA, SC) ∧

sk acc(A1, A2, SC, SB)].
Definition of sk acc as a equivalence relation, sym-
metric inA1, A2, that includes the kacc links for the
two agentsA1, A2.

Table 2: Axioms of Knowledge

Communication

We now introduce the function “inform”, taking two
arguments, a agentAH and a fluentQ. The term
“inform(AH, Q)” denotes the actional of informingAH that
Q; the term “do(AS,inform(AH, Q))” thus denotes the ac-
tion of speakerAS informingAH thatQ. Our theory here
treats “do(AS,inform(AH, Q))” as a primitive actions; in a
richer theory, it would be viewed as an illocutionary descrip-
tion of an underlying locutionary act (not here represented)
— the utterance or writing or broadcasting of a physical sig-
nal.

We also add a second actional “communicate(AH)”. This
alternative characterization of a communicative act, which
specifies the hearer but not the content of the communica-
tion, enables us to separate outphysicalconstraints on a
communicative act fromcontentiveconstraints. Thus, we
allow a purely physical theory to put constraints on the oc-
currence of a communication, or even to posit physical ef-
fects of a communication, but these must be independent of
the information content of the communication.

We posit the following axioms:

I.1 Any inform act is a communication.
occurs(do(AS,inform(AH, Q)),S1, S2)⇒
occurs(do(AS,communicate(AH)),S1, S2).

I.2. If a speakerAS can communicate with a hearerAH , then
AS can informAH of some specificQ if and only if A
knows thatQ holds at the time he begins speaking.

[∃SX occurs(do(AS,communicate(AH)),S1, SX)] ⇒
[∀Q [∃S2 occurs(do(AS,inform(AH, Q)),S1, S2)] ⇔

[∀S1A k acc(AS, S1, S1A) ⇒ holds(S1A, Q)]]

I.3. If AS informsAH of Q from S1 to S2, then inS2, AH
and AS have shared knowledge that this event has oc-
curred. It follows from I.3, I.2, and K.5 that inS2, AS
andAH have shared knowledge thatQ held inS1. (See
Lemma 1, below).

∀S1,S2,S2A [occurs(do(AS,inform(AH, Q)),S1, S2)∧
sk acc(AS, AH, S2, S2A)] ⇒

∃S1A occurs(do(AS,inform(AH, Q)),S1A, S2A).

(If axiom K.7 were replaced by a second-order axiom stat-
ing that skacc was the true transitive closure of kacc,
then it would suffice here to say thatAH knows that the
inform act has occurred.)

I.4. If AS informs AH of Q1 over [S1, S2] and the
shared knowledge ofAS and AH in S1 implies
that holds(S1, Q1) ⇔ holds(S1, Q2), then AS has
also informed AH of Q2 over [S1, S2]. Con-
versely, the two actions “do(AS,inform(AH, Q1))” and
“do(AS,inform(AH, Q2))” can occur simultaneously
only if Q1 andQ2 are related in this way. This latter im-
plication acts as, essentially, a unique names axiom over
inform acts; if it is not shared knowledge thatQ1 is the
same asQ2 then the act of communicatingQ1 is different
from the act of communicatingQ2, since they may have
different consequences



For example, if Jack and Jane share the knowledge that
George Bush is the President and that 1600 Pennsylva-
nia Avenue is the White House, then the action of Jack
informing Jane that Bush is at the White House is iden-
tical to the act of Jack informing Jane that the President
is at 1600 Pennsylvania Avenue. If they do not share this
knowledge, then these two acts are different.

occurs(do(AS,inform(AH, Q1)),S1, S2)⇒
[occurs(do(AS,inform(AH, Q2)),S1, S2)⇔
[∀S1A sk acc(AS, AH, S1, S1A) ⇒

[holds(S1A, Q1) ⇔ holds(S1A, Q2)]]]

I.5. The final axiom is a comprehension axiom schema, which
states that any property of situations that can be stated in
the language is a fluent.
Let L be a first-order language containing the primi-
tives “<”, “holds”, “occurs”, “do”, “k acc”, “sk acc”,
“communicate” and “inform” plus domain- and problem-
specific primitives. Letα(S) be a formula inL with ex-
actly one free variableS of sort “situation”. (α may have
other free variables of other sorts.) Then the closure of
the following formula is an axiom:

∃Q ∀S holds(S, Q) ⇔ α(S).

(The closure of a formulaβ isβ scoped by universal quan-
tifications of all its free variables.)

Our theory does not include a frame axiom over knowl-
edge. Informative actions cannot be the only knowledge-
producing actions; ifA1 does something that changes the
preconditions for actions ofA2, thenA2 will become aware
of the fact, if only because the space of feasible action
changes. We have not found a correct formulation of the
frame axiom that applies in general for this setting. (See
(Davis, 1987) and (Scherl and Levesque, 2003) for theo-
ries that do use frame axioms over knowledge.) In any
case, frame axioms over knowledge are often unimportant;
in many applications, there is no need to establish that an
agent will be ignorant of a given fact.

Sample Inferences
We illustrate the power of the above theory with two toy
problems. First, we prove a useful lemma.

Lemma 1: If AS informsAH thatQ, then, when the inform
act is complete,AH knows thatQ held when the inform act
was begun.

occurs(do(AS,inform(AH, Q)),S0, S1)∧
k acc(AH, S1, S1A) ⇒

∃S0A occurs(do(AS,inform(AH, Q)), S0A, S1A) ∧
holds(S0A, Q).

Proof:
Let as, ah, q, s0, s1, s1a satisfy the left side of the above
implication.
By K.7, sk acc(as,ah,s1,s1a).
By I.3 there exists s0a such that

occurs(do(as,inform(ah,q)),s0a,s1a).
By K.1, k acc(as,s0a,s0a).
By I.2, holds(s0a,q).

Sample Inference 1:Given:

X.1 Sam knows in s0 that it will be sunny on July 4.
[k acc(sam,s0,S0A) ∧ S0A < S1A ∧
time(S1A)=july4] ⇒
holds(S1A,sunny).

X.2 In any situation, if it is sunny, then Bob can play tennis.
∀S holds(S,sunny)⇒ ∃S1 occurs(do(bob,tennis),S, S1)

X.3 Sam can always communicate with Bob.
∀S1 ∃S2 occurs(do(sam,communicate(bob)),S1, S2).

Infer:

X.P Sam knows that there is an action he can do (e.g. tell Bob
that it will be sunny) that will cause Bob to know that he
will be able to play tennis on July 4.

k acc(sam,s0,S0A) ⇒
∃Z,S1A occurs(do(sam,Z),S0A, S1A)∧

∀S2A,S2B [occurs(do(sam,Z),S0A, S2A)∧
k acc(bob,S2A, S2B) ∧
S2B < S3B ∧ time(S3B)=july4] ⇒

∃S4B occurs(do(bob,tennis),S3B, S4B).

Proof:
By the comprehension axiom I.5 there is a fluent q1 that
holds in any situationS just if it will be sunny on July 4 fol-
lowing S.

holds(S,q1)⇔
[∀S1 [S < S1 ∧ time(S1)=july4] ⇒ holds(S1,sunny)].

Let z1=inform(bob,q1). By axioms I.2, X.1, and X.3,
do(sam,z1) is feasible in s0;

∃S1 occurs(do(sam,z1),s0,S1).
By axiom K.5, Sam knows in s0 that do(sam,z1) is feasible.

∀S0A k acc(s0,S0A) ⇒
∃S1A occurs(do(sam,z1),S0A, S1A).

Let s0a be any situation such that kacc(sam,s0,s0a).
Let s2a be any situation such that

occurs(do(sam,z1),s0a,s2a),
Let s2b be any situation such that kacc(bob,s2a,s2b).
By Lemma 1, there exists s1b such that

occurs(do(sam,z1),s1b,s2b) and holds(s1b,q1).
Let s3b be any situation such that s2b< s3b and

time(s3b)=july4.
By T.8 and T.4, s1b< s3b.
By definition of q1, holds(s3b,sunny).
By X.2, there exists s4b such that

occurs(do(bob,tennis),s3b,s4b).
Applying the appropriate universal and existential abstrac-
tions over these constant symbols gives us formula X.P.

Sample Inference 2:
Given: Bob tells Alice that he has cheated on her. Alice

responds by telling Bob that he has never told her anything
she did not already know.

Infer: Bob now knows that Alice knew before he spoke
that he had cheated on her.

Note that the inference only works if the two are speaking;
if they are communicating by mail, then Bob may consider



it possible that Alice sent her letter before receiving his,in
which case she would not be including his latest commu-
nication. Therefore to represent this inference, we add two
new actions: “do(AS,speak(AH, Q))” is a special case of
“do(AS,inform(AH, Q))”; and “do(AH ,listen(AS))” is an
action that always (ideally) takes place simultaneously with
“do(AS,speak(AH, Q)). The function “listen” does not take
a content as argument, because the hearer does not know the
content until the communication is finished.

Y.1 Bob confesses to Alice that he has cheated on her.
∃Q occurs(do(bob,speak(alice,Q)),s0,s1)∧
∀S holds(S, Q) ⇔
∃S2,S3 S3 < S ∧ occurs(do(bob,cheat),S2, S3).

Y.2 Alice responds that Bob has never told her anything she
didn’t already know. (Equivalently, whenever he has told
her anything, she already knew it.)

∃Q occurs(do(alice,speak(bob,Q)),s1,s2)∧
∀S holds(S, Q) ⇔

∀S3,S4,Q1

[S3 < S4 ≤ S ∧
occurs(do(bob,inform(alice,Q1)),S3, S4)] ⇒
∀S3A k acc(alice,S3, S3A) ⇒ holds(S3A, Q1).

Y.3 If AS speaksQ to AH , thenAS informsAH of Q.
occurs(do(AS,speak(AH, Q)),S1, S2)⇒
occurs(do(AS,inform(AH, Q)),S1, S2).

Y.4 If AS speaksQ to AH , thenAH concurrently listens to
AS.
[∃Qoccurs(do(AS,speak(AH, Q)),S1, S2)] ⇔
occurs(do(AH ,listen(AS)),S1, S2)

Y.5 A speaker can only say one thing at a time.
[occurs(do(AS,speak(AH1, Q1)),S1, S2)∧
occurs(do(AS,speak(AH2, Q2)),S3, S4)∧
S1 < S4 ∧ S3 < S2] ⇒
[Q1 = Q2 ∧ S1 = S3 ∧ S2 = S4]

Infer:
Y.P Bob now knows that Alice had already known, before he

spoke, that he had cheated on her.

∀S2A k acc(bob,s2,S2A) ⇒
∃S0A,S1A,Q1 S1A < S2A ∧

occurs(do(bob,inform(alice,Q1)),S0A, S1A)∧
[∀S0B k acc(alice,S0A, S0B) ⇒
∃S3B,S4B S4B < S0B ∧

occurs(do(bob,cheat),S3B, S4B)].

Proof: Let q1 be the content of Bob’s statement in Y.1, and
let q2 be the content of Alice’s statement in Y.2.
By K.4 and Y.3, Bob knows in s2 that he has informed Alice
of q1.

∀S2A k acc(bob,s2,S2A) ⇒
∃S0A,S1A S1A < S2A ∧
occurs(do(bob,inform(alice,q1)),S0A, S1A).

By Lemma 1, Bob knows in s2 that q2 held before Alice’s
speech act.
∀S2A k acc(bob,s2,S2A) ⇒

∃S1A occurs(do(alice,speak(bob,q2)),S1A, S2A)∧
holds(S1A,q2).

Let s2a be any situation such that kacc(bob,s2,s2a), and
let s1a be a corresponding value ofS1A satisfying the above
formula. By Y.4, Bob listened while Alice spoke.

occurs(do(bob,listen(alice)),s1a,s2a).
occurs(do(bob,listen(alice)),s1,s2).

By K.5, there exists an s11a such that kacc(bob,s1,s11a)
and occurs(do(bob,listen(alice)),s11a,s2a).
By Y.4, Alice must have spoken something from s11a to s2a.
By T.5 s11a and s1a are ordered.
By Y.5, s11a=s1a.
Thus, holds(s1a,q2); in other words, by definition of q2
(YY) ∀S3,S4,Q1

[S3 < S4 ≤ s1∧
occurs(do(bob,inform(alice,Q1)),S3, S4)] ⇒
∀S3A k acc(alice,S3, S3A) ⇒ holds(S3A, Q1).
By K.4 and Y.3, Bob knows in s1 that he has informed

Alice of q1.
∀S1A k acc(bob,s1,S1A) ⇒
∃S0A occurs(do(bob,inform(alice,q1)),S0A, S1A).

In particular, therefore,
∃S0A occurs(do(bob,inform(alice,q1)),S0A,s1a).

Let s0a be a situation satisfying the above. Combining this
with formula (YY) above gives

∀S0B k acc(alice,s0a,S0B) ⇒ holds(S0B,q1).
Applying the definition of q1, we get the desired result.

Paradox
The following Russell-like paradox seems to threaten our
theory:

Paradox: Let Q be a fluent. Suppose that over interval
[S0, S1], agent a1 carries out the action of informing a2 that
Q holds. Necessarily,Q must hold inS0, since agents are
not allowed to lie (axiom I.2). Let us say that this commu-
nication isimmediately obsoleteif Q no longer holds inS1.
For example, if it is raining in s0, the event of a1 telling a2
that it is raining occurs over [s0,s1], and it has stopped rain-
ing in s1, then this communication is immediately obsolete.
Now let us say that situationS is “misled” if it is the end of
an immediately obsolete communication. As being misled
is a property of a situation, it should be definable as a fluent.
Symbolically,

holds(S,misled)≡
∃Q,A1,A2 occurs(do(A1,inform(A2, Q)),S0, S)∧

¬holds(Q, S)

Now, suppose that, as above, in s0 it is raining; from s0
to s1, a1 tells a2 that it is raining; and in s1 it is no longer
raining and a1 knows that it is no longer raining. Then a1
knows that “misled” holds in s1. Therefore, (axiom I.2) it is
feasible for a1 to tell a2 that “misled” holds in s1. Suppose
that, from s1 to s2, the event occurs of a1 informing a2 that
“misled” holds. The question is now, does “misled” hold
in s2? Well, if it does, then what was communicated over
[s1,s2] still holds in s2, so “misled” does not hold; but if it
doesn’t, then what was communicated no longer holds, so
“misled” does hold in s2.

The flaw in this argument is that it presumes a unique
names assumption that we have explicitly denied in ax-
iom I.4. The argument presumes that if fluentQ1 6= Q2,



and do(A1,inform(A2, Q1, T )) occurs from s1 to s2, then
do(A1,inform(A2, Q2, T )) does not occur. (Our English de-
scription of the argument used the phrase “what was com-
municated between s1 and s2”, which presupposes that there
was a unique content that was communicated.) But axiom
I.4 asserts that many different fluents are communicated in
the same act. Therefore, the argument collapses.

In particular, suppose that there is some fluent∆(S) such
that a1 and a2 have shared knowledge that∆ holds in s1 but
not in s2. For instance, if a1 and a2 have shared knowledge
that the time is 9:00 AM exactly, then∆(S) could be “The
time of S is 9:00 AM.” Now, let q1 be any fluent, and sup-
pose that occurs(do(a1,inform(a2,q1)),s1,s2). Let q2 be the
fluent defined by the formula

∀S holds(S,q2)⇔ holds(S,q1)∧ ∆(S).

By assumption, it is shared knowledge between a1 and
a2 that holds(s1,q2)⇔ holds(s1,q1). Hence, by axiom
I.4, occurs(do(a1,inform(a2,q2)),s1,s2). But by construc-
tion q2 does not hold in s1; hence the occurrence of
do(a1,inform(as,q2)) from s1 to s2 is immediately obsolete.
Therefore “misled” holds followingany informative act.

Changing the definition of misled to use the universal
quantifier, thus:

holds(S,misled)≡
∀Q,A1,A2 occurs(do(A1,inform(A2, Q)),S0, S)∧

¬holds(Q, S)

does not rescue the contradiction. One need only change the
definition of q2 above to be

∀S holds(S,q2)⇔ holds(S,q1)∨ ¬∆(S).
Clearly, the new definition of “misled”neverholds after any
informative act.

Of course, if we extend the theory to include the under-
lying locutionary act, then this paradox may well return, as
the locutionary act that occurs presumably is unique. How-
ever, as the content of a locutionary act is a quoted string, we
can expect to have our hands full of paradoxes in that the-
ory; this “misled” paradox will not be our biggest problem
(Morgenstern,1988).

Unexpected Hanging
The well-known paradox of the unexpected hanging (also
known as the surprise examination) (Gardner, 1991; Quine,
1953) can be formally expressed in our theory; however, the
paradox does not render the theory inconsistent. (The analy-
sis below is certainlynota philosophically adequate solution
to the paradox, merely an explanation of how our particular
theory manages to side-step it.)

The paradox can be stated as follows:

A judge announces to a prisoner, “You will be hung at
noon within 30 days; however, that morning you will
not know that you will be hung that day.” The prisoner
reasons to himself, “If they leave me alive until the 30th
day, then I will know that morning that they will hang
me that day. Therefore, they will have to kill me no
later than the 29th day. So if I find myself alive on the
morning of the 29th day, I can be sure that I will be

hung that day. So they will have to kill me no later than
the 28th day . . . So they can’t kill me at all!”
On the 17th day, they hung him at noon. He did not
know that morning that he would be hung that day.
We can express the judge’s statement as follows:

occurs(do(judge,inform(prisoner,Q)),s0,s1)∧
∀S holds(S, Q) ⇔

∀SX [S < SX ∧ date(SX) = date(S)+31]⇒
∃SH,SM,SMA,SHA

S < SM < SH < SX ∧ hour(SH)=noon∧
holds(SH ,hanging)∧ hour(SM )=9am∧
date(SM )=date(SH) ∧
k acc(prisoner,SM, SMA) ∧ SMA < SHA ∧
hour(SHA)=noon∧ date(SM )=date(SH) ∧
¬holds(SHA,hanging).

That is: the content of the judge’s statement is the fluent
defined by the following formula overS: On any timeline
starting inS and going through someSX 31 days later, there
is a situationSH at noon where you will be hung, but that
morningSM you will not know you will be hung; that is,
there is aSMA knowledge accessible fromSM which is
followed at noon by a situationSHA in which you are not
hung.

Let UHlang be the judge’s statement in English and let
UHlogic be the fluent defined in the above formula. Let
“kill( K)” be the proposition that the prisoner will be killed
no later than the Kth day, and let “killtoday” be the fluent
that the prisoner will be killed today. It would appear that
UHlang is true; that the judge knows that in s0 that it is true,
and that UHlogic means the same as UHlang. By axiom I.2,
if the judge knows that UHlogic holds in s0, then he can in-
form the prisoner of it. How, then, does our theory avoid
contradiction?

The first thing to note is that the prisonercannotknow
UHlogic. There is simply no possible worlds structure in
which the prisoner knows UHlogic. The proof is exactly
isomorphic to the sequence of reasoning that prisoner goes
through. Therefore, by Lemma 1 above, the judge cannot
inform the prisoner of UHlogic; if he did, the prisoner would
know it to be true.

The critical point is that there is a subtle difference be-
tween UHlang and UHlogic. The statement UHlang asserts
that the prisonerwill not know kill today — this means even
after the judge finishes speaking. In our theory, however,
one can only communicate properties of the situation at the
beginning of the speech act and there is no way to refer to
whatwill happens as distinguished from onecouldhappen.
So what UHlogic asserts is that the prisoner will not know
kill todaywhateverthe judge decides to say or do in s0.

In fact, it is easily shown that either [the judge does not
know in s0 that UHlogic is true], or [UHlogic is false]. It
depends on what the judge knows in s0. Let us suppose that
in s0, it is inevitable that the prisoner will be killed on day
17 (the executioner has gotten irrevocable orders.) There are
two main cases to consider.
• Case 1: All the judge knows kill(K), for someK > 17.

Then the most that the judge call tell the prisoner is



kill( K). In this case, UHlogic is in fact true in s0, but the
judge does not know that it is true, because as far as the
judge knows, it is possible that (a) he will tell the prisoner
kill( K) and (b) the prisoner will be left alive until theKth
day, in which case the prisoner would know killtoday on
the morning of theKth day.

• Case 2: The judge knows kill(17). In that case, UHlogic

is not even true in s0, because the judge has the option
of telling the prisoner kill(17), in which case the prisoner
will know kill today on the morning of the 17th day.

Again, we do not claim that this is an adequate solution
to the philosophical problem, merely an explanation of how
our formal theory manages to remain consistent and side-
step the paradox. In fact, in the broader context the solution
is not at all satisfying, for reasons that may well become
serious when the theory is extended to be more powerful.
There are two objections. First, the solution depends crit-
ically on the restriction that agents cannot talk about what
will happen as opposed to whatcanhappen; in talking about
the future, they cannot take into account their own decisions
or commitments about what they themselves are planning to
do. One can extend the outer theory so as to be able torepre-
sentwhat will happen — in (Davis and Morgenstern, 2004),
we essentially do this — but then the comprehension axiom
I.5 must be restricted so as to exclude this from the scope of
fluents that can be the content of an “inform” act. We do not
see how this limitation can be overcome.

The second objection is that it depends on the possibil-
ity of the judge telling the prisoner kill(17) if he knows this.
Suppose that we eliminate this possibility? Consider the fol-
lowing scenario: The judge knows kill(17), but he is unable
to speak directly to the prisoner. Rather, he has the option of
playing one of two tape recordings; one says “kill(30)” and
the other says UHlogic. Now the theory is indeed inconsis-
tent. Since the prisoner cannot know UHlogic it follows that
the judge cannot inform him of UHlogic; therefore the only
thing that the judge can say is “kill(30)”. But in that case,
the formula “UHlogic” is indeed true, and the judge knows
it, so he should be able to push that button.

To axiomatize this situation we must change axiom I.2 to
assert that that the only possible inform acts are kill(30) and
UHlogic.

Within the context of our theory, it seems to me that the
correct answer is “So what?” Yes, you can set up a Rube
Goldberg mechanism that creates this contradiction, but the
problem is not with the theory, it is with the axiom that states
that only these two inform acts are physically possible.

In a wider context, though, this answer will not serve. Af-
ter all, it is physically possible to create this situation,and in
a sufficiently rich theory of communication, it will be prov-
able that you can create this situation. However, such a the-
ory describing the physical reality of communication must
include a theory of locutionary acts; i.e. sending signals of
quoted strings. As mentioned above such a theory will run
into manyparadoxes; this one is probably not the most trou-
blesome.

Consistency
Two paradoxes have come up, but the theory has side-
stepped them both. How do we know that the next paradox
won’t uncover an actual inconsistency in the theory? We
can eliminate all worry about paradoxes once and for all by
proving that the theory is consistent. We do this by con-
structing a model satisfying the theory. More precisely, we
construct a fairly broad class of models, establishing (infor-
mally) that the theory is not only consistent but does not ne-
cessitate any weird or highly restrictive consequences. (Just
showing soundness with respect to a model or even com-
pleteness is not sufficient for this. For instance, if the theory
were consistent only with a model in which every agent was
always omniscient, and inform acts were therefore no-ops,
then the theory would beconsistentbut not of any interest.)

As usual, establishing soundness has three steps: defin-
ing a model, defining an interpretation of the symbols in the
model, and establishing that the axioms are true under the
interpretation.

Our class of models is (apparently) more restrictive than
the theory;1 that is, the theory is not complete with respect
to this class of models. The major additional restrictions in
our model are:

I. Time must be discrete. We believe that this restriction can
be lifted with minor modifications to the axioms, but this
is beyond the scope of this paper. We hope to address it in
future work.

II. Time must have a starting point; it cannot extend infinitely
far back. It would seem to be very difficult to modify
our proof to remove this constraint; at the current time, it
seems to depend on the existence of highly non-standard
models of set theory.

III. A knowledge accessibility link always connects two sit-
uations whose time is equal, where “time” measure the
number of clock ticks since the start. In other words, all
agents always have common knowledge of the time. In a
discrete structure, this is a consequence of the axiom of
memory. Therefore, it is not, strictly speaking, an addi-
tional restriction; rather, it is a non-obvious consequence
of restriction (I). If we extend the construction to a non-
discrete time line, some version of this restriction must be
stated separately.

There are also more minor restrictions; for example, we
will define shared knowledge to be the true transitive clo-
sure of knowledge, which is not expressible in a first-order
language.

Theorem 1 below states that the axioms in this theory
are consistent with essentially any physical theory that has
a model over discrete time with a starting point state and
physical actions to knowledge.

Definition 1: A physical languageis a first-order language
containing the sorts “situations,”, “agents”, “physical ac-
tionals”, “physical actions”, “physical fluents”, and “clock

1The only way to be sure that the theory is more general than
the class of models is to prove that it is consistent with a broader
class of models.



times”; containing the non-logical symbols, “<”, “do”, “oc-
curs”, “holds”, “time”, and “communicate”; and excluding
the symbols, “kacc”, “inform”, and “skacc”.

Definition 2: LetL be a physical language, letT be a theory
overL. T is anacceptable physical theory(i.e. acceptable
for use in theorem 1 below) if there exists a modelM and
an interpretationI of L overM such that the following con-
ditions are satisfied:
1. I maps the sort of clock times to the positive integers, and

the relationT 1 < T 2 on clock times to the usual ordering
on integers.

2. Axioms T.1 — T.9 in table 1 are true inM underI.

3. TheoryT is true inM underI.

4. The theory is consistent with the following constraint: In
any situationS, if any communication act is feasible, then
arbitrarily many physically indistinguishable communica-
tion acts are feasible. This constraint can be stated in a
first order axiom schema, which we here omit.

Condition (4) seem strange and hard to interpret, but in fact
most reasonable physical theories satisfy it, or can be modi-
fied without substantive change to satisfy it.

Theorem 1: Let T be an acceptable physical theory, and
let U beT together with axioms K.1 — K.7 and I.1 — I.5.
ThenU is consistent.

Sketch of proof:
The main sticking point of the proof is as follows: In order
to satisfy the comprehension axiom, we must define a fluent
to be any set of situations. However, ifQ is a fluent, then the
act of AS informing informingAH of Q in S1 generates
a new situation; and if we generate a separate “inform” act
for each fluent, then we would have a unsolvable vicious
circularity.

Restriction (III) and axiom I.4 rescue us here. Let q1 be
any fluent that holds in situation s1. By axiom I.4, we can
identify the act ofAS informing AH of q1 starting in s1
with the act ofAS informing AH of any other q2, such
that AS and AH jointly know in s1 that q1 iff q2. Let
t1=time(s1). By condition (III), in s1,AS andAH jointly
know that the current time is t1. Let q2 be the fluent such
that holds(S,q2) ⇔ holds(S,q1) ∧ time(S)=t1. ThenAS
andAH have shared knowledge in s1 that q1 is equivalent
to q2. Applying this reasoning generally, it follows that the
content of an inform act need not be ageneralset of situa-
tions, only a set of situations contemporaneous with the start
of the inform act. This limitation allow us to break the circu-
larity in the construction of situations and informative acts:
the content of informative acts starting at timeK is a subset
of the situations whose time isK; informative acts starting
in timeK generate situations whose time isK + 1.

Therefore, we can use the “algorithm” shown in table 3 to
construct a model of the theoryU .

Once the model has been constructed, defining the inter-
pretation and checking that the axioms are valid is straight-
forward. The only part that requires work is establishing

Constructing a model

LetM be a collection of branching time models of
theoryT ;

Create a set of initial situations at time 0.
Map each initial situationS to an initial situation

PHYS(S) in M.
for (each agentA), define the relation KACC(A, ·, ·)

to be some equivalent relation over the initial situations.
for (K=0 to∞) do{

for (each situationS of timeK) do{
for (each physical state PS following PHYS(S) in M)

construct a new situation S1 and mark PHYS(S1)=PS;
for (each pair of agents AS,AH) do{

if (in M there is an act starting in S of AS
communicating to AH)

then{
SSL := the set of situations knowledge

accessible from S relative to AS;
SSU := the set of situations accessible

from S relative to the shared
knowledge of AS and AH;

for (each set SS that is a subset of SSU
and a superset of SSL) do{

construct an action “inform(AS,AH,SS)”
starting in S;

construct a successor S1 of S corresponding
to the execution of this action;

label PHYS(S1) to be a physical state in M
following a communicate action in PHYS(S);

}
} } }

use the axioms of knowledge to construct a valid set of
knowledge accessibility relations over the new situations

}

Table 3: Construction of a model



that the new model still satisfies the physical theory. This
follows from condition (4) on the theoryT ; since there can
exist arbitrarily many communicative acts in any situation,
the addition of a bunch more, in the form of new “inform”
acts, cannot be detected by the first-order theoryT .

The full details of the proof can be found in an appendix
to this paper, at the URL
http://cs.nyu.edu/faculty/davise/kr04-appendix.ps and .pdf.

It is possible to strengthen theorem 1 to add toU :

• Any specification of knowledge and ignorance at time 0,
subject to a few conditions relating these toT (e.g. that
these specifications andT cannot require a incompatible
numbers of agents);

• Axioms specifying that specified physical actions or situ-
ations cause an agent to gain knowledge.

However, the correct statement of the theorem becomes
complex. Again, see the appendix.

Related Work
The theory presented here was originally developed as part
of a larger theory of multi-agent planning (Davis and Mor-
genstern, 2004). That theory includes requests as speech
acts as well as informative speech acts. However, our analy-
sis of informative acts there was not as deep or as extensive
in scope.

As far as we know, this is the first attempt to character-
ize the content of communication as a first-order property of
possible worlds. Morgenstern (1988) develops a theory in
which the content of communication is a string of charac-
ters. A number of BDI models incorporate various types of
communication. The general BDI model was first proposed
by Cohen and Perrault (1979); within that model, they for-
malized illocutionary acts such as “Request” and “Inform”
and perlocutionary acts such as “Convince” using a STRIPS-
like representation of preconditions and effects on the men-
tal states of the speaker and hearer. Cohen and Levesque
(1990) extend and generalize this work using an full modal
logic of time and propositional attitudes. Here, speech acts
aredefinedin terms of their effects; a request, for example,
is any sequence of actions that achieves the specified effect
in the mental state of the hearer.

Update logic (e.g. Plaza 1989; van Benthem 2003) com-
bines dynamic logic with epistemic logic, introducing the
dynamic operator[A!]φ, meaning “φ holds afterA has been
truthfully announced.”. The properties of this logic have
been extensively studied. Baltag, Moss, and Solecki (2002)
extend this logic to allow communication to a subset of
agents, and to allow “suspicious” agents. Colombetti (1999)
proposes atimelessmodal language of communication, to
deal with the interaction of intention and knowledge in com-
munication. Parikh and Ramanujam (2003) present a theory
of messagesin which the meaning of a message is inter-
preted relative to a protocol.

There is a large literature on the applications of modal
logics of knowledge to a multi-agent systems. For exam-
ple, Sadek et al. (1997) present a first-order theory with two
modal operators Bi(φ) and Ii(φ) meaning “Agenti believes

thatφ” and “Agent i intends thatφ” respectively. An infer-
ence engine has been developed for this theory, and there is
an application to automated telephone dialogue that uses the
inference engine to choose appropriate responses to requests
for information. However, the temporal language associated
with this theory is both limited and awkward; it seems un-
likely that the theory could be applied to problems involving
multi-step planning. (The dialogue application requires only
an immediate response to a query.)

The multi-agent communication languages KQML (Finin
et al., 1993) and FIPA (FIPA, 2001) provide rich sets of
communication “performatives”. KQML was never tightly
defined (Woolridge 2002.) FIPA has a formal semantics de-
fined in terms of the theory of (Sadek et al. 1997) discussed
above. However, the content of messages is unconstrained;
thus, the semantics of the representation is not inherently
connected with the semantics of the content, as in our the-
ory.

Other modal theories of communication, mostly proposi-
tional rather than first-order, are discussed in (Wooldridge
and Lomuscio, 2000; Lomuscio and Ryan, 2000; Rao,
1995).

Conclusions
We have developed a theory of communications which al-
lows the content of an informative act to include quantifiers
and logical operators and to refer to physical states, events
including other informative acts, and states of knowledge;
all these in the past, present, or possible futures. We have
proven that this theory is consistent, and compatible with a
wide range of physical theories. We have examined how
the theory avoids two potential paradoxes, and discussed
how these paradoxes may pose a danger when these theories
are extended. Elsewhere (Davis and Morgenstern, 2004) we
have shown that the theory can be integrated with a similarly
expressive theory of multi-agent planning.

The most important problems to be addressed next are:

• Replacing the explicit manipulation of possible worlds
and knowledge accessibility relations with some more
natural representation, such as modal operators.

• Continuing our work on integrating this theory of com-
munication with a theory of planning.

• Extending the theory to allow continuous time line.

• Integrating a theory of locutionary acts (Morgenstern,
1988).
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