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Chapter 1
Physical reasoning

Ernest Davis

An intelligent creature or automaton that is set in a compiegontrolled world will be
able to act more effectively and flexibly if it understands physical laws that govern its
surroundings and their relation to its own actions and th®rs of other agents. In this
chapter we discuss work by KR researchers that tries tosepteommonsense knowledge
and carry out commonsense reasoning over some basic plgsinains.

There is, of course, a vast body of computer science andtgiiewomputing which
deals in one way or another with physical phenomena; almbef this lies outside the
scope of KR research and hence of this chapter. Even withith&te are many types of
physical reasoning that are excluded here. For instanee tfomated visual recognition of
a sceneis, in a sense, a type of physical reasoning. Imageafion is a physical process;
the problem in vision is to infer plausible characteristi€¢s scene given an image of it.
Why is this not considered a problem for KR physical reasghirMainly because the
physics involved is too specialized. A single, quite comppaysical process, and a single
type of inference about the process are at issue; and theutatigmal techniques to be
applied are highly tuned to that process and that inferendehardly generalize to any
other kind of problent.

At the other end of the spectrum, most of the physical thedhat appear in the KR
literature, such as the STRIPS representations of actwesoo crude and narrow in scope
to be of any interest as a physical theory. For instance, ldssic blocks world theory
applies only to rectangular blocks piled in strict stackd amanipulators constrained to
moving a single block from one top of a stack to another; meeedt does not characterize
the positions or motions of the block or manipulator whiléngemoved. The theory is
therefore not even a useful start toward a general reatisiory of blocks of general shape
in general positions being moved by an actual manipulator.

1in principle, high-level physical reasoning could entetoinisual recognition, either by providing con-
straints or measures of likelihood for possible scenes@4bly relating physical conditions of the image forma-
tion process to qualities of the image — e.g. if the lens cdpfioon, the image will be black. In practice, the
former has been rarely attempted in vision research, anidttiee, as far as | know, has never been attempted.
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The most important difference between KR physical reagpaird scientific comput-
ing is that, whereas scientific computing almost always atrachieving a high degree of
numerical accuracy, KR is almost always content to achieseg qualitative description.
In many cases, predicting qualitative behavior with a higgreée of certainty depends on
predicting numerical values with a high degree of accuraceg- will the car fall off
the cliff, or stop short? In such cases, qualitative reaspniecessarily gives ambiguous
results; either the car will stop short and remain intactit ovill fall over the edge and
will crash and possibly explode. The quest for numericabigacy means that most scien-
tific computations involve a fine-grained division of timegpace or both (except in the
special cases of problems that have an exact symbolic @ojutBy contrast, KR physi-
cal reasoning almost always divides space, time, or spaeeiito physically significant
intervals/regions/histories bounded by significant es#amiundaries.

KR also differs from scientific computing in that it oftenextipts to:

e Incorporate a theory of action.
e Use knowledge for inference in different directions.
e Generate explanations in addition to answers.

e Address everyday domains at the human scale, rather dontaihsre esoteric,
highly specialized, very small or very large,

e Use theories that are psychological plausible but not rsaciy scientifically cor-
rect.

e Use explicit theories of causality.

o Study explicitly the interaction between alternative ttie@at different levels of ab-
straction. Scientific computation uses many theories tdréifit levels of abstraction,
but the problem of choosing the theory appropriate to a Sitnar of integrating
multiple theories in solving a problem is generally left tbwaman understander (or
hard-wired into code).

As contrasted with thad hocphysical theories used in most planning and temporal
reasoning, KR work in physical reasoning is distinguishgd b

e Generality. The attempt to deal with all or nearly all positonfigurations within a
given domain. E.g. dealing with arbitrary configurationblufcks of arbitrary shape
rather than with stacks of rectangular blocks.

e Continuous time and continuous change over time.
e Geometry and continuous change over space.

Of course, the dividing lines between KR physical reasomingad hocKR theories
at one end and conventional scientific computing at the a¢heot a sharp one; indeed, a
very important problem for KR is how to integrate all thesgetther.

KR physical reasoning generally involves two importantrisrof non-monotonic rea-
soning. The first is a closed-world assumption, that all the&ties that will influence a
physical system are known or easily determined. This assamig made both at the level



Ernest Davis 3

of theory, that the domain theory accounts for all relevgpés of events, processes, and
so on; and at the level of the specific problem, that the prolsatement accounts for all
the individual objects, actions, and so on. The second ideatlization assumption, that a
particular idealization can be safely used. Again this ¢treebe at the level of the choice
of theory, such as assuming that the objects in a problemeamdolelled as rigid, or at the
level of problem description, such as taking a block to bietbtrrectangular. Ultimately,

it must be expected that KR physical reasoning will have tal déth combining degrees
of certainty, and thus require probabilistic or some simfitem of reasoning, but little or
no such work has yet been done.

Research in KR physical reasoning — which, for the remaiondi#tis chapter we will
call simply “physical reasoning” — can largely be divideddirfiour categories:

Qualitative calculus. The development of representations and inference tecesiqu
for numeric quantities and functions whose value and latare specified qualitatively.
These calculi are the subject of chapter 9 of this handbodkaae therefore not further
discussed here.

Architecture. The development of general frameworks which support theersiant
of physical theories and the description of specific prolslemd scenarios. Section 1.1
describes the component model and the process model. Algasg theories are presented
in chapter 9, so our description here is brief and focusset®mntology used in these
architectures.

Domain theories.The analysis of particular physical domains. Section 1stdbes
kinematic and dynamic theories of solid objects and therthebliquids.

Multiple models and levels of abstractiony model of a physical situation used in a
reasoning task will include some features of the situatimhabstract away others. Thus, a
single situation may have many different models, which \arhe features and the detail
they include. For instance, depending on the reasoning itasiay be suitable to model
a soccer ball as a point object, a perfect sphere, or an iaegphere; a rigid object or
an elastic object; an object of uniform material, a unifodosed rubber shell around an
interior of air, or a rubber shell with an inflation hole arouan interior of air. Moreover,
a reasoner may use more than one of these models in the cdarsagle reasoning task.
The issues of choosing an appropriate model and combinirtgsare therefore critical
aspects of physical reasoning. These issues are discussection 1.3.

We conclude in section 1.4 with a historical and bibliogriaphsurvey; here we will
mention some further work in the area that falls outside theva categories.

Terminological comment: In this chapteflaentis an entity whose value may change
as a function of time. For instance, the fluent “Tempera@id( represents the tempera-
ture of object O1 as function of time; the fluent “Place(O Epresents the region occupied
by object O1 as a function of time; the Boolean fluent “On(OB)Orepresents the func-
tion of time which is TRUE at times when object OA is on OB and_Bk at other times.
A parameteris a fluent whose value is in a numeric-valued space, suchngsetature.
Standard mathematical numerical and geometric functiomgx@tended to fluents in the
obvious way; for instance, if andg are parameters, theh+ g denotes the parameter
whose value at any timieis the sum of the values gfandg att.
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1.1 Architectures

An architecturefor physical reasoning is a representational schema; shétis a struc-
ture that defines a high-level ontology and a basic set ofioals and that supports the
representation of various general domains and of specificl@ms, and the carrying out
of particular types of inferences over those represemstidhus, it is roughly analogous
to the STRIPS or PDDL representation for planning. The bsisthdished and most ex-
tensively studied architectures for physical reasoniregthe component model and the
process model; since these have been already consider&aytec 9, our treatment of
them here is brief and focusses on their ontologies ratlaer dim reasoning methods.

1.1.1 Component Analysis

Many complex systems are designed and can be analyzed ad adixiguration of stan-
dardcomponents.

A componentis an atomic entity with a numbempairts,Each port has associated with
it a number ofparameterswith numerical values. The component imposes constraints
on the values of the parameters over time. These constraimgemerally either algebraic
constraints over the values of the parameters at a given tmdifferential equations,
relating the derivatives of the parameters at a given tintbdéo values. In the component
model, these constraints comprise the entire physicalachenistics of the component;
aside from the constraints, the component is a black box.

For example, a resistor has two postandb. Each portp has two parameters: the
inflowing current InCurrengf) and the voltage Voltagg). A resistorr is characterized by
two equations:

InCurrentg@) = —InCurrentp) and
\oltageb)—\Voltage@) = resistance() - InCurrentf).

A capacitorc has the same types of ports and parameters and is charadtiyithe equa-
tions

InCurrentg@) = —InCurrentp) and
InCurrentf) = Capacitancef - Derivative(\Voltagek)—\Voltageg))

A nodeis a collection of ports connected together. The node impasmnstraint on the
parameters of the ports determined by the domain theoryinBtance, in the electronics
domain, if ports; . . . p;, are connected at a node, then that creates the constraints

InCurrentf,) + ...+ InCurrentp,) = 0 and
\oltagef;) = Voltagef-) = ... \oltagepy).

A systems defined by a collection of components, and a partition efrthorts into
nodes. The structure of connections and the componentathagtics are fixed over time;
what varies over time are the values of the parameters. Tt senstraints generated by
the components and by the nodes determines the behaviar system over time.

Electronic systems are the archetypal and best example ofmaid that can be ana-
lyzed using the component model. The model has also beeredplhydraulic devices,
heat transfer systems, and mechanical systems of cerfss.ty
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Actions can be incorporated into the component architediyrmodelling an agent as
an exogenous signal. That is, an agent is modelled as a canpfon which the values
of the parameters are not determined by the theory and thaimder of the system, but
rather can be “chosen”. For example, in the electronics dloraa agent could be a voltage
source that can choose a waveform to output; the waveforhobses is its action.

Typical reasoning tasks carried out over component modelsdle:

e Static evaluationlf all the constraints are algebraic, then determine thie ¢ta the
set of possible states) of the system.

¢ Initial value problem. If the constraints include differential equations, thetede
mine the progress of the system following some starting itimmd

¢ Signal responseDetermine the output of a system in response to a specifiedlsig
at some input.

e Comparative static evaluatiorDetermine the effect of changing some component
characteristic on the static state of the system.

e Comparative dynamic evaluatioDetermine the effect of changing some compo-
nent characteristic on the dynamic progress of the system.

The best known program using the component model was the EXDN program
of DeKleer and Brown [17]. ENVISION used the sign calculustdve qualitatively the
initial value problem and the comparative static evaluagiooblem. ENVISION also pro-
posed a model of causality, in which an change to some exoggarameter in the system
causes changes to other parameters by propagating thrioeigietwork, in a manner that
has a sequence, though no measurable time duration.

1.1.2 Process Modd

In the process model [22], change is brought abouplmcessesevents actions,and
indirect influencedetween parameters.

A processds active over a time interval. It is characterized by pretitons and effects.
The preconditions must hold for the process to begin. any mhest continue to hold
throughout the interval in which the process is active. # fiieconditions cease to hold,
then the process stops. The effects of a processigget influencesn numeric fluents. A
direct influence is a contribution to the derivative of thefiyy the derivative of the fluent
is the sum of the influences of all the processes that act on it.

For example, consider the process of atdiling a bucketb. The preconditions are
that the tap is open, the bucket is under the tap, and the bisaket yet full. The process
directly influences the fluent “volume of water in the buckéitiat is, the derivative of the
volume of water is a sum of terms, one of which is the flow-rdtie tapt. For example,
if there are several taps fillingand also a leak from the bottom &fthen the derivative of
the volume of water i is the sum of the flow-rates of the taps minus the flow-rate ®f th
leak.

An actiontakes place at an instant. It is characterized by precamdifiwhich must
hold for the action to be feasible, and effects, which areatiinuous changes in the value
of a discrete or numeric fluent. For example, turning on aga@miaction. The precondition
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is that the agentis next to the tap and that the tap is clodeeleffect is that the tap is open.
If the preconditions of an action are satisfied, then an algastthe choice of whether or
not he wishes to perform the action.

An eventis similar to an action except that it is not a matter of chpité a natural
discontinuous change that must take place if the condiio@snet. For instance, suppose
that you have a weak bucket whose bottom will fall out whenttheket is half full. Then
the event “Bottom ofB falls out” has the precondition that the bucket is at leatitfindi
and has the effect that what was formerly a bucket is now abdisected cylinder and a
pan.

Finally, parametep is anindirect influenceon parametey if there is a natural con-
straint relating their two values. For example, the volurilgaid in a bucket is an indirect
influence on the height of liquid in the bucket. It is assuntet the system of influences
on system parameters can be structured in such a way that pa@yameter is both directly
and indirectly influenced; (b) the relatiop fndirectly influenceg” is acyclic.

The QP program [22] uses a process model to carry out qusditatojection. Condi-
tions are conjunctions of discrete values, such as “Thestapén” and inequalities, either
between one parameter and another, or between a paramétarcamstant “landmark”
value, such as “The level of water in the bucket is less tharddpth of the bucket.” In-
fluences are specified in terms of their sign; e.g. the prazfessap filling a bucket has a
positive influence on the volume of water in the bucket, whike process of leaking has
a negative influence. Using this information QP can genematenvisionment graph”, a
transition graph between states of the system. Any posiséilavior of the system corre-
sponds to a path through the envisionment graph. (The ceadgres not in general hold;
there are often paths through the envisionment graph thabtoorrespond to physically
possible behaviors.)

Both the component model and qualitative process theorgiacessed at much greater
length in chapter 9.

1.2 Domaintheories

The person on the street is familiar with hundreds, perhapssands, of physical cate-
gories, qualities, and phenomena; an expert (scientisteagineer) knows perhaps tens
or hundreds of thousands; collective scientific knowledgistimclude many millions. It
seems likely that the largest part of achieving general @agphysical reasoning, at either
the commonsense or the expert level, will be the representatall the different concepts
involved To date very few physical domains — certainly fewrean a dozen — has been
studied in any depth in the KR literature. In this section,wit look at theories of rigid
solid objects and theories of liquids.

1.2.1 Rigid Object Kinematics

Solid objects enter into almost all scenarios that phys&adoning in a terrestrial, human-
scale environment deals with. More specifically, in a sigaitiit fraction of physical rea-
soning, only solid objects are significant, only the motiohshe objects are significant,
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and the objects can be idealized as rigid (constant sape).

The complete theory of rigid object dynamics is discusseskition 1.2.2. First, how-
ever, we will discussed thidnematictheory of rigid solid objects. The kinematic theory
is much less informative than the dynamic theory but is nosless sufficient in many im-
portant applications, and in fact has been applied much mensively and successfully.

The kinematic theory asserts four rules governing the shagenotion of solid objects:

e The shape of an object is a closed, regular, connected région

e The shape of an object is constant over time.

e The position of an object is a continuous function of time.

e At any given time, the regions occupied by two distinct otgeto not overlap.

In the kinematic theory, therefore, the only significantdinvariant characteristic of
an object is its shape, and its only significant time-varyéhgracteristic is its position.
The shape can be characterized in terms of the spatial regicupied by the object in
some standard position. The position of objeet timet can be characterized in terms of
a rigid (orthonormal) mapping, characterizing its displaent from its standard position
to its position at (Figure 1.1)* Thus the kinematic theory can be formulated in first-order
logic using the functions Shapghich maps an objeetto the region which is its shape;
Positionp) which maps objeat to the fluent of its position over time; Placg(vhich maps
objecto to the fluent of the region it occupies over time; combinedwititable temporal
and geometric primitives.

Given a set of objects; . . . o, and given the shapes of these objectsyifigurations
a specification of the position of each object. A configuratifeasibleif no two objects
overlap. A configuratior? is attainablefrom configuratiorcl if it is possible to move
the objects fronrl to ¢2 without causing two objects to overlap. Given a set of olsject
and an initial configuratior1 the attainable configuration spacis the set of feasible
configurations attainable froni. Since the position of objects is a continuous function of
time, a configuratior? is attainable fronx1 just if there is a path from1 to ¢2 through
the space of feasible configurations for the objects; thust@inable configuration space
is a path-connected component of the space of feasible cwafigns. For initial-value
problems, in which the shapes of the objects and the initafiguration are given, it
suffices to consider only attainable configurations, sincether configurations can ever
occur.

Indeed, initial value problems with complete shape spetifios can be addressed as
follows: One begins by computing the attainable configoratipace for the system; that

20ne reflection of the cognitive salience of this categoryhis persistent attempt in eighteenth- and
nineteenth-century physics to reduce all physics to mechlaimteractions of small solid objects; e.g. the ki-
netic theory of heat, or Maxwell's mechanical model of eledynamics.

3A closedregion is one that includes its boundary. The decision tosuslesed rather than an open region
is arbitrary, but it simplifies description to specify onetloe other. A closed region iegular if it is equal to the
closure of its interior, and thus is “thick” everywhere ar@kd not have any one or two dimensional pieces.

4A displacement is a composition of a rotation around theimagd a translation. A translation indimen-
sions is characterized by a veciormny pointz is mapped inta: + i. A rotation in two dimensions (relative to
a fixed origin) is characterized by an angle A rotation in three dimensions is characterized by thregesn
there are a number of different systems of angles that carsée for this purpose, such as the Euler angles.
Alternatively, ak-dimensional rotation can be characterized By k orthonormal matrix.
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Shape(O) Displaced frame
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Figure 1.1: Shape, place, and relative position of a rigie¢ctb

is, the connected component of the configuration spaceioimgahe initial configuration.
Having done that, the entire content of the kinematic thdiesyin the statement that the
configuration moves continuously through that space. HuBrtique is particularly effec-
tive if the configuration space is of low dimension; thatlig physical system has few de-
grees of freedom. Significantly, this is often the case witnrmade mechanisms; indeed,
for many mechanisms, such as gear trains, the configurgieeess one-dimensional, or
nearly s& In such cases, it is easy to determine the consequences chmistraint that
the configuration changes continuously. For example, ifcthafiguration space is parti-
tioned into regions, then the continuity constraint me&as the configuration must move
between adjacent regions in the space.

A number of methods for qualitative analysis for kinematystems have been de-
veloped. The most common method [19, 49, 51] starts with textagpe descriptions,
computes the configuration space exactly, divides the corigpn space into significant
regions, and then characterizes qualitative propertiéggeoystem from the connectivity
of these regions. Kim [39] describes a system for qualigatdasoning about linkages, an-
alyzing the relation between the directions between the efithe arms (discretized into
quadrants), the angles between the arms (likewise), agdatiies between the lengths of
the arms.

Atheory of action can be integrated into a kinematic thegrgecifying that specified
objects arenanipulableand that their motions are thus chosen by the agent. Indttiag,

a standard projection problem consists of a specificatidgheo§hapes and initial positions
of all the objects and the motions of the manipulable objelite kinematic theory asserts

5Man-made mechanisms tend to rely on kinematic constraihsnvpossible, because they are extremely
robust. A large external force or impact is generally reeglito make solid objects significantly bend or break,
and there is no way to cause two solid objects to spatiallylape
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that the other objects will move through the configuratioacgpalong a path that accom-
modates the specified motions of the manipulable objedfsert is such a path; if there is
not, then the specified motions are infeasible. The mostdiffaspect of formulating this
theory is asserting that an action is feasible unless isléadn infeasible configuration.
In some cases, it is convenient to abstract a kinematicrsysting a simplified shape
description together with a set of imposed constraints. éxample mechanical systems
often contain parts such as gears that are pinned by a aifginléo a fixed frame so that
they can rotate around the pin. It is common to abstract awdly the frame and the pin,
and to view the gear as subject to an abstract constrainttifiatces the condition that the
center of the gear remains fixed (figure 1.2), (e.g. Faltitg$gnd Joskowicz [33] use this
device for gears rotating on a frame, and Kim [39] uses théogoas device for linkages.)

1.2.2 Rigid Object Dynamics

The kinematic theory of solid objects, though often veryfukes in general much too

weakly constraining for commonsense reasoning.dymamicheory of rigid solid objects

describes the motions of solid objects in all circumstaricaeshich they don’t break or

significantly bend. Thus, for example, the fact that a bookaies on a bookshelf rather
than floating off into the air, or that a chair will be stableanhstanding on four legs but
not when standing on one leg lie beyond the scope of the kitiethaory; they require at

least part of the dynamic theory.

It has been known since the early eighteenth century thahtbeaction of rigid solid
objects is characterized by the following rules: the kingayarinciples listed above; New-
ton’s second and third laws; the existence of a normal foeteséen objects at a contact
point; static and sliding Coulomb friction between objeatsa contact point; and a the-
ory of instantaneous momentum transfer when objects eolkar terrestrial problems at
the human scale, these must be supplemented by the exisiEaceniform downward
gravitational force; the existence of fixed objects (sucthagyround) which never move;
the existence of manipulators which can be subjected to pleaforce at the will of an
agent; and a closed world assumption that the only typesroé$athat act on objects are
those enumerated in this theory.

Somewhat surprisingly, there is still no complete, acagfpdemulation of this theory
in the scientific literature, particularly the theory of kkgibns. Even in the simple case
of two objects colliding at a point, there is debate over theppr theory, and there is
no standard theory to use in either the case of two objectttlide along a surface or
a curve, or the case of collisions involving multiple obgesimultaneously. Stewart [57]
reviews the state of the art in the current theory.

In any case, the scientific theory outlined above is not weifed to the needs of rea-
soning in ordinary applications. It involves determiningites, such as forces, which are
only occasionally of interestin commonsense reasonirgjitarharacterizes behavior over
differential time, whereas the reasoner is generally coregbwith behavior over extended
time. For example, if you put a book on a shelf, you are not lisgancerned with the
forces between the book, the shelf, and the other books; gardy concerned to predict

5The desiderata for such a theory are that it correspondspteriexent; that it satisfies global constraints,
such as conservation of energy, momentum, and angular miomethat it yields a solution for all well-posed
initial-value problems; that numerical calculations cenge; and that it can be justified in terms of a more detailed
elastic model of solid objects.



10 1. Physical reasoning

VAR

Concrete: Gears pinned to a frame.

Abstraction: 2D Gears constrained to rotate
around a fixed center.

Figure 1.2: Gears and their abstraction
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that the book will stay on the shelf. Similarly, if you carnjaose collection of objects
in a closed box from one place to another, you are not usuatligerned with the forces
between the objects during the journey, or even with how thjeats shift their relative
positions inside the box. Generally, it suffices to detemiimat the objects remain inside
the box throughout the journey.

Though a few Al programs have addressed the general probiesolid object dy-
namics by doing full numerical simulation (e.g. [28]) modtpgrogram have dealt with
restricted special cases:

e Point objects.The NEWTON program [16] performed qualitative predictidrthoe
behavior of a point object on a track. The shape of the track etearacterized in
terms of the signs of its slope and its curvature. This waditsieapplication of the
sign calculus in Al physical reasoning. The FROB progran} §ilarly performed
qualitative predication of the behaviors of a collectiorpofnt objects moving in a
world with fixed barriers, and one vertical and one horizbdit@mension.

e Statics.An important category of physical prediction is to prediwtan object will
remain unchanged: a book will remain on a shelf, a buildingratge will continue
to stand. (Note the contrast here with the usual attitudeRrthét this can simply be
assumed by default.) The equations of motion and their aisafyre of course very
much simplified if all that is required is to distinguish betw situations that have a
static solution and those that do not. Fahlman [20] impleetta static analysis of
configurations in the blocks world.

e Quasi-statics.In a quasi-static problem, objects all move so slowly thatrtimo-
mentum is negligible as compared to the frictive forcesnctin them. Hence ob-
jects only move while being pushed, directly or indirechy, an exogenous force
such as a manipulator. The standard scenario for quagi-gtatblems is a col-
lection of flat objects on a horizontal surface being pushedred, though other
scenarios are possible (e.g. a collection of three-dino@asbbjects in a highly vis-
cous liquid.) Exact quasi-static predictions were cardatlby Mason [44] to carry
out “sensorless manipulation”; i.e. finding ways to manewlgects to a desired
target position without any sensory feedback describiegitbsitions of the objects.
Qualitative quasi-static predictions were carried out byblas, Nielsen, and Falt-
ings [23] and Stahovich, R. Davis, and Shrobe [56] usingitptale representation
of configuration space and of the driving forces. If the magi@f the objects are
highly constrained, then the quasi-static theory is oftguialent to just the kine-
matic theory plus the default assumption that objects ordyerwhen necessary.

As mentioned above, a theory of action can be integratedidimamic theory of rigid
objects by designating particular objects as manipulattiish are subject to exogenous
forces chosen by the agent. Thus, one visualizes the rdiatd as a rigid object which,
at the robot’'s command, fires invisible rockets to exert Bjecforces on it. The advan-
tage of this model is that it gives a well-formed boundaryljea; a problem consists of
a specification of the initial state plus the forces on the imdators always has a solu-
tion [57]. The disadvantage is that this is not usually a veatural way to think about a
manipulator. The natural way to think about a manipulatwleied, depends on the cir-
cumstance: often, it is just a geometric specification oftim¢ion of the manipulator, but
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Figure 1.3: Nail in a board

sometimes it is a force exerted by a stationary manipulagairst an object, sometimes, it
is combination of a motion of the manipulator together wifloi@e exerted on an external
object, and sometimes, as in compliant motion, it is a cdstrategy where the force and
motion of the manipulator depends on feedback. No genegatlevel language suitable
for commonsense reasoning has been found for this.

Another difficulty in the theory of the dynamic theory of sbibjects is that the theory
is sporadically underdetermined. In most cases, a spdaificaf the initial positions and
velocities of all the objects and their material charastass is sufficient to determine their
behavior, but there are exceptions, and these exceptionsecdifficult to deal with. The
most important category of exceptions is configuration imclwlan object is jammed. For
instance, consider a nail in a hole in a board, pointing ugu 1.3.) Will the nail fall
out of the hole? It depends on whether the nail was placedeimtte or whether it was
driven into the hole. In the latter case, there are largemabforces on the nail from
the board and a corresponding large frictional force h@dire nail in place. Thus, the
boundary conditions in this problem include a specificatibthe forces, whereas in most
cases forces generally determined by the positions anditiek This makes it difficult to
state what constitutes an adequate representation ofaisitu

In some cases, considerations of mechanical energy givenfavwconstraints. For
instance de Kleer's NEWTON [16] uses an energy-based @lonl to predict whether
a roller-coaster on a track will go around a loop-the-lodiglesback, or fall off. Davis
[9] shows how energy considerations can be used to constnuatgument that a marble
dropped inside a funnel will come out the bottom. (It can’tm@out the top, because of
conservation of energy; it can't attain a stable restingtjprsinside, because of the slope
of the sides; it can’t remain inside forever moving arouretduse the kinetic energy will
dissipate. Hence, the only possibility is that it will comet the bottom.)

KR work to date has barely scratched the surface of a commeasgnderstanding
of this domain. Most commonsense inferences involvingdsolijects cannot even be
represented in current KR theories, much less implemented.

1.2.3 Liquids

Liquids are in one way simpler than solid objects; they dbate a fixed shape that has
to be represented and reasoned about. Thus, for exampdepfien easier to determine
whether a liquid will flow out of a tilted cup than whether arjexdi will fall out of a tilted
box. If you are tilting a cup of liquid, then the liquid willatt to flow over the side of the
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cup just when, if there were no such flow, the volume of thediesif the cup below the
opening would be less than the volume of the liquid. No suctpk rule can be stated for
tipping solid objects out of boxes.

On the whole, however, liquids are much more difficult to oeaabout than solids, be-
cause they are notindividuated into objects. Rather, &systith liquids can be character-
ized in three complementary ways [32]. The first method isefiné fluents Volumé(r),
the volume of liquidl in regionr, and Flow(, b), the flow out liquid/ through directed
surfaceb. (The regions involved need not be fixed regions in spacey, ¢ha be fluents
whose value at an instant is a region, such as “the inside af'a which moves if the pail
moves.)

The second method is to define a fluent Placaich denotes the region occupied
by a “chunk”c of liquid. Note that Placef may be a disconnected region. A variant on
the second method is to fix a starting reference tieto identify the region placé(, 7g)
occupied by liquidL time Tj, and then to characterize the evolution of the liquid oveeti
in terms of a fluent LiquidTrajectoryy, L). For any pointX eplace(, Tp), liquid L, and
time T', the value of liquidTrajectonyX, L) at T is the location afl" of the particle ofL
that was atX atTj

A third approach is to treat the liquid as a collection of neolles or small particles
[7, 29, 54], whose positions and velocities can be trackab€ire are few enough) or char-
acterized. The chief difficulty here is to characterizatios interaction between particles
in such a way as to give the characteristic liquid behavior.

If we exclude from consideration both mixtures of liquidsdgrhase changes such
as evaporation, and we assume that all liquids are incorsiptesthen we can state the
following three kinematic properties:

1. Aliquid moves continuously.
2. Aliquid does not overlap with a solid, nor do two liquidseokap.
3. A quantity of liquid maintains a constant volume.

In a region-based representation. constraints (1) andb3)eaare achieved by assert-
ing the divergence theorem that Derivative(Voluine)) = —Flow(l,Boundaryf)) and that
the flow out through boundatyis the negative of the flow throughwith the reversed ori-
entation. In a chunk-based representation, these cantsteaie achieved by asserting that
Place¢) is a continuous function of time for every chunland that Volume(Place)) is
constant over time.

However, unlike the solid case, the kinematic theory ofitigus not by itself strong
enough to analyze many interesting physical situationspager dynamic theory must be
used. The dynamic theory of liquids is much less well undedthan the dynamic theory
of solid objects, both in scientific and in commonsense tlegolA few special cases are
worth noting:

Statics, bulk liquid:If we ignore the phenomenon of a liquid wetting a solid sugfac
then we may state the following rule: If a body of liquid ocagpa connected region
R and is at rest, then the boundary Bfmust meet solid objects everywhere except at
a collection of horizontal upper surfaces of the liquid. tfal such surfaces the liquid
meets the open air, then all these surfaces are at the sagte.h&itherwise, if some of
the surfaces meet bodies of gas that are themselves entlpsetids, then the difference
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The heights in A and B are equal because both meet the open air.
The pressure of the gas at the top of C is greater than atmasphessure,
by an amount proportional to the difference in heights.

Figure 1.4: Liquid statics

in heights among the surfaces is proportional to the diffeeein pressure in the bodies
of gas involved (Figure 1.4.) (Note that in such cases, ieisessary to represent the gas
explicitly, whereas this is not necessary if all bodies of gee connected to the outside
air.) In particular, if a volumé/ of liquid is poured into a open solid container, then it will
reach a height such that the volume of the interior of the container betoiw equal tol/.

Quasi-statics: If the solid objects that are in contact with the liquid, andhwthe
contained gases that meet the liquid, are all moving slatliBn it is sometimes possible
for the liquid to flow in such a way that the above static caxists are maintained. When
this is possible, it generally happens. (It becomes imptessvhen the liquid is poured
out from its container.) In such a case, the above staticcée be used to predict the
trajectory of the regions occupied by the liquids and gad,tae flow of the liquid, given
the motion of the solids.

Kim [39] describes a system that carries out qualitativeligteons of the motions of
liquids in response to the motions of pistons. She also dedin her model a special case
of solids being acted on by liquids, namely the opening aasieg of one-way valves.

Hayes [32] identified 15 disjoint and exhaustive physicalest of liquids (Table 1.1).
Any quantity of liquid at any time can be divided into partack of which is in one of
these states. Any quantity of liquid, considered over aerval of time, can be divided
into histories— that is, regions of space-time — each of which is in a sintdées Hayes
proposed that a qualitative physics of liquids could be tgped in terms of axioms de-
scribing how different types of histories meet one anotheraeet histories of solid object
trajectories, on both spatial and temporal faces; and harbegrk on such an axiomati-
zation. For example, the bottom face of a “falling” historyish have a downward flow
through it. All but the top, horizontal face of a “pool” hisfomust meet the outer face of
solid objects. This axiomatic work was never completed yeneextended beyond Hayes’
original article) for a number of reasons, chiefly becauseedul theory would require a
much stronger spatial language than Hayes originally emesi.
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Lazy still Lazy moving | Energetic moving
Bulk on surface| Wet surface | Flowing down | Waves lapping
a surface a shore (?)
e.g. asloping | jet hitting
roof a surface (?)
Bulk in space | Contained Flowing along | Pumped along
in container a channel pipeline
e.g. river
Bulk Falling column | Waterspout,
unsupported of liquid fountain,
e.g. pouring jet from hose
from a jug
Divided Dew, drops on
on surface a surface
Divided Mist filling Mist rolling steam or mist
in space a valley down a blown along
valley atube
Divided Mist, cloud Rain, shower | spray, splash
unsupported driving rain

15

Table 1.1: The possible states of liquid (from [32]).

1.3 Abstraction and Multiple Models

A characteristic of physical reasoning, at both the comranss and the expertlevel, is the
existence of many different theories for a given domain,raady different ways and levels
of detail for describing a given situation, and many différabstraction techniques for
simplifying problem statements and problem solving. A oees faced with a real-world
problem must almost always choose among these in formglataproblem; infrequently,
he must apply different, mutually inconsistent, theoreslifferent parts of the problem-
solving process. Some interesting, but very preliminaydies have been made of the
ways in which appropriate theories/descriptions can beseha@nd integrated in problem
solving.

Some of the more important categories of abstraction ireclud

Alternative physical theoriesTwo physical theorieg/ and V of the same physical
domain may be related in that

¢ [/ adds additional constraints ¥ that is,V is logically a subtheory d¥. E.g. the
relation between dynamic and the kinematic theory of sdfighcts. I/ is called a
“theorem increasing” [30] or “model decreasing” [48] exd@m of V.

¢ [/ adds additional entities td. E.g. the relation between dynamic theories with and
without friction.

e !/ is a limiting case ofY. E.g. the theory of rigid solid objects corresponds to the
theory of elastic solid objects in the limit as the elasyigbes to zero. Classical
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mechanics corresponds to relativistic mechanics in thé s the speed of light
goes to infinity.

e U/ adds more mathematical precision¥o E.g. the relation between a theory in
which terrestrial gravitation is taken as constant and oneliich it is taken as
diminishing with elevation.

e U is a discretized form o¥ obtained by selecting key states¥Wfand treating the
transitions between these states as atomic actions orse\egt the relation between
the representation of the blocks world in STRIPS and itsesgmtation in solid
object dynamics.

e U/ is a smoothed form o¥ in which elements or events that are discret®’iare
replaced by a continuous function governed by a differéegmation. E.g. the
relation between atomic and continuous models of matter;ude of continuous
models of animal population.

e U andV conceptualize the domain in radically different ways. Ethe relation
between wave and patrticle theories.

It should not be taken for granted that simplifying the forithe theory will make it easier
to solve the problem at hand. For instance, problems ircstatihere objects are in a stable
position and will stand still, are often easier than the sanoblem in kinematics, where
one has to consider all possible motions of the objects thatad make them overlap.
Similarly, a theory with friction is simpler to use than a éng without friction in the
common case where the friction serves to hold the objectdiked position.

Ignoring small quantitiesfor instance, if a problem involving solid objects takespla
over regions at different temperatures, it is often reaBtmntm ignore thermal expansion
and contraction, though occasionally, of course, theseréieal. Relativistic corrections
are ignored in almost all problems that do not involve speensparable to the speed of
light.

Dimension ReductionDimensions that are irrelevant or along which there iselittl
change may be projected out of a problem. For instance, dgmothat involves little
change over time may be treated as an atemporal problem. tAgondnvolving moving
objects on a surface may be treated as a two dimensionalgmobA problem involving
moving objects on a track may be treated as a one-dimengiooblem. Alternatively,
particular entities in the problem may be treated as posggB=ver dimensions than they
actually do. For instance, a ball may be abstracted as a pljatt; a rod in a linkage may
be abstracted as a line segment.

Finally, dimension reduction may be carried out in abstspeices. Consider for exam-
ple, a train ofn gears that do not mesh tightly. The coordinated motion oftee's, where
they all rotate in sync, constitutes a path through confiipmapace. More precisely, there
is one path through configuration space corresponding todbe where the gear train is
moving in one direction, and the front edges of the teeth@kth gear meet the back edge
of the teeth of thé: + 1st; and there is a slightly different path through configioraspace
corresponding to the case where the gear train is movingeiopiposite direction, and the
back edges of the teeth of thig¢h gear meet the front edge of tike+ 1st. In between
these two paths, there is a narrévdimensional tube of configurations, corresponding to
the free play of the gears in the small angle range wheretisetin do not meet. For many
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purposes, the radius of the tube can be ignored, and thevsyste be analyzed as if the
configuration space contained only the central path [49].

An extensive survey by Joskowicz and Sacks [36] of the kirtiemaf 2500 mecha-
nisms in a standard encyclopedia of mechanisms [1] fourtdstitae kind of dimensional
reduction is possible for the analysis of most mechanishispinly a minority of mecha-
nisms that require a full three-dimensional represemaifdhe parts involved.

Object coalescenceA collection of objects whose internal relations are fixed ca
sometimes be treated as a single object. For instance, @ d¢ahlbe treated as a single
solid object, rather than reasoning separately about theti@ legs, and the screws as
separate interacting objects. (This abstraction brealsdixactly when the table itself
breaks down.) A fabric can be treated as a single object miagletb rather than as a large
number of interacting threads.

Hierarchical analysis of device# complex mechanism can be analyzed as a hierarchy
of components at different scales and levels of abstracfiararchetypal, though of course
extremely difficult, example is the analysis of an organisrdacomposed into organs,
tissues, and cells, and sub-cells. This kind of analysishess carried out with some
success for electronic systems [58], but it is in generdicdilt, first, because it is hard
to find a systematic language to characterize the funcitynal behavior of high-level
components, and second because in order to achieve efficeistems are often designed
so that high-level modules share sub-parts. The same pnsldeise in the hierarchical
analysis of plans.

Some types of abstraction are easy to carry out computdiiidna difficult to charac-
terize logically. One such is the abstraction mentione@atisn 1.2.1 in which a kinematic
joint is abstracted as a constraint in configuration spaoceafilitationally, such constraints
are easily incorporated into the routines that compute trdiguration space; once the
configuration space has been computed, all subsequentatados are done purely on
the basis of the configuration space and it no longer mattessthe configuration space
was computed. From a logical point of view, things are momaplicated. Are these
constraints reified as entities or stated as axioms? If theyeadfied, then the theory of
kinematics must be rewritten to describe the propertiesohstraints” and to state how
“constraints” enter into the laws of motion. If they are axri® then there is no longer a
clean separation between the problem-specific descripfitime physical system and the
problem-independent physical theory; rather, part of thecdption of the physical sys-
tem consists of physical laws (the constraints) that areggead outside the theory itself.
Moreover, there will have to be meta-logical rules statiftatwconstraint axioms are rea-
sonable; i.e. can actually be implemented in physical systePut it another way: The
abstraction of the joints as constraints is simple only uadgarticular computational ap-
proach: The configuration space is computed from the systsuorightion and all further
calculations are done from the configuration space, witheférring back to the origi-
nal geometry. But a logical representation does not maradgtgarticular computational
technique, and specifically it cannot prohibit a reasonemfcombining results derived
from the configuration space with the original system desiom. This combination will
be difficult if there are aspects of the configuration spaeg #ne not derived from the
original system description.
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1.4 Historical and Bibliographical

The history of research in Al physical reasoning is pun&ddty three major landmarks:
in decreasing order of impact, these are

e The publication of the three major qualitative reasoninggpams — de Kleer and
Brown’s ENVISION [17], Forbus’ QP [22] and Kuipers’ QSIM [#6- in a special
issue ofArtificial Intelligencein 1984. (This was republished as a book a year later
[4].) These were in many respects outgrowths of de Kleer'®WBN program [16],
and Forbus’ FROB [21] which carried out qualitative reasgriior a roller coaster
on a track and for balls bouncing among fixed obstacles réspgc (In both of
these programs the moving objects were modelled as poietts#h) NEWTON was
the first substantial study of commonsense physical reaganithe Al literature.

e The publication of Pat Hayes’ “Naive Physics Manifesto” [&hd “Ontology for
Liquids” [32] in 1978-9. (The latter circulated for yearsaphotocopied working
paper, until finally being published in 1985.)

e The application of configuration space techniques to problm solid object kine-
matics by Faltings [19] and Joskowicz [33] independentl49387.

Most of the work in physical reasoning relates fairly ditg¢d one of these three.

The very large body of research associated with the quaétatasoning programs
ENVISION, QP, and QSIM is surveyed in chapter 9, and it wowdd-&dundant to repeat
that here.

14.1 Logic-based representations

In his 1978 paper, “The Naive Physics Manifesto”, [31] Payékargues the following
points. First, an effective strategy in automating comneoise reasoning is to study the
logical structure of reasoning in various domains prioraiog largely independently of,
considering issues of implementation or application. &dcphysical reasoning will be
a fruitful domain for this kind of research. Third, commonse knowledge of physics
divides naturally into “clusters” of concepts and axiomsd @an effective research strat-
egy will be to axiomatize the clusters separately and thenbioe the axiomatizations.
Fourth, the concept of a “history”, a region in space-timédl, e a powerful tool in ax-
iomatizing physical knowledge. Hayes then initiated h&eaech program with “Ontology
for Liquids” [32], described above in section 1.2.3.

“The Naive Physics Manifesto” has inspired and encouragedseparate parts of the
KR research community in two different ways. One group otasshers has embraced
the endorsement of research into representations at tlealdeyel, though without being
particularly interested in physical reasoning. Anothexugr of researchers has embraced
the interest in physical reasoning, but with no enthusialsoutlogic. Only a rather small
body of work actually attempts to continue Hayes’ progranafrlegical analysis of phys-
ical reasoning.

Schmolze [54] presents an axiomatization for a domain tizudes actions, events,
processes, liquids, solid containers, and faucets. Adiéggiimodelled as a collection of
“granules”.
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Sandewall [53] developed a logical description of a micrdd/of points objects mov-
ing along surfaces. The chief focus of this work was intéggaton-monotonic logic with
a continuous model of time.

Three parallel papers by Lifschitz, Morgenstern, and Shan$42, 46, 55] axiomatize
various aspects of the process of cracking an egg into a bowl.

Bennett et al. [3] present an axiomatization of solid objéaematics built up from
geometrical primitives.

Davis has developed a number of first-order axiomatizafimnghysical domains, and
shown how they can be applied to commonsense inference Amatization of a small
part of solid object dynamics, sufficient to support the iafece that a marble dropped in
a funnel will fall out the bottom is given in [9]. The most sifjoant technical innovation
here is the concept of a “pseudo-object”, a geometric ettty “moves around” with a
rigid object, such as the hole of a doughnut or the center afsnod an object. Chapter
7 of [10] gives preliminary axiomatizations for a number difygical domains, including
liquids. An axiomatization of qualitative process theaygiven in [11]. The main issue
here is to formulate the closed world assumptions correctly

An axiomatization of a kinematic model of one solid objedtitig another is given in
[12]. Two theories are presented. The “object” theory vitlvesprocess of a blade cutting
a target object as involving a continuous change in the sbafiee target until it splits,
when it becomes two objects. The “chunk” theory views theespnocess in terms of the
chunks of solid material contained in the target. (Everyasate region defines a separate
chunk.) A chunk persists until it is penetrated by the bladeshich point it ceases to exist.

Davis’ “Naive Physics Perplex” [15] reconsiders the methlody promoted in Hayes’
“Naive Physics Manifesto”, and advocates a methodologgdasound microworlds rather
than clusters.

14.2 Solid Objects: Kinematics

The idea of configuration space was first developed in robtticharacterize the motions
of a robot [43]. Faltings [19] analyzes in detail the kineitsbf two-dimensional mech-
anisms composed of parts each with one degree of freedoin,asumechanical clocks.
Joskowicz [33] studies the kinematics of a system that hasdiegrees of freedom by
virtue of the interaction of its components. Forbus et aB] arry out a qualitative anal-
ysis of a kinematic system, based on the topology of confiqurapace. Gelsey [27]
discusses the construction of kinematic models of varyegyele of detail from the geo-
metric specification of a physical system and the use of katenmodels in prediction.
Joskowicz and Addanki [34] proposed methods for designiregshape of a kinematic
system given a specification of desired properties of thdigaration space. Joskowicz
and Sacks [36] survey the mechanisms enumerated in a sthadeyclopedia of mech-
anisms and analyzed the complexity of the kinematic arakesiuired. The robustness
of kinematic analysis if it is assumed that shape descriptare only accurate to within a
specified tolerance is discussed in [37] and [13].

1.4.3 Solid Object Dynamics

Simulators for the behavior of solid objects using a full dgmc theory have been devel-
oped in the contexts of computer-aided engineering [59]ai [28]. These carry out a
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exact simulation of behavior given exact geometric speatifins of the objects involved.
Sacks and Joskowicz [52] present an algorithm that effiljiexatrries out dynamic simu-
lation for two-dimensional assemblies using configurasipaces to expedite the problem
of collision detection. WHISPER [26] simulated dynamic beior of two-dimensional
systems of solid objects in a occupancy array representatio

The CLOCK program of Forbus, Nielsen, and Faltings [23] edtl the qualitative
kinematic analysis of [49] with a qualitative represematf forces and motions, thus pro-
ducing a system for qualitative dynamic prediction. Theeystakes as input a scanned
photograph of a mechanical system such as a mechanicalwittkjears, computes the
exact configuration space, simplifies and abstracts thegroation space to a qualitative
representation, and uses the qualitative configuratioceseaconstruct qualitative predic-
tions of behavior. The work of Stahovich, Davis, and Shrdi@ |s similar in spirit to
[23]; it is more restricted in scope but more elegant andesyatic. This program does
gualitative simulation for planar systems of objects, eatwhich moves with one de-
gree of freedom under the quasi-static assumption thandwtia of objects is negligible
as compared to the driving forces and frictive (dissipatfeeces, and that collisions are
inelastic. The input to the program is a representation ®f tft-space”, which gives, for
each pair of interacting objects, a qualitative descriptibthe configuration space of the
feasible (non-overlapping) positions and the contacttipos of the two objects. (The
paper vaguely states that the gqc-space can be computed fronfioamal sketch of the
mechanism, but it is not at all clear how this is to be done.® pbssible qualitative be-
haviors of the mechanism is then predicted in terms of ttajexs through qc-space, using
rules for balancing forces.

144 Abstraction and Multiple Models

The use of multiple models for physical reasoning is progasd2]. General studies of
the use of abstraction in physical reasoning include [18,487 60, 61, 8]. Studies of
abstraction in solid object kinematics include [49, 14].

145 Other

Collins and Forbus [7] describe a program that reasons dippuds qualitatively as col-
lections of small particles. The particles are large enahghthey can be characterized
by thermodynamic properties such as temperature, but smallgh that they remain
undivided. Gardin and Meltzer [29] simulate liquids andngls in terms of interacting
molecules.

Rajagopalan [50] uses a qualitative representation ofeshad motion to predict mag-
netic flux and induced current.

Specialized expert systems for specific reasoning in theiphlysciences date back
to DENDRAL [6], which inferred molecular structure from nsaspectroscopy data. But
these are highly specific to a narrow domain and task, andynardnected to more general
physical reasoning, either in the knowledge or in the medhafdnference used.

An ambitious long-term project, called Project Halo, is enday to encode scientific
knowledge in a knowledge base, the Digital Aristotle [24], Pie first stage of this project
encoded the knowledge in about a chapter’s worth of an inttmty college chemistry
textbook [5]. The project was attempted by three competirgyiedge-engineering teams
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and achieved a fair degree of success; the three systenevadtdbout the mean human
score on questions in the area from the high school AP chgniéstt. The subject matter in
this first stage — balancing chemical equations and comgatiidity of solutions — was
chosen specifically to avoid the issues of spatial reasamidgpf commonsense reasoning
[24].

Great emphasis was placed in Project Halo on carrying ot¢syatic evaluation. The
measure is the success rate on answering questions frorelévamt section of the ad-
vanced placement high school chemistry exam, both in fintfiegorrect answer, and in
explaining the answer. The three competing KR teams wersepted with a training set
of problems, and then their systems were tested on a sepprat@usly unseen, test set
drawn from the same corpus. The grading of the answers waslmoan independent set
of domain experts. The translation of the English languaBegestions into the input
formalism was done by the system designers, but oversedreadministrators of Halo.

However, there has been very little analysis or descripahlished of the actual
knowledge or representation used. The knowledge basegalade on the Web; see [24].
The current author’'s examination of the knowledge basetetday the Ontoprise group
suggests that the representation was very highly gearetdiaive particular class of prob-
lems involved, and avoids even fundamental issues in theeibtieey do not appear in AP
exam questions, as one would expect of a project done unttengxtime pressure aiming
toward a specified measure of success. For example, thesezpa¢ion does not seem to
have any conception difne its representation of an equation liRel; + O;—2H,O does
not allow the inference that first the hydrogen and oxygernrésent but not the water,
and later the water is present but not the hydrogen and oxylgeparently this aspect of
chemical equations is taken for granted by the designerd’alats, and not tested.

1.46 Books

There are three major books in the ar&@ualitative Reasoning about Physical Systems
(D. Bobrow ed., 1985) [4] is a reprint of the 1984 special ésstiArtificial Intelligence

it includes the original papers on ENVISION, QP, and QSRé&adings in Qualitative
Reasoning about Physical Syste(Bs Weld and J. de Kleer eds., 1989) [62] contains
essentially all of the important papers in the area pubtidiefore 1989; it is still the best
source for the field.Qualitative Reasoning: Modeling and Simulation with Ingiete
Knowledge(Kuipers, 1994) [41] presents the QSIM theory and its exterss
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