
Bounding changes in probability over time: It is unlikely that

you will change your mind very much very often

Ernest Davis

Dept. of Computer Science

New York University

davise@cs.nyu.edu

November 10, 2013

Abstract

Under some circumstances, a probabilistic reasoner who encounters a sequence of observa-

tions will change his estimate of the likelihood of a proposition φ from very low to very high

and back again many times. However, the prior probability of such a sequence of observations

is necessarily very small. We compute an exact value of the maximal value of this probability,

as a function of the amount of change and the number of changes. The calculation does not

involve any independence assumptions over the observations.

1 Introduction

In some situations a probabilistic reasoner, updating her estimate of the likelihood of a proposition φ
over time, will go many times from a very low estimate to a very high estimate and back again. For
instance, consider a person executing a random walk on a straight line with absorbing boundaries
at 0 and at 50. Let φ be the proposition, “I will reach the barrier at 0 (rather than the barrier at
50).” Then if the person is currently at 1, the likelihood of φ is 49/50; if the person is currently at
49, the likelihood is 1/50. If the person happens to wander back and forth between 49 and 1 many
times, her evaluation of the likelihood of φ will likewise vary back and forth between 0.02 and 0.98.

However, it is very unlikely that this will happen to her. The point of this paper is that this
observation generalizes: for any proposition φ in any stochastic setting, the prior probability that a
sequence S of observations will occur such that P(φ|S) will vary widely very many times must be
very small. We compute an exact value for the maximum probability that the reasoner’s estimate of
the likelihood will vary up and down by a quantity α n times; as one would expect, the probability
is a decreasing function of α and decreases exponentially as a function of n. The calculation does
not involve any independence assumptions over the observations.

2 Basic Argument

We begin with a simple calculation. Suppose that, up to time t1 the reasoner has made observations
X, and that between times t1 and t2 the reasoner makes observations Y .
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Let p = P(φ|X) and q = P(φ|X,Y ).
Then p = P(φ, Y |X) + P(φ,¬Y |X) ≥ q · P(Y |X). Thus P(Y |X) ≤ p/q.

Likewise 1 − p = P(¬φ|X) = P(¬φ, Y |X) + P(¬φ,¬Y |X) ≥ (1 − q) · P(Y |X),
Thus P(Y |X) ≤ (1 − p)/(1 − q).

Note that if p is substantially less than q, then the first bound above is significantly less than 1, and
if q is substantially less than p then the second bound is significantly less than 1. That is, if there
is a large change in either direction between P(φ|X) and P(φ|X,Y ), then P(Y |X) must be small.

What we do in this paper is to show that this can be extended to many steps up and down; the
probability that a sequence of events will occur that will cause the conditional probability of φ to
go up and down and up and down . . . is bounded tightly by the product of terms of the above form.
We make a probabilistic argument to establish this bound and a calculus argument to compute a
numeric value for the maximal value of this product. The proofs are all elementary.

3 Framework and Terminology

We will use the following general probabilistic framework. Let X1,X2 . . . be a infinite sequence of
random variables corresponding to observations. There is additionally a Boolean random variable
Q, which is the inference being drawn. We define the event φ as Q = T . We will be characterizing
the behavior of the probability of φ given the values of X1 . . . Xk, and the classes of sequences of
values that give rise to a specified behavior.

Let D0 = {T, F} and let Di be the domain of Xi. For simplicity we will assume that each of the Di’s
is finite; the extension to the case where these are measure spaces is straightforward, but complicates
the exposition. The probability space S is thus the cross product S = D0 × D1 × D2 × . . .. An
atomic event is a element in this space: an infinite tuple, assigning values to each of the random
variables. For any atomic event s ∈ S, we will write si for the corresponding element of s.

We posit that there is an α-algebra A ⊂ 2P , which is closed under complement and countable union,
and has the following property: for any i, for any vi ∈ Di, the set {s|si = vi} ∈ A. We posit that
there is a measure µ with the usual properties such that µ(S) = 1. Then for any events E,F ∈ A,
we define P(E) = µ(E) and P(E|F ) = µ(E ∩ F )/µ(F ), assuming µ(F ) 6= 0. In this paper, such a
collection of P,A, µ,D0,D1 . . . will be called an observational stochastic framework.

Definition 1. An initial sequence of observations is either an event of the form X1 = v1, . . . ,Xk =
vk or the null sequence, which is just the universal event P.

Note that, by construction of A, each initial sequence is indeed an event in A. Note also that since
there are only countably many initial sequences, the union of any set of initial sequences is likewise
an event in A.

Definition 2. An initial event will be any event that is the union of initial sequences. For any
initial sequences E and F , we say that E is a prefix of F or F extends E, written E ≺ F , just if
F ⊂ E (viewed as sets of atomic events). Note that, for any two initial sequences E and F , either
E ≺ F , F ≺ E, or E and F are disjoint (again, viewed as sets of atomic events).

Definition 3. Let S be a set of initial sequences. An initial sequence W ∈ S is prefix-free in S if
W has no prefix in S. Let E be an initial event. An initial sequence W ⊂ E is prefix-free in E if W
is not a proper extension of any initial sequence that is a subset of E. (Viewed as a set of atomic
events, W is a maximal initial sequence).
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Lemma 1. Any initial event E is equal to the union of its prefix-free initial sequences.

Proof: By definition E is the union of a set S of initial sequences. Let C be the set of sequences
that are prefix-free in S. Then every sequence that is in S but not in C is a subset of some sequence
in C; hence E =

⋃

S =
⋃

C.

We can now restate our initial calculation in terms of this framework.

Lemma 2. Let S be any initial sequence of observations. Let p = P(φ|S). For some q ∈ [0, 1], let
F be the set of all initial sequences W such that S ≺ W and P(φ|W ) ≥ q, and let F be the union of
the events in F . Then:

a. P(φ|F ) ≥ q.

b. P(F |S) ≤ p/q.

Proof:

a. Let C be the set of all the prefix-free initial sequences in F . By lemma 1, F =
⋃

C. However the
elements of C are all pairwise disjoint; hence P(F ) =

∑

W∈C
P(W ).

Then

P(φ|F ) = P(φ, F )/P(F ) =
∑

W∈C

P(φ,W )/P(F ) =
∑

W∈C

P(φ|W )·P(W )/P(F ) ≥ q·
∑

W∈C

P(W )/P(F ) = q

b. As in the calculation at the beginning of section 2. Let G = S \ F . Since F ⊂ S,
p = P(φ|S) = P(φ|F ) · P(F |S) + P(φ|G) · P(G|S) ≥ q · P(F |S).

Lemma 3. Let S be any initial sequence of observations. Let p = P(φ|S). For some q ∈ [0, 1], let
F be the set all initial sequences W such that W extends S and P(φ|W ) ≤ q, and let F be the union
of the events in F . Then:

a. P(φ|F ) ≤ q.

b. P(F |S) ≤ (1 − p)/(1 − q).

Proof: a. Analogous to the proof of lemma 2.a.

b. (1 − p) = P(¬φ|S) = P(¬φ|F )P(F |S) + P(¬φ|G)P(G|S) ≥ (1 − q)P(F |S).

.

Corresponding to lemmas 2 and 3, we define the function γ(p, q) = min(p/q, (1 − p)/(1 − q)) for
p, q ∈ [0, 1]. Note that if p < q then γ(p, q) = p/q < 1 and if p > q, then γ(p, q) = (1−p)/(1−q) < 1.
Note also that if p < q, then γ(p, q) is an increasing function of p and a decreasing function of q and
if p > q then γ is a decreasing function of p and an increasing function of q. Thus, if you hold one
of the arguments fixed and move the other toward it, the value of γ increases.

4 Large alternations

Definition 4 characterizes what it means for a sequence to go up and down a great deal many times.
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Definition 4. Let α ∈ (0, 1) and let r0, r1 . . . rn be a sequence of numbers in [0,1]. We say that
r0 . . . rn is an α-alternating M-sequence if r1 ≥ r0+α, r2 ≤ r1+α, and in general for k = 0 . . . ⌊n/2⌋
r2k+1 ≥ r2k +α and r2k+2 ≤ r2k+1−α. It is an α-alternating W-sequence if r1 ≤ r0−α, r2 ≥ r1+α,
and in general, r2k+1 ≤ r2k−α and r2k+2 ≥ r2k+1+α.(M and W because of the shapes of the letters.)
An α-alternating sequence is either an α-alternating M-sequence or an α-alternating W-sequence.

For example the sequence 〈0.1, 0.7, 0.2, 0.9, 0.3, 0.8, 0.2〉 is a 0.5-alternating M-sequence, and the
sequence 〈0.7, 0.2, 0.9, 0.3, 0.8, 0.2〉 is a 0.5-alternating W-sequence.

In any sequence r0 . . . rn, a step is a sequential pair ri, ri+1. We measure the length of the sequence
as n, the the number of steps, rather than n + 1, the number of elements. We will similarly refer to
sequences as “even” or “odd” in terms of the number of steps.

Definition 5. For any alternating sequence r0, r1 . . . rn, we define Γ(r0, r1 . . . rn) = Πn
i=1γ(ri−1, ri).

Definition 6. For any α ∈ (0, 1) we define the function δα(p, q) = γ(p, p + sign(q − p) ·α). That is,
if p < q then δα(p, q) = p/(p + α); if p > q then δα(p, q) = (1 − p)/(1 + α − p);

For any α-alternating sequence r0 . . . rn we define ∆α(r0 . . . rn) = Πn
i=1δα(ri−1, ri)

Note that, if |ri+1 − ri| ≥ α then δα(ri, ri+1) ≥ γα(ri, ri+1). Thus if r0 . . . rn is an α-alternating
series, then ∆α(r0 . . . rn) ≥ Γ(r0 . . . rn).

Note also that if r0, . . . , rn is an α-alternating M-sequence then 1− r0, . . . , 1− rn is an α-alternating
W-sequence, and that Γ(1− r0, . . . 1− rn) = Γ(r0, . . . rn). Therefore it will suffice for most purposes
to consider M-sequences; all the results transfer to W-sequences.

We define the quantity χn
α to be the maximum value attained by Γ(r0, r1 . . . rn) over all α-alternating

sequences. We define the quantity Ψn
α as the maximum value attained by ∆α(r0, r1 . . . rn) over all

α-alternating sequences. Since Γ(r0 . . . rn) ≤ ∆(r0 . . . rn) it follows that χn
α ≤ Ψn

α.

We will show below (theorem 10) that in fact χn
α = ∆n

α, but until we prove that, it is convenient to
treat them separately.

Lemma 4. For any n, χn
α ≥ (1 − α)n/(1 + α)n.

Proof:

Γ(r0, r1 . . . rn) attains this value in the case that the sequence alternates between low values of
(1 − α)/2 and high values of (1 + α)/2; that is, a range of exactly α centered at 1/2. In this case
γ(ri−1, ri) is always equal to (1 − α)/(1 + α).

Theorem 5. If n is even then χn
α = Ψn

α = (1 − α)n/(1 + α)n.

Proof:

We need to show that for any α-alternating sequence r0, r1 . . . rn, ∆α(r0, r1 . . . rn) ≤ (1−α)n/(1+α)n.
We will consider the case of M-sequences; the analysis of W-sequences is exactly analogous.

First, consider the case n = 2. Consider a sequence of the form r0, r1, r2 with the constraints
r0 ≤ r1 − α, r2 ≤ r1 − α. For any fixed value of r1, it is obvious that γ(r0, r1) = r0/(r0 + α) is
maximized when r0 = r1 −α. The value of γ(r1, r2) is equal to (1− r1)/(1− (r1 −α)) independently
of r2. In this case ∆α(r0, r1, r2) = (r1 −α)(1− r1)/(r1(1− (r1 −α))). A straightforward calculation
shows this function of r1 attains its maximum when r1 = (1 + α)/2 and that there the value of the
function is (1 − α)2/(1 + α)2.

If n is even and n is greater than 2 then ∆(r0 . . . rn) = Π
n/2
k=1∆(r2k−2, r2k−1, r2k) ≤ (1−α)n/(1+α)n

since each of these factors corresponds to the case n = 2.
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The proof that χn
α = Ψn

α for odd n is harder. We first need a couple of lemmas.

Lemma 6. For any α and n there exists a sequence r0, r1 . . . rn such that χn
α = Γ(r0 . . . rn). and a

sequence s0, s1 . . . sn such that χn
α = Γ(s0 . . . sn).

Proof: Γ and ∆ are continuous functions, and χ and Ψ are their suprema over a compact domain.
The maximum is therefore attaned.

To simplify notation and terminology, we will assume for the rest of the section that we have in
mind some fixed value α ∈ (0, 1). Thus, all the notations below are defined relative to that value of
α. We will likewise omit the subscript α on δ and ∆.

Definition 7. An α-alternating M-sequence r0 . . . rn is exact with centerpoint p if for k = 0 . . . n−1,
rk = p + (−1)k+1 · α/2. Likewise an α-alternating W-sequence r0 . . . rn is exact with centerpoint p
if for k = 0 . . . n − 1, rk = p + (−1)k · α/2.

That is, an exact α-alternative M-sequence with centerpoint p has the form r0 = p−α/2, r1 = p+α2,
r2 = p − α/2 and so on up through rn−1. The final value rn need only satisfy the constraint
rn ≤ p − α/2 if n is even and rn ≥ p − α/2 if n is odd. An exact α-alternative W-sequence is the
same thing, reversing addition and subtraction.

For any integer n > 0, define the function µn(p) = ∆(r0, r1, . . . , rn) where r0 . . . rn is an exact
α-alternating M-sequence centered at p; and ωn(p) = ∆(r0, r1, . . . , rn) where r0 . . . rn is an exact
α-alternating W-sequence centered at p.

If n = 2k is even then µn(p) = ωn(p) = γ(p − α/2, p + α/2)k · γ(p + α/2, p − α/2)k.
If n = 2k + 1 is odd then µn(p) = γ(p − α/2, p + α/2)k+1 · γ(p + α/2, p − α/2)k

and ωn(p) = γ(p − α/2, p + α/2)k · γ(p + α/2, p − α/2)k+1

Lemma 7. If n is even, then the function µn(p) = ωn(p) is an increasing function over (0, 1/2),
reaches a maximum at p = 1/2, and is a decreasing function over (1/2, 1).

Proof: µ2(p) = (p−α/2)(1− p−α/2)/(p + α/2)(1− p + α/2). The numerator of dµ/dp is equal to
α(1 − 2p), and the denominator is always positive; thus, the function is increasing over (0,1/2) and
decreasing over (1/2,1). Since µ2k(p) = (µ2(p))k the same is true of µ2k.

Lemma 8. If n is odd, then the function µn(p) is an increasing function over (0,1/2) and the
function ωn(p) is an decreasing function over (1/2,1).

Proof: We have µn(p) = µn−1(p) · (p−α/2)/(p + α/2). Since n− 1 is even, by lemma 7 µn−1(p) is
increasing over (0,1/2); and (p−α/2)/(p + α/2) is obviously increasing over (0,1/2); so the product
is likewise. Similarly ωn(p) = ωn−1(p) · (1− p−α/2)/(1− p+α/2) is the product of two expressions
decreasing over (1/2,1).

Lemma 9. For any n, the function ∆(r0 . . . rn) achieves its maximum Ψn
α for some exact α-

alternating M sequence.

Proof by contradiction. Assume that r0 . . . rn is not exact and attains the maximum value of ∆;
we will show that this is inconsistent.

We say that the step of the sequence ri, ri+1 is a “large gap” if |ri − ri−1| > α. Since r0 . . . rn is not
exact, it must contains some large gap other than the last step.

Suppose that the first large gap occurs from r0 to r1. Since r1 > r0 we can increase the value of ∆
by changing r0 to r1 −α. This increase the value of δ(r0, r1) without changing any of the rest of the
sequence so ∆ increases.

5



rk

r

r

m

k−1

’
r

r

r

k

m

k−1

c
c+e

Figure 1: Moving the points in a subsequence by e

Similarly, an optimal sequence cannot have two large gaps in a row. Suppose a sequence has two
large gaps in a row; that is for some j either [rj−1 < rj −α and rj+1 < rj −α] or [rj−1 > rj +α and
rj+1 > rj + α]. In either case, moving rj “toward” rj−1 and rj+1 will increases δ(rj , rj+1) without
affecting either δ(rj−1, rj) or the other terms in the product, and so will increase ∆.

We can therefore partition the n steps of the sequence into subsequences such that every subsequence
contains at least 2 edges, is exact, and ends in a large gap (the final subsequence may not end in a
large gap).

Let rk . . . rm be any such subsequence; thus rm−1, rm is a large gap, and so is rk−1, rk if k > 1. Let
d = min(|rk − rk−1| − α, |rm − rm−1| − α) > 0, the smaller of the gaps on the two sides. Let c be
the centerpoint of rk . . . rm. We note now that we can move the points rk . . . rm−1 in concert by any
amount −d ≤ e ≤ d, and the sequence remains a valid α-alternating sequence (figure 1). That is, let
r′i = ri + e for i = k . . . m− 1 and r′i = ri for i < k and i ≥ m. Then r′0 . . . r′n is still an α-alternating
sequence, and the subsequence r′k . . . r′m is an exact α-alternative sequence with center c + e.

However, if rk . . . rm is an M-sequence then ∆(r0 . . . rn) = ∆(r0 . . . rk−1) · µm−k(c) · ∆(rm, . . . rn)
and ∆(r′0 . . . r′n) = ∆(r0 . . . rk−1) · µm−k(c + e) · ∆(rm, . . . rn). Since r0 . . . rn achieves the maximal
value of ∆, we must have µm−k(c) ≥ µm−k(c + e); since e is an arbitrary small value, c must be
a local maximum of µm−k. By the same argument, if rk . . . rm is an W-sequence then c must be a
local maximum of ωm−k.

Now let us consider the first two of these subsequences: r0 . . . rk and rk . . . rm. Let b be the center-
point of r0 . . . rk and let c be the centerpoint of rk . . . rm. By assumption, r0 . . . rk is an M-sequence
so b ≥ 1/2.

There are now two cases (figure 2):

Case 1: k is even. In that case, b = 1/2, since by lemma 7 that is the unique local maximum of µk.
However, the last step rk−1, rk is downward, so rk < rk−1 − α. Therefore c < 1/2. But rk . . . rm is
an M-sequence and c is not a local maximum of µm−k, which is a contradiction.

Case 2: k is odd. In that case, b ≥ 1/2. since no value less than 1/2 can be a local maximum.
However, the last step rk−1, rk is upward. so rk > rk−1 + α. Therefore c > b ≥ 1/2. But rk . . . rm is
an W-sequence and c is not a local maximum of ωm−k, which is a contradiction.

.

Theorem 10. Let n be an positive integer and let k = ⌊n/2⌋. If n is even, let pc = 1/2; if n is odd,
let pc = k + 1 −

√

k2 + k + (α2/4). Then both Γ(r0 . . . rn) and ∆(r0 . . . rn) achieve their common
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Figure 2: Two cases in lemma 9

maximum χn
α = Ψn

α for the arguments pc − α/2, pc + α/2, pc − α/2 . . .

If n is even,

χn
α = Ψn

α =
(pc − α/2)k · (1 − pc − α/2)k

(pc + α/2)k · (1 − pc + α/2)k
=

(1 − α)n

(1 + α)n

If n is odd,

χn
α = Ψn

α =
(pc − α/2)k+1 · (1 − pc − α/2)k

(pc + α/2)k+1 · (1 − pc + α/2)k

Proof: Directly from combining lemmas 5, 6, and 9. The optimal value of pc can be obtained by
finding the zero of the derivative of µn(p); this boils down to a quadratic equation in p. (There is a
second zero outside the range (0,1).)

5 Alternating likelihood

We now combine the probabilistic analysis of section 3 with the algebra of section 4.

Definition 8. Let W be an initial sequence of observations. We say that the likelihood of φ M-
alternates by α n times in W if there exist W0 ≺ W1 ≺ . . . ≺ Wn−1 ≺ Wn = W such that the
sequence P(φ|W0),P(φ|W1), . . .P(φ|Wn) is an α-alternating M-sequence.

Theorem 11. Let Q be the set of all initial sequences W such that the likelihood of φ M-alternates
by α n times in W . Let Q =

⋃

Q. Then P(Q) ≤ Ψn
α.

Proof: Let Q and Q be as in the statement of the theorem. Let Q′ be the set of all prefix-free
sequences in Q.

For any element W of Q′, let W0 ≺ W1 ≺ . . . ≺ Wn be a sequence satisfying the condition of
definition 8. For k = 0 . . . n let qk = P(φ|Wk); then the sequence q0 . . . qn is an α-alternating
M-sequence.

For k = 1 . . . n let Gk be the set of all extensions E of Wk−1 such that the likelihood of φ M-alternates
by α k-times in E. Let Fk be the set of sequences that are prefix-free in Gk. Let Fk =

⋃

Fk. Clearly,
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since each such E is an extension of Wk−1, they are each subsets of Wk−1; therefore Fk is a subset of
Wk−1. Since Wk is an element of Fk, it follows that Wk ⊂ Fk. Therefore we have W0 ⊃ F1 ⊃ W1 ⊃
F2 . . . ⊃ Fn ⊃ Wn. Therefore P(Wn) = P(W0) · P(F1|W0) · P(W1|F1) · P(F2|W1) · . . . · P(Wn|Fn).

Note also that, since Fk is the disjoint union of the elements in Fk, we have
∑

E∈Fk
P(E|Fk) = 1.

We above defined qk = P(φ|Wk). Suppose that k is even. By definition of Fk we know that, for
every E ∈ Fk+1, P(φ|E) ≥ qk + α. Since Fk+1 is the disjoint union of the elements of Fk, by
lemma 2.a P(φ|Fk+1) ≥ qk + α. It follows from lemma 2.b that P(Fk+1|Wk) ≤ γ(qk, qk + α). By the
corresponding argument, if k is odd, then P(Fk+1|Wk) ≤ γ(qk, qk − α).
Thus the product P(F1|W0) · P(F2|W1) · . . . · P(Fn|Wn−1) ≤ ∆α(q0, q1 . . . qn) ≤ Ψn

α.
Therefore, we have P(Wn) ≤ Ψn

α · P(W1|F1)P(W2|F2) . . . P(Wn|Fn).

Consider now the entire tree of W ’s and F ’s as a whole. For k = 0 . . . n, let Hk be the prefix-free
collection of sequences in which the likelihood of φ α-alternates at least k times (thus Hn = Q′).
For any W ∈ Hk define F1,W1 . . . Fk,Wk = W as before. We claim that

∑

W∈Hk

P(W1|F1)P(W2|F2) . . . P(Wk|Fk) = 1

Proof of claim by induction: For k=1, since F1 =
⋃

H1 the statement is immediate. Suppose it is
true for k−1. For any Wk−1 ∈ Hk−1 let Θk(Wk−1) = {Wk ∈ Hk|Wk−1 ≺ Wk}, the set of extensions
of Wk−1 with k alternations. We have observed above that

∑

Wk∈Θk(Wk−1)
P(Wk|Fk) = 1. Therefore

∑

Wk∈Hk

P(W1|F1)P(W2|F2) . . . P(Wk|Fk) =

∑

Wk−1∈Hk−1





∑

Wk∈Θk(Wk−1)

P(W1|F1)P(W2|F2) . . . P(Wk−1|Fk−1) · P(Wk|Fk)



 =

∑

Wk−1∈Hk−1



P(W1|F1)P(W2|F2) . . . P(Wk−1|Fk−1) ·





∑

Wk∈Θk(Wk−1)

P(Wk|Fk)







 =

∑

Wk−1∈Hk−1

P(W1|F1)P(W2|F2) . . . P(Wk−1|Fk−1) · 1 = 1

Finally, we have

P(Q) =
∑

W∈Hn

P(W ) ≤ Ψn
α

∑

W∈Hn

P(W1|F1)P(W2|F2) . . . P(Wn|Fn) = Ψn
α

It is easily shown that the upper bound in theorem 11 is tight. In fact the following general result
holds:

Theorem 12. Let r0 . . . rn be any alternating sequence. Then there exists a observational stochastic
framework such that, for k = 1 . . . n,

a. P(φ) = r0

b. P(φ|X1 = v1 . . . Xk = vk) = rk
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Figure 3: Markov process for theorem 12

c. P(X1 = v1 . . . Xk = vk) = Γ(r0 . . . rk).

(With some slight changes of definitions and of the proof below, the result holds for non-alternating
sequences as well.)

Proof: Figure 3 below shows a Markov process satisfying the theorem for the case of an M-sequence
of odd length; the other cases are analogous. φ is the proposition, “The process will end in state
A.” It is easily verified that the conditions of the theorem are satisfied.

Corollary 13. For any n, there exists a observational stochastic framework in which the set of
M-sequences in which the likelihood of φ α-alternates n times has a total probability of Ψn

α.

Proof: Immediate from theorem 10 and theorem 12.
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