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Abstract. A natural approach to defining continuous change of shape is in terms of a metric
that measures the difference between two regions. We consider four such metrics over regions:
the Hausdorff distance, the dual-Hausdorff distance, the area of the symmetric difference,
and the optimal-homeomorphism metric (a generalization of the Fréchet distance). Each of
these gives a different criterion for continuous change. We establish qualitative properties
of all of these; in particular, the continuity of basic functions such as union, intersection,
set difference, area, distance, and smoothed circumference and the transition graph between
RCC-8 relations.

We also show that the history-based definition of continuity proposed by Muller is equivalent
to continuity with respect to the Hausdorff distance. An examination of the difference be-
tween the transition rules that we have found for the Hausdorff distance and the transition
theorems that Muller derives leads to the conclusion that Muller’s analysis of state transi-
tions is not adequate. We propose an alternative characterization of transitions in Muller’s
first-order language over histories.

1. Introduction

Many physical processes — biological growth, movement of a string, inflation of a balloon,
bending of a rod, evaporation of a puddle, and so on — involve the continuous change in the
shape of an object. The knowledge that the shape is a continuous function of time is an important
spatio-temporal constraint in qualitative reasoning about the process.

The first studies in the AI literature of continuous change of shape mostly proceeded by
postulating desired properties. Randell, Cui, and Cohn [15] provide constraints on the tran-
sitions between the topological (RCC-8) relations that can occur in continuous shape change;

*Thanks to A.P. Galton for bringing his recent work to my attention. This work was supported in part by
NSF grant #IRI-9625859.
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for example, if object A is disconnected from object B at time t1 and A overlaps B at time
t2 > t1 then A must be externally connected to B at some time in between. Muller 14] gives
a first-order characterization of continuous change in a topological language of space and time;
we will discuss this in detail below (section 6.)

More recently, Galton [6,7] has adopted a mathematically more conventional approach, defin-
ing a metric over the space of regions and then using the standard epsilon-delta definition of
continuity. Such an approach has two advantages. First, standard theorems about continuous
functions come for free; for example, that the composition of two continuous functions is con-
tinuous. Second, by providing a semantic grounding for continuity, it allows one to prove the
correctness of a transition graph like Randell, Cui, and Cohn’s, or of an axiomatic characteriza-
tion like Muller’s rather than just positing them.

However, there is no standard metric over spatial regions. Rather, a number of different met-
rics suitable for different purposes are defined in the literature. Galton [7] studies five metrics on
regions: the Hausdorff distance between the regions, the Hausdorff distance between the bound-
aries, the dual-Hausdorff distance, the area of the symmetric difference, and the Fréchet distance
between the boundaries. Mumford [13] surveys six different metrics that have been proposed
as similarity measures in computer vision: two of Galton’s and four others. What functions are
continuous, and therefore what properties are held by all continuous functions, depend on the
metric used. As we shall discuss below, different metric functions on shapes are associated with
different physical scenarios, with different methods of obtaining shape information, and with
different shape representations.

This paper continues Galton’s approach, developing a more extensive analysis of the qual-
itative properties of continuous shape transformation, where “continuous” is defined relative
to a variety of metrics over regions. That is, the epsilon-delta definition of continuity can be
applied to any metric over regions to give a definition of continuous shape transformation. The
four different metrics that we shall consider yield four different concepts of continuous shape
transformation. The object of this paper is to explore important qualitative properties of these
four different concepts of continuous shape transformation.

The properties that we will consider are:

e The continuity or discontinuity of a number of basic functions: union, set-difference, in-
tersection, area, distance, diameter, in-radius, smoothed circumference, the convex-hull
function, and the projection function (section 4).

e The transition graph between binary topological relations (section 5).

The metrics we consider are the Hausdorfl distance, the dual-Hausdorfl' distance, the area
of the symmetric difference, and the optimal-homeomorphism metric — the same as Galton’s,
except that we replace the Fréchet distance between boundaries by the more general optimal-
homeomorphism metric, and we drop the Hausdorff distance between boundaries, which, as
Galton observes, does not have very natural or useful behavior.'

Furthermore, we show that the history-based definition of continuity proposed by Muller [14]
is equivalent to continuity with respect to the Hausdorfl distance (section 6).

Tt may be of interest to observe that this paper was developed entirely independently of Galton’s; the author
became aware of [6,7] only after the first draft of this was complete. The fact that both lines of research converged
on the identical choices of metrics is therefore interesting.
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Determining the continuity properties of different metrics is also relevant to the problem of
spatial computing with shape tolerances (e.g. [2,11,16]). If we determine, for instance, that the
area of a region is continuous with respect to the metric d4(P, Q) that means that if we have
an approximation Q of shape P and d4 (P, Q) is sufficiently small, then we are justified in using
area(Q) as an estimate of area(P). If no such continuity property holds, then the estimate of
the area may be very far off.

The issue has a similar importance in computer vision. A key step in many computer vision
system is to match a region found in an image against a model or against a region found in a
different image. The criterion of matching can often be posed in terms of closeness relative to
some metric on regions. If so, then continuity properties can be important in various ways. For
example, if the area function is continuous relative to the matching criterion, then a necessary
condition for closeness in the metric is closeness in area, and so a wide discrepancy in area can
be used to prune out invalid matches. If the area function is discontinuous, then such pruning
is not reliably safe.

Throughout this paper, we will take the space of regions to be all normal? bounded regions
in Euclidean space. Somewhat surprisingly, for the purposes of this paper it makes very little
difference whether we require all regions to be connected, or whether we allow disconnected
regions. Also, the dimensionality of the space makes very little difference. For convenience
of writing and of constructing diagrams, we will mostly speak of regions in the plane, but,
except for Theorem 4.2 below, essentially everything applies, with obvious changes, to regions
in three-space or higher dimensions. (One-dimensional space, of course, is rather different.)

Section 2 presents the various metrics on shapes that we consider in this paper. Since our
intended application is physical reasoning, we focus on metrics where the constraint of continuous
change has a natural physical interpretation. Section 3 discusses some basic concepts of topology
that are used later in the paper. This paper adduces a large number of theorems; however, almost
all of them are quite straightforward. The few proofs of any difficulty are presented in appendix
A.

2. Metrics over regions

In this section, we define four different metrics that measure the difference between regions A
and B.

Definition 2.1. The Hausdorff distance from A to B is defined as the maximum of either the
maximal distance from a point p € A to B or the maximal distance from a point q € B to A.

dH(A7 B) = max(sup inf d(p7 q)7 sup inf d(p7 q))
gecAPEB peB €A

We denote the closure of the complement of region R as R.

Definition 2.2. The dual-Hausdorff distance from A to B, denoted “dpy4(A,B)”, is the max-
imum of the Hausdorfl distance between A and B and the Hausdorff distance between their
complements.

de(A, B) = max(dH(A, B), dH(Ac, BC))

2A region is normal if it is equal to the closure of its interior.
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Figure 1. Hausdorff and dual-Hausdorff distances: Example 1

Example 1: Let A be the square with vertices (1,1), (—1,1)(—1,—1),(1,—1) and let B
be the circle centered at the origin of radius 1.2 (Figure 1). Then the distance from the point
al = (1,1) in A to the closest point bl = (0.6v/2,0.6v/2) in B is /2 — 1.2 ~ 0.214. Moreover,
this is the greatest distance from any point in A to the closest point in B. The distance from
the point b2 = (1.2,0) in B to the nearest point a2 = (1,0) in A is 0.2. Moreover, this is
the greatest distance from any point in B to the nearest point in A. Therefore, the Hausdorff
distance between A and B, dgy(A,B) = max(0.214,0.2) = 0.214.

The Hausdorff distance between A€ and B¢ is computed as follows: The distance from
the point bl = (0.6v/2,0.6v/2) in B¢ to the closest point a3 = (1,0.6y/2) in A¢ is equal to
1 — 0.64/2 = 0.151. Moreover, this is the greatest distance from any point in B¢ to A¢. The
distance from the point a2 = (1,0) in A€ to the point b2 = (1.2,0) in B€ is 0.2. Moreover, this
is the greatest distance from any point in A¢ to B¢. Thus, the Hausdorff distance from A€ to
B¢, dgy (A€, B°) = max(0.151,0.2) = 0.2.

The dual-Hausdorff distance from A to B, dpy4(A,B) = max(dg(A,B),dg(A¢ B¢)) =
0.214.

Example 2: Figure 2 illustrates the difference between the Hausdorff distance and the dual
Hausdorff distance. In the figure on the left, let P be the square and let Q be the union of all
the small circles. Then the Hausdorff distance between P and Q, dg (P, Q) is equal to half the
distance between two consecutive circles on a diagonal. The midpoint of any such diagonal is
the point in P that is furthest from Q. However, the dual Hausdorff distance between P and
Q, dyq(P,Q) is equal to half the width of the large square; the center of the square is in Q¢
but no point in P€ is closer than the midpoint of sides of the square.
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Figure 2. Hausdorff and dual-Hausdorff distances

The right-hand part of figure 2 shows that the same kind of thing can happen even if regions
are required to be connected. Let P be the large rectangle, and let Q be the thin snaky region.
Then the Hausdorff distance between them, dy(P,Q), is half the distance between vertical
columns of the snake; every point in P is at most that distance from the nearest column of Q.
However, the dual-Hausdorff distance is again half the height of P.

These examples, with variants, will serve as examples for almost all the differences between
properties of the Hausdorff distance and the dual-Hausdorff distance mentioned in this paper.

The Hausdorff distance is well known in the literature. The dual-Hausdorff distance was
introduced in [2].

The constraint that shapes change continuously relative to the Hausdorff distance corre-
sponds to physical scenarios such as the region occupied by a quantity of gas in a vacuum. The
Hausdorff distance between the regions occupied by the gas at time T1 and T2 corresponds to
the maximum distance between the position of a molecule at T1 and its position at T2 (more
precisely, the Hausdorff distance is the minimal possible value of the latter, over all possible ways
of rearranging the molecules between the two scenarios). Therefore, the physical constraint that
each molecule moves continuously corresponds to the constraint that the region occupied by the
gas changes continuously relative to the Hausdorff distance.

Similarly, the constraint that shapes change continuously relative to the dual-Hausdorff dis-
tance corresponds to physical scenarios such as the region occupied by bubbles of gas inside a
liquid. Since both the molecules of the gas and the molecules of the liquid must move continu-
ously, both the region occupied by the gas and the region occupied by the liquid must change
continuously in the Hausdorff distance. Since the region occupied by the liquid is the comple-
ment of the region occupied by the gas, the region occupied by the gas changes continuously in
the dual-Hausdorff distance.

Definition 2.3. The metric d4(P, Q) is defined as the area of the symmetric difference (P —
Q) U (Q — P). For example, in figure 1, the symmetric difference between A and B consists of
the four corners of the square that lie outside the circle together with the four “sides” of the
circle that lie outside the square. The area of this region is 0.92.

The following physical scenario gives rise to continuous change in the metric d4(P,Q):
Imagine that it has been raining over an uneven parking lot, so that the lot is now full of
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puddles. The rain now stops and the puddles gradually evaporate. Let R(¢) be the region
occupied by all the puddles at time ¢ (either the two- or the three-dimensional region.) Then
R(t) changes continuously relative to the metric d4(P, Q).

The metric d4(P, Q) also corresponds to the following method of evaluating the difference
between two regions: Fix a standard large region O containing all the regions of interest, and
sample points at random within O. For a fixed sample size, the number of points which differ
on P and Q — that is, either lie in P and not in Q or vice versa — is proportional to d4 (P, Q).

The metric d4(P, Q) is very easy to compute in a bit vector representation; it is simply the
number of pixels in P XOR Q.

Definition 2.4. The optimal homeomorphism metric between P and Q, denoted dp (P, Q), is
defined as follows: If o is a homeomorphism® from the plane to itself, we define (o), the cost
of o, to be the least upper bound of d(x,o(x)) over all points x in the plane. Then dp(P, Q)
is defined as the minimum value of ¢(o) over all homeomorphisms o over the plane such that
o(P)=Q.

Physically, continuous motion with respect to the metric dp corresponds to the following
scenario: Draw the region P on a transparent rubber sheet, and draw Q on a table. Now
consider methods for continuously deforming the sheet without tearing or folding it so that P
lies on top of Q. The “best” such method is considered to be the method that moves the points
in the sheet as little as possible.

Figure 3 illustrates the difference between the dual-Hausdorff distance and the optimal-
homeomorphism distance. Let P be the inner rectangle, and let Q be the outer figure, consisting
of a rectangle and a peninsula. The dual-Hausdorff distance between regions P and Q is equal
to the distance from a to b. Every point in P is within d(a,b) of a point in Q and vice versa,
and every point in P¢ is within d(a,b) of a point in Q¢, and vice versa. On the other hand,
the optimal homeomorphism distance from P to Q is equal to the distance from m to b. The
optimal homeomorphism associates the whole “peninsula” of Q with a small neighborhood of
the point m in P, and the whole “inlet” of Q¢ with a small neighborhood of m in P¢.

The optimal-homeomorphism distance is closely related to the Fréchet distance between the
boundaries, considered by Galton [7]. In particular, it is easily shown that the former is always
at least as large as the latter. We conjecture, though we have not found a proof, that, for simply
connected regions in the plane, the two metrics are equal. The metric dp is more general as
it applies to any regular regions in spaces of any dimensionality, whereas the Fréchet metric
between boundaries applies only to simply-connected regions in the plane.

Alt and Godau [1] give an algorithm for computing the Fréchet distance between polygonal
paths in the plane. If our above conjecture is correct, then this will suffice for computing the
optimal-homeomorphism distance between simply-connected polygonal regions.

One defect of the optimal-homeomorphism metric is that if P and Q are not homeomor-
phic then dp(P, Q) = oo, so it gives no measure of greater and lesser similarity among non-
homeomorphic pairs of regions.

Theorem 2.1. The four functions dg, dgg, da, and do are all metrics over the space of bounded
regular regions.

The proofs for dp, diq and d4 are given by Galton [7]. The proof for do is straightforward.

3 A homeomorphism is a continuous one-to-one function whose inverse is also continuous.
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Figure 3. Dual-Hausdorff distance and optimal homeomorphism distance

3. Comparative topologies

We now discuss the topologies that these four metrics induce over the space of regular regions.
As this space is rather abstract and likely to be unfamiliar, it will be helpful to review some
basic definitions from point-set topology:*

Definition 3.1. A topology over a space S is a collection O of subsets of S with the following
four properties:

e S is an element of O.

e The empty set is an element of O.

e If 7 is a subcollection of O, then the union of the sets in 7 is an element of O.
e If P and @ are elements of O then PN (Q is an element of O.

The elements of O are called the open sets in the topology. Set P is said to be closed in the
topology if S — P is open.

Definition 3.2. Let P, @ be subsets of S. The interior of P is the union of all open subsets of
P. The closure of P is the intersection of all closed supersets of P. P is said to be dense in Q
if @ is a subset of the closure of P.

Definition 3.3. Let p is a metric over a space S, let x € § and let € > 0. The open ball of
radius € around z, denoted B, (z, €) is the set of all points in S within € of .

Bu(z,e) ={y € S| uly,z) < ¢}

If i1 is a metric over a space S, then the topology associated with p is defined as follows: A
set O is open relative to p if, for every point € S there exists an € > 0 such that B, (z,¢) C O.

Given two different topologies O and U over the same set S, we say that O is finer than U if
every open set in O is also open in U. We say that O is strictly finer than U if O is finer than
U but U is not finer than O.

4We have already used some of these terms in connection with the topology of Euclidean space; however, that
is a simpler and more familiar context.
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Figure 4. Comparative fineness of metrics

Figure 4 shows the comparative fineness of the topologies generated by our four metrics.
That is, d4 and dy are incomparable;® they are both coarser than dg which is coarser than
do.

The standard epsilon-delta definition of continuity is applicable to any function between
metric spaces:

Definition 3.4. Let u be a metric over space S, let  be a metric over space 7, let f be a
function from S to 7, and let x be a point in §. The function f is continuous at x if the
following holds: for every e > 0 there exists a § > 0 such that, for all y € S, if n(y,z) < § then
w(f(y), f(x)) < e. That is, if y is chosen close enough to z, then f(y) will be close to f(x).

The following well-known lemmas will be useful:

Lemma 3.1. Let pu and n be two different metrics over the same space S. The topology generated
by u is finer than the topology generated by n if and only if the following condition holds: For any
point x € S and any infinite sequence y1,ys . .. in' S, if the sequence of values u(y1, z), u(yz, ) . ..
converges to 0, then the sequence 1n(y1,x),n(y2,x) ... also converges to 0.

Lemma 3.2. Let pu and n be two metrics over the same space S and suppose that the topology
generated by p is finer than the topology generated by n. Then

e Let f(t) be a function from the real line to S. If f is continuous relative to p then f is
also continuous relative to 1.

e Let g(x) be a function from S to the real line. If g is continuous relative to n then g is
also continuous relative to .

Lemma 3.2 above enables us to use figure 4 to carry over continuity results from one metric
to another. For example, if we show that the distance function is continuous relative to dg,
then it follows immediately that it is continuous relative to dgg4 and do.

Finally, it will be useful to distinguish two particular kinds of discontinuity:

Definition 3.5. A function f over space S is discontinuous everywhere if it is discontinuous at
every point of S.

SGalton [7] states, in effect, that d is finer than d4. The reason for this is that he “exclude[s] ‘pathological’
cases in which the perimeters of the regions increase without limits as the Hausdorff distance between them tends
to zero.”
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P DCQ P N Q is empty.
P ECQ Int(P) N Int(Q) is empty;

(Q) is non-empty.
POV Q Int(P) N Int(Q) is non-empty;
Q) is non-empty; and
P) is non-empty.

PEQQ |P=Q

PTPPQ |PCQPZQ

and Bd(P) N Bd(Q) is non-empty.

P NTPP Q | P C Q; and Bd(P) N Bd(Q) is empty.

Table 1. RCC-8 relations

For example, the function “diameter(R)”, defined as the maximum distance between any
two points in R, is discontinuous everywhere with respect to the metric d 4; for any region R,
there are regions, consisting of R plus a small region at a considerable distance away, that differ
from R by an arbitrarily small amount in terms of the area of the symmetric difference, but
have a diameter which is arbitrarily larger.

In the more familiar venue of functions from R* to R™, everywhere discontinuous functions
are generally considered pathological. However, as we shall see, in the context of functions over
regions, they are entirely standard.

Definition 3.6. A function f over space S is continuous almost everywhere® if it is continuous
over a dense, open set in S.

If a function is not continuous, not almost everywhere continuous, and not everywhere dis-
continuous, we will say that it is “sometimes” discontinuous.

We will use the notations “Int(R)” and “Bd(R)” to mean the interior and boundary of
region R.

Finally, as we shall make repeated use in this paper of the RCC-8 relations [15] we define
them in table 1 and illustrate them in figure 5.

4. The continuity of some basic functions

We now proceed to determine the continuity or discontinuity of some basic spatial functions
under the various metrics above.

4.1. Some changes that must be continuous and some that must be discon-
tinuous

There are certain types of change that, it seems reasonable to say, should be always be considered
as continuous. In particular, a gradual translation, rotation, or change of scale that is continuous

5Note that this definition does not require that S be a measure space. It is not easy to define a reasonable
measure over the space of regions. If § is a measure space, then this condition is sufficient, though not necessary,
for the condition, “continuous except over a set of measure zero.”
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Figure 5. The RCC-8 relations

in the controlling parameter, should be considered as a continuous change by any reasonable
theory of continuous change of shape. This indeed holds in all of the four metrics above.

A natural generalization of this condition is the following rule:

Rule 1: Let L(t) be a continuous function from time ¢ to the space of non-singular linear
transformations. Let P be a bounded, regular region. Then the function of ¢, apply(L(t), P) is
a continuous function from time to regions.

This includes continuous translations, rotations, and skewings (affine transformations).

At the other extreme, it seems clear that a change that involves an entire circle or other
open region instantaneously appearing out of nowhere or disappearing into nowhere must be
considered discontinuous. At least, if this is not discontinuous, it is hard to see what would be
discontinuous.

Rule 2: Let O be an open region, and let L(t) be a function from time ¢ to the space of
regions. If L(t) is disjoint from O for all ¢ < 0 and L(¢) contains O for all ¢ > 0, then L is
discontinuous at t = 0.

It is easily seen that rules 1 and 2 hold in all four of our metrics. (This is not as trivial an
observation as it seems. For instance, if unbounded regions are admitted, then rotations and
scalings are discontinuous in all our metrics, and translations are discontinuous relative to the
metric dy.)

4.2. Measures

We now consider the continuity of a number of real-valued functions over the space of regions.

The function area(R) is continuous under the metrics da, dgyg and dp. It is everywhere
discontinuous under the metric dg. Figure 2 illustrates the discontinuity of the area function
under dg. Clearly, by making the dots smaller and closer together, or making the snake narrower
and its bands closer together, the Hausdorff distance between P and Q may be made arbitrarily
small, even while the area of Q approaches zero.
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The functions distance(P, Q) and diameter(P) are continuous under the metrics dg, dgqg
and dp. They are everywhere discontinuous under the metric da.

The radius of the largest inscribed circle in P is continuous under the metrics dgg4 and dp.
It is everywhere discontinuous under the metrics d4 and dg.

The circumference of P is not continuous under any of these metrics, since it can always be
made arbitrarily long by adding sufficiently many, arbitrarily small, notches on the boundary.
However, there is a smoothed version of the circumference that is continuous under the metric

do.

Definition 4.1. Let ¢ be a simple curve in the plane, and let A > 0 be a distance. Let A(¢, A)
be the set of all paths ¢ such that dp(¢,v) < A. We define the A-smoothed length of ¢ to be
the greatest lower bound over the arc-length of paths in A(¢p, A).

smooth(¢, A) = infyec 44 A) length(z)).

(One might ask, why use the metric dp in definition 4.1 rather than dg? The answer is
that the corresponding function defined with dz is not at all well behaved. It is not continuous
under A and it is not continuous even under uniform expansion of the curve ¢.)

Definition 4.2. The A-smoothed circumference of region P is the sum of the A-smoothed
lengths of the boundaries of P.

Theorem 4.1. Let P range over the space of bounded, reqular regions in the plane, with finitely
many, piecewise smooth boundaries. For A > 0, the A-smoothed circumference of P is a con-
tinuous function of P under the metric do. It is everywhere discontinuous under the metrics
dA, dH, or de.

A similar result applies to the length of paths within the region.

Definition 4.3. Let R be a connected normal region and let A > 0 be a distance. For any two
points x and y in R, define the A-smoothed path-distance from x to y through R to be the
greatest lower bound of the A-smoothed length of ¢ over all curves ¢ such that x,y € ¢ C R.
Define the A-smoothed path diameter to be the maximum over all x,y of the A-smoothed path-
distance from x to y through R.

Theorem 4.2. For A > 0, the A-smoothed path diameter of P is a continuous function of P
under the metric do. It is everywhere discontinuous under the metrics da, dg, or dgg.

The proofs of theorems 4.1 and 4.2 are given in section 8.2.

Theorem 4.1 can be visualized physically as follows: Suppose that you plan to walk around
the shore of a lake P, and you want to determine how long a walk that is by looking at a map.
The theorem states that, if you have some leeway A in how close you have to stay to the exact
shore of the lake (e.g. you must always be within 5 feet, or always within 1 foot, or always
within 2 inches), and if the map is accurate enough in the sense of dp, then you can estimate
the length of your walk. Theorem 4.2 states the same thing with regard to walking through a
field P, as long as you have some small leeway A in being allowed to step outside the field.

Theorem 4.2 holds for regions of arbitrary dimensionality. We do not know whether theorem
4.1 can be generalized to apply to the smoothed surface area of three-dimensional regions.
Certainly the proof given in section 8.2 does not generalize in any obvious way to surface area.
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da dy drq do
area Cont. Discont. | Cont. Cont.
distance,
diameter Discont. | Cont. Cont. Cont.
in-radius Discont. | Discont. | Cont. Cont.
A-smoothed
circumference,
path diameter Discont. | Discont. | Discont. Cont.
Union, NormlInt,
NormDist Cont Discont. | a.e. Cont | Sometimes
convex hull Discont. | Cont. Cont. Cont.
projection Discont. | Cont. a.e. Cont. | Discont.

Table 2. Continuity of some basic functions

4.3. Functions from regions to regions

Definition 4.4. Let Z be any point set. The partial function “Norm(Z)”, called the non-null
normalization of Z, is defined as the closure of the interior of Z, if this is non-empty; else it is
undefined. The partial function NormInt(P, Q) is defined as Norm(P N Q). The partial function
NormDiff(P, Q) is defined as Norm(P — Q).

The union function P U Q is continuous with respect to dg and dg [7]. The functions
NormInt(P, Q) and NormDiff(P, Q) are continuous with respect to d4 and discontinuous with
respect to dg everywhere in their domain. All three functions are almost everywhere continuous
with respect to dgg. Specifically, P UQ is discontinuous with respect to dgg at a pair of regions
P and Q just if there is a point x €Bd(P) N Bd(Q) N Int(P U Q). NormInt(P, Q) is discon-
tinuous at P, Q just if there exists a point x € Bd(P) N Bd(Q) that is not in NormInt(P, Q).
NormDiff(P, Q) is discontinuous at P, Q just if there exists a point x € Bd(P) N Bd(Q) that
is not in NormDiff(P,Q). (Figure 6). All three functions are sometimes discontinuous with
respect to dp; specifically, they are discontinuous unless the boundaries of P and Q are disjoint.

The convex-hull function is continuous with respect to dg, dgg and dp but not d4.

Projection functions, from 3-space to the plane or from the plane to the line, are continuous
with respect to dg. They are everywhere discontinuous with respect to d4 and dp. They are
almost everywhere continuous with respect to dg4. Specifically, let II be a projection from space
S to space 7 and let Q be a region in §. Then II is discontinuous at Q relative to dgg just if
there exists a line L in § such that II(L) is a single point in Int(II(Q)) and L is disjoint from
Int(Q) (Figure 7).

Table 2 summarizes the results from this section.

5. Transition networks

Randell, Cui, and Cohn [15] presented the transition network shown in figure 8 for the RCC-8
relations. Two relations X and Y in this network are connected by an arc if it is possible for two
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P x Q P’ O Q

P U Q is discontinuous under dgy .

NormDiff(P, Q) is discontinuous under dg.
(Note: P is the entire large semi-circle.)

NormInt(P, Q) is discontinuous under d.

Figure 6. Discontinuities of Boolean functions
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Projection of Q Projection of Q

Figure 7. Discontinuity of projection function

continuous region-valued fluents P(¢) and Q(¢) to transition from the relation X to the relation
Y without going through any intermediate relations. Galton [4] observes that any definition
of continuous motion satisfying rule 1 must include all these transitions. Similar transition
networks have been developed for other systems of binary topological relations,

Galton [5] extends the notation of figure 8 by changing the undirected edges to directed arcs.
An arc from relation X to Y means that there are continuous functions f(¢) and g(t) from time
to the space of regions such that f(0) and g(0) are related by relation X and f(¢) and g(t) are
related by relation Y for ¢ > 0. That is, two regions that are in relation X at one time can
immediately change to relation Y. Galton’s terminology is that relation X “dominates” relation
Y. Such a distinction between properties that can change immediately and those that require a
finite duration to change is analogous to the QSIM rule of “e-transition.” [12]

An alternative, more abstract, interpretation” of these arcs is as follows: Let S be the space
of normal regions in the plane. A binary relation X can be considered as a subset of S x S.
There is an arc from relation X to Y if X intersects the boundary of Y within & x S.

The transition networks for the RCC-8 relations for the topologies da, dgr, dgg, and do
are displayed in Figures 9, 10, 11, and 11, respectively. (Topologies d4 and dp have the same
transitions.) The last of these is the one given by Galton [5].

In figure 10, the significance of the arrow from the dashed circle on the right to the dashed
circle on the left is that every relation on the right can undergo a transition to any relation on
the left. That is, there should be an arrow from each of the five states on the right to each of

"Strictly speaking, this interpretation is logically weaker than the one in the previous paragraph; that is,
there could be relations that satisfy the property here but do not satisfy the property of the previous paragraph.
However, this distinction does not arise with the relations and topologies that we are considering.
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Figure 8. Undirected transition graph from (Randell, Cui, and Cohn, 1992)

the three states on the left; however, we have summarized these in terms of the dashed circles,
in order to simplify the diagram.

It may be noted that achieving these transitions requires that both regions be changing in
time. If one region is fixed and the other changes continuously with respect to dg, then the
possible transitions are just those shown in figure 11.

As these transitions are not obvious and somewhat counter-intuitive, we will give an example
of the transition from EQ to DC; the other transitions are analogous. The example is similar to
the right hand of figure 2. For any ¢ € (0,1)), define the curve ¢(t) = {(u,sin(u/t))|u € [0,1]}.
Thus, ¢(t) is a sine curve that ranges in the y-direction between —1 and 1, and in the z-direction
between 0 and 1, with wavelength 27t. Let 1 (t) be parallel to ¢(¢) but shifted down a distance
t; that is, ¥(t) = {(u,sin(u/t) — t)|u € [0,1]}. Let 6(t) be the minimum distance between ¢(t)
and ¢(t). Let f(¢) be the region of points within distance §/3 of ¢(t) and let g(¢) be the region
of points within distance §/3 of ¢(t). Finally, let £(0) = g(0) be the rectangle [0,1] x [—1,1].
Then it is immediate that f(t) DC g(t) for all ¢ > 0; that £(0) = g(0); and that both f and g
are continuous relative to the metric dgy.

The reader may object that an example such as the previous one is obviously just a math-
ematical pathology, without real-world significance. Consider, however, the following sequence
of examples:

First, consider a large marching band spread uniformly (either in a regular pattern or ran-
domly) in a rectangle. One says that the shape of the band is the rectangle.

Second, imagine that the marching band imitates, as far as possible, the region function f(t)
above, in backwards time. That is, the band starts out forming a thick S shape with two bends,
and then gradually adds more and more bends spaced closer and closer, the curve gradually
becoming thinner and thinner. Eventually, the band is uniformly spread through the rectangle.
Thus, for a while, the band has a snake shape; later, its shape is the rectangle; and there is no



16

author / short title

/\/’6
T O\
()

Figure 9. Transition graph for dg

Figure 10. Transition graph for dg
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Figure 11. Transition graph for dgg and dop

other kind of shape that it occupies at any intermediate time.

Third, imagine that there are two such bands, that start in S shapes that are initially well
separated, but the S’s move closer together as they develop. Then, as long as the bands are
viewed as forming S’s, their shapes are disjoint; once they are viewed as forming rectangles, then
they each form the same rectangle. Thus, the shapes of the bands transition from DC to EQ
with no intermediate relations.

Finally, rather than think about two marching bands composed of people, which is a rather
unimportant case, think about two gasses composed of molecules. The two gasses start out in
separate swirls, that grow thinner and thinner, and denser and denser, until each of the gasses
fills the volume.

Now, this is certainly not a decisive argument that the transition from DC to EQ is a useful
one. For one thing, it could be argued that the volume at the end is filled by the mixture of the
two gasses and not by either gas individually. For another, gasses do not behave like marching
bands, and in reality will certainly start to mix, and thus occupy overlapping regions, before
they occupy coextensional regions. But the example does, I think, suggest that the possibility
of a EQ to DC cannot be dismissed quite as readily as one might at first suppose, and that it
may, in fact, depend in a subtle way on the idealization of a discrete collection filling a space.

6. Muller’s theory

In an important and elegant paper, Philippe Muller [14] develops a theory of motion based on
the geometry of four-dimensional regions of space-time, called “histories”. This approach was
suggested in Hayes’ “Naive Physics Manifesto” [9], but Muller’s paper was the first to explore
it systematically. The paper is relevant to the analysis here, because it proposes a definition of
continuity and purports to derive transition relations from that definition.
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Time axis

Space axi

W is the whole history in the solid boundary. X is the portion of W below the dotted line.
U is the semi-circle on the left, also a subregion of W.

Figure 12. Muller’s definition of discontinuity

Muller’s language is a first-order language over the universe of histories. Muller’s paper
admits both regions that are regular and those that are “regular and open”; i.e. the interior of
regular regions. I will modify this here to include only regular regions; this restriction does not
affect the issues under discussion here, and it simplifies the presentation.

The language contains three primitive binary relations:®

Cxy — Regions z and y are connected; that is, they share at least one point.
x < y — Region z strictly precedes region y temporally.
23y — The temporal projections of regions x and y share at least one instant.
Other relations between regions are defined in terms of non-recursive first-order formulas over
these.
Muller proposes the following definition (D4.2) for continuity: Region w represents a contin-
uous function from time to space if it is satisfies the following;:

D4.2: CONTINUw 2 CONyw A V.V, ((TSzw) A xzu A Puw) = Cxu.

Here “CON;w” means that the temporal projection of w is a connected time interval. “Puw”
means that u is a subregion of w. “T'Szw” means that x is a “time-slice” of w. This predicate
is a little tricky. For a normal regions w and z, it asserts that x is the normalization of the
restriction of w to a time period ¢, where 7 is a regular subset of the time-line.

Figure 12 shows how a discontinuous function of time fails to satisfy definition D4.2. Note
that the only part of line [ contained in z is the segment between points a and b.

It can be shown that the graph of a function from time to regions satisfies definition D4.2 if
and only if it is continuous over dg. More precisely, we can state the following:

8In this section I will follow Muller’s notational conventions: variables are lower-case; predicates are either
prefix or infix; atomic formulas are strings of symbols without further punctuation.
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Theorem 6.1. Let w be a bounded normal history whose temporal projection is a connected
time interval I, and let w(t) be the cross-section of w at time t € I. Then w satisfies Muller’s
definition D4.2 iff w(t) is continuous in the Hausdorff distance.

The proof is given in section 8.3 of appendix A.

Theorem 6.1 above leads to a conflict between Muller’s analysis of transitions and our own.
Muller claims to show that it follows from his definition that the only transitions possible
are those shown in figure 8. We have shown, on the contrary, that functions continuous in
the Hausdorff distance can execute any of the transitions in figure 10. Indeed, note that the
transition from EQ to DC described in section 5 satisfies Muller’s of continuity. Where, then, is
the difference between Muller’s account of the transitions and ours?

The resolution is that Muller is using a different, and, we believe, flawed formal definition
of a “transition”. That is, the formal theorems Th 4.3 — 4.6 that Muller proves are, indeed,
true, but his interpretation of these theorems as expressing transition relations is incorrect.
However, the analysis of this error is beyond the scope of this paper. We elsewhere [3] discuss
Muller’s transition rules and propose an alternative formulation of transition rules in Muller’s
spatio-temporal language.

7. Conclusions and Future Work

The issue of what it means for two regions to be “similar” or “close” and the issue of what
it means for the region occupied by an object to change “continuously” over time are directly
connected through the epsilon-delta definition of continuity. The choices of these definitions
relate in turn to what kind of object is involved; how the shape is measured or constructed;
what is the nature of the abstraction from the object, which is a term in a physical theory,
to the shape, which is a term in a geometric theory; and how the notion of continuous shape
change is to be used in a dynamic theory of the domain. All of these options and issues must
be considered by the theory designer when the notion of continuous shape transformation is
incorporated into a domain theory.

Important problems for future study include:

e Further alternative metrics and further qualitative properties of interest.

e The relation between the real-world application of the geometric theory and the suitable
natural of shape approximation.

e The relation of the theories developed here to the theory of continuous change over discrete
spaces developed by Galton [8] and others.

e A.G. Cohn (personal communication) observes that all the entries in the composition table
of the RCC relations correspond to connected subsets of the transition network. It would
be interesting to explain this fact in terms of the theory of the topology of the space of
regions.
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8. Appendix: Proofs

This paper adduces many theorems;’ however, most of these are entirely straightforward. The
only ones of any difficulty are the relation of the dual-Hausdorff metric to the area; the relation
of the optimal-homeomorphism metric to the circumference and internal diameter; and the fact
that Muller’s definition is equvalent to continuity in the Hausdorff metric. These are proven in
this appendix.

8.1. The dual-Hausdorff distance and the area

Definition 8.1. Fix a coordinate system in the plane. Let § > 0. A §-grid square is a square
[NO, (N +1)d] x [M6,(M + 1)d] where N and M are integers.

Definition 8.2. Fix a coordinate system in the plane. Let R be a bounded regular region, and
let § > 0. The d-grid approzimation of R, denoted “Gr(R,d)” is the union of all d-grid square
contained in R.

The following is a basic property of area (indeed, it can be taken as the definition of area):

Lemma 8.1. Let R be a bounded reqular region. Then for any € > 0 there exists an n > 0 such
that for all positive 6 < n, area(R) — area(Gr(R,0)) < e.

Lemma 8.2. Let R be a bounded regular region, and let € > 0. Then there exists pu > 0 such
that, for any region S, if dg(R°,S¢) < u, then areaR —S) < e.
Proof: Using lemma 8.1, choose § so that area(R) — area(Gr(R,0)) < ¢/2. Let
K = area(Gr(R,9))/ 62, the number of J-grid squares in Gr(R,d). Let u = ¢/8K§. Choose S
so that dg(R*, S) < p.

Now let Q be any J-grid square in Gr(R,¢) and let x be a point in Q that is more than
w from the edges of Q. Then, since Q C R, d(x,R°) > d(x,Q°) > pu, so x ¢ S¢. That is, S
contains the entire square Q except for the strips within p of the edges. The area of QNS is
therefore at least (6 — 2u)? > 6% — 4ud. Summing over all the K J-grid squares, we derive that
area(S N Gr(R,d)) > K(0% — 4ud) = area(Gr(R,d))—¢/2. Therefore area(R — S) <
area(R— (S N Gr(R,0))) = area(R) — area(S N Gr(R,0))) < area(R) — (area(Gr(R,J))—¢/2)
<e O
Theorem 8.1. Let R be a bounded regular region, and let € > 0. Then there exists ;> 0 such
that, for any region S, if dyq(R,S) < u, then da(R,S) < e.
Proof: Let O be a bounded regular region that contains all points within distance 1 of R. Let
Q be the closure of O — R. By lemma 8.2, there exists u; such that, for any regular region S.
dig (R, S¢) < pq, then area(R —S) < €/2. Also by lemma 8.2, there exists g such that, for any
regular region T, if dy(Q°, T¢) < pg, then area(Q —T) < €/2. Let = min(uy, p2,1). Let S be
any region such that dg4(R,S) < p. Clearly S C O. Let T = O—S. Thendy(R¢,S%) < pu < pq,
and dg(Q¢, T°) = dg(R,S) < pu < pe. Therefore d4(R,S) = area(R — S) + area(S — R) =
area(R — S) + area(Q — T) < e.
Corollary 8.1. The area of a region is continuous under the metric dggq.
Corollary 8.2. The metric dgq defines a topology finer than that defined by da.

9For example, for every pair of nodes in figures 9 through 11 there is a theorem stating either that there is or
that there is not an arc between them.
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8.2. The optimal-homeomorphism metric and smoothed path lengths

Definition 8.3. A path in the plane is a continuous function from [0,1] to the plane. If ¢(¢)
and 1(t) are paths, then do(¢,) is defined to be maxcjo 1) d(¢(t), ¥ (t)).

We repeat definition 4.1:
Definition 4.1. Let ¢ be a simple curve in the plane, and let A > 0 be a distance. Let A(¢, A)
be the set of all paths 1 such that dp(¢,?) < A. We define the A-smoothed length of ¢ to be
the greatest lower bound over the arc-length of paths in A(¢p, A).

smooth(¢, A) = infyec (¢ ) length(z)).
Lemma 8.3. For any path ¢ and for any A > 0, smooth(p,A) is finite.

Proof: Clearly, it suffices to show that A(¢, A) contains a path of finite length.

Since ¢ is bounded, it can be covered by a finite collection of open balls of radius A/2:
B(z1,A/2) ... B(zk,A/2). Thus, for every z € ¢ there exists an x; € {x;...x} such that
d(z,x;) < A/2. For each x, let closest(x) be the x; for which d(z,x;) is minimal.

The function of x, d(x,closest(x)) = d(x, {1 ...z} ) is a continuous function of z. Therefore
for x € ¢, it attains a maximum value d(Zqz,closest(Tmaz)) < A/2. Let Ay be this maximum
value.

We are now going to track how ¢ moves from one open ball B(z;, A/2) to another as follows:
Start at ¢(0) and mark B(closest(4(0)),A/2) as the current open ball. We stick with this
until we leave this open ball, at time ¢;. We are now right on the boundary of the open ball
B(closest(¢(0)),A/2). We now choose B(closest(¢(t1)),A/2) as the current open ball; and we
continue in this way until ¢ = 1.

Formally, we define the following sequence of times tg,%; ...

to = 0.
t; is the earliest time after ¢;_1 for which d(¢(t),closest(¢(t;—1))) > A/2

We now claim that the sequence tg, 1 ... is finite. Proof: Suppose it is not. Then there must
exist a subsequence of the times t; ,t;, ... that attains the same value of closest(-) infinitely
often. Since no two consecutive values of closest(t;) can be equal, we have, for all i;,

closest(¢(t;, )) = closest(t;;)
d(¢(ti;+1), closest(o(t;;))) > A/2.

However d(¢(t;,), closest(¢(t;;))) < Ay. Hence, d(¢(t;;), ¢(ti;+1)) = A/2— Ay > 0. That is,
¢ moves infinitely often between pairs of points that are separated by a fixed positive distance
A/2 — Aq; but this is impossible for a continuous function ¢ over a bounded interval. Hence,
the sequence tg,t1...t, = 1 is finite.

Finally, define the path v (t) as follows: ¥(t;) = ¢(t;) for i = 1...n; and for t € (t;,ti+1),
1 (t) follows the straight line from ¢(t;) to ¢(t;+1). Since v consists of n straight lines, it has

finite length. Moreover for t € (¢;,t;11),

d(¥(t), ¢(t)) < d(¥(t), ¢(t:)) + d(B(ti), ¢(t)) < d(P(tit1), o(t:)) + A/2 < A
So ¢ € A(4, A). D
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Lemma 8.4. Let ¢ and 1 be paths of finite length, and let p be a value between 0 and 1. Define
the path 0(t) = po(t) + (1 — p)(t). Then length(0) < p - length(¢) + (1 — p) - length(v).

Proof: . .
length(6) = /0 6t) | dt = /0 | p(t) + (1 - p)ib(t) | dt <

[ 1000 141 0= p)ie) |t = - length(6) + (1 —p) - engi)

a

Lemma 8.5. Leta > >~>0. Let p= (8 —7)/(a— 7). Let 0,x,y,z be points such that
d(x,0) < v; d(y,0) < a; and z = py + (1 — p)x. Then d(z,0) < f3.

Proof:
Let x =0+ At and y = 0 + uv, where A <, u < «, and @ and © are unit vectors. Then

d(z,0)? = (1 — p)Ai + pud) - (1 — )Xt + pud) = (1 — p)2A* + 2p(1 — p) At - 0 + p* 1

Clearly, if p is fixed and A and p are constrained as above, this final expression attains a
maximum when A =, 4 = «, and @& = ©. For those values, it is equal to ((1 — p)y + pa)?. For
the specified value p = (3 — v)(a — ), this is equal to 52. O

Lemma 8.6. Let ¢ be a path, and let « > 3 >~ > 0. Then

smooth(p, ) < smooth(¢, ) < smooth(¢, ) + g f(smooth((b, v) — smooth(¢, a))
Proof: The first inequality is trivial, since A(¢,a) D A(¢, 3), and so the infimum is being taken
over a larger set.

Let 1) be a path in A(¢, o) and let ) be a path in A(¢,~). Let p = (8—7)/(a—7). Let 0 be the
path 0(t) = pa(t) + (1 — p)vy(t). By lemma 8.5, d(0(t), ¢(t)) < 3, so 6 € A(¢, 3). By lemma 8.4,
length(f) < p-length(¢)) + (1 — p)-length(n). Since 1) and 7 can be chosen so that their lengths
are arbitarily close to smooth(¢,a) and smooth(¢,~y) respectively, and since smooth(¢,3) <
length(#), it follows that smooth(¢, 3) < p-smooth(¢p, ) + (1 — p)-smooth(¢p,v). The second
inequality in the statement of the lemma then follows by an algebraic transformation.

Theorem 8.2. For any path ¢ and any A > 0 and € > 0 there exists 6 > 0 such that, if Y is a
path and do(¢, ) < 6, then | smooth(p, A) — smooth(p,A) | < e.

Proof: Let § < A/2 and let ¥ be any path such that do(¢, 1) < . Then
A(p, A —96) C A, A) C A(p, A +9).

Therefore, smooth(¢p, A — §) > smooth(¢), A) > smooth(¢, A + §).

If we now apply lemma 8.6, using a = A, f=A —§ and v = A/4, we get

smooth(¢, A — §) < smooth(¢p, A) + (smooth(¢p, A/4) — smooth(¢p, A))

5
(B/O)A -6
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Applying lemma 8.6 with « = A+, § = A, v = A/4, a simple algebraic transformation
gives

smooth(¢p, A 4+ §) > smooth(¢p, A) — (smooth (¢, A/4) — smooth(¢, A))

0
(3/4)A -4
Hence, if we choose § < min(A/2,4A¢/smooth(¢p, A/4)), then the conclusion of the theorem is
satisfied.

Corollary 8.3. For any fixed A > 0, the A-smoothed circumference and the A-smoothed path
diameter of a region are continuous functions with respect to the metric do.

Corollary 8.3 is the interesting part of theorems 4.1 and 4.2 (section 4.2).

8.3. Muller’s definition and continuity in the Hausdorff metric

In this section, we prove that Muller’s definition of continuity (D4.2) is equivalent to continuity
in the Hausdorff metric.
We repeat the definition:

D4.2: CONTINUw £ CONjw A VoV, ((TSzw) A zxu A Puw) = Czu.

Theorem 8.3. Let w be a bounded normal history whose temporal projection is a connected
time interval I, and let w(t) be the cross-section of w at time t € I. Then w satisfies Muller’s
definition D4.2 iff w(t) is continuous in the Hausdorff distance.

Proof: Suppose that w does not satisfy D4.2. Then there exists a time slice z of w and a normal
subset u of w such that z and w meet in time but x is not connected to u. Let ¢y be a time
instant within the temporal projections of both x and u. Let x(t) and u(t) be the cross-sections
of histories x and w at time ¢. Note that, for every t, x(t), w(t), and u(t) are closed regions of
space, though not necessarily regular regions of space.

Since z is a normal history, there is a time interval ¢ containing ¢g in the time projection of
x. Assume, without loss of generality, that ¢ precedes tg. By definition of a time slice, for any
t in the interior of i, w(t) = x(t). Let p be any spatial point in u(tg) C w(tp). Then, since u is
disconnected from z, p is not in x(¢y), so the spatio-temporal point (to,p) is not in z. Since x
is closed , there must exist an € > 0 and a subinterval of i, (¢1,tg), such that for all ¢ € (¢1,%¢)
d(p,z(t)) > e. But for t € (t1,t0), dg(w(ty), w(t)) > d(p,w(t)) = d(p,x(t)) > €. Hence w(t) is
discontinuous with respect to dy at tg.

Conversely, suppose that w(t) is discontinuous with respect to dy at time ty. Then there
exists an € > 0 and a sequence of times ¢,y ... converging to to such that dg(w(t;), w(ty)) > €
for all ¢;. There must be an infinite subsequence of these that lies on one side of ¢y, and the case
where this is above ty is symmetric with the case where it is below. Therefore, we can assume
without loss of generality that the t; converge to ty from below. For each such t;, either there
exists a point p; € w(t;) such that d(p;,w(tp)) > € or there exists a point ¢; € w(ty) such that
d(gi, w(t;)) > €. At least one of the sequences p;, ¢; must be infinite.

Suppose that the sequence p; is infinite. Since w is bounded, the p; must all lie in some
bounded region of space. Hence, they must have a cluster point p. Now there is a problem:
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since w is closed the spatio-temporal point (to, p) must lie in w, but d(p, w(tg)) must be greater
than e, which is a contradiction.

Suppose that the sequence ¢; is infinite. Again, these must have a cluster point ¢. Since

w(tp) is compact, ¢ € w(tg). By renumbering, restrict the sequence ¢; so that d(q,¢;) < €/2 for
all .. Then d(q,w(t;)) > €/2 for all i. Let x be the time slice of w over [0, %], and let u be a
normal subset of w containing (to,q) of diameter less than ¢/2. Then the temporal projection
of z and w share the point ¢y, but x and w are not connected, so by definition D4.2 w is not
continuous. O
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