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1 Introduction

How does a box work? You won’t find an explanation in The Way Things Work

[21] or at HowStuffWorks.com, for the very good reason that any fool can see

without assistance how a box works; and if you can’t see it, an elaborate
explanation won’t help. Indeed, the question, “How does a box work?” seems
almost ill-formed; it violates the Gricean condition that a question must admit
a useful answer.

That people do indeed understand, in a productive and general sense, how
a box works 2 is evidenced by the fact that they can reason about how the
functionality of a box relates to the geometric and physical properties of the
box itself and the objects it is used with. They understand, for example, that
objects cannot come out of a closed box; that objects can be carried in an
open box, if the box is moved smoothly and held upright; that objects will
fall out of an open box if it is turned upside down; that more and larger
objects will fit in a large box than in a small box; and so on. These inferences
can be carried out using only qualitative information about the geometry of
the boxes and objects involved; precise specifications of the geometry and
material properties is not required. The knowledge involved is not specific to
boxes; much the same knowledge is used in the commonsense understanding
of trays, shelves, drawers, and so on.

But, of course, what is obvious to people can be very difficult to make obvious
to computers. Currently there exist implementable theories at two levels that
can be applied to boxes. On the one hand, there is the exact theory of rigid
solid objects: given exact geometrical and material specifications of the box,
of the objects inside, and of the motion of the box, one can calculate exactly
the resulting motions of the objects. 3 On the other hand, one can develop
a discrete, abstract representation of the domain of boxes, using fluents like
“in(O, B)” and actions like “putin(O, B)” and “move(B, L1, L2)”. (Table 1
shows one such representation in PDDL [28].)

What is lacking is a theory at an intermediate level; a theory that, on the one
hand explicitly deals with the geometry of the objects and motions involved,
and, on the other hand, allows those geometries to be specified partially or
qualitatively. Clearly it is often important to be able to reason at such a level;
exact geometric characteristics of objects may be unknown, or one may wish

2 As opposed to, for instance, a theory that posits that the people’s interactions
with boxes can be characterized in terms of stimulus/response behavior that sub-
jects learn from positive and negative reinforcement when they put objects into
boxes and take them out.
3 This is actually more problematic than one might suppose, as we will discuss in
section 2 below.
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(define (domain Box)

(:types object location)

(:predicates (at ?o - object ?l - location)

(in ?o ?b - object)

)

(:action load

:parameters (?o ?b - object ?l - location)

:precondition (and (at ?o ?l) (at ?b ?l) (box ?b))

:effect (and (in ?o ?b) (not (at ?o ?l))))

(:action move

:parameters (?o - object ?l1 ?l2 - location)

:precondition (at ?o ?l1)

:effect (and (at ?o ?l2) (not (at ?o ?l1))))

(:action unload

:parameters (?o ?b - object ?l - location)

:precondition (and (in ?o ?b) (at ?b ?l)

:effect (and (at ?o ?l) (not (in ?o ?b))))

)

Table 1
PDDL theory of boxes

to reason about classes of situations generically, or one may wish to reason
about a system at an early stage of design, before the exact geometry has
been decided on. Clearly, also, human commonsense reasoning is often able to
deal with such reasoning without difficulty. Our objective in this paper is to
develop a representation and a theory of moving objects in boxes at this level.

This paper is thus a contribution to a small corner of the research programme
first pioneered by John McCarthy nearly fifty years ago [22,23]. In the very
earliest days of AI, McCarthy foresaw that the representation of commonsense
domains and the automation of commonsense knowledge would be one of the
major challenges in constructing intelligent programs; and that formal logic
would be a powerful tool in constructing well-defined representations and pow-
erful inference techniques. The years that have passed since then have entirely
confirmed McCarthy’s original insights. Though short-term and small-scale
progress in AI has often been made through the deliberate and systematic
avoidance of issues of commonsense reasoning (see e.g. [5], pp. xvii-xviii), it
has become ever clearer that, in the long run, no general intelligence can be
achieved without dealing with these issues, and that using representational
systems that lack a well-defined logical semantics yields no real advantages
and inevitably leads to muddle [26]. The research in this paper has also been
deeply influenced by other aspects of McCarthy’s work, particularly his study
of nonmonotonic inference [24] as a critical feature of commonsense reason-
ing, and his advocacy of elaboration tolerance [25] as a desideratum in the
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development of domain theories.

The other major inspiration for the research in this paper is Pat Hayes’ “Naive
Physics Manifesto” [17], which advocated carrying out McCarthy’s represen-
tation project in the particular area of commonsense physical reasoning.

The direct practical applications of a qualitative theory of boxes — e.g. for
household or industrial robots that deal with boxes; for deep understanding
of natural language texts that describe the use of boxes; or for interpretation
of video showing manipulation of boxes — would hardly in itself justify, in
terms of a cost-benefit analysis, my labors of writing this paper, your labors
of reading it, and the labors, not yet begun, of implementing it and integrating
it with such an application [7]. Boxes arise too rarely in these applications; it
would be much more cost-effective either to use one of the levels of representa-
tion and reasoning that currently exist, to contrive some application-specific
hack, or to live with the slight gap in functionality entailed in an imperfect
understanding of boxes.

Rather, the importance of the theory we develop here is as part of a gen-
eral theory of qualitative physical reasoning. There is good reason to hope
that large parts of the conceptual analysis, the representation, and the formal
theory can be carried over to a more general theory of qualitative physical
reasoning; that our experience in developing the theory of boxes will be help-
ful in designing such a theory; and that a general theory, when complete or
nearly so, will be so powerful and broadly applicable as to justify the very
large costs of development.[19]

This paper will deal with one specific, basic use of boxes: an open box can
be used to carry a collection of objects, the cargo, from one place to another
place. More specifically, we are concerned with the following plan (henceforth
plan1)

Load the objects one by one into the box;
Move the box to its destination. 4

In this paper, we will formulate a set of qualitative boundary conditions on
the box, the cargo, and the initial state sufficient to support the inference
that plan1 will execute successfully. We will present a formal theory in which
this inference can be carried out; this theory integrates continuous time, Eu-
clidean space, physical dynamics of solid objects, and the semantics of par-
tially specified plans. We will give an extensive sketch of the formal proof of

4 We had originally hoped to include a final step of unloading the objects one by
one; but it turns out that formulating conditions that guarantee that it is possible
to unload the cargo raises new and difficult problems. We hope to return to this in
future work.
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the correctness of the plan.

The key characteristic of our analysis is that the verification is achieved using
only qualitative geometric and physical specifications. Neither the number
nor the shape of the cargo objects is constrained and the shape of the box
is constrained only by the requirement that it is a box and is substantially
larger than the combined size of the cargo. We do not have to assume that
other objects do not exist, 5 only that they do not directly interfere with the
loading and the carrying. The trajectories used in loading the blocks and in
carrying the box are a little more constrained, but they too are permitted
a large measure of freedom. Furthermore, we do not require that the objects
remain in the position in which they are released; they may topple over or shift
around, either when they are originally released, or when some other object
is loaded on top of them, or while the box is being carted around. However,
though they shift, they remain in the box; this is one of the main functions
of a box. Therefore the planner does not have to make sure that he loads the
objects in a stable position.

To ensure that our theory is elaboration tolerant [25] to a reasonable degree,
and is not narrowly confined to this one specific problem, we have kept a
number of variant problems in mind. The theory is designed to extend fairly
easily to support the following variant inferences and scenarios:

1. Infer that, if the box is turned upside down and held that way while being
carried, the objects will fall out, and the plan will fail.

2. Infer that, if one or more of the cargo objects is attached to the ground then
they cannot be loaded into the box.

3. Infer that, if the box is attached to the ground, then it cannot be carried to
the destination.

4. Infer that, if the trajectory of the box is bumpy enough, then cargo objects
may be thrown out and the plan will fail.

5. Infer that, if object O is placed inside box B1 which is then placed in box
B2, and B2 is carried to L2, then both O and B1 will come along with it.

6. Infer that, if a lid is placed on the box after it is loaded and kept there while
it is carried, then the objects will stay in the box regardless of the motion
of the box.

7. Infer that, if a lid is placed on the box before it is completely loaded, then
the loading cannot be completed.

8. Infer that objects may be placed on an open tray and carried from one
location to another, but that they cannot be piled as high or moved as
roughly as in a box.

5 Readers who are not KR researchers may be surprised that this is worth mention-
ing; but such strong “closed world” assumptions are in fact ubiquitous in automated
commonsense reasoning and planning.
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9. Infer that objects can be carried in a box with holes in the bottom or sides,
like a milk crate as long as the objects are too large to fall through the
holes.

Due to limitations of time and space, we have not carried out a complete
formal analysis of any of these variants, but we are quite confident that the
theory presented here can be extended without substantial difficulty to cover
all or most of these. Specifically, inferences 1, 4, and 8 would certainly re-
quire additional physical axioms. The extensions needed for 1 and 4 should
be straightforward; inference 8 is substantially more challenging. Note that, if
one uses an open tray as in inference 8, objects must be stacked stably and
maintain a fixed position, or one risks their falling off the side of the tray.
The other inferences do not require any new physical axioms; these can all
be carried out within the current theory with at most the addition of some
additional geometric definitions and lemmas. Similarly, we have designed our
theory so that it is not inconsistent with the standard Newtonian theory of
solid object dynamics (see section 2.1), with the idea that the two theories
can be merged in future work.

One particular objective in this paper is to formulate the physical knowledge
used in terms that avoid or minimize the use of differential equations and
forces, which are central to the Newtonian theory. As discussed at length in
[6], analysis in terms of forces and of behavior over differential time is particu-
larly unsuited to qualitative reasoning in this domain, because many scenarios
which can be simply characterized over extended time are both extremely com-
plicated and extremely unstable when analyzed over differential time. Consider
dropping an object on the ground and watching it settle to a stable state. The
characterization of its behavior in differential terms, between the time it first
hit the ground and the time it comes to rest, can be very complicated; the
thing rotates, spins, slides, bounces while impacts and forces come and go. It
is also very unstable; the exact sequence of impacts, forces, slidings, and so on
depends very delicately and discontinuously on the exact shapes and material
properties and the initial conditions. The characterization of its behavior over
extended time is very simple and robust; within a few seconds, it is at rest on
the ground, not far from the initial point of impact. As we shall see, our theory
achieves this objective to a very large degree; in fact, the physical theory we
need for this problem makes no reference to velocities, accelerations, or forces.

Let us make clear at the outset a few objectives that this paper does not

attempt to achieve:

• We assume a single agent. The semantics is not easily extended to a world
with multiple agents.

• It does not cover all cases in which it is commonsensically obvious that the
plan works.
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• It does not derive the rules from “first principles” of Newtonian physics, for
reasons that will be discussed below.

• It does not support reasoning about likelihood, or relative likelihood. We
hope to address this in future work.

• It does not discuss how this reasoning could be implemented in practice.

The paper is structured as follows: Section 2 reviews related work, in mathe-
matical physics (section 2.1), in AI qualitative physical reasoning (section 2.2),
and in robotics (section 2.3). Section 3 gives a pre-formal analysis of plan1,
discusses the many ways in which the plan can fail, and presents ways to for-
mulate the boundary conditions, the physical constraints, and the plan itself
so that the plan can be relied on to succeed. Section 4 shows how this domain
theory can be expressed in a formal first-order theory. Section 5 sketches a
proof of the correctness of plan1; a complete proof is given in a Web-based
appendix at http://cs.nyu.edu/faculty/davise/box-proof.pdf. Section 6 sum-
marizes our results and discusses future work.

2 Related Work

Previous work relevant to the research described here falls into three cate-
gories: mathematical physics analyzing the Newtonian dynamics of rigid solid
objects (section 2.1), work in AI on qualitative dynamics of rigid solid objects
(section 2.2), and work on robotic planning (section 2.3).

2.1 The Newtonian theory of rigid solid objects

The study of the dynamics of solid objects, idealized as perfectly rigid, was be-
gun by Galileo and Newton and continued by physicists and mathematicians
of the eighteenth, nineteenth, and twentieth centuries. It has recently enjoyed
a revival of research interest because of its many applications, which include
physical simulation, robotics, computer-aided manufacturing, animation, vir-
tual reality, and video games. Recent research includes modelling issues (how
best to model the interactions of rigid objects), computational issues (how to
effectively compute the behavior of a system of rigid objects), and theoretical
issues (showing that every well-formed boundary value problem has a solu-
tion.) Nonetheless, there remain many fundamental unsolved problems in this
domain. Stewart [36] surveys the literature and discusses the state of the art.

In the kinematic theory of rigid solid objects, an object O is characterized by its
shape, which is the region of space that O occupies in some standard position.
We will assume throughout this paper that the shape of an object is bounded,
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regular (equal to the closure of its interior), and has a connected interior. In
this section, though not in the remainder of the paper, we will further assume
that the boundary is smooth; that is, there is a unique tangent plane at every
boundary point. The position of object O at time T is determined by a rigid
(orthonormal) mapping, called the placement of O at T . The region that O
occupies at time T , called the place of O at T is equal to the image of the
shape of O under the placement of O at T .

The kinematic theory consists of three constraints:

1. Each object maintains a fixed shape. This is guaranteed by the above con-
straint that the place of O at T is related to its shape by a rigid mapping.

2. The placement of O at time T is a continuous function of T .
3. If O1 6= O2 then the places of O1 and O2 at T do not overlap.

The kinematic theory is unproblematic and well-understood.

The dynamic theory extends the kinematic theory in the following ways: An
object is further characterized by a density distribution over its shape, its
coefficient of friction against other objects, and its elasticity. For each object
O, at each time T1, the limit of derivative of the placement of O at T as T
approaches T1 from below, and the limit as T approaches T1 from above, both
exist, though they are not necessarily equal. We will call these the velocity
before T1 and after T1 respectively. Two objects O1 and O2 that are in contact
at a given time may interact in one of two ways: First, they may exert a
force on one another, distributed over the region of contact. Alternatively,
when two objects collide, they may exchange a finite quantity of momentum
instantaneously through exerting an impulse force on one another.

In addition to forces between objects in contact, there are external forces,
particularly the earth’s gravity and forces that result from the actions of au-
tonomous agents. In most problems, some objects are specified to be fixed;

that is, they do not move under any circumstances.

The effect of forces and impulse forces on non-fixed objects is given by gener-
alizations of Newton’s second law:

4.A. ~F = Md~v/dt, where ~F is the net force on an object O, M is the mass of O,
and ~v is the linear velocity of the center of mass of O.

4.B. ~J = M∆~v, where J is the net impulse forces acting on object O, and ∆~v is
the discontinuous change in the linear velocity; i.e. the difference between
the linear velocity of the center of mass after T minus the linear velocity of
the center of mass before T .

4.C ~T = Id~ω/dt, where ~T is the net torque, I is the tensor of inertia, and ~ω is
the angular velocity.

4.D ~W = I∆~ω where ~W is the net impulse torque and ∆~ω is the discontinuous
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change in the angular velocity.

Newton’s third law asserts that:

5. The force (ordinary force or impulse force) exerted by O1 on O2 at point P
is exactly equal to the negative of the force exerted by O2 on O1 at P .

Finally, contact forces between objects are generated in the following ways:
(The generation of external forces lies outside this theory; the external forces
are given as boundary conditions in a problem.)

6. (Constraint forces.) Two objects in contact may exert constraint forces on
one another. The direction of constraint force from O1 on O2 at contact
point P is normal to their common tangent at P and points out of O1 into
O2. The magnitude of the constraint force is just large enough to ensure
that, when all the forces are combined, the non-overlapping condition is
maintained.

7. (Coulomb friction.) Suppose that O1 and O2 are in contact at point P ;

there exists a non-zero constraint force ~N between O1 and O2 at P ; and the
surfaces of O1 and O2 are moving at velocity ~v relative to one another at P .
If ~v 6= ~0, then there is a sliding frictive force from O1 to O2 whose direction
is −~v and whose magnitude is µk| ~N |, where µk is the kinetic coefficient of
friction between the material of O1 and the material of O2. If ~v = ~0, there
is a static frictive force between O1 and O2 whose magnitude is at most
µs| ~N | and whose value is such that the equations of motion have a solution.
The coefficient µs is the static coefficient of friction.

8. If O1 and O2 are in contact at point P at time T1 and their velocities before
T1 would cause them to interpenetrate in the neighborhood P , this is a col-

lision at P . The result of a collision is that O1 and O2 exert an impulse force
on one another directed along the normal to their common tangent. There
are a number of different models for determining the magnitude of this force;
Newton’s “experimental law” is often used but is sometimes problematic.
All of them involve a real-valued parameter, the coefficient of restitution,

which depends on the material properties of O1 and O2.
9. If O1 and O2 collide at time T , and they are part of a set of objects S

which are spatially connected at T , then the impulse force between O1 and
O2 may propagate to the other objects in S (e.g. a cue billiard ball hitting
into a set of other balls, or a croquet mallet (O1) striking one ball O2 and
knocking away a second ball.) It is not well-established how best to model
this propagated impulse.

10. If O1 and O2 collide at point P at time T1 and their surfaces have a relative
velocity at P which has a non-zero component ~vt in the common tangent
plane, then the two objects exert an impulse force on each other in the
direction −~vt. This is seen, for instance, in the way that the spin of a ball
may change at a collision. Again, it is not well-established how to model
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this interaction.
11. Under some circumstances, the equations of motion only admit a solution if

there is a impulse force between two non-colliding objects. See D. Stewart’s
solution to the Painlevé paradox [35,36].

The formalization of this theory is further complicated by the fact that two
objects may be in contact at a finite collection of isolated points, at every
point on a curve, at every point on a surface, or at the union of a surface, a
curve, and isolated points, and that the place and form of contact can change
discontinuously over time.

There are a number of unresolved issues in formulating this theory. Ideally,
one would like to have a theory that (a) agrees well with experimental mea-
surements, up to the limits of the idealization; (b) has at least one solution
for every well-formed boundary-value problem; (c) is demonstrably equal to
the limit of the theory of elastic solids, as the elasticity goes to zero; (d) is
demonstrably the limit of numerical computation, as the precision increases
and the time-step goes to zero.

But this ideal has not yet been attained. Strong results, specifically the exis-
tence of a solution for well-formed boundary-value problems, have been proved
only under restricted conditions. There are a number of different sets of condi-
tions that have been proved sufficient to guarantee the existence of a solution;
the following is typical:

• Two objects are only in contact at a finite collection of points, not over an
extended region.

• The normals at the contact points between two objects lie in a single hemi-
sphere.

• Collisions are inelastic.

There is also a small philosophical/logical literature on axiomatizing the physics
of rigid solid objects. The interest here is mostly on issues in theoretical physics
and philosophy of science, rather than on detailed physical models. For exam-
ple, the axiomatization presented by Adams [1] includes only items 4.A and
4.C above; it does not even include the constraint that objects do not overlap.

The needs of knowledge-based commonsense reasoning are rather different
from those of scientific computation. In a theory of commonsense reasoning,
coverage is more important than precision; it is better to be able to rule out
grossly impossible behaviors in all situations than to be able to give precise
answers over a limited class of situations.

Let me conclude here with some general comments about the relation between
the scientific theory of solid objects and commonsense knowledge of the same
domain. The scientific theory intended to deal with every possible case of
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a collection of objects sliding, spinning, rolling, and colliding. However, the
problems that arise in everyday life are almost always much more constrained
in one respect or another. Indeed, there is no reason to think that commonsense
understanding is very good at dealing with the general case; naive subjects
find as basic a phenomenon as gyroscopic motion baffling and hard to believe
even when directly experiencing it.

In ordinary situations, people are usually interested in maintaining a very
large measure of control over the objects they interact with; and it is hard to
achieve control over an object that is moving freely. 6 Also, a free motion of
an object is likely to end in a collision; and people avoid subjecting objects
to collisions for fear of damage. Commonsense reasoning is thus primarily
concerned with cases where objects either stay where they are without need
for intervention, or with cases where an agent moves an object in a controlled
way. On the other hand, a commonsense theory must to some extent take
account of uncontrolled free motion, if only to be able to allow some useful
predictions in the cases where this happens by accident.

In physics, the base case of the theory is an object moving with constant
velocity under Newton’s first law without external forces. 7 In commonsense
reasoning, the base case is an object sitting motionless on a table.

2.2 Qualitative Physical Reasoning

This project continues the work on qualitative reasoning about solid objects
reported in [6], which presented a logical analysis of the inference that a marble
dropped inside a funnel would fall out the bottom of the funnel. Rule-based
approaches to commonsense physical reasoning ultimately derive from [17].
Bennett et al. [3] presents a purely geometric theory of rigid object kinematics
in a language entirely defined in terms of the primitives “Region R1 is a part
of region R2,” and “Region R is a sphere.”

Some of the fundamental difficulties and limitations of this methodology are
discussed in [7]. A current survey of work in AI physical reasoning may be

6 The most common contexts involving freely moving objects are aircraft and space-
craft; military and hunting projectiles, from slingshots and arrows to guns and
grenades; and sports that involve balls, pucks, shuttlecocks and so on. I think it is
safe to say that, with the exceptions of sports, dropping trash into a basket, and
perhaps tossing bags of laundery, most contemporary Americans rarely deliberately
toss or drop any large solid objects. I should be interested to learn of any further
exceptions. Note, by contrast, that liquids and collections of small solid objects like
salt or coffee are generally poured.
7 The rotational motion of such an object can be surprisingly complicated.
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found in [10].

Previous work on qualitative reasoning about kinematics includes [12,29]. For-
bus et al. [14] extend these to include dynamic analyses of certain kinds. Gelsey
[15] reports a simulator for predicting the dynamic interactions of solid ob-
jects. All of these require an exact shape description of the objects involved
to be input. De Kleer’s NEWTON program [11] and Forbus’s FROB program
[13] carried out qualitative prediction of the behavior of point objects interact-
ing with fixed constraints whose shape is qualitatively described. Stahovich et
al. [34] present a system for qualitative analysis of a limited class of dynamic
systems; this is similar to [14] but more elegant and more clearly defined,
though more limited in scope. They claim that their system can work from a
rough sketch of the objects involved, but it is not clear how this works.

2.3 Robotics

The literature on robotics discusses many of the same issues as are addressed
here, but from a sufficiently different angle that the techniques applied there
are rarely directly applicable here. (LaValle’s [18] recent textbook is an exten-
sive and excellent survey of robotic planning.) We will discuss briefly a couple
of issues that these two lines of research have in common; a more extensive
comparison is beyond the scope of this paper.

Analysis of the mechanics of manipulation. As we will discuss below,
in this paper we limit ourselves to an extremely simplified model, in which a
disembodied agent moves one object at a time through telekinesis, but in a
broader setting, commonsense knowledge is aware of and reasons about phys-
ical aspects of manipulation, and we hope to address these in future work.
Even in this setting, however, it seems likely that there is a divergence between
the roboticists’ analysis and the analysis needed for commonsense reasoning.
Roboticists must carry their analysis to the level needed to actually execute
the manipulations involved, whereas it would seem that commonsense reason-
ing stops at a more abstract level, and leaves the ultimate implementation
in muscular forces to learned control patterns. On the other hand, robotics
research tends to focus on limited classes of controlled situations; for common-
sense reasoning, it is important to reason about what an agent can effectuate
in any circumstance.

Information limited planning. A very interesting branch of recent robotics
research studies how a robot with limited knowledge of the environment can
nonetheless plan to achieve specified goals (see [18], chaps. 11 and 12). These
studies obviously have elements in common with qualitative reasoning about
planning; both deal with constructing plans in situations that are not com-
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pletely specified. But there is, I think, an important distinction centering
around the standpoint of the reasoning being done. The information space
analysis in robotics takes a first-person approach: the agent who is reasoning
is the robot who is acting, and he has to get enough information to be able to
actually carry out the actions involved. Qualitative reasoning takes a third-
person approach: the reasoning is being done by someone other than the agent
himself who has partial knowledge of the situation and wants to be able to
reason that an agent, who may himself be omniscient or who may have limited
knowledge, would be able to carry out a partially specified plan.

Direction of inference. Finally, both robotics planning research and AI
planning research focusses almost exclusively on constructing and executing
plans to meet specified goals. In commonsense reasoning this is only one of
many possible reasoning tasks. Other directions of inference include deter-
mining that a given goal cannot be achieved; inferring characteristics of the
environment or the agent from the execution of a plan, or from the failed
attempt to execute a plan, and so on. All these draw on the same kind of
knowledge as plan construction, and therefore a general domain theory should
support all of them and a general knowledge-based reasoner should be able to
carry all of them out.

3 The execution of plan1: pre-formal analysis

Our central objective in this paper is to validate plan1; that is, to show that,
under suitable conditions, plan1 is a reasonable plan and can be expected to
succeed in achieving the goal of moving a collection objects to a destination.
The hard part of this analysis is actually at the pre-formal 8 level: deciding
which issues should be addressed in detail, which should be idealized, and
which should be ignored; what problems should be covered; what knowledge
must be used; and what assumptions must be made. Once all this is deter-
mined, the translation of this analysis into logical notation is, as we shall see,
comparatively straightforward

We will assume throughout this paper that objects can be idealized as rigid
and solid; thus, we do not have to worry about the box breaking or the objects
becoming crushed.

8 We do not mean to suggest that methodologically, “pre-formal analysis” is or
should be completed before formalization begins. On the contrary, the process of
constructing formal axiomatizations of domain knowledge and formal proofs gives
important insights into the inherent nature of the knowledge involved. In practice,
research proceeds on all three fronts concurrently.
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3.1 A Model of Manipulating an Object

An execution of plan1 consists primarily of a sequence of manipulations of
individual objects. We therefore start our analysis of the plan by formulating
a theory of manipulation.

What kinds of manipulations are in fact possible for a given physical agent
depends on the geometry of its manipulators and the geometrical and physical
constraints that govern them. For real agents, animal or robotic, these tend
to be complicated. In order to abstract and simplify the details of the ma-
nipulator, we will use instead the following idealized model of manipulation:
we conceptualize the agent as, so to speak, having telekinetic powers over one
object at a time. That is, the agent may choose any object OM and may move
it along any physically possible path; we need not specify how the physical
manipulators of the robot could actually reach, grasp, and move the object
to accomplish this. The motion of the manipulated object OM may cause
motions of other objects, either because of kinematic constraints or because
of frictive forces. If other objects are in the way of the attempted motion of
OM then OM will exert a force on them. If this force causes the other objects
to move out of the way, then the motion is possible; if not, the motion is
impossible.

The effect of the idealization is to abstract away the robot’s actual manip-
ulators. For instance, as compared to the capacities of a human hand or an
anthropomorphic robotic hand, this idealization allows us to ignore such is-
sues as what positions of the fingers and palm relative to the object allow
the object to be grasped; the space occupied by the hand; the constraints on
motion placed by the structure of the hand and arm; and the limits on the
strength of the hand. For the most part, therefore, the idealization is more
powerful than a real manipulator. There is one thing, however, that a real
manipulator can do that this idealization cannot; namely, to directly move
more than one object at a time. A human hand can hold several small objects
simultaneously, but our idealization does not allow this. (We could, of course,
change the idealization to specify that the agent can move arbitrarily many
objects within reach simultaneously. However, this is undesirable, because an
agent who could do this has no use for boxes; it can simply carry all the
cargo directly.) In future work, we hope to consider more realistic models of
manipulation.
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3.2 Characteristics of plan1

Let us begin by writing out plan1 in more detail. Let oBox be the box, uCargo
be the set of cargo objects, oTable1 be the surface initially holding the objects,
and oTable2 be the surface to which we wish to move the loaded box. Then
we define plan1 in pseudo-code as follows

plan1 ≡
{ while (not all objects in uCargo are inside oBox)

{ O1 := some accessible object uCargo outside oBox;
load O1 into oBox;

}
move oBox from oTable1 to oTable2;

}

Three characteristics of plan1 will be critical for our analysis. First, plan1
is hugely underspecified. In particular, a complete implementation using our
idealized robot would have to specify how the plan executor is to choose the
next cargo object to move, the position within (or above) the box at which to
release each object, and the trajectory along which to move each object and
the box.

Second, plan1 is very well suited to reasoning with qualitative information. It
makes no a priori assumptions about the number, shapes, material properties,
or initial positions of the cargo objects involved. Neither the agent himself
nor an external reasoner needs to have this information to see that this is a
reasonable plan; indeed, the plan is often executable by an agent who never
gets this information. For instance, an agent with no visual or other precise
spatial perception and with only an approximate idea of the position of its own
manipulator may well be able to execute the plan by groping for the objects,
getting them inside the box, and releasing them.

The third characteristic is not a feature but a problem; as we elaborate below
in section 3.3, there are a large number of ways in which the plan can fail. If
we wish to posit conditions that allow the conclusion “The plan is guaranteed
to succeed” to be inferred with certainty, then we must necessarily posit quite
restrictive conditions on the spatial and physical characteristics of the box
and the cargo, and we may also have to impose greater specificity in the plan
statement. That is, we have to negotiate a three-way trade-off between (a)
adding further specifications to the plan; (b) requiring that the objects and box
meet more restrictive conditions; (c) allowing the conclusions we draw to be
plausible or likely but uncertain. The trade-off between constraining the class
of objects and specifying the plan amounts to the observation that, by using
more intelligence about how to carry out the plan, one can apply it successfully
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to a substantially greater class of objects. This is not surprising; packing a box
efficiently is, after all, an enterprise that requires some thought and skill, and is
not achieved by tossing objects at random into the box. The trade-off between
degree of certainty and the other two categories amounts to the observation
that plans carried out haphazardly or in borderline circumstances are more
likely to go wrong; again, this is not surprising. In this paper we will explore
a small number of ways in which these trade-offs can be made. There are
many different combinations of conditions and plan specifications that, to a
commonsense understanding, justify the conclusion that the plan [necessarily
/ probably / possibly] will achieve the goal; the theory developed in this paper
will cover only a small fraction of these, though of course a complete theory
commonsense theory of boxes would cover all of them.

Establishing that plan1 is a valid plan to achieve the goal “The objects in
uCargo are above oTable2” starting in state s1 involves that showing that
every step of plan1 will be executable at its proper time and that at the
end of any execution of plan1, the objects in uCargo are all above oTable2.
Specifically, we need to posit or establish the following propositions:

1. In s1, the cargo uCargo and the box oBox are all on oTable1.
2. At each iteration of the loading loop, there is some object O1 in uCargo

that can be loaded into oBox.
3. After O1 has been loaded into oBox, O1 will be in oBox.
4. No cargo object exits oBox while O1 is loaded into oBox.
5. After the completion of the loading loop, it is feasible to carry oBox from

oTable1 to oTable2.
6. No objects come out of oBox while it is being carried from oTable1 to

oTable2.
7. After oBox has been carried from oTable1 to oTable2, oBox is on oTable2.
8. If oBox is on oTable2 and O1 is in oBox then O1 is above oTable2.

Clearly if the above propositions are true then plan1 is executable and suc-
ceeds in bringing the cargo uCargo to oTable2. However, these propositions
are not formulated in a directly usable form. In particular, as far as possible,
we want our problem to be formulated in such a way that we posit that state s1
satisfies a collection of specified conditions and that the plan is executed start-
ing in s1; and then from these boundary conditions we infer the correctness of
conditions such as 2–8 above that characterize the world at later times. Our
analysis below achieves this objective in large measure but not completely.
In particular, we need to posit isolation conditions that objects other than
the cargo, the tables, and the box do not interfere with the execution of the
plan. (We could replace these with initial conditions on the external objects
which support the isolation conditions as an inference; however, it seemed to
us that positing the weak isolation conditions is more reasonable for common-
sense reasoning than positing the much stronger initial conditions on external
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objects that would be required.)

At the outset, let us assume some conditions that are obviously necessary or
useful:

COND.1 In state s1, object oBox and cargo uCargo are stably supported on oTable1.
COND.2 There is a “protected region” manipSpace1 which contains uCargo and oBox

and is large enough so that each object can be moved through manipSpace1

into oBox; and it is guaranteed that no objects except uCargo, oBox, and
oTable2 ever enter into manipSpace1.

COND.3 The cargo uCargo fits inside oBox. That is, there is a configuration C in
which each of the objects in uCargo is in the inside of oBox and which is
physically feasible in the sense that no two overlap.

COND.4 No other object reaches into the inside of oBox while it is being carried.
(Condition COND.2 guarantees that this does not happen during loading.)

COND.5 oBox can be fully on top of oTable2 in a stable position.
COND.6 There is a second “protected region” manipSpace2 which contains the start-

ing and ending positions of oBox and which is large enough that oBox can
be moved through manipSpace2 from start to end while remaining upright.
No object other than oBox and uCargo enter into manipSpace2 during the
execution of plan1.

3.3 Potential problems and their fixes

Given conditions COND.1-COND.6 above, what can go wrong with the plan?
Actually, it can go wrong in more ways than one might at first suppose. (For
convenience of cross-reference, I include here with each bug a forward pointer
to the discussion of how the bug is addressed.)

BUG.1 oTable1 itself interferes with the loading of some object O1 into the box, or
with carrying of oBox away from L1. E.g. O1 or oBox is fastened to oTable1;
or oTable1 encloses O1 in a cage. (Addressed in section 3.3.1.)

BUG.2 In the process of loading O1 into the box, it may knock against one of the
other cargo objects which then falls out of the protected region manipSpace1

and gets trapped by some other object, so that it can no longer be loaded.
(Addressed in section 3.3.1.)

BUG.3 The target configuration C in which uCargo fits inside oBox may be unattain-
able, for any of a number of reasons:

a. It may be kinematically unattainable; e.g. it may depend on teleporting
one object in uCargo into an inner cavity of another object, or discon-
necting two objects that are fastened together (figure 1).

b. It may be unstable; that is, if the objects are placed in C, they may fall into
a different position where they are not entirely inside the box (figure 2).
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Fig. 1. Bug 3.A
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Fig. 2. Bug 3.B
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Whichever of O1, O2 is loaded first will fall over so as to block the loading of

the other.

Fig. 3. Bug 3.C

c. It may be dynamically unattainable; that is, it cannot be attained by an
agent who can only manipulate one object at a time and who is loading
one object at a time (figure 3).

(All addressed in section 3.3.2.)
BUG.4 It is possible that in loading O1 into the box, O2 will be carried along with

it, and will end up in a position which precludes completing the loading of
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the box. E.g. O1 is a box and initially O2 is inside O1, but the cargo can
only be fit into OB if some other object O3 is placed inside O1 underneath
O2. The plan plan1 does not include any method for dealing with this, even
if, intuitively, it is easily solved by moving O2 either before or after O1 has
been loaded (figure 4). (Addressed in section 3.3.1.)

BUG.5 Loading a cargo object into the box or lifting the box may cause a trap to be
sprung (as in the opening scene of Raiders of the Lost Ark), which prevents
the completion of the plan. This can happen either when the cargo object
is lifted, when it is placed in the box, or when the box is lifted. (Addressed
in section 3.3.1.)

BUG.6 The box may fall over during loading, or it may be knocked off the table.
(Addressed in section 3.3.6.)

BUG.7 Suppose that, at some stage of plan execution, object O1 is sitting on the
long end of a lever OL, and a heavy object O2 is dropped or falls onto the
short end of OL. Then O1 can be catapulted far from where it is supposed
to be (figure 5). Specifically,

a. During loading, if O1 and OL are inside the box, and O2 is placed on the
other end of the lever, O1 can be catapulted outside the box. (Addressed
in section 3.3.5.)
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b. During loading, if O1 and OL are outside the box, O2 is sitting on the
other end of the lever, and O1’s end of the lever is being held down by
another heavy object O3, then lifting O3 to load it may cause the lever
to be released, catapulting O1 out of reach. (Addressed in section 3.3.1.)

c. During carrying, if O1 is on lever OL inside the box, and the other ob-
jects inside the box shift in one way or another, then O2 may fall onto
the other end of the lever, catapulting O1 out of the box. (Addressed in
section 3.3.5.)

There are also other, even more far-fetched, scenarios in which an object can
fly out of the box; for example, a tiddlywinks effect; or a wedge positioned
in a crack between two heavy objects may be shot upward if the two objects
are squeezed together; or an elastic object like a basketball lying quietly on
the ground may bounce upward if it is hit sharply from the top. We will
consider all such possibilities as coming into the category of BUG.7.

BUG.8 Objects may come out of the box while it is carried from oTable1 to
oTable2.

a. If the box leans over too far, the cargo may fall out. (Addressed in sec-
tion 3.3.3.)

b. Similarly, if the box first leans to the left, and then to the right, then the
cargo objects may accumulate on the left-hand wall and then be lifted up
about the opening. If the box leans back and forth numerous times, then
the cargo can gradually climb the walls, being first carried up with each
rising wall and then settling down into a higher position on the opposite
wall. (Addressed in section 3.3.5.)

c. If the motion of the box is very violent then the objects may be flung out.
(Addressed in section 3.3.4.)

d. If the objects are very elastic and the motion is bumpy they may bounce
out. (Imagine carrying a wooden box full of ping-pong balls.) (Addressed
in section 3.3.1.)

e. If the objects can roll or slide with little friction, and the inside of the
box is curved (like a bowl) then they can build up a “sloshing” resonant
motion inside the box that eventually allows them to escape, even if the
motion of the box is quite smooth. (Addressed in section 3.3.1.)

f. If the sides of the box are slanted out, and the motion of the box is bumpy,
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then a cargo object can be gradually bumped up the back side of the box
and eventually out. (Addressed in section 3.3.4.)

g. If the sides of the box are slanted out, and the box is spun rapidly, then
centrifugal force may pull the objects out. (Addressed in section 3.3.4.)

h. If there are many cargo objects (e.g. a heap of sand), then in the course of
motion the heap of objects can shape itself into a ramp or bowl, allowing
an object to escape methods (d), (e), or (h), even if the sides of the box
itself are vertical. (Addressed in section 3.3.5.)

With eight categories of bugs enumerated (plus subcategories), one might
well wonder whether this is just the beginning of a list that can be extended
indefinitely. As it happens, once we have addressed these bugs, we will have
a plan that can be formally validated, so this list of bugs is complete in the
sense that it suggests a complete set of fixes.

It should be noted that, with the significant exceptions of bugs 5, 7, 8.b, 8.f,
8.g, and 8.h, all of these are familiar to anyone who has extensively moved
objects in boxes (that is to say, pretty much everyone), and people take them
into account in planning, executing, and correcting their box moving activities.
(The same is true of the additional bugs with variant boxes to be discussed in
section 3.4.) These are not at all unusual, and the strategies and conditions
that we will suggest to eliminate them are likewise formalized versions of
commonsense understanding.

We need to exclude all these bugs one way or another before we can validate
the plan. As discussed above, there are three general categories of fixes:

1. Imposing stronger conditions on the shapes, material properties, initial con-
figurations, and exogenous motions of the objects involved. Such conditions
reduces the scope of the correctness proof, and require that the agent have
more complete knowledge of the state. This approach also leads to condi-
tions on the plans that are more restrictive than actually necessary. For
instance, we will impose much stronger conditions than are actually neces-
sary on the relation between the size of the cargo and the size of the box,
in order to be able to be able to prove the general statement that when-
ever these conditions are met, the objects can be loaded into the box (see
section 3.3.2).

2. Making the plan more specific, so that the agent uses some intelligence and
care about how he carries out the loading, carrying, and unloading. This
makes more demands on the agent; it also generally requires a more complex
analysis in generating the correctness proof.

3. Achieving less certainty in the conclusions; concluding that the plan is prob-
ably correct or correct by default rather than that it is guaranteed to be
correct.
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3.3.1 Basic geometric and physical conditions

To begin with, we will posit some fairly stringent geometric and physical
conditions. First, since our primary interest in this paper is in the use of the
box, not in the theory of disassembling heaps, we will assume that initially the
objects are all placed separately on the fixed support oTable1, and that each
object has a clear space above it, so that it can be lifted vertically upward
without touching any other object, and that it in fact is lifted without touching
any other object. Second, we will assume that the objects in uCargo cannot
roll, have a high coefficient of friction, and a low coefficient of restitution (that
is, they don’t bounce).

These two assumptions, between them, eliminate BUG.1 (that oTable1 blocks
the loading of some object), BUG.2 (loading one object knocks some other
cargo object out of the way), BUG.4 (that loading O1 brings O2 along in
some interfering way), BUG.5 (that loading an object or lifting the box will
trigger a trap), BUG.7.b (that loading one object results in an object that
is outside the box being catapulted), BUG.8.d (bouncing objects out of the
box), and BUG.8.e (objects sloshing out of the box).

3.3.2 Fitting the cargo in the box

BUG.4, that the fitting configuration is unattainable, can be dealt with by
requiring oBox to be much larger than uCargo. We consider two particular
kinds of conditions here, corresponding to different specifications of plan1. If
we want plan1 to allow the agent to place the objects anywhere at all that
they fit inside the box, then we can apply the following condition: Let maxDiam
be the maximum diameter of any object in uCargo. Let rDeep be the region of
all points in the X-Y plane where the inside of oBox has at least depth maxDiam

and let nSquare be the number of non-overlapping squares of side maxDiam

in rDeep. Then, as long the number of cargo objects is less than nSquare/4,
they can be loaded into the box in this way, since any cargo object already in
the box can block at most 4 such squares.

The above result is not very satisfying since this does not allow any more cargo
objects to be loaded in a deep box than in a shallow one, as long as the depth
is greater than maxDiam. Unfortunately, that is pretty much unavoidable with
such a weakly constrained loading strategy. The problem is that a sufficiently
perverse and ingenious agent may be able to use the first objects in uCargo to
build a dome just inside the top of the box, which will make it impossible to
add more cargo no matter how large the volume underneath the dome. Note
that our correctness proof is supposed to establish that the plan succeeds
however the agent chooses to execute it as long as he follows the constraints
defined in the plan; we are not allowed to complain that the agent is following
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the letter but not the spirit of what we had in mind.

The following loading strategy is more effective: the agent is required to load
each cargo object to a reasonably low open position — not necessarily to the
lowest possible position, just not to a position that is entirely higher than some
other option. Specifically, the agent is prohibited from loading a cargo object
to position M1 inside the box if it is possible to load it instead to some other
position M2, such that highest point of M2 is lower than the lowest point of
M1. If this not very restrictive protocol is followed, then the following can eas-
ily be shown. Suppose that inside oBox there is an empty rectangular cuboid
of dimensions lCube long by wCube wide by hCube high. Then as long as the
number of cargo objects is less than

⌊lCube /2 maxDiam⌋ · ⌊wCube /2 maxDiam⌋ · ⌊hCube /2 maxDiam⌋
this loading strategy will get all the cargo into the box. In our formal axiom-
atization and correctness proof we will use this plan and this constraint.

This analysis, too, is far from optimal; it generally overestimates the space
needed in the box by a factor of 8, and makes no allowance for the efficient
stacking of large numbers of long thin objects. Since the focus of this paper
is not optimal packing, we have pursued this no further here. Readers who
want to try their hands at getting stronger results, however, should note that,
in the context of the theory in this paper, merely proving a geometric result,
that there is a configuration in which all the cargo objects fit within the box,
is not sufficient because it risks running into BUG.3. You have to show that, if
you load the objects into the box, they will remain in or settle into a position
in which they all fit. “Remaining in” is a problem in qualitative statics; “settle
into” is a problem in qualitative dynamics. For instance, if you are loading a
set of pencils into a case, you need to show that they do not somehow arrange
themselves into a complicated lattice work that blocks further loading while
leaving plenty of empty space within the box. Our proof of the correctness
of the strategy above does indeed allow the possibility that the objects settle
within the box after they have been placed, but we demonstrate that even if
they do settle, the loading can be completed.

3.3.3 Tipping out

Bug 8.a, that the box is tilted so far in carrying that some of the cargo falls
out, can be eliminated for the case of a single tilting motion (i.e. without
a gradual climbing of the walls, as in 8.b) by requiring that the object not
be loaded too close to the top of the box and that the box be kept close to
vertical. Assume that, if any objects in the box settles into a new position
as a result of tilting the box, its center of mass moves downward in setting.
Let O be any cargo object, and let F be the diameter of O. Let H be the
maximum horizontal distance between a point inside the box and a point in
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Fig. 6. Tilting out of the box

the top of the box in the initial state; let D be the minimum vertical gap
between the top of the box and the center of mass of O in the initial state;
and let φ be the maximum tilt of the box from the vertical orientation. If
D cos(φ) > H sin(φ) + F then O cannot be tilted out of the box (figure 6).
(This additional gap of F is necessary to block the possibility of some curved
object executing a “Fosbury flop” in which the object can escape from the
box while keeping the center of mass below the top of the box.)

3.3.4 Smoothness of motion

Bugs 7.b (that cargo objects are flung out of the box), 8.f (that the objects
work their way up the back of the box in a series of small bumps), and 8.g
(that the objects are spun out of the box) could be eliminated by requiring
that (a) the cargo objects are not loaded too near the top of the box; (b)
motions of the box moved smoothly and not spun rapidly; and (c) the sides
of the box are steep.

In fact, we have not included these conditions in our formal analysis; rather,
for simplicity we have relied on the default rule, introduced in the next section,
that objects in a box generally do not move higher with respect to the box.
However, let us briefly discuss the nature of these inferences in the more
complete theory we eventually hope to attain.

Commonsensically, there is a multi-way tradeoff between the bumpiness and
rotational velocity of the motion of the box, the steepness of the sides of the
box, the gap between the top of the objects and the top of the box, and the
likelihood that objects will come out of the box — one may as well throw in
here the elasticity of the objects as well. However, this tradeoff
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• involves elements that are hard to quantify, such as the “bumpiness” of a
trajectory;

• would be very hard to justify by a formal analysis based on Newtonian
mechanics, even if one confines attention to cases where the probability is
1 or 0;

• is almost certainly not known very precisely by actual commonsense (hu-
man) reasoners.

What reasoners do know, it seems reasonable to say, is a number of specific
cases drawn from experience, and the general structure of the tradeoff. This
enables them to conclude that, for example, if the box is shaken up and down
very violently, the objects will certainly come out the top; that if you fill a
box to the brim with small objects and then roll it in a wheelbarrow down a
bumpy road, it is quite likely the objects will come out; and that if the cargo
objects are inelastic and you carry the box carefully and smoothly then the
objects will certainly stay in the box. We hope to address these issues in future
work, but they are beyond the scope of the current paper.

3.3.5 Catapulting

BUG.7.a and BUG.7.c, that an object may be catapulted out of the box, 9 are
much more problematic than those we have considered above. Two features
of this bug are immediately apparent. First, it rarely if ever actually happens.
My guess is that no one in this history of packing boxes has ever been surprised
by an object flying out in this way. 10 Second, it obviously could happen if
the agent specifically sets it up to happen. All that is needed is an object to
act as fulcrum, an object to act as lever (or a single bent object to act as
both fulcrum and lever), a light object to act as missile, and a heavy object
(much heavier than both missile and lever) to act as trigger (figure 5). Further
thought reveals a third feature; namely, that it is very difficult to formulate
plausible constraints on the shapes of the objects or on the loading actions
that suffice to make this impossible. The fulcrum and missile need only be
comparatively small; the shape of the trigger is entirely unconstrained. The
lever does have to be substantially longer than it is thick, but ruling out all
objects of that kind — that is, requiring that all objects be more or less cubical
— really does seem like an unacceptably strong restriction to fix a problem
that never actually comes up. Note that the trigger need not be the object
being loaded, so it does not suffice to posit that the agent sets each object

9 We have already dealt with BUG.7.b in which an object on oTable1 is catapulted
out of the protected area.
10 One of the reviewers disagrees, and thinks that probably this does occasionally
happen in practice. Also, note, by contrast, that liquid spilling out of the top of a
pail, either in filling the pail or in carrying it (analogous to BUG.8) is quite common
and requires care to avoid if the pail is nearly full.
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down very gently in loading it; adding the new object, however gently, may
disturb a carefully balanced equilibrium and knock over some other object that
will function as the trigger. One might think that one could find restrictions
on the way in which objects are heaped and removed from heaps that would
exclude this, but short of doing an exact simulation, which defeats the whole
point of qualitative reasoning, that seems very difficult to do.

So what should be done? The obvious temptation is just to posit that it can’t
happen, since it never does. But I am afraid that this is a dangerous path.
Quite clearly this can happen. It is not merely a theoretical consequence of
Newtonian physics, or a recondite case with specially designed objects; on the
contrary it is quite obvious that anyone can make it happen in a few minutes
with a couple of household objects. Thus, a theory in which it cannot happen
is inconsistent with commonsense understanding of solid objects, and there-
fore cannot be extended to a general theory of commonsense reasoning about
solid objects. Note that this is quite different from, for example, saying that
the theory of rigid solid objects cannot be extended to a theory of non-rigid
objects. The latter case has to do with theories of two very different scopes;
naturally, one does not expect to deal with non-rigid objects in formulating
a theory of rigid objects. Here the natural scope of the overarching theory is
the dynamic theory of rigid objects, which includes both boxes and catapults.
In this paper, we happen to be dealing with boxes, but certainly we would
certainly hope to be able to develop our theory as a subset of a broader theory
of rigid solid objects.

A second idea is to restrict the physics to quasi-statics, the limiting case where
dissipative forces are always so large as compared to momentum that no object
can travel more than a negligible distance under its own inertia; they only move
when pushed by an agent or by gravity. Usually quasi-static theories are used
in the context of two-dimensional objects moving on a horizontal surface, but
one could develop such a theory for three-dimensional motion; intuitively, you
imagine the entire scenario as taking place in a vat of Liquid Prell. 11 But
we have decided not to pursue this. First, this extension to three-dimensional
dynamics involves some technical difficulties (for instance, how fast should an
object move in free-fall or in falling over while partially supported?) Second,
making this assumption obviously limits the generality of the theory.

A third idea is to move to a probabilistic theory, especially as we will eventually
have to do that anyway, and say that the catapulting is very improbable.
However, as far as I can tell, this does not fix the underlying problem, though

11 A brand of shampoo that, some years ago, was the subject of a well-known ad-
vertising campaign featuring a demonstration that the shampoo was particularly
viscous. For some reason, this was supposed to imply that it was also particularly
good shampoo.
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it changes it. The problem now is that a probabilistic theory must specify the
probability of events, not just absolutely, but conditionally as well. And the
probability of catapulting, which is negligibly small under most conditions,
becomes 1 on the condition that the agent deliberately sets up a catapult.
One might be tempted to say that it is very unlikely that the agent will want

to set up a catapult, but at that point we would be basing our physical theory
on a theory of relative likelihood of goals, which does not seem like a good
direction to go in.

The best solution I have been able to find is to use a default theory. Intuitively,
we want to posit a default rule that catapulting does not occur unless there
is good reason to think that it might. Thus if we know that the agent has set
up a catapult and is triggering it, then the catapulting must occur, the theory
predicts that it will occur, and the default does not apply. If there is “good
reason” to think that the agent may have set up and triggered a catapult,
then the conditions of the default rule are negated, and we are left agnostic
as to whether the catapulting occurs. Otherwise, the default rule applies, and
we conclude that no catapulting occurs.

Specifically, we define an “upward-motion-free” history as one in which no
object in a heap ever moves upwards with respect to the object(s) supporting
the heap. We then posit a default rule that histories are, by default, upward-
motion-free. The default rule does not apply to cases where an agent picks up
the object directly or indirectly. (Some care must be taken in cases where the
the heap is supported by several objects or the support tilts in the course of
the history. We will give a more exact statement in section 3.7 after defining
“heap” in section 3.6.)

This default rule also takes care of all the subcategories of BUG.8 except
BUG.8.a, since they all rely on an object escaping out the top of the box.
This is indeed how we will deal with these bugs in our formal theory. A more
complete theory would contain rules that would specify exceptional cases in
which these bugs are likely or certain to occur; given such rules, one could
then exclude the bugs for ordinary cases, either by using default rules or by
explicitly negating their enabling conditions.

Generally, the major difficulty in using a default rule of the form “Assume
P unless P is impossible” is making sure that P is not impossible; that is, P
is not contradicted by anything else in the theory. For qualitative prediction,
the following approach is possible: Suppose that you are given qualitative
information about the boundary conditions; that is, the shapes and positions
of the objects and the actions of the manipulator. If you can find a specific
instance I that satisfies the qualitative constraint, such that when you run a
Newtonian simulator on I, the defaults are satisfied, then clearly the defaults
are consistent with the boundary conditions and with Newtonian physics, and
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may therefore be applied.

Of course, going from a monotonic theory to a non-monotonic theory has
many drawbacks. For our purposes, the most serious drawback is that the
value of establishing any particular inference shrinks dramatically, in the fol-
lowing sense: In a monotonic theory, if you prove that Γ|=φ, then you have
simultaneously established that Γ ∪ ∆|=φ for any further axioms ∆. Thus,
you have established the validity of inferring φ from a whole class of possible
knowledge bases. By contrast, in non-monotonic theories this does not follow
so easily; for any particular ∆ you have to re-establish that ∆ does not block
any of the non-monotonic rules that you used to prove φ from Γ. In proba-
bilistic theories, the situation is even more difficult; you have to show that φ
is conditionally independent of ∆ given Γ, or approximately independent.

A second general problem with non-monotonic theories is that it is very hard
to be confident that they don’t have unintended consequences. You can check
that a monotonic theory is safe by constructing a model in which it is true;
then the consequences of the theory cannot be any weirder than the model.
But non-monotonic theories do not have semantics of this kind. (This is one
reason that recent work on non-monotonic theory has tended to use the non-
monotonic inference to derive equivalent monotonic axioms; these can then
be checked for validity in a model.) To alleviate this problem, we try to keep
our default rules as weak as possible, consistent with supporting our desired
inference that objects ordinarily remain in boxes during loading and carrying,
so that there is as little risk as possible that the default rules have unintended
consequences.

Another problem is the Yale Shooting Problem [16]. Our default rule does
indeed run into this; it allows a backwards causality in which objects may
be catapulted out at an earlier stage if that will prevent them from being
catapulted out later. However, since this only comes up in scenarios of Rube
Goldberg-like complexity, I am not very concerned about it. I don’t think
there’s much point worrying about how to fix this until one has addressed the
underlying probabilistic issues.

It may seem odd that I should now be worrying about the Yale Shooting
Problem at all since this problem was “solved” many years ago. The difficulty
is that all the solutions I know of (e.g. [20,33]) work by using closed-world
assumptions to derive a suitable frame axiom, in the manner mentioned above.
If that would work here, I wouldn’t need a default rule at all; I could just state
the frame axiom monotonically. (The authors of these solutions are working
with different underlying constraints as to what constitutes an acceptable
formulation of a prediction problem.)

Finally, it might be argued that the proposed default rule is just a way of
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disguising the argument, which we raised and rejected above, that catapulting
is unusual because agents rarely have the goal of firing catapults. After all,
if the population of agents involved consisted entirely of seven-year olds who
had just discovered the joys of catapulting things, then it might be reasonable
to assume, by default, that whenever a plan can be instantiated so as to
fire a catapult, it will be. Thus, our proposed defaults above incorporate an
assumption about the psychology of the agents involved. I don’t think this is
right. It seems to me that there are two separate plausible inferences involved
here; first, that the physical inference that loading objects into a box randomly
will rarely cause catapulting, and second, the psychological inference that
agents engaged in loading a box will rarely decide to construct a catapult. A
physical theory of boxes must deal with the first, independently of the second.

3.3.6 The box falls over.

There are at least four different scenarios that could give rise to BUG.6, in
which the box falls over or is pushed off the table while being loaded. The first
scenario is that if the walls of the box tilt outward, or the bottom of the box
is rounded, and the cargo is loaded at a point that is outside the region where
the box is supported by the table, then the weight of the cargo may make
the box tip over onto its side (figure 7.A). We can exclude this by requiring
that the center of mass of every cargo object is above the the convex hull of
the contact points of the box with the table. It is easy to show that if this
condition holds, then any tilting by the box will raise the height of the centers
of mass of the cargo objects; therefore, the cargo objects cannot be exerting
a force that causes the box to tilt.

A second scenario is illustrated in figure 7.B. By sliding down the slanted left-
hand side of the box, O1 could exert sufficient leftward force on the box to
push its end over the table. The center of mass of the pair {OB, O1} would
still be over the table, but if you now load a heavy object O2 on the left-hand
side of the box, the box could fall off the table.

A third scenario is illustrated in figure 7.C: a cargo object O1 sliding or rolling
around a curve exerts enough horizontal force to push the box over. (Note
that if the side of the box is curved outward, then O1 exerts a centrifugal
force whose magnitude is dependent on the velocity of O1.)

A fourth scenario is that, in the course of loading the box, the cargo objects
settle and hit the side of the box in such a way as to knock the box over on
its side. I find it hard to draw a convincing picture of this, so I leave this to
the imagination of the reader.

The first scenario is a quite plausible one, but as observed above, it is easy
to find conditions that demonstrably exclude it. To exclude the remaining
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Falling over, case C

Fig. 7. Box falls over: three cases

scenarios, we introduce the following default rule: If an object OB is stably
supported on top of object OT and a collection of object OC is initially piled
in heaps on top of OB, and the centers of mass of all the objects in OC remain
over the convex hull of the points of contact between OT and OB, and OT
remains motionless, then assume by default that OB remains motionless.

We have fallen back on a default rule here, rather than look for conditions that
are demonstrably sufficient in a Newtonian theory for a number of reasons.

• The second, third, and fourth scenario are uncommon. Violations of this
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default rule will be very infrequent.
• It seems to be very difficult to find qualitative boundary constraints of the

proper form — that is, constraints on shape and material properties, con-
straints that apply in the initial state, and constraints on the execution of
the plan — that suffice to ensure that these scenarios are impossible, par-
ticularly since the third and fourth scenario have a complicated dependence
on the velocities of the objects involved.

• If one were to compute such constraints they would almost certainly be far
more restrictive than necessary. It seems pointless to impose highly restric-
tive conditions on the scope of our inference in order to exclude possibilities
that are in any case very rare.

3.3.7 Why not use defaults for all our problems?

Since we are in any case resorting to default rules into order to deal with bugs
6, 7, and 8, why not do this for all the categories of bugs? In general, any
place where we have required a condition to eliminate a bug, we could replace
that, either with a default rule that the condition holds, or, even better, with
a default rule that the bug doesn’t arise. In some cases, this would clearly
be unreasonable; it would be absurd to say that, by default, a given set of
objects uCargo fits inside a given box oBox. On the other hand, it would be
quite reasonable to replace the absolute condition excluding objects that can
roll by a default rule that objects in general cannot roll. In the latter cases,
whether or not to use a default rule would depend on what kinds of information
are actually available and what kinds of situations actually arise in a given
application. (There are, for instance, applications in which rolling objects are
common.) Here, our objective has been to use as few different default rules as
possible; namely, the two default rules discussed in the previous two sections,
which were the only means we found to exclude bugs 6, 7.a, 7.c, 8.b, and 8.h.
However we did not minimize the number of applications of this rule needed;
as discussed in section 3.3.4, we have used this default rule to exclude bugs 8.c
through 8.f, whereas we could reasonably have excluded these monotonically
by imposing further conditions.

3.4 Variants

We now turn to the variants on simple open boxes mentioned in the introduc-
tion: namely, boxes with lids, boxes with holes in the bottom and sides, and
trays. First as regards lids, we observe that if you cover the box with a lid and
you can guarantee that the lid will not come off during carrying, then you can
be sure that none of the cargo items will come out of the box during carrying,
thus eliminating BUG.7.c and all the subcategories of BUG.8. (That is the
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main point of having a lid.) You can also guarantee that no external object
will enter the box while it is being carried, thus allowing the “isolation condi-
tion” COND.6 to be weakened. The plan, of course, must be modified to add
the step of placing the lid onto the box between loading and carrying the box.
We assume that the lid, like the objects in uCargo, is initially resting isolated
on oTable1 and that it fits on the box when the box is empty. However,

BUG.9 The lid may no longer fit on the box once the box is filled.
BUG.10 The lid may come off during carrying, either because

a. It falls off on its own (consider, for example, a lid which is just a flat piece
of cardboard laid over the top of the box.)

b. It is knocked off or removed by some external object during carrying.
c. It is knocked off by the clattering of the cargo inside the box.

Boxes with holes suffer from the bug that

BUG.11 Objects may fall through these holes at any stage.

For trays and overfilled boxes, condition COND.3 is replaced by the condition

COND.3′ The cargo uCargo can be arranged as stable heaps supported by oBox.

and BUG.3 and BUG.4 are modified accordingly. However, we introduce a
new subcategory of BUG.8:

BUG.8.i Depending on the stability of the heaps, even quite smooth motions or small
tilts may cause a heap to collapse, potentially causing some object to fall
off the heap.

The problem with trays is that it is very difficult to formulate reasonable qual-
itative constraints on object shapes that suffice to guarantee that the cargo
can be piled in stable heaps on the tray; it is not even easy to guarantee that
a single object stays put on a tray. (For example, if an object has a round
bottom, then, even if it is weighted so that it can only roll very slightly and
even if the tray is kept perfectly horizontal, the object can still gradually work
its way off the tray in response to to very small accelerations and decelerations
in carrying the tray.) To formulate a reasonably general theory of trays, there-
fore, probably the right approach is to posit the qualitative condition that the
cargo can be piled into stable heaps on the tray; in particular circumstances,
this itself may be inferrable from fairly precise specifications of the geometry
of the cargo. This indeed is the advantage of a box over a tray; once the cargo
is inside the box, it does not matter whether the objects shift their positions
or not, as long as they do not move violently enough to run into bugs 8.b
though 8.h. Also, because of the walls of the box, stable positions of the cargo
in the box can be made taller than on a tray and are easier to attain.
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We fix the other bugs as follows:

BUG.9. We posit that the cargo fits inside the box, and that the lid does not
extend into the inside of the box.

BUG.10. We posit that the lid caps the box; that it is heavy enough as com-
pared to the impacts of objects inside and out that it is not knocked off; and
that the trajectory during carrying is smooth enough that it is not flung off
that way.

BUG.11. We posit that the objects do not fit through the holes.

Finally, if we consider the special case where the cargo consists of a single
object, what is perhaps most striking is how many of the potential bugs still
remain. Specifically, BUG.1, BUG.3.a, BUG.3.b, BUG.5, BUG,6, all the cat-
egories of BUG.8 except BUG.8.h, BUG.9, BUG.10, and BUG.11 are still
problematic (though BUG.3.a can easily be fixed by positing that oBox does
not “close in” on itself). BUG.2, BUG.3.c, BUG.4, BUG.7, and BUG.8.h no
longer apply.

3.4.1 Bugs and their fixes: overall view

It may seem, on first glance, that once we have limited our theory by this
large collection of qualifications and default rules there is not very much left.
But in fact, most of these qualifications are essentially commonsensically ob-
vious; a reasoner who sees that the cargo is too big, or that the carrying is
very bumpy, or that the cargo can fall through holes in the bottom and so
on will expect that the plan may well fail. Though the exact formulation is
driven by the need to formalize and the desire to follow Newtonian physics
as far as possible, these qualifications are, I would argue, basically part of a
commonsense understanding of the domain.

3.5 The geometry of a box

There are a few more issues that we want to address at the pre-formal level
before setting forth to turn our theory into first-order logic. The first is the
definition of what it means to be a box. We define an open box as a geometric
predicate as follows:

Definition 3.5.1: A region is a set of points that is connected, bounded,
and topologically regular. 12 The topological boundary of region R, denoted
“Bd(R)”, is the set of points in R that are not in the interior of R.

12 A region is topologically regular if it is equal to the closure of its interior. This
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Definition 3.5.2: Let RB and RI be two regions. We say that RB is an open

box with inside RI if the following two conditions hold:

• The interior of RI ∩RB is empty. (RI is externally connected to RB [30]).
• Bd(RI)−Bd(RB), the part of the boundary of RI that is not part of the

boundary of RB, lies in a plane and contains a circular disk of positive
radius. (The latter condition is a topological condition to guarantee that
the opening of the box is not a single point or a single curve but is a true
face that a small enough object can get through.)

Note that a given shape RB can often be construed as an open box with many
different possible values for RI (figure 8). Indeed, if RB forms an open box
with one region of RI then necessarily there are many different possible values
of RI, with faces running in many different directions, which are possible
insides for RB. To give an intuition, if you can orient a solid object with shape
RB in some position where it holds water, and then you fill some external
cavity of OB with water to some depth, then the region occupied by the
water constitutes a possible inside for RB

Given a box RB with inside RI, the outside of 〈RB, RI〉 is the comple-
ment of RB ∪ RI. An opening of 〈RB, RI〉 is a connected component of
Bd(RI)−Bd(RB); all the openings of 〈RB, RI〉 lie in a single plane.

If 〈RB, RI〉 form a geometric box, solid object OB has shape RB, and solid
object O2 is inside RI at one time and outside RI at a later time, then O2

essentially requires that the region has some “thickness” in three dimensions; it
excludes curves, surfaces, shapes that are solid in some places and two-dimensional
lamina in other places, and so on.
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must have exited through an opening of 〈RB, RI〉. Proof: Since O2 went from
inside RI to outside RI it must have gone through the boundary of RI and it
obviously can’t go through the part the boundary of RI that borders OB; end
of proof. Therefore, if O2 is initially inside RI, and the opening of 〈RB, RI〉
is always higher than O2, then it follows that O2 must remain inside RI.

3.6 Heaps and Stability

A central concept in the qualitative physics of solid objects is that of a stable

heap of objects. The precise definition of a “heap”, a canonical example of a
vague concept, is necessarily somewhat arbitrary, but the following serves our
purposes here.

To begin with, in the commonsense setting we must distinguish between mo-

bile objects, which can move, and fixed objects, which cannot. In a given state,
a mobile object may be grasped by the agent; while it is being grasped, its
motions are controlled by the agent and are not affected by external objects.
Thus, neither fixed objects nor grasped objects are affected by the motions of
mobile objects; their motions are boundary conditions for a prediction prob-
lem. 13 An object is free-moving in state S if it is mobile and not grasped.

A heap is a connected set of free moving objects; in our theory, unlike dis-
cussions of the Sorites paradox, a heap may contain a single object. A heap
of objects is defined with respect to some set of supporting objects. Usually
a heap actually has a single supporting object, such as the ground or a box,
but in some cases a heap may rest on multiple supports, such as a board that
is lying with ends on two different tables.

Definition 3.6.1: Let UH and US be disjoint sets of objects, where UH
is non-empty. In state S, UH is a heap with supports US if the following
conditions hold in S:

• All the objects in UH are free-moving.
• If O1 is in UH and object O2 abuts O1 then O2 is either in UH or in US.
• Each object in US abuts some object in UH

13 There is an important and awkward exception to this. If the agent is “trying”
to move a grasped object O1 in a given direction but that motion is blocked by a
mobile object O2 that is “stuck”, then moving O2 may permit O1 to proceed. A
major difficulty in formulating an existence theorem for well-formed problems in
the theory of rigid solid object dynamics with manipulators is to characterize under
what circumstances and in what sense a specified manipulation constitutes a valid
boundary condition.
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• If OA and OB are in UH then there exists a sequence 14 O1 = OA, O2 . . . Ok =
OB such that Oi ∈ UH and Oi abuts Oi+1.

A set UH is a maximal heap in state S if UH is a heap with supports US and
all the objects in US are fixed or grasped. Equivalently, a maximal heap is
a maximal collection of mobile, non-grasped objects connected by abutment;
the supports of a maximal heap UH are all the fixed or grasped objects that
abut some object in UH .

A number of consequences follow directly from this definition:

First, a fixed object or an object being grasped can only be a support; it
cannot be part of a heap. A mobile object can be considered as part of a
(non-maximal) heap or can be considered as a support; that is a matter of
usefulness for the reasoner. For instance, if one is loading objects into a box,
it is sometimes convenient to think of the objects inside as forming a heap (or
several heaps) supported by the box, and it is sometimes convenient to think
of the box together with the objects inside as forming a heap. Both viewpoints
are OK.

Second, in any state, the maximal heaps constitute a partitioning of the free-
moving objects into equivalence classes, where the equivalence relation is the
transitive closure of the relation “OA and OB are both free-moving and abut.”

Third, two distinct maximal heaps cannot abut one another. Thus, around
any maximal heap there is a clear space free of any mobile objects. Since fixed
objects and grasped objects are not affected by the motion of mobile objects,
this means that a sufficiently small motion of any mobile object can only
physically affect objects in the same heap. Similarly, any motion by a grasped
OG can only affect mobile objects in heaps for which OG is a support. This
gives us a very useful limit on the causal impact of events.

Finally, if UH is a set of mobile objects that are connected through abutment
but are in free fall, then UH is a heap whose support is the null set of objects.

We next introduce the notion of a heap being stably supported in a given state.
We will not give necessary and sufficient conditions for this, but we axiomatize
a couple of the properties that we will need here:

Definition 3.6.2: Let U1 and U2 be sets of objects. and let H be a history.
U1 is isolated from all objects except U2 if no object outside U1 ∪ U2 comes
into contact with any object in U1.

14 We assume throughout that there are only finitely many objects in the universe;
hence all such sequences are finite.
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Axiom 3.6.1: If UH is stably supported by US in state S, then UH is a
heap with supports US in S, and US is non-empty.

Axiom 3.6.2: Let H be a physically possible history with starting state S1. If
heap UH is stably supported by US in S1, and US is motionless throughout
H , and UH is isolated except for US and free moving, then UH is stably
supported and motionless throughout H .

Axiom 3.6.3: Let H be a physically possible history that is temporally un-
bounded in the future (in section 4.3 we will call this a “uhistory”). Let US be
a set of objects that is motionless throughout H . Let UH be a set of mobile
objects disjoint from US. Assume that the objects in UH are not grasped at
any time in H . Then eventually either every object in UH is in a stable heap
supported by some subset of US or some object in UH comes into contact
with some object not in US. Equivalently, if UH is free moving and isolated
in H except for US, then eventually every object in UH is in a stable heap
supported by some subset of US.

(The above axioms are formalized as axioms H.1, H.2, and H.3 in table 19.)

This will be all we need for boxes. Reasoning about trays requires a more
extensive theory of stability, which we will develop in future work.

3.7 No Upward Motion

Finally, we formulate the default rule that will allow us to infer that cargo
objects do not come out of the top of the box. We want to state that by
default objects in the box do not move upward with respect to the box; more
generally, that objects in a heap by default do not move upward with respect
to the supports of the heap. There can be different possible definitions of what
is meant by object O “moving upward”; for convenience we will interpret this
as meaning that the center of mass of O moves upward and we axiomatize
the center of mass as some point within the convex hull of O. (If the region
occupied by O is known, but the density distribution is entirely unknown,
then all that can be said about O’s center of mass is that it is in O’s convex
hull.)

Let us begin by formulating the rule in the special case where there is a single
support object that maintains a constant vertical axis.

Preliminary Definition 3.7.1: In state S1, let O be an object in heap UH
that is supported by a singleton object set {OS}. Let H be a history with
starting state S1. Assume that OS maintains a constant vertical during H
(that is, OS may translate and may rotate around the ẑ axis, but it may not
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undergo a rotation that tilts the ẑ axis; it may yaw but not pitch or roll.)
Let QS be any point in OS and let QC be the center of mass of O. O moves

upward relative to OS in H if height(QC)−height(QS) is larger at the end
of H than at the beginning of H . (Since OS maintains a constant vertical, if
this is true for any point QS in OS, it is true for all points in OS.) O has
an anomalous upward motion in H if UH is free-moving and isolated from all
objects except OS in H and O moves upward relative to OS in H .

A history is upward motion free if, for every subhistory H1 of H , no object
has an anomalous upward motion in H1.

Default Rule 3.7.2: By default, any physically possible history is upward
motion free.

We can now prove the following theorem:

Theorem 3.7.3: In state S, let OB be a box with opening QT , let UH be a
heap of objects supported by OB, and let O be an object in UH . Let F be
the diameter of O, and let D be the vertical gap between QT and the center
of mass of O. Let H be a physically possible history starting in S. Assume
that throughout H , UH is free moving and isolated from all objects except
OB, and that OB maintains a constant vertical, though it may be moved and
rotated around the z-axis. Assume that D > F . Then by default O remain in
OB throughout H .

Sketch of Proof: By default, H is upward motion free. Suppose that O goes
out of the box during H . As argued in section 3.5 above, if O goes out of the
box, it must go through the opening at the top. Therefore, each point in O
must be at the top at some point during H . Therefore at some time T2 during
H , the center of mass of O must be closer to the top of OB it was at the start,
so the center of mass of O has moved upward relative to OB in the subhistory
of H that starts in S and ends at T2; but this contradicts the statement that
H is upward motion free. .

To complete the proof, it is necessary to establish that the default conclusion
is consistent, but it is easy to construct scenarios which are demonstrably
consistent with the above givens, with Newtonian physics, and with all the
axioms we shall state in section 4 below, in which the objects in UH rest
motionless at the bottom of OB throughout H . UH is a stable pile at the
bottom of OB which demonstrably does not move relative to OB during all
of H .

We next need to generalize the above rule in two respects. First, a heap may
be supported by more than one support object. Second, the support object
OS may rotate its vertical axis. In that case, even if the heap just sits quietly
on top of the support, still the center of mass of some of the objects may
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even though the whole group moves rigidly.

Fig. 9. Object in a heap moves upward with respect to every point in support

move upward with respect to some of the points in OS. Indeed, if the center
of mass of some object O in the heap does not lie above the convex hull of the
horizontal projection of OS, then the center of mass of O may move upward
with respect to every point in the support OS (figure 9.)

As discussed above, in formulating our default rule, we try to keep it as re-
stricted as possible, to lessen the likelihood of weird consequences. We there-
fore address the above two cases as follows. First, we consider an object in a
heap as moving upward with respect to its supports only if it moves upward
with respect to all its supports. Second, we deal with the problem of a sup-
port OS that rotates vertically as follows: For any history H , imagine taking
a video of the behavior of the supports and the heaps during H . At any point
during the video, you can take a vertical arrow and attach it to OS through
any point in OS. Now replay the video from the beginning with that added
arrow fixed to OS, so that it moves and rotates along with OS. We say that
the heap object O moves upward with respect to OS in H if the projection of
the center of mass of O onto the arrow is higher at the end of H than at the
beginning of H .

Definition 3.7.4: In state S1, let O be an object in heap UH that is supported
by an object set US Let H be a history with starting state S1. O “moves
upward” with respect to US in H if the following condition holds: For every
object OS ∈ US and for every coordinate system QC “attached” to OS which
is vertically aligned in some state in H , the z-coordinate in QC of the center
of mass of O is larger at the end of H than at the beginning of H .

Let QC be a coordinate system that is “attached” to be any point in O and
let QM be the center of mass of O. O moves upward relative to OS in H if the
height of QM measured in QC is larger at the end of H than at the beginning
of H . The definitions of “anomalous upward motion free,” and of “upward
motion free” in terms of “moves upward” are the same as in the preliminary
definition 3.7.1, and the default rule 3.7.2 remains unchanged. It can be seen
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that this deals reasonably, both with objects that stay fixed on the support,
and with boxes. If an object stays in a constant position on the support, then,
since any of these arrows are likewise fixed to the support, the projection of
the center of mass on the arrow remains constant, consistent with the default
rule.

In the scenario of the heap of objects in the box, we can weaken the statement
that the box maintains a constant vertical to the constraint that the maximum
deviation from the vertical is φ, if we correspondingly increase the required
gap between the top of the heap and the opening of the box.

Theorem 3.7.5: (This is the result cited in section 3.3.3.) In state S, let OB
be a box with opening QT , let UH be a heap of objects supported by OB,
and let O be an object in UH . Let F be the diameter of O, and let D be the
vertical gap between QT and the center of mass of O. Let G be the maximum
distance between the projection onto the x-y plane of the center of mass of
O the projection of any point in the opening of the box in S. Let H be a
physically possible history starting in S. Assume that throughout H , UH is
free moving and isolated from all objects except US, and that the vertical tilt
of OB is never greater than φ. Assume that D cos(φ) > G sin(φ) + F . Then
by default O remains in OB throughout H .

Proof: It is easy to show geometrically that all of the opening is at least F
higher than any of the boxes, where “height” is measured by projection on
any of the tilted arrows that can be attached during H . The proof is otherwise
identical to that of theorem 3.7.3 above. This result is essentially lemma 2.29
in our formal proof.

On the other hand, if the box tips far enough over that objects that can spill
out, then, relative to the arrow attached when the box is fully tipped, an
object is moving downward, so the default is not violated.

We next discuss the workings of this default rule on a number of further
examples. As we will see, the default rule does the “right thing” for examples
1-3; in example 4 it is not clear what the right thing should be but what the
default rule does is at least not obviously wrong; in example 5, the default rule
is certainly not giving us what we would wish for. Throughout these examples,
we will assume that the theory under discussion includes both the axioms we
give below in section 4 and also the axioms of the Newtonian physics of solid
objects. Note that adding the axioms of Newtonian physics does not affect the
inferences we have discussed above.

Example 1: Consider figure 10. Suppose that object OT is fixed, and objects
OA and OB are mobile. What will actually happen here is that OA remains
fixed and OB falls down. One might think that this would be a problem for the
default rule, because by definition 3.6.1, one can consider {OA} to be a heap
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OT

OA

OB

Fig. 10. Default rule: example 1

OB

OA

Fig. 11. Default rule: example 2

with supports {OT, OB} and OA moves upward relative to OB. However, in
fact the default is not a problem here, because the default rejects a behavior
only if a heap object moves upward with respect to all its supports, and OA
is not moving downward with respect to OT .

Example 2: Suppose that OA is in free fall inside box OB (figure 11.) Then
OB is not a support of any heap containing OA, so the default does not apply.
That is not a problem. If it is known that OA is initially moving downward,
then we can prove that it will eventually hit either OB itself or some other
object that is (directly or indirectly) in contact with OB. At that point OA
becomes part of a heap inside OB, so we can apply the default from that
point. If it is known that OA is initially moving up, then it may well escape
OB, if it is moving fast enough, so we do not want the default to apply. If the
direction of motion of OA is not initially specified, there does not seem to be
any very good reason to make the default assumption that it is not moving
upward fast enough to escape, so the fact that the default rule does not apply
is not a problem.

Example 3: Suppose that OB is a box, OC is a ramp resting at the bottom
of OB, and OA is on OC sliding rapidly upward. Since {OA, OC} is a heap
with support {OB}, the condition of the defaults apply. However, if our theory
includes the law of inertia, then OA must be moving upward with respect to
the box, so the default is explicitly overridden, so again we get the correct
answer.

Similarly if one explicitly sets up and triggers a catapult, then the axioms of
Newtonian physics imply that the missile will move upward, so the default
rule is explicitly overridden.
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OA

Fig. 12. Default rule: example 3

OB2

OB3
OB2

OB3

OB1 OB1

OA

Fig. 13. Default rule: example 5

Example 4: Suppose that object OA is inside OB but it is not specified
whether it is part of a heap supported by OB or whether it is in free fall.
Then the default rule applies, and gives rise to the conclusion that either OA
is initially in a heap and remains in the box or it is initially in free fall and
nothing can be said as to its motion. It is not clear to me whether this is the
most desirable conclusion, or how one would decide what is the most desirable
conclusion. Things get fairly nebulous at this level of ignorance. In any case,
it seems to me that this is at least not strikingly wrong.

Example 5: Consider figure 13. The box is made of three jointed pieces: The
first piece OB1 consists of the left-hand wall and the left-hand half of the
floor. The second piece OB2 is the right-hand half of the floor, and the third
piece OB3 is the right-hand wall. In the starting state, object OA rests on
OB1 and OB2, so these are its supports. Now consider a history in which
right-hand side of the box is folded upward and inward so that OB2 becomes
vertical. Then the default rule applies but it does not prevent OA from exiting
the box, for the following reason: If you attach the vertical arrow to OB2 at
the end of the history, then that arrow is lying horizontally in the starting
state, and therefore a motion of OA vertically upward would not be upward
with respect to the arrow at that point. Therefore, such a motion would not
be anomalous, and would be consistent with the statement that the history is
upward motion free.

This example is unequivocally a failing of our theory; in this case, we defi-
nitely want to predict that OA does not exit the box, and our default rule is
not strong enough to support that. This strongly suggests that we have not
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found the best possible formulation of the default rule, in the case of multiple
supports with vertical rotations. It should be noted, though, that this is at
least the right direction for failure; it is much better to have the default rule
be too weak than too strong.

Finally, we need to specify a particular default logic in which the default rule
can be stated and applied. It seems that Reiterian default theory [31] fits our
needs better than circumscription [24]. Let me explain in terms of the standard
example of birds that can fly. Suppose we have the following four first-order
statements:

1. ∀X penguin(X) ⇒ ¬canFly(X).
2. ∀X penguin(X) ⇒ bird(X).
3. ∃X penguin(X).
4. bird(tweety).

We also have the default rule, “By default, birds can fly,” and we would like
to infer that Tweety can fly.

In the Reiterian theory, this default can be represented by the rule

5.R. bird(X) : canFly(X) / canFly(X).

The theory 1-4, 5.R supports the conclusion “canFly(tweety)” and therefore,
from (1), ¬penguin(tweety).

But there is no way to get this out of circumscription. The default rule is
represented by the first-order statement

5.C. bird(X) ∧ ¬ab(X) ⇒ canFly(X)

and the circumscriptive policy of minimizing the predicate “ab”. But this
does not support the conclusion canFly(tweety), whether or not the extension
of “penguin” is allowed to vary, because a model where Tweety is the only
penguin and the only abnormal entity does, in fact, minimize ab.

If you replace (3) above with “penguin(fred)”, add the unique names as-
sumption that tweety6=fred, and adopt the circumscriptive policy of mini-
mizing “ab” while allowing “penguin” to vary, then you can indeed deduce
that Tweety can fly. But you can also deduce that Fred is the only penguin.
This seems like a lot of bath water to hold onto for the sake of not losing the
baby.

Going back to boxes: “canFly(X)” corresponds to “X comes out of the box”,
“bird(X)” corresponds to “X is in a heap on the floor of the box” and
“penguin(X)” corresponds to “X is a missile being catapulted.” The exis-
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tential statement (3) corresponds to the fact that a complete theory of solid
object dynamics should certainly support the inference that it is possible to
set up and fire catapults. The impossibility of showing circumscriptively that
Tweety is not a penguin corresponds to the impossibility of showing that the
agent has not set up a catapult, given that he has loaded some objects into
the box.

Therefore, it seems to me that, despite the attractiveness of circumscription
— it is usually much easier to verify the correctness of proofs in circumscrip-
tion than in Reiterian default theory — it is not applicable here. The same
considerations apply to the default rule that we use to prove that the box will
not fall over during loading.

4 The Formal Theory

We now proceed to encode the above theory in logical form. This is actually
reasonably straightforward; except for the semantics of plans, we have covered
all of the tricky issues already. Other than the two default rules H.5 and UP.1,
defined below, we represent all of our theory in first-order logic. In this section
we first establish a few basics: notational conventions and system of sorts
(section 4.1), and theories of real arithmetic and of Boolean operations on
finite sets of objects (4.2) We will then describe the ontology, language, and
theories that we will use for theories of time (4.3), space (4.4), motion (4.5),
and physics (4.6). Section 4.7 presents a comprehension axiom for histories.
Section 4.8 gives the semantics of our language of plans. Finally we give the
the specification of the problem to be solved (4.9) and the specification of the
plan that solves it (4.10).

We assume the standard mathematical theories of integer and real arithmetic,
Boolean operators on finite sets, Euclidean geometry, and continuous func-
tions. Therefore, in our axiomatization, we will enumerate the sorts and sym-
bols we need, but we will not list the axioms. In our formal proof, we cite
theorems from these theories as needed without axiomatic proofs (though
when the theorems are not obvious, we give proofs in the usual sense).

The axioms we enumerate are, for the most part, just those we need for the
validation of the plan; we have not attempted anything like a complete ax-
iomatization of these domains.
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4.1 Notational Conventions

All this is pretty much standard and self-explanatory, but it is as well to lay
it out systematically.

Our axioms are stated in a sorted first-order logic. We use symbols in Roman
font beginning with a lower-case letter, such as “openBox”, for function and
predicate symbols, and symbols in typewriter font, such as oBox, for constant
symbols. We use upper case symbols in italics for variables. Standard mathe-
matical functions and predicates are used in the standard way; e.g. X1 + X2
is an infix function; the pair of curly brackets of {E1, E2} is an outfix function
(mapping E1 and E2 to the set {E1, E2}). To aid readability, the sort of a
variable is indicated by the first letter; however, all axioms are stated so that
this convention is not necessary. Quantified variables are subscripted to their
quantifier. For brevity, we use two forms of restricted quantification in the sub-
script: a variable may be restricted by sort or by membership in a set. Logical
operators follow the following precedence, from highest to lowest: negation
¬, conjunction ∧, disjunction ∨, implication ⇒, equivalence ⇔, definitional
equivalence ≡, and quantifiers ∀ and ∃. Thus, the scope of a quantifier is to
the end of the formula or to a right bracket that contains it. Free variables are
taken to be universally quantified, where the scope of the implicit quantifier
is the entire formula. Greek letters are infrequently used as meta-variables.

We have a hierarchical system of sorts, which is interpreted as syntactic sugar
for a standard first-order theory with a null element ⊥. (The null element is
never used explicitly in our formulas.) In the translation to the base theory, an
individual sort such as “object” or “state” is considered an entity. There are
two predicates sorts: “sortOf(X, S)”, meaning that X is an entity of sort S, and
“subsort(S1, S2)”, meaning that S1 is a subsort of S2. We will abuse notation
in our formulas by writing “S(X)” where S is a sort instead of “sortOf(X, S)”;
e.g. we will write “object(O)” instead of “sortOf(X,object)”. The sorts of the
arguments to predicate and function symbols and to the values of function and
constant symbols will be declared in a self-explanatory notation when these
symbols are defined. Table 2 shows the translation of sort declarations into
the base language.

As axiom SORT.2 indicates, all functions are required to be total over the
sort on which they are defined (except for numerical division, which is grand-
fathered). Hence, when we have a mapping which is single-valued but not
total, we will use a relation symbol for it and add an axioms stating that it is
single valued (when necessary). The “value” of the mapping will convention-
ally be the last argument. For this reason, in cases where we do use a function
symbol, even if that is defined and not primitive, such as “startTime(J)” in
section 4.3 below, we do not have to add an axiom stating that the function
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SORT.1 The declaration of predicate symbol α as taking arguments of sorts σ1 . . . σk

corresponds to the axiom
∀X1...Xk

α(X1 . . . Xk) ⇒ sortOf(X1, σ1) ∧ . . .∧ sortOf(Xk, σk).
(Note: The equality symbol X = Y has no sort declaration, so this axiom does
not apply.)

SORT.2 The declaration of function symbol β as taking arguments of sorts σ1 . . . σk and
returning a value of sort σ0 corresponds to the two axioms
∀X0,X1...Xk

X0 = β(X1 . . . Xk) 6= ⊥⇒
sortOf(X1, σ1) ∧ . . .∧ sortOf(Xk, σk) ∧ sortOf(X0, σ0)

and
∀X0,X1...Xk

sortOf(X1, σ1) ∧ . . .∧ sortOf(Xk, σk) ⇒ β(X1 . . . Xk) 6= ⊥

SORT.3 The declaration of constant symbol γ as having sort σ corresponds to the axiom
sortOf(γ, σ)

SORT.4 ∀S ¬sortOf(⊥, S).
(The null element has no sort.)

SORT.5 subsort(S1, S2) ≡ ∀X sortOf(X,S1) ⇒ sortOf(X,S2).
(Definition of subsort.)

Table 2
Axioms of sorts

is total over the sort; such an axiom is implicit from the use of the function
symbol.

Axiom SORT.1 – SORT.4 together imply that any ground term with argument
⊥ evaluates to ⊥ and that any ground atomic formula with argument ⊥ is
false, unless the predicate is the equals sign.

4.2 Real Arithmetic; Set Theory

As stated above, we use real arithmetic and Boolean set theory over sets of
elements. (As we shall see below, the sets that we need in this paper are sets of
objects, and sets of geometric points; these two sorts are therefore defines as
subsorts of “element”.) Table 3 enumerates the sorts and the symbols used. All
the symbols are entirely standard, except “count(U, I)”, a predicate meaning
that integer I is the number of elements in finite set U (if U is infinite, then
this does not hold for any I). The letter after the sort is the one we will use
to indicate variables of that sort.
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Sorts:

Real numbers (X).
Integers (I). Subsort of reals.
Elements. (E)
Sets of elements (U).

Symbols:

X1 + X2, X1−X2, X1 ·X2, X1/X2, ⌊X⌋, min(X1,X2), X1 < X2, X1 ≤ X2, π.

∅, {E1, E2 . . . Ek}, E ∈ U , U1 ∪ U2, U1 ∩ U2, U1 ⊂ U2, U1 − U2.
count(U : set, I: integer).
Table 3
Sorts and symbols for real arithmetic and set theory

4.3 Time

Our temporal theory in some respects resembles the phase-space theory of
physics (and inherited by robotics from physics) rather than the situation-
based theory more common in AI [32]. Specifically, for our purposes the state
of the world at an instant can be characterized by the values of a fixed class
of fluents. The history of the world is a function from real-valued time to
states. A state may persist unchanged over a finite length of time, or a history
may “return” to a previous state; whereas the model of situations is gener-
ally taken to be strictly forward-branching with no cycles. In our model an
action A is feasible in state S if there exists a history starting in S in which
A occurs; whereas most models of situation calculus theories have explicitly
forward-branching structures. Therefore, we will use the word “state” rather
“situation” to denote a snapshot of the universe at an instant.

For brevity, we will treat clocktimes (e.g. May 1, 2006 12:45:00 PM) and
durations (e.g. 1.57 hour) as real numbers, though of course a more rigorous
treatment would take these to be separate sorts which have a real-valued
measure in a given temporal coordinate system. For readability, we will use T
for variables over clocktimes and D for variables over durations.

The other temporal sorts we will use are as follows:

• A state is a snapshot of the universe.
• A fluent is an entity that takes on different values in different states. A

Boolean fluent such as “grasping(O)” (the agent is grasping object O) is
true or false in a state; a non-Boolean fluent such as “place(O)” (the region
occupied by object O) takes on values of some other sort. If a fluent Q takes
on values of sort σ, we denote the sort of Q as “fluent[σ]”; e.g. grasping(O)
has sort fluent[Bool] and place(O) has sort fluent[region]. In translating the
sort language to the base language, the symbol “fluent” here is a function
from mapping a sort like “region” to the sort fluent[region].
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• A history is a function from a closed interval of clocktimes to states. 15

• Because we are using a language of plans that includes loops, which can be
infinite loops, it is sometimes necessary to allow histories that are closed on
the left but unbounded on the right. These are also convenient for stating
that a certain condition is eventually attained. A uhistory is a function to
states whose domain is an interval of clocktimes that is closed on the left
and either closed or unbounded on the right. Thus, histories are a subsort
of uhistories.

Table 4–7 enumerates the temporal symbols, definitions, and axioms we use.
The temporal theory actually requires only three primitives (in addition to the
primitives on the reals): holds(S, Q), value(S, Q), and stateAt(J, T, S). How-
ever, it is useful to have a large vocabulary of defined predicates as convenient
abbreviations.

It will also be convenient to define some additional syntactic conventions for
constructing functions over fluents from functions and predicates over atem-
poral entities. First, if X is an atemporal entity, then we define value(S, X)
= X for all states S; that is, we conflate a fluent that are constant with its
value.

Let Φ(X1 : σ1 . . .Xk : σk) be a predicate (or equality sign) over atemporal
sorts σ1 . . . σk. For i = 1 . . . k let Qi be a fluent of sort fluent[σi]. Then we
define Φ#(Q1 . . . Qk) to be the Boolean fluent satisfying

∀S:state holds(S, Φ#(Q1 . . . Qk)) ⇔ Φ(value(S, Q1) . . . value(S, Qk)).

Similarly let Ψ(X1 . . . Xk) : σ be a function with arguments of atemporal sorts
σ1 . . . σk and value of sort σ. Then Ψ#(Q1 . . . Qk) is the fluent of sort fluent[σ]
satisfying

∀S:state value(S, Ψ#(Q1 . . . Qk)) = Ψ(value(S, Q1) . . . value(S, Qk)).

Finally, if ∆ is a Boolean operator then ∆# is the corresponding function over
Boolean fluents (used with the same syntax as the operator). That is,

∀
T :time holds(T, Q1∆#Q2) ⇔ [holds(T, Q1) ∆ holds(T, Q2)]

For example, if Q1 and Q2 are fluents whose value at each time is a set, then
“Q1 =# ∅” is the Boolean fluent that holds at those times where Q1 is empty.
“Q1 ⊂# Q2” is the Boolean fluent that holds when Q1 is a subset of Q2.
“Q1∪# Q2” is the fluent whose value at each time S is the union of the values
of Q1 and Q2. “Q1 ⊂# Q2 ∨# Q2 ⊂# Q1” is the fluent that holds at all times
in which either Q1 is a subset of Q2 or Q2 is a subset of Q1.

15 Some of the axioms below, particularly DYN.12, HC.4, PLD.3, PLD.5, and PLD.7
could be stated more elegantly if we allowed the use of bounded, open intervals as
well. It is not clear whether the theory would be simpler overall.
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Sorts:

Time (T ) = real.
Duration (D) = real.
State (S).
Fluent(Q).
History (H).
Uhistory (J).

Symbols:

holds(S: state,Q: fluent[Bool]). Boolean fluent Q holds in state S.
value(S: state, Q: fluent[γ]) → γ. The value of non-Boolean fluent Q in state S.

γ is a meta-variable ranging over sorts.
stateAt(J : uhistory, T : time, S: state). S is the state of J at time T .
timeIn(T : time, J : uhistory). T is a time in the domain of uhistory J .
startTime(J : uhistory) → time. The starting time of uhistory J .
endTime(H: history) → time. The ending time of history H.
start(J : uhistory) → state. The starting state of uhistory J .
end(H: history) → state. The ending state of history J .
unbounded(J : uhistory).

Uhistory J is unbounded on the right (i.e. not a proper history).
stateOf(S: state, J : uhistory). S is a state attained by uhistory J .
throughout(J : uhistory, Q: fluent[Bool]).

Boolean fluent Q holds throughout uhistory J .
throughoutxSE(J : uhistory, Q: fluent[Bool]).

Q holds throughout uhistory J , except possibly at the start and end of J .
historySlice(J1, J2: uhistory). J1 is a temporal slice of J2.
historyPrefix(J1, J2: uhistory). J1 is a temporal prefix of J2.
historyProperPrefix(H1:history,J2: uhistory). H1 is a proper prefix of J2
historySuffix(J1, J2: uhistory). J1 is a suffix of J2.
hsplice(H1: history, J2, J : uhistory).

J is the result of splicing J2 to the end of H1.
sameTime(J1, J2: uhistory). J1 and J2 have the same clocktime interval as domain.
singleHist(S: state, H : history). H is a history consisting of a single instant at S.
Table 4
Time: Sorts and Symbols

4.4 Space

The ontology we use for space is Euclidean geometry (ℜ3). The spatial lan-
guage is constructed entirely ad hoc. That is, table 8 enumerates the sorts and
the predicates that we use in the physical axioms of section 4.6 and in the prob-
lem statement of section 4.9; it does not attempt any systematic discussion
of geometric reasoning. We give here the formal definition of the predicates
“openBox”, “partlyAbove” and “altogetherAbove” but otherwise do not list
any geometric axioms or definitions, which are all standard. In our formal
proof, we will cite standard or easily proved geometric theorems as needed.
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Definitions: These definitions are self-explanatory given the descriptions in table 4.

TD.1 timeIn(T, J) ≡ ∃S stateAt(J, T, S).

TD.2 T=startTime(J) ≡
timeIn(T, J) ∧ [∀T1 timeIn(T1, J) ⇒ T ≤ T1].

TD.3 history(J) ≡
∃T1 ∀T2 timeIn(T2, J) ⇒ T2 < T1.

TD.4 T=endTime(H) ≡
timeIn(T,H) ∧ [∀T1 timeIn(T1, J) ⇒ T1 ≤ T ].

TD.5 unbounded(J) ≡ uhistory(J) ∧ ¬history(J).

TD.6 S=start(J) ≡ stateAt(J ,startTime(J),S)

TD.7 S=end(H) ≡ history(H) ∧ stateAt(H,endTime(H),S).

TD.8 stateOf(S, J) ≡ ∃T stateAt(J, T, S).

TD.10 throughout(J,Q) ≡ ∀S stateOf(S, J) ⇒ holds(S,Q).

Table 5
Temporal Theory: Definitions

The large number of geometric sorts that we use here may startle readers
who are used to more ontologically pure theories, in which the only geometric
sort allowed is the sort of well-behaved, fully dimensional regions. However,
it turns out that, strictly speaking, the greater ontological profligacy here
is illusory. As I have shown in [9], if you have a first-order language that
allows quantification over regions, then even if you restrict the language to
the single predicate “closer(X, Y, Z)”, meaning “region X is closer to Y than
to Z” and you restrict the universe of entities to include only simple polygons,
nonetheless all of these ontological categories and the whole range of standard
geometric concepts can be defined as first-order constructions in this language.

Because of the large number of geometric sorts, we are less systematic about
the use of initial letters to indicate sort of variables. In most cases, variables of
sort “region” start with R; points start with P ; pointSets start with PS; rigid
mappings start with M ; distances start with D (the ambiguity with durations
should not cause problems); coordinate systems start with C; other geometric
variables start with G.

A coordinate system is a standard three-dimensional orthogonal right-handed
coordinate system. We assume a fixed unit of length for all coordinate systems.
Different coordinate systems may differ in orientation and in the choice of
origin.

A region is a spatial region that could be the shape of a physical object. We
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TD.11 throughoutxSE(J,Q) ≡
∀T timeIn(T, J) ∧ stateAt(J, T, S) ∧ startTime(J)< T ∧
[unbounded(J) ∨ T < endTime(J)] ⇒
holds(S,Q).

TD.12 historySlice(JA, JB) ≡
∀T timeIn(T, JA) ⇒
[timeIn(T, JB) ∧ ∀S stateAt(JA, T, S) ⇔ stateAt(JB, T, S)].

TD.13 hSlice(J, T1, T2,H) ≡
historySlice(H,T ) ∧ startTime(H)=T1 ∧ endTime(H)=T2.

TD.14 historyPrefix(JA, JB) ≡
historySlice(JA, JB) ∧ startTime(JA)=startTime(JB).

TD.15 historyProperPrefix(HA,JB) ≡
historyPrefix(HA,JB) ∧ [¬unbounded(JB) ⇒ endTime(HA) < endTime(JB)].

TD.16 historySuffix(JA, JB) ≡
historySlice(JA, JB) ∧
[[unbounded(JA) ∧ unbounded(JB)] ∨ endTime(JA)=endTime(JB)].

TD.17 hsplice(H1, J2, J) ⇔
historySlice(H1, J) ∧ historySlice(J2, J) ∧ startTime(J2)=endTime(H1).

TD.18 sameTime(J1, J2) ≡ ∀T [timeIn(T, J1) ⇔ timeIn(T, J2)].

TD.19 singleHist(H,S) ≡ startTime(H)=endTime(H) ∧ S=start(H).

Table 6
Temporal Theory: More Definitions

T.1 timeIn(T, J) ⇒ ∃1
S stateAt(J, T, S).

(A history J has only one state S at a given time T .)

T.2 ∀T,J timeIn(T, J) ⇔
startTime(J)≤ T ∧ [unbounded(J) ∨ T ≤endTime(J).]
(A history J has a state for every time T between its start time and end time.
An unbounded uhistory has a state for every time after its start time.)

T.3 ∀S,T ∃H singleHist(H,S) ∧ startTime(H)=T .
(One can construct an instantaneous history corresponding to any state S.)

T.4 ∀J,T1,T2 timeIn(T1, J) ∧ timeIn(T2, J) ∧ T1 ≤ T2 ⇒
∃H historySlice(H,J) ∧ startTime(H)=T1 ∧ endTime(H)=T2.
(One can slice history J at any times T1, T2 within the scope of J).

T.5 ∀H1,H2 end(H1)=start(H2) ∧ endTime(H1)=startTime(H2) ⇒
∃H hsplice(H1,H2,H).
(Any two histories that meet properly can be spliced together.)

Table 7
Temporal Theory: Proper Axioms
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posit that a region is topologically regular (i.e. equal to the closure of its
interior), bounded, and connected.

A rigid mapping is a positive, orthonormal mapping of three-dimensional space
to itself; that is, the composition of a rotation and a translation. (Reflections
are not allowed.)

The other geometric sorts are self-explanatory.

We use some of the RCC [30] topological relations between regions. How-
ever, since our vocabulary of symbols is so large, we preface the name with
”rcc”. Thus, the predicate “rccC(R1, R2)” is the relation usually designated
“C(R1, R2)” in the qualitative spatial reasoning literature; namely, regions
R1 and R2 are connected. Similarly “rccEC(R1, R2)” is the QSR relation
EC(R1, R2), R1 and R2 are externally connected; “rccDC(R1, R2)” is the
QSR relation DC(R1, R2), R1 and R2 are disconnected; “rccDR(R1, R2)” is
the QSR relation DR(R1, R2), R1 and R2 are disjoint (either disconnected or
externally connected); and “rccO(R1, R2)” is the QSR relation O(R1, R2), R1
and R2 overlap. The RCC relations are only applied to regions, not to other
point sets.

The function “mappingImage(M, G)” denotes the image of G under rigid map-
ping M . The sort of mappingImage(M, G) is the same as the sort of G (in
other words, all our geometric sorts are closed under rigid mappings).

The predicate “diameter(PS, X)” means that X is the diameter of point set
PS; that is, the least upper bound on distance(P1, P2) where P1, P2 are
points in PS. If PS is unbounded, then this does not hold for any X.

The predicate “altogetherAbove(PS1, PS2)” means that every point in PS1
is above some point in PS2; and no point in PS2 is above any point in PS1.

The predicate “partlyAbove(PS1, PS2)” means that some point in PS1 is
above some point in PS1.

It is useful to posit a standard coordinate system, with a vertical z-axis. The
function “height(P )” is the height of point P in the standard coordinate sys-
tem. The function “xyProj(PS)” is the projection of point set PS in the
standard coordinate system. The predicate “cuboid(R, L, D, H)” means that
region R is a cuboid with length L, depth D, and height H (L and D need
not be aligned with the standard coordinate axes.)

The meanings of the remaining symbols in table 8 are obvious. Functions and
predicates defined over point sets are overloaded to apply to individual points
by coercing the point P to the point set {P}.
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The function “verticalTilt(M1, M2)” (used in axiom P1.17, section 4.10) is the
angle between the vertical direction ẑ and the direction M2(M

−1
1 (ẑ)). The sig-

nificance is as follows: Suppose that QV is a pseudo-object vector with source
O. Let M1=value(S1,placement(O)) and let M2=value(S2,placement(O)). If
QV points upward in S1, then verticalTilt(M1, M2) is the co-latitude of QV
in S2 (that is, the angle between the direction of QV in S2 and the vertical
axis.)

4.5 Kinematic Theory of Objects in Motion

We can now formulate the kinematic theory of rigid objects in motion (ta-
bles 10–12). We introduce three new sorts. An object is a rigid solid object.
We assume that all objects are disjoint; we do not allow one object to be part
of another. A pseudo-object [6] is a geometric entity that “moves around” with
an object, such as the center of mass of an object, the hole of a donut, the apex
of a cone, and so on. The source of pseudo-object Q is the object to which Q
is “attached”. A generalized object (gObject) is a supersort that includes both
objects and pseudo-objects.

We characterize an object O and its associated pseudo-objects in terms of an
arbitrary standard position. The shape of O is the region that it occupies in
its standard position. The shape of pseudo-object Q is the geometric entity
that instantiates Q when O is in its standard position.

Any two possible positions of a rigid object O are related by a rigid mapping;
that is, a combination of a translation and a rotation. For any object O and
state S, we define the placement of O in S, denoted value(S,placement(O)), as
the rigid mapping from the standard position to the position in S. The sort of
placement(O) is thus fluent[rigidMapping]. The region occupied by O in state
S is the image of shape(O) under the mapping value(S,placement(O)); this
is denoted value(S,place(O)) (definition KD.1). The same holds for pseudo-
objects; for any state S and pseudo-object Q, the place of Q in S is the image
under a rigid mapping of the shape(Q). By constraining this rigid mapping to
be the placement in S of the source of Q (axiom K.2), we enforce the condition
that the pseudo-objects “moves together” with the associated object.

Since the function place(O) is used so frequently in our theory, we abbreviate it
using the symbol ↑O. For example, the formula, “holds(S,rccEC#(↑O1, ↑O2))”
is an abbreviation for “holds(S,rccEC#(place(O1), place(O2)))”, meaning that
O1 and O2 are externally connected in state S. Also, by convention, we ex-
tend any geometric predicate Φ to objects and pseudo-objects by defining
Φ(Q1 . . . Qk) = Φ(shape(Q1) . . . shape(Qk)). For instance, if O is an object,
then “cuboid(O)” is equivalent to “cuboid(shape(O))”.
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Sorts:

distance (D) = real.
angle = real.
geomEntity (G).

Any geometric entity. This is a supersort of all the sorts enumerated below.
point (P ). Subsort of element.
pointSet (PS). Any set of points. Subsort of set.
vector.
coordinateSystem.
region (R). Subsort of pointSet.
rigidMapping (M).

Symbols:

rccC(R1, R2: region).
rccEC(R1, R2: region).
rccDC(R1, R2: region).
rccDR(R1, R2: region).
rccO(R1, R2: region).
mappingImage(M :rigidMapping, G: geomEntity) → geomEntity.

The image of G under M .
boundary(R:region) → pointSet. The boundary surface of R (R−interior(R)).
planar(PS:pointSet). PS lies in a plane.
openBox(RB,RI: region, PS: pointSet).

RB is a box with inside RI and opening PS (section 3.5).
diameter(R: region) → distance.
ẑ: vector. The absolute upward direction.
zAxis(GC: coordinateSystem) → vector. The z axis of coordinate system GC.
zCoor(P :point, GC: coordinateSystem) → real. The z-coordinate of P in GC.
disk(PS:pointSet). PS is a two-dimensional solid disk.
convexHull(PS:pointSet) → pointSet.
pointAbove(P1, P2: point). P1 is vertically above P2.
partlyAbove(PS1, PS2: pointSet).
altogetherAbove(PS1, PS2: pointSet).
height(P : point) → distance.
top(R: region) → distance. D is the maximum value of height(P ) for P ∈ R.
bottom(R: region) → distance. D is the minimum value of height(P ) for P ∈ R.
xyProj(PS: pointSet) → pointSet.
cuboid(R:region, L,D,H: distance).
verticalTilt(M1,M2: rigidMapping) → real.
cos(R:real) → real.
sin(R:real) → real.
Table 8
Spatial sorts and symbols
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Definitions:

SD.1 openBox(RB,RI, PS) ≡
rccEC(RB,RI) ∧ PS=boundary(RI)−boundary(RB) ∧ planar(PS) ∧
∃PSD PSD ⊂ PS ∧ disk(PSD).

SD.2 partlyAbove(PS1, PS2) ≡
∃P1,P2 pointIn(P1, PS1) ∧ pointIn(P2, PS2) ∧ pointAbove(P1, P2).

SD.3 altogetherAbove(PS1, PS2) ≡
¬partlyAbove(PS2, PS1) ∧ ∀P1∈PS1 ∃P2∈PS2 pointAbove(P1, P2)

Table 9
A few spatial definitions

A state S is kinematic if no two objects occupy overlapping regions in S. A
history H is kinematic if all states in H are kinematic and all fixed objects
are motionless. We do not posit that all histories are kinematic, because for
some purposes it is useful to contemplate hypothetical histories that are not
kinematic. For instance, the easiest way to define an impact between two
objects is to assert that, if the objects continued with the same velocities,
they would interpenetrate; and the easiest way to express that contrary-to-
fact conditional is in terms of a hypothetical, non-kinematic history in which
the two objects do continue with the same velocity and do interpenetrate. (In
lemma 2.13 of our formal proof, we actually do use such hypothetical histories
to simplify the proof.)

We do posit (axiom K.5 below) that objects move continuously in every his-
tory; we have not found any use for discontinuous histories.

4.6 Physical Theory

We now turn to the physical theory, which is new in this paper. (The previ-
ous theories are not.) Here we axiomatize some of the properties of dynamic

histories; that is, histories that obey the laws of the dynamics of solid objects.
However, unlike kinematic histories, we do not give necessary and sufficient
conditions for a history to be dynamic.

We divide this section into four parts: The theory of grasping (section 4.6.1),
general characteristics of dynamic histories (section 4.6.2), the theory of sta-
ble heaps (section 4.6.3), and the default rule prohibiting anomalous upward
motion (section 4.6.4).
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Sorts:

object (O).
pseudo.
gObject (Q). Supersort of object and pseudo.
objectSet (U). Set of objects.

Symbols:

source(O: gObject) → object.
shape(Q: gObject) → geomEntity.
placement(Q: gObject) → fluent[rigidMapping].
place(Q: gObject) → fluent[geomEntity].
motionless(J : uhistory, O: object).
fixed(O: object).
mobile(O: object).
objectsOf(S:state) → objectSet.
objectsOf(J :uhistory) → objectSet.

(For readability, we overload the function “objectsOf”.)
kinematicState → fluent[Bool].
kinematic(J : uhistory).
empty(R: region) → fluent[Bool].
mappingDistance(M1,M2: rigidMapping; P : point)
Table 10
Kinematics: Symbols

Definitions:

KD.1 value(S,place(Q)) = mappingImage(value(S,placement(Q)),shape(Q)).

KD.2 motionless(J,O) ≡
∀S stateOf(S, J) ⇒ value(S1,placement(O)) = value(start(J),placement(O))

KD.3 mobile(O) ≡ ¬fixed(O).

KD.4 holds(S,kinematicState) ⇔
∀

O1,O2∈objectsOf(S) holds(S,rccDR#(↑O1, ↑O2)).

KD.5 kinematic(J) ≡
throughout(J ,kinematicState) ∧ ∀

O∈objectsOf(J) fixed(O) ⇒ motionless(H,O).

KD.6 holds(S,empty(R)) ⇔ ∀
O∈objectsOf(S) holds(S,rccDR#(↑O,R))

KD.7 mappingDistance(M1,M2, P ) = distance(mappingImage(M1, P ),mappingImage(M2, P )).

Table 11
Kinematics: Definitions
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Axioms:

K.1 object(O) ⇒ source(O)=O.

K.2 ∀Q placement(Q) = placement(source(Q)).

K.3 object(O) ⇒ region(shape(O)).

K.4 stateAt(J, T, S) ⇒ objectsOf(J) = objectsOf(S).

K.5 ∀
DE:distance,P :point,J,O,T1,S1

O ∈objectsOf(J) ∧ stateAt(J, T1, S1) ∧ 0 < DE ⇒
∃

DD:duration 0 < DD ∧
∀T2,S2 T1 − DD < T2 < T1 + DD ∧ stateAt(J, T2, S2) ⇒

mappingDistance(value(S1,placement(O)),
value(S2,placement(O)),P )

< DE.

(Every object O moves continuously in every history J . This is the usual ǫ − δ
definition of continuity. DE is ǫ, DD is δ.)

Table 12
Kinematic theory: axioms

4.6.1 Grasping

As described in section 3.1, we use a very rudimentary theory of grasping in
this paper. The agent can grasp one object at a time, or may not be grasping
anything.

It will be convenient, for technical reasons, to assume that any state of grasping
takes place over an open time interval. This can be related to a more realistic
theory of manipulators if we define “grasping” to mean that the manipulators
are exerting a positive force on the object; if the force is a continuous function
of time, then it will be greater than zero over an open time interval. 16 However,
though this definition works well in straightforward cases, it may break down
in more complicated cases; for instance if the agent tries to ungrasp an object
when it is not otherwise stably supported. In such cases, the idealization that
there is a simple Boolean fluent “grasping” does not apply.

16 Extending this idea, an alternative approach to axiomatizing grasping would be
to posit a continuous real-valued fluent “graspForce(O)”, the grasping force that the
agent exerts on object O, and to define “grasping(O)” as holding in states where
graspForce(O)> 0. This would simplify the theory in some respects and complicate
it in others; it is not clear whether overall it would be a gain.
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Symbols:

freeGrasp → fluent[Bool].
grasping(O: object) → fluent[Bool].

Definition:

GD.1 holds(S,freeGrasp) ⇔ ¬∃O holds(S,grasping(O))

Axioms:

G.1 holds(S,grasping(O1)) ∧ holds(S,grasping(O2)) ⇒ O1 = O2.
(The agent grasps at most one object at a time.)

G.2 holds(S,grasping(O)) ⇒ O ∈objectsOf(S).

Table 13
Axioms of Grasping

4.6.2 Dynamic Histories

In this section we describe some general axioms that govern dynamic histories.
We introduce the predicate “dynamic(J)” meaning that history J obeys the
laws of the dynamic theories of rigid solid objects. We do not attempt to
characterize necessary and sufficient conditions for this, but merely state those
axioms that we will use in our example here.

Following our discussion in section 3.6, we define the fluent “isolated(UH, US)”.
In state S, a collection of objects UH is isolated from all objects except US if
no object in UH is in contact with any object outside of UH∪US. This fluent
enables us to posit that a collection of objects is free from interference from
other objects without needing to impose draconian closed-world assumptions
that demand that such other objects do not exist. This boundary condition is
important both in the verification of our plan and in the statement of physical
axioms.

Another useful concept is that of two states S1 and S2 being the same on the
set of objects U ; in our theory, this holds if the positions of every object in U
is the same in S1 as in S2 and object O in U is being grasped in S1 if and
only if it is being grasped in S2. The concepts of two states being the same
except on the objects in U , or of two histories being the same on the objects
in U are defined analogously.

Axioms DYN.1 and DYN.2 of table 16 both state that new states or histories
can be constructed from old ones by various kinds of modifications. Axioms
DYN.3–DYN.8 discuss how a dynamic histories can be constructed and mod-
ified. Note that not all the modification operators that apply to histories in
general, or even to kinematic histories, apply to dynamic histories. For in-
stance the projection of a history H onto a subset of its objects is a history
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H1 (axiom DYN.2) and if H is kinematic then trivially H1 is kinematic, but
it is not the case that if H is dynamic then H1 is dynamic. For instance, H
may have mobile object o1 supported on fixed object o2; if you project onto
just o1, then o1 is floating in mid-air. However, DYN.7 gives sufficient condi-
tions under which the projection of a dynamic history is itself dynamic: if the
objects US are all fixed or grasped throughout H , and the objects UM are
isolated except for US, then the projection of H onto the object set UM ∪US
is dynamic.

DYN.8 is a converse, of a sort, to DYN.7. It states that if J1 and J2 are
dynamic histories which are consistent in the sense that no objects in J1
overlaps any object in J2 at any time, that any objects in common between
the two are placed in the same place, and if the agent is grasping O1 in J1,
then he is not at the same time grasping O2 in J2, then one can “play” J1
and J2 “side by side” and the combined history is itself dynamic. One might
wonder whether the constraint that no two objects overlap is not too weak;
should we not have to require that no two objects from J1 and J2 come
into contact? After all, two solid objects do not have to collide to affect one
another’s behavior, they merely have to come into contact. The answer is this:
Suppose that O1 follows a trajectory in J1 that comes into contact but does
not overlap the trajectory of object O2 in J2. Then the forces on O1 from the
objects in J1 are sufficient to account for its trajectory, and likewise for O2,
so there need not be any normal force between O1 and O2 (except possibly in
the end state of J , but that has no consequences in J). If there is no normal
force, then there is no frictive force either.

Axioms DYN.10–DYN.13 characterize the agent’s ability to choose to grasp
and ungrasp. In this representation, the feasibility of an action is expressed
as the existence of a dynamic history in which the action is carried out. This
is analogous to branching models of time, such as the situation calculus, in
which the feasibility of action A in situation S is expressed as the existence
of a successor state S1 such that A transforms S into S1. In dealing with
continuous time, there are generally two cases to be considered; first, the
continuance or beginning of an action at a given time, following some previous
history; and, second, the continuance or beginning of an action immediately

after a given state. Axioms DYN.10—DYN.13 describe these two options for
grasping and ungrasping. Axiom DYN.10 states that at the end of any dynamic
history, the agent can always choose to free his grasp. This is expressed by
the rule that if H is a dynamic history, then there exists another dynamic
history H1 which is identical to H except that, in end(H1), the agent releases
whatever he was holding in end(H). Axiom DYN.11 states that if the agent
has been grasping O throughout H up until the end, he can continue to grasp
O at the end. Axiom DYN.12 states that if the agent’s grasp is free in S then
he can continue not to grasp anything throughout some history starting in H .
Axiom DYN.13 states that if the agent’s grasp is free in S or if he is grasping
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Symbols:

dynamic(J : uhistory).
isolated(UH,US: objectSet) → fluent[Bool].
sameStateOn(S1, S2: state, U : objectSet).
sameStateExcept(S1, S2: state, U : objectSet).
sameHistoryOn(J1, J2:uhistory, U : objectSet).
sameMotionOn(J1, J2:uhistory, U : objectSet, D:duration).
sameUntilEnd(H1,H2:history).
coherentGrasping(J1, J2:uhistory). See definition DYD.7 and axiom DYN.9.
freeMotion(O: object) → fluent[Bool].
movingThroughout(O:object, H:history).
parallelMotion(O1, O2:object, H:history).

Table 14
Dynamics: Symbols

O in S, then he can grasp O in some history starting immediately after S.

In a similar way, DYN.14 gives a sufficient condition for the feasibility of
manipulating an object O along a given trajectory HK: If history HK is
kinematically possible, and all the objects in HK either move parallel to
object O or are motionless, then at least an initial segment of the motion of
O in HK is dynamically possible; that is, there exists a dynamically possible
history H2 starting in start(HK) in which O follows the same motion as in
HK. In the box example, suppose that S is the state when all the cargo is
loaded, and HK is a trajectory of carrying the box along a specified path.
Then HK would be the history in which the objects inside the box keep a
fixed position relative to the box and all other objects remain motionless.
Clearly this is kinematically possible, given the condition COND.6. Axiom
DYN.14 thus asserts that it is dynamically possible to carry the box along at
least an initial segment of the specified trajectory, though the actual behavior
of the objects may not be that of HK. The objects in the box may settle, or
other objects may move, for reasons of their own.

4.6.3 Heaps and Stability

We next address the issue of heaps and stable heaps. Again, the discussion here
is preliminary; it is adequate to the problem of carrying cargo in boxes, but
a considerably richer and more powerful theory would be required to analyze
the problem of carrying cargo piled in heaps on trays.

A heap is defined (definition HD.3) as in section 3.6. As with dynamic histories,
we do not give necessary and sufficient conditions for a collection of objects
to be in a stable heaps; we just posit some of the axioms that are needed for
the inference we are concerned with. A state is stable if every freely moving
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Definitions:

DYD.1 holds(S,isolated(UH,US)) ⇔
UH ∩ US = ∅ ∧
∀

OH∈UH,OS∈objectsOf(S) holds(S, rccC#(↑OH, ↑OS)) ⇒ OS ∈ US ∪ UH.

DYD.2 sameStateOn(S1, S2, U) ≡
U ⊂objectsOf(S1) ∧ U ⊂objectsOf(S2) ∧
[∀O∈U value(S1,placement(O)) = value(S2,placement(O)) ∧
[holds(S1,grasping(O)) ⇔ holds(S2,grasping(O))]]

DYD.3 sameStateExcept(S1, S2, U) ≡
objectsOf(S1)−U = objectsOf(S2)−U ∧ sameStateOn(S1, S2,objectsOf(S1)−U).

DYD.4 sameHistoryOn(J1, J2, U) ≡
sameTime(J1, J2) ∧
[∀T,S1,S2 stateAt(J1, T, S1) ∧ stateAt(J2, T, S2) ⇒ sameStateOn(S1, S2, U)].

DYD.5 sameMotionOn(J1, J2, U,D) ≡
U ⊂objectsOf(J1) ∩ objectsOf(J2) ∧
∀T,S1,S2,O stateAt(J1, T + D,S1) ∧ stateAt(J2, T, S2) ∧ O ∈ U ⇒

value(S1,placement(O)) = value(S2,placement(O)).

(The objects in U have the same motion in J2 as in J1 with time shift D, though
not necessarily the same grasping relations.)

DYD.6 sameUntilEnd(H1,H2) ≡
sameTime(H1,H2) ∧
∀T,S T <endTime(H1) ∧ stateAt(H1, T, S) ⇒ stateAt(H2, T, S).

DYD.7 coherentGrasping(J1, J2) ≡
∀O1,O2,T,S1,S2 stateAt(J1, T, S1) ∧ stateAt(J1, T, S2) ∧
holds(S1,grasping(O1)) ∧ holding(S2,grasping(O2)) ⇒ O1 = O2.
(J1 and J2 do not place conflicting conditions on what the agent is grasping at
a given time. Condition of axiom DYN.9.)

DYD.8 holds(S,freeMotion(O)) ⇔
O ∈objectsOf(S) ∧ mobile(O) ∧ ¬holds(S,grasping(O)).

DYD.9 parallelMotion(O1, O2,H) ≡
∀S stateOf(S,H) ⇒

∃
M :rigidMapping value(S,placement(O1)) =

mappingImage(M ,value(start(H),placement(O1))) ∧
value(S,placement(O2)) =

mappingImage(M ,value(start(H),placement(O2)))

Table 15
Basic Properties of Dynamics: Symbols and Definitions
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Axioms:

DYN.1 ∀S,O,M ∃S2 sameStateExcept(S, S2, O) ∧ M=value(S2,placement(O)).
(One can change the placement of object O in state S to M and construct a
new state S2. S2 is not necessarily kinematically possible, but it is ontologically
possible.)

DYN.2 U ⊂objectsOf(H) ⇒
∃H1 objectsOf(H1)=U ∧ sameHistoryOn(H1,H,U).
(One can project a history H onto a subset U of its objects, getting a history
H1.)

DYN.3 ∀S,H kinematic(S) ∧ singleHist(H,S) ⇒ dynamic(H).
(A history H consisting of a single kinematic state S is dynamic.)

DYN.4 ∀H dynamic(H) ⇒ ∃J unbounded(J) ∧ dynamic(J) ∧ historyPrefix(H,J).
(Any dynamic history H can be extended to an unbounded dynamic history J .)

DYN.5 dynamic(J) ∧ historySlice(J1, J) ⇒ dynamic(J1).
(Any temporal slice of a dynamic history is dynamic.)

DYN.6 dynamic(H1) ∧ dynamic(J2) ∧ hsplice(H1, J2, J) ⇒ dynamic(J).
(If H1 and J2 are dynamic and can be spliced together to form J , then J is
dynamic. This excludes any kind of hysteresis.)

DYN.7 [ dynamic(J) ∧ throughout(J ,isolated(UM,US)) ∧
[∀O∈US throughout(J ,¬#freeMotion(O))] ∧
objectsOf(J1)=UM ∪ US ∧ sameHistoryOn(J, J1, UM ∪ US)

] ⇒
dynamic(J1).
(Discussed in text.)

DYN.8 [dynamic(J1) ∧ dynamic(J2) ∧
objectsOf(J) = objectsOf(J1) ∪ objectsOf(J2) ∧
sameHistoryOn(J, J1,objectsOf(J1)) ∧ sameHistoryOn(J, J2,objectsOf(J2)) ∧
kinematic(J) ∧ coherentGrasping(J1, J2)] ⇒
dynamic(J).
(Discussed in text.)

DYN.9 dynamic(J) ⇒ kinematic(J).
(A dynamic history is kinematic.)

Table 16
Basic Properties of Dynamics: Axioms (beginning)

object is part of a stable heap supported by fixed and grasped objects.

Axiom H.1 asserts that a stable heap is a heap. Axiom H.2 asserts that if UH is
a stable heap supported by US which remains motionless, and is isolated from
all other objects then UH likewise remains motionless and remains a stable
heap. Axiom H.3 asserts that if a set of objects is isolated and no object is
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DYN.10 history(H) ∧ dynamic(H) ⇒
∃H1 dynamic(H1) ∧ sameUntilEnd(H,H1) ∧ holds(end(H1),freeGrasp).

DYN.11 dynamic(H) ∧ history(H) ∧ throughoutxSE(H,grasping(O)) ⇒
∃H1 d̄ynamic(H1) ∧ sameUntilEnd(H,H1) ∧ holds(end(H1),grasping(O)).

DYN.12 holds(S,kinematicState) ∧ holds(S,freeGrasp) ⇒
∃H dynamic(H) ∧ S=start(H) ∧ startTime(H) < endTime(H) ∧
throughout(H,freeGrasp.)

DYN.13 holds(S,kinematicState) ∧ [holds(S,grasping(O)) ∨ holds(S,freeGrasp)] ⇒
∃H dynamic(H) ∧ S=start(H) ∧ startTime(H) < endTime(H) ∧
throughoutxSE(H,grasping(O)).

DYN.14 [kinematic(HK) ∧ holds(start(HK),grasping(O)) ∧
[∀

O1∈objectsOf(H) parallelMotion(O1, O,HK) ∨ motionless(O1,HK)]] ⇒

∃H2 startTime(HK) = startTime(H2) < endTime(H2) ∧ start(H2)=start(HK) ∧
sameMotionOn(H2,HK, {O}, 0) ∧ throughoutxSE(H2,grasping(O)) ∧
dynamic(H2).

(These are all discussed in the text.)

Table 17
Basic Properties of Dynamics: Axioms (continued)

moved by the agent, then eventually the set attains a stable state. Axiom H.4
asserts that if UH is a stable heap on US in state S1, and in S2 the objects
in UH and US are in the same positions as in S1 and UH is isolated from
everything except US in S2, then UH is a stable heap with supports US
in S2. (That is, the positions of other objects that are not in contact with
UH do not affect whether UH is stable.) Axiom HD.5, HD.6, and H.5 encode
the default rule used to infer that the box does not fall over during loading
(section 3.3.6): If object OB is stably supported by motionless object OT , and
the objects in set UC are always above the convex hull of the contact points of
OB with OT , and {OB} ∪ UC are isolated from everything except OT , then
by default OB remains motionless. Specifically, axiom HD.5 defines a history
in which this default rule is violated as exhibiting anomaly 2. Axiom HD.6
defines a history H as satisfying the property “noAnomaly2” if no slice of H
exhibits anomaly 2. Default rule H.5 states that dynamic histories by default
satisfy the “noAnomaly2” property.

4.6.4 No upward motion

The final category of physical rules is the default rule that prevents the cargo
from coming out of the top of the box. This follows our formulation in sec-
tion 3.7. Object O undergoes an upward motion with respect to object set US
in H if, for every object O1 in US and for every coordinate system QC that
can be “attached” to O1 at any time in H , the z-coordinate of the center of
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Symbols:

connectedGroup(U :objectSet) → fluent[Bool].
allFree(U :objectSet) → fluent[Bool].
heap(UH,US: objectSet) → fluent[Bool].
stableHeap(UH,US: objectSet) → fluent[Bool].
stable(U :objectSet) → fluent[Bool].
anomaly2(H:history).
noAnomaly2(H:history).

Definitions:

HD.1 holds(S,connectedGroup(U)) ⇔
U ⊂objectsOf(S) ∧
∀U1,U2 U1 6= ∅ ∧ U2 6= ∅ ∧ U1 ∪ U2 = U ⇒

∃O1∈U1,O2∈U2 holds(S,rccC#(↑O1, ↑O2))

(A set of objects U is a connected group in state S if it cannot be divided into
two spatially separated subsets U1 and U2.)

HD.2 holds(S,allFree(U)) ≡ ∀O∈U holds(S,freeMotion(O)).

HD.3 holds(S,heap(UH,US)) ⇔
holds(S,connectedGroup(UH) ∧# allFree(UH)) ∧
US ⊂objectsOf(S) ∧ US ∩ UH = ∅ ∧
[∀

OH∈UH,OS∈objectsOf(S) holds(S, rccC#(OH,OS)) ⇒ OS ∈ UH ∪ US] ∧

[∀OS∈US ∃OH∈UH holds(S,rccC#(↑OS, ↑OH))].
(Definition of a heap, as in section 3.6.)

HD.4 holds(S,stable(U)) ⇔
∀O∈U holds(S,freeMotion(O)) ⇒

∃UH,US⊂U O ∈ UH ∧ holds(S,stableHeap(UH,US)) ∧
∀OS∈US ¬holds(S,freeMotion(OS)).

(A set of objects U is stable in state S if every mobile object in U is part of a
stable heap supported by fixed or grasped objects.)

HD.5 anomaly2(H) ≡
[dynamic(H) ∧ throughout(H,isolated(UC ∪ {OB}, OT ) ∧# freeMotion(OB)) ∧
sameStateOn(start(H),S2,{OB,OT}) ∧ holds(S2,stableHeap({OB}, {OT})) ∧

[∀O∈UC throughout(H,above#(↑O, convexHull#(↑OT ∩∗ ↑OB)))] ∧
throughout(H,motionless(OT )) ∧ ¬throughout(H,motionless(OB))]

HD.6 noAnomaly2(H) ≡ ¬∃H1 historySlice(H1,H) ∧ anomaly2(H1).

Table 18
Heaps and Stability: Symbols and Definitions
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Axioms: (These are discussed in the text.)

H.1 holds(S,stableHeap(UH,US)) ⇒ holds(S,heap(UH,US)) ∧ US 6= ∅.

H.2 [dynamic(J) ∧ holds(start(J),stableHeap(UH,US)) ∧
throughout(J ,isolated(UH,US)) ∧ ∀O∈US motionless(J,O)] ⇒
∀O∈UH motionless(J,O) ∧ throughout(J ,stableHeap(UH,US)).

H.3 [dynamic(J) ∧ unbounded(J) ∧
throughout(J ,isolated(UM,UF ) ∧# allFree(UM)) ∧
[∀O∈UF motionless(J,O)]] ⇒
∃J1 historySuffix(J1, J) ∧ throughout(J1,stable(UF ∪ UM)).

H.4 holds(S1,stableHeap(UH,UF )) ∧ sameStateOn(S1, S2, UH ∪ UF ) ∧
holds(S2,isolated(UH,UF )) ⇒
holds(S2,stableHeap(UH,UF )).

Reiterian Default Rule:

H.5 dynamic(J) : noAnomaly2(J) / noAnomaly2(J).

Table 19
Heaps and Stability: Axioms

Symbol: centerOfMass(O) → pseudo.

Axioms:

CM.1 ∀
O:object point(shape(centerOfMass(O)).

CM.2 ∀
O:object shape(centerOfMass(O)) ∈ convexHull(shape(O)).

Table 20
Center of mass

mass of O relative to QC is higher at the end of H than at the beginning of
H . An upward motion of O in H relative to US is anomalous if O is part of a
heap UH supported by US at the start of H and UH is isolated from every-
thing except US during H . A history H has no anomalous upward motions

if none of the objects in H have anomalous upward motions in any temporal
slice of H . By default, a dynamic history has no anomalous upward motions.

4.7 Comprehension axioms for histories

We will need to reason that, if the agent is grasping an object, then he can move
it along any “well-behaved” trajectory consistent with the laws of physics. The
dynamic axioms DYN.1 through DYN.14, especially DYN.12, enumerate some
conditions that are sufficient for a history to be physically possible. What we
need additionally are axioms that assert that all these histories exist; specifi-
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Symbols:

upwardMotion(O object, US: objectSet, H:history).
anomalousUpwardMotion(O: object, H: history).
noAnomUpwardMotion(H: history).

Definitions:

UD.1 upwardMotion(O,US,H) ≡
∀OS∈US,QC,SM [source(QC)=OS ∧ coordinateSystem(QC) ∧ stateOf(SM,H) ∧

value(SM ,zAxis#(↑QC)) = ẑ] ⇒
value(end(H),zCoor#(↑centerOfMass(O),↑QC)) >

value(start(H),zCoor#(centerOfMass(↑O),↑QC))

UD.2 anomalousUpwardMotion(O,H) ≡
∃UH,US O ∈ UH ∧ holds(start(H),heap(UH,US)) ∧
throughout(H,isolated(UH,US) ∧# allFree(UH)) ∧ upwardMotion(O,US,H).

UD.3 noAnomUpwardMotion(H) ≡
∀

O∈objects(H),H1 historySlice(H1,H) ⇒ ¬anomalousUpwardMotion(O,H1).

Reiterian Default Rule:

UP.1 dynamic(H) : noAnomUpwardMotion(H) / noAnomUpwardMotion(H)

Table 21
Default rule excluding anomalous upward motion

cally, that for any “well-behaved” (to be defined below) mathematical function
from time to mappings, there exists a history in which object O follows that
function. Such axioms are comprehension axioms for histories. There are two,
not very different, ways to state these; either using first-order axiom schemas
or using higher-order logic. There are subtle differences between the expressive
power of these two, but nothing that affects our inferences here. In this pa-
per, I will use first-order schemas to simplify the notational and sortal issues
involved.

The more serious question is what class of mathematical functions should
be considered well-behaved. Note that this is, in general, a superset of the
histories that are physically possible i.e. that satisfy dynamic(H). Rather,
these are the histories that are, so to speak, conceptually possible. Therefore,
the decision here is mostly a matter of the convenience of the theory developer.

There are two major constraints on the class of histories that we wish to
enforce. The first, already discussed, is that we will require all histories to be
continuous. The second, more subtle, can be stated in the following principle:

HCP.1 Let h1, h2, h3 . . . be an infinite sequence of histories, such that hi is a proper
prefix of hi+1 for all i. Then there exists a uhistory j∞ which is an extension
of all the hi.
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The force of this principle is most clearly illustrated in terms of an exam-
ple that violates it. Suppose that for each k, hk is the history such that
startTime(hk)=−1, endTime(hk)=−1/k, and for all T between startTime(hk)
and endTime(hk), the placement of O at time T in hk is a translation by dis-
tance sin(1/T ) in the x̂ direction. Then each hk is a prefix of hk+1, but there
does not exist a j∞ that subsumes them all, because the position of O does
not converge to a limit at T = 0.

To avoid this, we require that histories satisfy a Lipschitz condition that,
between times TA and TB, no point in any object moves a distance greater
than maxSpeed·|TB − TA|, where maxSpeed is a constant. It is easily shown
that if h1, h2 . . . satisfy the Lipschitz condition and hi is a prefix of hi+1, then
the limit history j∞ exists and also satisfies the Lipschitz condition.

We chose to use this particular Lipschitz condition for reasons of simplicity. In
the long run, imposing an attainable upper bound on speed could be problem-
atic for a Newtonian theory; obviously it is not consistent with either Galilean
or Einsteinian relativity or with the solution to some collision problems. There
are many other possible condition that could be imposed instead for the same
purpose. Keep in mind that there is no harm in imposing a very weak condition
on histories, as long as it is sufficient to guarantee HCP.1.

The real reason that we need principle HCP.1 is to justify the conclusion
(lemma 1.5 of our formal proof) that it is always possible to attempt to carry
out any given plan and to work on it until either it fails, it succeeds, or it
cannot be continued. If we allow histories like those in our counter-example
above, then the plan of moving an object along the path f(t) = sin(1/T )x̂
can be begun over the interval [−1,−1/T ] for every T < 0 but not over the
interval [−1, 0]; it is difficult to define a semantics of planning in a way that
accommodates this.

As stated above, HCP.1 involves quantifying over infinite sequences of histo-
ries. Rather than do that, we use axiom schema HC.3 below. Let Ψ(H) be a
property of histories H , and let H0 be a history satisfying Ψ. (Ψ may have
associated some parameters X; in this case, each valuation on X determines
a property of H .) Let Γ(J1) be the property, “J1 is an extension of H0 and
every proper prefix of J1 that extends H0 satisfies Φ.” Then there exists a
uhistory JM that is maximal with respect to Γ; that is, Γ holds on JM but
not on any proper extension of JM .

Axiom schema HC.3 is approximately equivalent to principle HCP.1 in the
following sense. On the one hand, HCP.1 plus the axiom of choice entails
HC.3. Proof: Let us write hA < hB if H0 is a prefix of hA, hA is a proper
prefix of hB, and Γ(hB); clearly this is a partial ordering. By Zorn’s lemma,
there exists a maximal set of histories that is linearly ordered under <. Let H
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be some such maximal totally ordered set. If the end times of the histories in
H are bounded above, let TZ be the least upper bound of these end times; let
h′

K be any history in H whose end time is greater than TZ − 1/K and let hK

be the prefix of h′
K ending at time TZ −1/K. If the end times of the histories

in H are not bounded above, let h′
K be any history with end time greater than

K, and let hK be the prefix of h′
K with end time equal to K. In either case, it

is immediate that hK < hK+1 so by HCP.1 there exists some j∞ that extends
all the hK . If TZ is bounded, then the prefix of j∞ that ends at TZ satisfies
the conclusion of HC.3; if not, then j∞ itself satisfies the conclusion of HC.3.

Conversely, HC.3 implies HCP.1, as long as hK can be defined in terms of a
first-order formula in H and K; the proof is immediate.

Axiom HC.2 asserts that any system of motions satisfying the Lipschitz condi-
tion satisfying the Lipschitz condition constitutes a history. Here Ψ(O, T, M)
is a first-order formula that defines a mapping from object O and time T to
rigid mapping M . Axiom HC.2 states that if, for T ≥ TS and O ∈ U , Ψ
defines a function from O and T to M that satisfies the Lipschitz condition,
then there is a uhistory J that corresponds to Ψ; that is startTime(J) = TS,
objectsOf(J)=U , and for every object O ∈ U and time T ≥ TS the placement
of O at time T in H is the value that satisfies Ψ(O, T, H).

Axioms HC.1 and HC.2 give necessary and sufficient conditions for a system
of object motions to constitute a history. For this domain, this is an almost
complete characterization of the class of histories. A complete characterization
would involve additionally:

• Necessary and sufficient conditions for the evolution of grasping relations
over time.

• A uniqueness axiom stating that any two histories with the same time in-
terval, the same objects, the same motions, and the same grasping relations
are in fact the same history.

• A comprehension axiom on states, positing that any placement of a set of
objects constitutes a state.

If we were to posit such a set of necessary and sufficient conditions, then
quite a few of our axioms would in fact be consequences of these conditions,
specifically T.1—T.5, K.4, K.5, G.1—G.2, DYN.1, DYN.2 and HC.3. We have
not taken this approach for reasons of elaboration tolerance. Axioms like these
are applicable to a wide range of temporal and physical theories; by contrast,
the proposed necessary and sufficient conditions on histories apply only to the
partial theory of rigid solid objects that we consider in this paper.

Finally, the comprehension axiom HC.4 is a variant of HC.3. HC.3 states that
there is always a maximal history over a topologically closed history JM that
extends H and satisfies the condition “Φ holds over all proper prefixes of
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JM .” HC.4 states, in effect, that there is a maximal history either over a
closed interval, or over an interval that is open on the right, that extends H
and satisfies the condition “Φ holds over all closed prefixes (not necessarily
proper) of JM”. Since our ontology does not include histories over open time
intervals, the statement of this is somewhat indirect. The point of this is to
deal with time structures which branch at the end point of an interval. If the
agent is attempting to keep a fluent like “grasping(O)” true, and, following an
open history there is one end point that keeps grasping(O) true and one that
makes it false, — i.e. the agent can choose to ungrasp(O) at the end of H —
we need to deduce that the agent can choose the one that keeps it true, and
can continue to keep it true through the continuum of such choices that must
be made.

The formal statement of these axioms proceeds as follows. First, let define the
distance between rigid mappings M1 and M2 relative to object O,
mapDist(M1, M2, O) as the maximum over all points P in shape(O) of the
distance from M1(P ) to M2(P ) (definition HCD.1).

Let Ψ(O:object, T :time, M : rigidMapping, X1 . . .Xk) be any open formula
with free variables O, T , M , and optional additional free variables X1 . . .Xk

of any sort. For simplicity we will write the arguments X1 . . .Xk as a single
argument X.

Assume that for any given object O and parameter value X, Ψ implicitly
defines a function Ψ′

O,X(T ) be from time T to a rigid mapping M . that is,

Ψ(O, T, M, X) ⇔ M = Ψ′
O,X(T ). The formula LipschitzΨ(O, X, TS, TE) as-

serts that, for a given value of O and X, throughout the time interval TS, TE,
the function Ψ′

O,X(T ) satisfies the Lipschitz condition that for any point P
in shape(O), the distance from [Ψ′

O,X(T1)](P ) to [Ψ′
O,X(T2)](P ) is at most

maxSpeed · |T2 − T1|.

The definition of the Lipschitz condition is given in definition HCD.2. Note
that this includes the condition that Ψ defines a single-valued mapping (con-
sider the case where T2 = T1). Axioms HC.1, HC.2, HC.3 can now be stated
as in table 23.

4.8 Executing Plans

Since our objective is to validate plan1, we next need to define what it means
for a plan to be a correct solution to a problem. That is, we need to define a
semantics of plans. As our plans are partially specified and our model of time
is continuous, this is not entirely an established theory.

We will develop our theory top-down. A standard definition of the semantics
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Symbols:

maxSpeed → real.
mapDist(M1,M2: rigidMapping, O:object) → distance

Definitions:

HCD.1 mapDist(M1,M2, O) = D ⇔
[∃

P∈shape(O) mappingDistance(M1,M2, P )= D] ∧

[∀
P∈shape(O) mappingDistance(M1,M2, P )≤ D].

HCD.2 Let Ψ(O:object, T :time, M :rigidMapping, X) be a formula.
Then LipschitzΨ(O,X, TS, TE) is defined to be the following formula:

∀
T1,T2:time,M1,M2:rigidMapping

TS ≤ T1 ≤ T2 ≤ TE ∧ Ψ(O,T1,M1,X) ∧ Ψ(O,T2,M2,X) ⇒
mapDist(M1,M2, O) ≤ maxSpeed · (T2 − T1).

HCD.3 Let Φ(H:history,X) be a formula.
AllPPsΦ(H,X) is defined to be the formula:

∀H1 historyProperPrefix(H1,H) ⇒ Φ(H1,X).

Table 22
Comprehension axioms on histories: Symbols and definitions

of a partial plan is that the plan P correctly achieves a task T starting in
state S if the following holds: for all H , if H is a history starting in S, and
the agent attempts to execute P in H , then he succeeds in executing P in H
and the execution of P constitutes a successful accomplishment of T . (This
definition does not address the issues of knowledge preconditions or knowledge
acquisition.)

What is meant by a successful execution of plan P in H is generally quite
apparent from the form of P ; representational systems for partial plans usually
directly characterize a successful execution. What is meant by an attempt

to execute P is often less obvious. For a TWEAK-style partial plan [4], for
instance, we can define “attempts” as follows: a beginning of an execution of
plan P is an execution of the first k steps of the plan under some ordering
and variable binding consistent with the constraints. P is attempted in H if
P is begun in H and cannot be continued, either because P is complete, or
because there are no next steps whose preconditions are met. 17

17 This is actually weaker (more inclusive) than Chapman’s semantics, because it re-
quires only that that at each there is some step in the plan whose predecessors have
been executed and whose preconditions are met. By contrast, Chapman’s seman-
tics require that the preconditions are satisfied for every step whose predecessors
have been executed. To achieve Chapman’s semantics, it is necessary to define the
beginning of the execution of a plan as the combination of the execution of some
of the steps together with the choice of a next step to execute, among steps all of
whose predecessors have been executed. Chapman’s definition is computationally
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Axioms:

HC.1 ∀O,H,T1,T2,S1,S2 T1 ≤ T2 ∧ stateAt(H,T1, S1) ∧ stateAt(H,T2, S2) ⇒
mapDist(value(S1,placement(O)), value(S2,placement(O)), O) ≤
maxSpeed · (T2 − T1)

Axiom HC.1 asserts that the Lipschitz condition holds on the formula,
“∃S stateAt(H,T, S) ∧ M=value(S,placement(O)).”

HC.2 Let Ψ and LipschitzΨ be as in H.2. Assume that the variables U , TS, and J do
not appear free in Ψ. Then the following formula is an axiom:

∀
U :objectSet,TS:time,X

[∀O∈U,TE:time TS < TE ⇒ LipschitzΨ(O,X, TS, TE)] ⇒

∃
J :uhistory startTime(J)=TS ∧ unbounded(J) ∧ objectsOf(J)=U ∧

∀T,S,M stateAt(J, T, S) ∧ Ψ(O,T,M,X) ⇒ value(S,placement(O))=M .

HC.3 Let Φ(H: history,X) be an open formula with a free variable H of sort history
and optionally other free variables X. Assume that variables JM and H1 are not
free in Φ. Then the following is an axiom:

∀H,X AllPPsΦ(H,X) ⇒
∃JM historyPrefix(H,JM) ∧ AllPPsΦ(JM,X) ∧

∀H1 historyProperPrefix(JM,H1) ⇒ ¬AllPPsΦ(H1,X).

HC.4 Let Φ(H: history,X) be as in HC.3. Then the following is an axiom:

∀H,X AllPPsΦ(H,X) ⇒
∃JM historyPrefix(H,JM) ∧ AllPPsΦ(JM,X) ∧

[¬∃J1 sameUntilEnd(J1, JM) ∧ Φ(J1)] ∨
[Φ(JM) ∧
∀H1 historyProperPrefix(JM,H1) ⇒ ¬AllPPsΦ(H1,X) ]].

Table 23
Comprehension axioms on histories

The first thought is to define an attempt to execute P as the initial segment
of a complete execution of P ; but under that definition of “attempt”, the
above definition of “correctness” become vacuous. Rather, we have to go in the
opposite direction. We view the form of the plan as specifying what it means
to “attempt” the plan, and as specifying when such an attempt constitutes
a successful execution of the plan. Additionally, as mentioned above, the fact
that we are dealing with real-valued time means that more care has to be
taken than in similar theories over discrete time.

We proceed, then, as follows: The semantics of a plan P is specified in terms of

more tractable; it is verifiable in polynomial time, whereas verifying our definition
is NP-hard.
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four primitive predicates. The predicate “worksOn(P, H)” states that H con-
stitute a partial or complete execution of P . The predicate “beginnable(P, S)”
states that it is possible to initiate execution of P in S. The predicate
“completion(P, H)” states that H constitutes a complete execution of P .

For example, consider the plan, pHardBoil = “Hard-boil egg egg1.” The for-
mula “beginnable(pHardBoil,S1)” is true if in S1 there is a pot POT1 with
water on a burner B1 of the stove. The formula “completion(pHardBoil,H)” is
true if the sequence “put egg1 into POT1; turn the knob controlling B1; wait
12 minutes” is completely executed in H ; and the formula “worksOn(pHardBoil,H)”
is true if some initial segment of that sequence is executed in H .

The relations “attempts(P, J)” and “completes(P, H)” are defined in terms
of the above three predicates. To simplify the process of plan definition, we
require that our definitions of “attempts” and “completes” be coherent and
well-behaved for any definition of “worksOn”, “beginnable”, and “comple-
tion”, whether or not these satisfy any particular logical or temporal relations.
For instance, intuitively one might think that if worksOn(P, H) holds, then
worksOn(P, H1) should hold for any initial segment of H1; or that if P is
not beginnable in S then “worksOn(P, H)” should not hold over any history
H that starts in S. However, we do not impose either of these conditions,
or indeed any constraints whatever on these three base relations. Indeed, we
could consistently specify a comprehension axiom, analogous to axiom P.2 of
[8], which states that there exists a plan for any definition of these three pred-
icates; we have not done that here because it is somewhat complex and we do
not here need such an axiom. Achieving this in a theory of real-valued time
requires a little care.

The predicate “attempts(P, J)” and some of the other predicates we will de-
fine, takes as argument a possibly unbounded uhistory J to deal with the case
that the plan P goes into an infinite loop.

We posit a constant positive duration “reactionTime”, which is the time re-
quired for the agent to “realize” that the completion criterion “completion(P, H)”
has been met. Of course, this is often realistic, but that is not the actual reason
that we are including this feature in our theory. (The small increase in realism
would not be worth the complexity and inelegance.) Rather the point of in-
cluding this is to deal coherently with cases where “completion(P, H)” holds
over an interval of time that is open on the left (or more generally where it
holds on a set of time points that does not contain its lower boundary). For
instance, if the predicate “completion(P, H)” is defined as “the center of mass
of O is more than 1 foot higher than the table,” then there is no first time
at which the predicate becomes true, so it would not be consistent to specify
that the agent stops working on the plan as soon as the completion condition
holds. Therefore, we define the predicate “reactComplete(P, H)” (the agent
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can achieve the completion criterion of P and react to it) as holding if H fin-
ishes at a time which is reactionTime greater than the greatest lower bound
on the times at which “completion(P, H)” becomes true (PLD.1). Note it
is possible that “completion(P, H)” will no longer be true by the time that
“reactComplete(P, H)” becomes true, but that is not a problem; in such a
case, “completes(P, H)” still holds.

The imposition of a constant time delay on the completion of a plan has
two further advantages in terms of achieving a coherent semantics. First, it
eliminates the problem of defining “sequence(P1, P2)” where P1 completes
instantaneously; second, it eliminates the problems of loops that execute in-
finitely many iterations in finite time. The disadvantage of this is that we must
now define “worksOn(P, H)” in such a way that the agent works on P for the
duration reactionTime after P has met the completion criterion; if worksOn
is not so defined, then “completes(P, H)” will not be achieved.

Our definitions now continue as follows: The predicate “baseExec(P, H)” (H
is a strictly partial execution of P ) holds if H is dynamic and worksOn(P, H)
(PLD.2). The predicate “incompleteExec(P, H)” holds if baseExec(P, H) but
not reactComplete(P, H) (PLD.3).

We need to define “attempt” in such a way that the agent continues to work on
P as long as possible. There are two cases to be addressed here, corresponding
to the two topologies of the right-hand side of a time interval. First, if the
agent has been working on P over a closed time interval, and it is possible for
him to continue working on P , then he does so. Second, if he has been working
on P over an time interval that is open on the right, and it is possible for him
to continue working on P over the closure of that interval, then he does so.

Thus, we define the following predicates. The predicate “beginsxE(P, H)”
meaning “P begins over H except possibly at its end” holds if P is beginnable
at the start of J and incompleteExec(P, H1) holds over every proper prefix
H1 of J (PLD.4). The predicate “begins(P, H)” holds if baseExec(P, H) holds
as well (PLD.5).

A plan P is continuable at the end of H written “continuableEnd(P, H)”
if beginsxE(P, H) and it would be possible to continue working on P at
the last moment of H (PLD.6). A plan P is continuable after H , written
continuable(P, H, Q) if it begins over some extension of H satisfying Q. (PLD.7).

Plan P is attempted over H subject to isolation condition Q, (a) P is not
beginnable at the start of H , and H consists of that single state; or (b)
beginxE(P, H) but P cannot be continued at the end of H ; or (b) P be-
gins over H but is not continuable past H (PLD.8). P completes over H if P
is attempted over H and the reactComplete(P, H) (PLD.9).
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Thus, if P completes over H , then P is beginnable at start(H); worksOn(P, H1)
holds over every initial segment H1 of H ; and completion(P, H1) holds over
the initial segment H1 that ends a time reactionTime before the end of H .

A problem is a specification of a starting state, a success criterion, and an
isolation condition. Plan P is a correct solution of problem R if the following
holds: If H is a dynamic history starting in S satisfying the isolation condition,
and P is attempted in H , then P is completed in H and H satisfies the success
condition of R. For instance in our egg boiling example, we might posit that H
satisfies the success conditions of the problem boilEgg if egg1 is hard-boiled
at the end of H , and that it satisfies the isolation condition of H if no other
object interferes with the burner knob, the pot, or the egg during H .

There is, however, a difficulty integrating our default rules with this definition
of “correct solution”. The default rules H.5 and UP.1 above support the fol-
lowing inference: if history h1 starts in state s1, plan1 is attempted in h1, and
h1 satisfies the isolation conditions, then plan1 will be completed in h1 and
h1 will satisfy the success condition of problem1. However, Reiterian default
theory does not permit us to carry out universal abstraction and conclude
that this condition holds for all histories H satisfying these conditions. Nor
should it, at least in this instance. As we discussed in section 3.3.5, it is not
generally reasonable to assert that there is no history satisfying these con-
ditions in which catapulting does not occur, since, with many sets of cargo
objects, the agent can actually carry out the plan in such a way that cata-
pulting occurs, if he so chooses. What we really want to say is that plan1 is
a “generally correct” solution for problem1, meaning that most histories H
that satisfy start(H)=start(problem1), isolationCondition(problem1,H) and
attempts(plan1,H) also satisfy completes(plan1,H) and succeeds(problem1,H).
This is an object-level relation between problems and plans (given some fixed
probability distribution over histories) which is quite distinct from the default
inference given above. However, developing the requisite theory of measures
of sets of histories is beyond the scope of this paper. We hope to return to
this issue in future work, perhaps using a probabilistic logic along the lines of
Bacchus [2].

It should be also noted that our treatment of isolation conditions is not ac-
tually quite what is wanted. The problem is that, in the above definition, a
plan P vacuously satisfies the conditions for being a “correct” solution to a
problem if P specifies that the agent should himself deliberately violate the
isolation conditions. Or, even more cleverly, P could specify that if something
goes wrong, then the agent should deliberately violate the isolation conditions.
I have not found any adequate solution to this, and it may indeed be the case
that, in the final analysis, boundary conditions for planning problems must be
stated in terms of constraints on the starting state and not of constraints on
the history. (Providing isolation from the actions of other agents would then
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Sorts:

plan.
problem.

Symbols:

reactionTime → duration.
worksOn(P :plan, H: history).
beginnable(P :plan S: state).
completion(P : plan, H: history).
reactComplete(P :plan, H: history).
baseExec(P : plan, H: history).
beginsxE(P : plan, H: uhistory).
begins(P : plan, J : uhistory).
continuableEnd(P :plan, H:uhistory).
continuable(P : plan, J : uhistory).
attempts(P : plan, J : uhistory).
completes(P : plan, H: history).
startProblem(R: problem) → state.
isolationCondition(R: problem, J : uhistory).
succeeds(R: problem, H: history).
Table 24
Plan Semantics: Sorts and Symbols

entail calling on some richer theory of multi-agent interactions.) However, this
concern does not affect the analysis in this paper. It certainly does not af-
fect the validity of using isolation conditions in physical axioms such as H.2,
H.4, and UD.2; it is only relevant to the question of the relation of plans to
problems.

4.8.1 Control Structures

In defining plan1, we use the standard programming language control struc-
tures “sequence” and “while”. The semantics of these operators is specified
in our theory by axioms which state how the predicates “beginnable”, “work-
sOn”, and “completion” are defined for a complex plan in terms of its com-
ponents. The axioms are given in table 26, and are self-explanatory.

4.8.2 Primitive Action: Move and Wait

There are two primitive actions in our theory:

• Move object O along the trajectory in history H . H is any history containing
O; all that is significant about H is the trajectory that O follows in H .

• Wait until Boolean fluent Q becomes true.
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Definitions:

PLD.1 reactComplete(P,H) ≡
∀D D <reactionTime ⇒

∃TC,HC TC <endTime(H)−D ∧ hSlice(H,startTime(H),TC,HC) ∧
completion(P,HC).

PLD.2 baseExec(P,H) ≡
dynamic(H) ∧ beginnable(P ,start(H)) ∧ worksOn(P,H).

PLD.3 incompleteExec(P,H) ≡ baseExec(P,H) ∧ ¬reactComplete(P,H).

PLD.4 beginsxE(P,H) ≡
beginnable(P ,start(H)) ∧ dynamic(H) ∧
∀H1 historyProperPrefix(H1,H) ⇒ incompleteExec(P,H1).

PLD.5 begins(P,H) ≡ beginsxE(P,H) ∧ baseExec(P,H).

PLD.6 continuableEnd(P,H) ≡
∃H1 sameUntilEnd(H1,H) ∧ begins(P,H1).

PLD.7 continuable(P,H) ≡
∃H1 historyProperPrefix(H,H1) ∧ begins(P,H1).

PLD.8 attempts(P, J) ≡
[¬beginnable(P ,start(J)) ∧ singleHist(J ,start(J))] ∨
[beginsxE(P, J) ∧ ¬continuableEnd(P, J)] ∨
[begins(P, J) ∧ ¬continuable(P, J)].

PLD.9 completes(P,H) ≡ attempts(P,H) ∧ reactComplete(P,H)

Axiom:

PL.1 0 < reactionTime.

Table 25
Plan Semantics

Formally we consider these primitive actions to be of sort “plan”. Their se-
mantics is therefore given in terms of the predicates “beginnable”, “work-
sOn”, and “completion”. The axioms are given in table 27; they are mostly
self-explanatory, but a few require some discussion.

Axiom AC.3 asserts that the completion condition for the action “Move O
along trajectory HT” is met in history H if O executes the same motion in
H as in HT subject to a time shift D and H continues at least as long as
HT . However, our planning semantics requires that we define what it means
to work on a plan for a time reactionTime after the completion condition is
satisfied. (This is the disadvantage of positing a finite reaction time.) Axiom
AC.2 reflects this. In history H , O is moved along trajectory HT if (a) the
motion of O is H is the same as its motion in HT up until either the end time
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Symbols:

sequence(P1 . . . Pk: plan) → plan.
if1(Q: fluent[Bool],P : plan) → plan. (Single-branch conditional).
while(Q: fluent[Bool],P : plan) → plan.

Axioms:

CTL.1 beginnable(sequence(P1, P2),S) ⇔ beginnable(P1, S).

CTL.2 worksOn(sequence(P1, P2),J) ⇔
[worksOn(P1, J) ∧ ¬∃H historyProperPrefix(H,J) ∧ completes(P1,H)]∨
∃H1,J2 hsplice(H1, J2,H) ∧ completes(P1,H1) ∧ worksOn(P2, J2).

CTL.3 completion(sequence(P1, P2),H) ⇔
∃H1,H2 hsplice(H1,H2,H) ∧ completes(P1,H1) ∧ completion(P2,H2).

CTL.4 beginnable(if1(Q,P ),S) ⇔
¬holds(S,Q) ∨ beginnable(P, S).

CTL.5 worksOn(if1(Q,P ),H) ⇔
[holds(start(H),Q) ∧ worksOn(P,H)] ∨
[¬holds(start(H),Q) ∧ throughout(H,freeGrasp)].
(Note: the condition throughout(H,freeGrasp) means simply that, if condition
Q fails, the agent carries out a noop.)

CTL.6 completion(if1(Q,P ),H) ⇔
[holds(start(H),Q) ∧ completion(P,H)] ∨
[¬holds(start(H),Q) ∧ endTime(H)=startTime(H)]

CTL.7 sequence(P1, P2 . . . Pk) = sequence(P1,sequence(P2, . . . sequence(Pk−1, Pk) . . . )).

CTL.8 while(Q,P ) = if1(Q,sequence(P ,while(Q,P )))

Table 26
Semantics of plan control operators

of H or the end time of HT , whichever comes first; (b) during the part of H
up to the end time of HT , O is grasped; (c) if H continues past the end time
of HT , then the agent is not doing anything in this final segment.

4.9 Problem Specification

We can now give the specification of our particular problem. There are, of
course, many ways to formulate the problem. The choice of formulation in-
volves a tradeoff between five desiderata: generality, that is, making the condi-
tions as weak as possible; simplicity of the constraints; simplicity of the plan;
standard form (e.g. describing regions in terms of specific geometric constraints
rather than in terms of the existence of a path); and ease of constructing the
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Symbols:

move(O:object,H:history) → plan.
waitUntil(Q:fluent[Bool]) → plan.

Axioms:

AC.1 beginnable(move(O,H),S) ⇔
sameStateOn(S, start(H), {O})

AC.2 worksOn(move(O,HT ),H) ⇔
∃D D=startTime(H)-startTime(HT ) ∧ sameMotionOn(H,HT, {O},D) ∧
∀T,S stateAt(H,T + D,S) ⇒

[startTime(HT ) < T < endTime(HT ) ⇒ holds(S,grasping(O))] ∧
[T ≥endTime(HT ) ⇒ holds(S,freeGrasp)]

AC.3 completion(move(O,HT ),H) ⇔
∃D D =startTime(H)−startTime(HT ) ∧ endTime(HT )+D ≤ endTime(H) ∧
sameMotionOn(H,HT, {O},D).

AC.4 ∀Q,S beginnable(waitUntil(Q),S)

AC.5 worksOn(waitUntil(Q),H) ⇔ throughout(H,freeGrasp).

AC.6 ∀H completion(waitUntil(Q),H) ⇔ ∃T,S stateAt(H,T, S) ∧ holds(S,Q).

Table 27
Axioms for primitive actions

proof of correctness. (Ease of proof is a desideratum because we are not really
interested here in clever or deep object-level proofs, just in demonstrating the
adequacy of the representation.) The specific choices we have made are largely
arbitrary; we have tried to include generalizations that we felt were interesting
and exclude those that are merely difficult.

The symbols (mostly constants) and axioms 18 here are given in tables 28,
29 and 30. The symbols are explained in table 28 where necessary. Axioms
PR.1 — PR.7 characterize the objects: The set u1 includes the cargo and
the box (PR.1), all of which are mobile (PR.2). PR.4 asserts that the box
is box-shaped, and PR.3 defines the pseudo-objects associated with its inside
and its opening. The two tables are fixed (PR.5 and PR.6). The distance
maxCargoDiam is the maximum diameter of the cargo objects (PR.7).

Axioms PR.8 through PR.14 characterize the initial state s1. The state s1 is
kinematic (PR.8). The box opens vertically upward (PR.9). The inside of the
box is empty (PR.10). Each cargo object constitutes a stable heap supported
by oTable1 (PR.11) and separated from every other cargo object (PR.12). No

18 In the context of problem specification and plan specification, it is hard to dis-
tinguish between definitions and axioms, so we have lumped them all as axioms.
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object in u1 is overhung by any other object in u1 or by oTable1 (PR.13).
The inside of the box is altogether above the convex hull of the contact points
between the box and the table (PR.14); this is needed to make sure the box
does not fall over (axiom H.4, section 4.6.3).

Axioms PR.15 through PR.19 define manipSpace1, the region used to load
objects into the box. We have constructed this definition so that each object
can be lifted vertically, moved horizontally to a position over the inside of the
box, and then lowered vertically into the box; in this part of the constraints,
we have given priority to stating the constraints in simple geometric terms and
keeping the proof of correctness easy. The region manipSpace1 is defined as a
region that is at least as high as the top of the box plus the height of any of
the cargo objects (PR.15, PR.16). The table is nowhere higher than the top of
the box (PR.17). For each cargo object O, manipSpace1 includes the vertical
prism whose x-y cross section is the convex hull of x-y projections of O and
the box, and which extends vertically down from the top of manipSpace1 a
distance which at least the height of O (PR.18). manipSpace1 also includes the
region above every object O in u1 up to the plane at the top of manipSpace1
(PR.19).

Axioms PR.20 through PR.23 enforce the constraint needed to guarantee that
the cargo objects will fit in the box and will not come out discussed in sec-
tions 3.3.2 and 3.3.3. This puts an upper bound on the number of cargo objects
as a function of the size of the cargo objects and the size of the inside of the
box.

Axioms PR.24 through PR.27 characterize s2, a hypothetical state in which
oBox sits on oTable2. (There is no need for s2 to contain any objects other
than oBox and oTable2.) State s2 is kinematic (PR.24). oTable2 is in the
same position in s2 as in s1 (PR.25). In s2, the box sits stably on oTable2

(PR.26), the inside of the box is altogether above the table (PR.27), and, as
in axiom PR.14, the inside of the box is altogether over the convex hull of
the contact points between the box and the table (PR.28). PR.27 is required
in order to achieve our goal (PR.35) that all the cargo objects are altogether
above the table.

Axioms PR.29 through PR.31 characterize carryingPath, the trajectory of
the box while being carried from oTable1 to oTable2. (Here, by characterizing
the space between these two boxes in terms of a trajectory rather than in
absolute geometric terms, we have sacrificed stating constraints in normal
form in favor of generality.) The trajectory carryingPath starts with oBox in
its position in s1 (PR.29) and ends with the oBox in its position in s2 (PR.30),
and oBox is held vertically upright throughout carryingPath (PR.31).

As we shall see in section 4.10, the actual execution of plan1 need not follow
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Symbols:

oTable1, oTable2 → object.
oBox → object.
qInsideBox → pseudoObject.
qTopBox → pseudoObject.
rCuboid → region. Empty cuboid inside the box.
lCube,wCube,hCube → distance.
uCargo → objectSet.
u1 → objectSet. The set of movable objects (cargo and box).
s1 → state. Initial state
s2 → state. Hypothetical state with the box on table 2.
maxCargoDiam → distance. Maximum diameter of any cargo object.
manipSpace1 → region. Free space above table 1 for loading cargo into box.
manipSpace2 → region.

Free space from top of table 1 to top of table 2 for carrying box.
carryingPath → history. Possible trajectory of box from table 1 to table 2.
loadingCount(D,L,W,H: distance) → integer.

Conservative estimate of maximum number of cargo objects (see section 3.3.2.)

Table 28
Problem specification: Symbols.

carryingPath and need not end with the box at its position in s2. But the
existence of this state and this trajectory guarantees the feasibility of the plan.

Axiom PR.32 characterizes the region manipSpace2 as including the swathe
swept out by the box and its inside while moving it along carryingPath.

Finally, axioms PR.33 through PR.36 characterize the problem problem1.
The isolation condition for problem1 is that no object other than cargo ob-
jects, oBox, and the two tables come into contact with either manipSpace1

or manipSpace2 during the execution of the plan. (PR.33, PR.34). PR.35 de-
fines the goal of problem as achieving a state where all the objects in u1 are
altogether above oTable2, and where they are in a stable state on oTable2.
PR.36 defines the starting state of problem1 as s1.

4.10 Specification of plan1

Finally, we give the specifications of the plan. Our objective here is to define
the plan as flexibly as possible. This flexibility has a number of advantages,
depending on the application. For plan execution, it means that the fine details
of the plan (the order in which to load the objects, the placement of the objects
in the box, the trajectories to follow) can be tailored to specific circumstances
such as constraints on the way cargo objects should be packed, constraints
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PR.1 u1 = uCargo ∪ { oBox }

PR.2 ∀O∈u1 mobile(O).

PR.3 oBox=source(qInsideBox)=source(qTopBox)

PR.4 openBox(oBox,qInsideBox,qTopBox).

PR.5 fixed(oTable1).

PR.6 fixed(oTable2).

PR.7 ∀
O∈uCargo diameter(O) ≤ maxCargoDiam.

PR.8 holds(s1,kinematicState).

PR.9 ∀P P ∈value(s1,qTopBox) ⇒ height(P ) = value(s1,top#(↑qInsideBox)).

PR.10 holds(s1,empty(qInsideBox))

PR.11 ∀O∈u1 holds(s1,stableHeap({O}, { oTable1})).

PR.12 ∀O1,O2∈u1 holds(s1,rccDC#(↑O1, ↑O2)).

PR.13 ∀
O1∈u1∪{oTable1},O2∈u1 ¬holds(s1,partlyAbove#(↑O1, ↑O2)).

PR.14 holds(s1,altogetherAbove#(↑qInsideBox, convexHull#(↑oBox ∩# ↑IoTable1))).

PR.15 ∀
O∈uCargo value(s1,top#(↑O) −∗ bottom#(↑O)) ≤ maxCargoHeight.

PR.16 ∀
O∈uCargo value(s1,top#(↑oBox)) + maxCargoHeight < top(manipSpace1).

PR.17 value(s1,top#(↑oTable1) ≤ value(s1,top#(↑oBox)).

PR.18 ∀
O∈uCargo,P

[xyProj(P ) ∈ value(s1,convexHull#(xyProj#(↑O ∪ ↑oBox))) ∧

top(manipSpace1)−maxCargoHeight ≤ height(P ) ≤ top(manipSpace1) ] ⇒
P ∈manipSpace1.

PR.19 ∀O∈u1,P,PO holds(s1,PO ∈# ↑O) ∧ pointAbove(P,PO) ∧

height(P ) ≤ top(manipSpace1) ⇒
P ∈manipSpace1.

Table 29
Problem specification: Beginning

on the way in which they should be moved, and limitations of the agent’s
manipulators. For plan recognition, the broader the definition of the plan, the
more behaviors can be recognized as instances of the plan.

Axiom P1.1 gives the high-level description of plan1; the agent loads unloaded
objects one by one into the box, waiting after each loading action until the
objects have attained a stable state. The plan is composed of three basic
actions:

81



PR.20 rCuboid ⊂ qInsideBox.

PR.21 cuboid(rCuboid,lCube,wCube,hCube)

PR.22 loadingCount(D,L,W,H) = ⌊L/2D⌋ · ⌊W/2D⌋ · ⌊H/2D⌋.

PR.23 ∃N count(uCargo,N) ∧
N ≤ loadingCount(maxCargoDiam,lCube,wCube,hCube)

PR.24 holds(s2,kinematicState).

PR.25 sameStateOn(s2,s1,{oTable2}).

PR.26 holds(s2,stableHeap({oBox},{oTable2})).

PR.27 holds(s2,altogetherAbove#(↑qInsideBox,↑oTable2))

PR.28 holds(s2,altogetherAbove#(↑qInsideBox, convexHull#(↑oBox ∩# ↑oTable2))).

PR.29 sameStateOn(start(carryingPath), s1, {oBox}).

PR.30 sameStateOn(end(carryingPath),s2,{oBox}).

PR.31 ∀S stateOf(S,carryingPath) ⇒
verticalTilt(valueIn(s1,placement(oBox)), valueIn(S,placement(oBox)))=0.

PR.32 throughout(carryingPath,(↑oBox ∪# ↑qInsideBox) ⊂# manipSpace2)

PR.33 holds(S,isolFluent(problem1)) ≡
[∀

O:object holds(S,rccC#(↑O,manipSpace1 ∪ manipSpace2))) ⇒

[O ∈ u1 ∨ O =oTable1 ∨ O =oTable2]]

PR.34 isolationConditions(H,problem1) ≡ throughout(H,isolFluent(problem1))

PR.35 succeeds(problem1,H) ≡ ∀
O∈uCargo holds(S,altogetherAbove(O,oTable2))

PR.36 startProblem(problem1) = s1.

Table 30
Problem specification: Conclusion

• loadBox(unloadedCargo,qInsideBox,manipSpace1) is the action of load-
ing some unloaded cargo object into the inside of the box, moving it through
manipSpace1.

• carryBox(oBox,qInsideBox,qTopBox,uCargo,oTable2,manipSpace2)
is the action of carrying box oBox with inside qInsideBox and opening
qTopBox and with uCargo inside to its final position on oTable2, moving it
through manipSpace2.

• waitUntil(stable(u1 ∪ oTable1)) is the action of waiting until the cargo
and the box have reattained a stable position on oTable1. The semantics
of “waitUntil” are defined in section 4.8.2.

Axioms P1.2 and P1.3 defines loadedCargo and unloadedCargo as the fluents
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whose value in any state is the set of cargo objects in the box/not in the box.

Axioms P1.4-P1.13 define the semantics of “loadBox” as a partial specification
of a “move” action. Axioms P1.10 through P1.13 state that loadBox is exe-
cuted (is beginnable / worked on / attains completion / attains failure) if in
history H if an object is moved along a trajectory H2 that satisfies the “load
box conditions”. (There is no failure condition for “loadBox” for the same
reason that there is no failure condition for “move”; a loadBox action fails if it
is physically impossible to continue it.) Axiom P1.9 states that the trajectory
H2 meets the load box conditions if the cargo object being loaded ends in an
appropriate “box loading position” and it satisfies the predicate “moveTra-
jectory”. Axioms P1.4–P1.7 defines “box loading position” as the constraint
described in section 3.3.2. (The wording of the condition in PL.6 is different,
and in fact slightly less restrictive, than the condition in section 3.3.2, just
because the condition here is easier to state in our first-order theory.) Axiom
P1.8 defines “moveTrajectory(H, O, UALSO, S, RM)” as the constraints that
history H starts in S; that in history H , O remains with within the manipu-
lation space RM , and that H is kinematically consistent with all the objects
outside UALSO remaining motionless. The set UALSO is the set of objects
that should be “brought along” by the move; specifically, the cargo objects
while the box is being moved.

Note that, although we specified the situation s1 so that there was room to
load each cargo object by moving it up vertically, then horizontally, then down
vertically, the plan does not require that the loading actually be carried out
that way.

Similarly, axioms P1.14-P1.22 characterize “carryBox” as a partial specifica-
tion of a move. Axioms P1.19-P1.22 state that an execution of carryBox is an
execution of a move that satisfies the “carry box conditions”. Axiom P1.18
defines “carryBoxConditions” as the constraints that were placed on the final
situation s2 in axioms PR.25-PR.29 plus the “moveBoxTrajectory” condition
discussed above plus the condition from section 3.3.3 that the box is never
tilted too far from the vertical. This last condition on tilting is defined in
axioms P1.16 and P1.17. Axioms P1.14 and P1.15 define the maximum and
minimum height of a set of objects.

5 Sketch of Proof

We now can prove the following result: Given all the above, and given that
for uhistory j1,

J1.1 start(j1) = startProblem(problem1) = s1.
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Symbols:

plan1 → plan.
loadedCargo → fluent[objectSet].
unloadedCargo → fluent[objectSet].
loadBox(U : fluent[objectSet], Q: pseudo, R: region) → plan.
levelCount → integer.
maxBottomHeight(N : integer) → distance.
loadBoxCondition(O: object, H:history, U :fluent[objectSet], Q: pseudo, R: region,

S: state)
carryBox(OB: object, QI,QT : pseudo,

UC: objectSet, OT : object, R: region) → plan.
boxLoadingPos(O:object, QI: pseudo) → fluent[Bool].
goodBoxTrajectory(H: history, OB: object, QIN,QT : pseudo, U : objectSet).
safeBoxTilt(S: state, QIN,QT : pseudo, O: object).
carryBoxConditions(H: history, OB: object, QIN,QT : pseudo,

UC: objectSet, RM : region, OS: object, S: state).
moveTrajectory(H: history, O: object, U : objectSet, S: state, RM : region).
freeAbove(O: object, R: region) → fluent[Bool].
maxHeight(U) → fluent[distance].
bottom1(PS:pointSet, D:distance).

Table 31
Specification of plan1: Symbols

J1.2 isolationCondition(problem1,j1)
J1.3 attempts(plan1,j1)

one can infer by default that completes(plan1,j1) and succeeds(problem1,j1).

A fully detailed account of the proof is given in the online appendix
http://cs.nyu.edu/faculty/davise/box-proof.pdf. The overall structure of the
plan is a straightforward projection, though the details involve a lot of defi-
nition hunting, and a fair amount of the kind of fiddly argumentation charac-
teristic of the analysis of continuous functions over real-valued time.

To analyze the loading loop, we use the following loop invariant: The cargo
objects outside the box and the box itself are in the same position as in s1. The
cargo objects inside the box are in a stable position, and satisfy the following
packing constraint: Let K be the number of cargo objects in the box, let H
be the greatest height of the center of mass of any cargo object in the box,
and let maxCargoDiam, lCube and wCube be as defined in axioms PR.7 and
PR.21. Then

K ≥

⌊

lCube

2 · maxCargoDiam

⌋

·

⌊

wCube

2 · maxCargoDiam

⌋

·

⌊

H

2 · maxCargoDiam

⌋
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Axioms:

P1.1 plan1 =
sequence(while(unloadedCargo 6=# ∅,

sequence(loadBox(unloadedCargo,qInsideBox,manipSpace1),
waitUntil(stable(u1 ∪ {oTable1}))))

carryBox(oBox,qInsideBox,qTopBox,uCargo,oTable2,manipSpace2))

P1.2 O ∈value(S,loadedCargo) ⇔ O ∈uCargo ∧ holds(S,↑O ⊂# ↑qInsideBox))

P1.3 O ∈value(S,unloadedCargo) ⇔ O ∈uCargo ∧ ¬holds(S,↑O ⊂# ↑qInsideBox))

P1.4 holds(S,freeAbove(O,R)) ⇔
¬∃

O1∈objectsOf(S) O1 6= O ∧ holds(S,partlyAbove#(↑O1, ↑O)) ∧

holds(S,rccO#(↑O1, R)).

P1.5 levelCount = ⌊lCube/ 2* maxCargoDiam⌋ * ⌊wCube/ 2* maxCargoDiam⌋

P1.6 maxBottomHeight(N) = 2 · maxCargoDiam * ⌊N/levelCount⌋

P1.7 holds(S,boxLoadingPos(O,QI)) ⇔
holds(S,kinematic) ∧ holds(S,freeAbove(O,manipSpace1)) ∧ holds(S,↑O ⊂# ↑QI) ∧
[∃O1∈u1 holds(S, rccEC#(↑O1, ↑O))] ∧
∀N count(value(S,loadedCargo),N) ⇒

holds(S,height#(↑centerOfMass(O)) ≤#

bottom#(rCuboid) +# maxBottomHeight#(N) +# maxCargoDiam)

P1.8 moveTrajectory(H,O,UALSO,S,RM) ⇔
S=start(H) ∧ throughout(H,↑O ⊂# RM) ∧
∀

O1∈objectsOf(H) O1 6∈ {O} ∪ UALSO ⇒

motionless(H,O1) ∧ throughoutxSE(H, rccDC#(O,O1)).

P1.9 loadBoxConditions(O,H,U,QI,RM,S) ⇔
O ∈value(S,U) ∧ holds(end(H),boxLoadingPos(O,QI)) ∧
moveTrajectory(H,O, ∅, S,RM).

P1.10 beginnable(loadBox(U,QI,RM),S) ⇔
∃O,H loadBoxConditions(O,H,U,QI,RM,S).

P1.11 worksOn(loadBox(U,QI,RM),H) ⇔
∃O,H2 loadBoxConditions(O,H2, U,QI,RM ,start(H)) ∧
worksOn(move(O,H2),H).

P1.12 completion(loadBox(U,QI,RM),H) ⇔
∃O,H2 loadBoxConditions(O,H2, U,QI,RM ,start(H)) ∧
completion(move(O,H2),H).

P1.13 ¬failure(loadBox(U,QI,RM),H).

Table 32
Specification of plan1: Definition of loadBox
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P1.14 ∀
U :objectSet,S:state

[∀O∈U,P holds(S,P ∈# ↑O) ⇒ height(P ) ≤ value(S,maxHeight(U))] ∧
[∃O∈U,P holds(S,P ∈ ↑O) ∧ height(P ) = value(S,maxHeight(U))].

P1.15 bottom1(R,D) ≡
[∀P∈R height(P ) ≥ D] ∧ [∃P∈R height(P ) = D].

P1.16 goodBoxTrajectory(H,OB,QIN,QTOP,UCARGO) ≡
∀O∈UCARGO,S,PHI stateOf(S,H) ∧
PHI=verticalTilt(value(start(H),placement(OB)), value(S,placement(OB))) ⇒
safeBoxTilt(PHI,start(H),QIN,QTOP,O)).

P1.17 ∀D1 holds(S,bottom1#(↑QTOP,D1)) ⇒
[safeBoxTilt(PHI, S1, QIN,QTOP,O) ⇔
0 ≤ PHI < π/2 ∧
(D1−value(S,height#(↑centerOfMass(O)))·cos(PHI) >
diameter(O) + diameter(value(S, xyProj#(↑QTOP ∪ ↑QIN)·sin(PHI)].

P1.18 carryBoxConditions(H,OB,QIN,QTOP,UCARGO,RM,OS2, S) ⇔
holds(S,freeSpace(value(end(H),↑OB)) ∧
holds(end(H),altogetherAbove(↑QIN, ↑OS2)) ∧
holds(end(H),altogetherAbove#(↑QIN, convexHull#(↑OB ∩# ↑OS2))) ∧
moveTrajectory(H,O,UCARGO,S,RM) ∧
goodBoxTrajectory(H,OB,QIN,QTOP,UCARGO).

P1.19 beginnable(carryBox(OB,QIN,QTOP,UCARGO,OS2, RM),S) ⇔
∃H carryBoxConditions(H,OB,QIN,QTOP,UCARGO,RM,OS2, S)

P1.20 worksOn(carryBox(OB,QIN,QTOP,UCARGO,OS2, RM),H) ⇔
∃H2 carryBoxConditions(H2, OB,QIN,QTOP,UCARGO,OS2, RM ,start(H))
∧ worksOn(move(OB,H2),H).

P1.21 completion(carryBox(OB,QIN,QTOP,UCARGO,OS2, RM),H) ⇔
∃H2 carryBoxConditions(H2, OB,QIN,QTOP,UCARGO,OS2, RM ,start(H))
∧ completion(move(OB,H2),H).

P1.22 ¬failure(carryBox(OB,QIN,QTOP,UCARGO,OS2, RM),H).

Table 33
Specification of plan1: Definition of carryBox

The main steps of the proof are as follows:

• The loop invariant holds in s1.
• Given the above loop invariant, at the beginning of each iteration, there will

exist a loading action that satisfies the box loading constraint.
• Any move that satisfies the box loading constraint will execute successfully,

and that when it is finished the new object will be inside the box and the
above packing condition will hold.

• After a loading action is complete and the object being loaded is released,
the cargo will settle into a new stable position with the box remaining fixed,
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and the cargo objects all remaining inside the box.
• Once the cargo has settled into a stable condition, the loop invariant is

satisfied.
• The loading loop terminates because the number of unloaded cargo objects

decreases on each iteration.
• At the completion of the loading loop, there exists a move that satisfies the

box carrying constraint.
• If a move satisfies the box carrying constraint, then it can be executed

successfully, and will result in a state that satisfies the goals of the problem.
In particular, the cargo objects do not come out of the box while it is being
carried.

It may be noted that we have been careful to avoid the use of default rules until
the very last step of the proof. The last lemma preceding the final theorem

Lemma:

start(J)=s1 ∧ attempts(plan1,J) ∧
throughout(J ,isolFluent) ∧ noAnomaly2(J) ∧ noAnomUpwardMotion(J)
⇒
completes(plan1,J) ∧ succeeds(problem1, J)

has been proved using purely first-order logic. Therefore, this lemma has been
validly proved even if some problem arises with the default rules.

6 Conclusion

Among all these trees, it is easy to lose sight of the forest. What we have
accomplished is this: We have developed a theory that is capable of justifying
a commonsensically obvious inference about using boxes to carry cargo. The
inference requires only qualitative constraints about the shapes and physical
characteristics of the objects involved. The theory is designed to be elaboration
tolerant and consistent with Newtonian physics; it contains no features that
get in the way of extending it to cover both other commonsense inferences
in the domain and precise calculations based on Newtonian mechanics. As
discussed in the introduction, our formulation of the physical laws used in
this inference entirely avoids the analysis of forces, and almost entirely avoids
the use of axioms that use differential time (the only exceptions are axioms
K.5 and DYN.12.)

The theory, the boundary conditions that define the problem, and the rep-
resentation of the plan, are certainly more complicated than one would at
first have supposed necessary for such an obvious inference in such a simple
domain. But on careful consideration, it seems clear that a commonsense un-
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derstanding of the domain and of this inference involves all, or nearly all, of
the sorts that we have defined, and is aware of all, or nearly all, of the potential
“bugs” that we have enumerated in section 3.3. Therefore it seems reasonable
to say that the complexity of our theory is mostly a reflection of the complex-
ity of the domain and the sophistication of a commonsense understanding,
and only in small part an artifact of the awkwardness of fitting this kind of
commonsense reasoning to the limitations of deductive inference in first-order
logic.

Certainly, the theory here is much more numerically precise than an actual
commonsense understanding; no one would claim that any actual common-
sense reasoner thinks about conditions PR.23 and PR.24 or knows that these
conditions are sufficient to ensure that the box can be loaded without fear of
overflowing. But a commonsense understanding is aware of something quite
similar: namely, that if care is taken to load the box from bottom up, the
space will be used reasonably efficiently; and that, if objects are small and not
too numerous, a reasonably efficient packing of the box will succeed in fitting
them all inside the box. Moreover, the commonsense understander has a “feel”
for how small the objects should be, how few they should be, and how much
care needs to be taken in packing them. The precise numerical constraints
PR.23, PR.24 here are the closest we have been able to come to representing
the knowledge that constitutes this “feel”. The numerical constraints are not,
I would argue, as far from the “feel” as it might seem at first; and they are
certainly no further than what can be expressed in any other notation that I
know of. Despite the scorn that is often heaped on the very idea that symbolic
representations could be acceptable cognitive models for spatial knowledge, 19

no other representational system, especially “diagrammatic” representations,
comes anything like as close to capturing the critical cognitive ability to rep-
resent and reason about qualitative spatial and physical information.

Establishing the consistency of this large and complex theory, even aside from
the default rules, is certainly a concern. The major crux is likely to be finding a
class of dynamic histories that satisfies both the existence and closure axioms
axioms DYN.2–DYN.14 and also the rules for heaps H.2 to H.4. Another
problem is that there is an inherent tension between DYN.6, which excludes
any kind of hysteresis, and default rule UP.1, which has hysteresis built in (the
motions possible to objects in the heap at one time depend on their positions
relative to the support at a different time.) I don’t think that these are actually
inconsistent, but it is certainly possible that they suffice to rule out important
forms of “settling” if the box is tilted while being carried.

19 For instance, Waltz [37] p. 398 writes that “It was widely believed that logic
could successfully model images and scenes, even though the baroque improbability
of that effort should have long been clear to everyone who read Pat Hayes’ Naive
Physics Manifesto.”
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The work in this paper is only a first step in the analysis of commonsense
knowledge about solid objects. The most important open problems in this
analysis, which we hope to address in future work, are:

• Incorporating a probabilistic theory or some other theory of relative likeli-
hoods.

• Analyzing the unloading of the box.
• Merging this theory with the Newtonian theory of forces.
• Developing a more realistic model of manipulation.
• Extending the theory of the stability of heaps under perturbations (motions

of the supports, contacts with external objects, and impacts of external
objects).
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