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Chapter  3

1. INTRODUCTION

Many spatial aspects of many persistent entities 
vary continuously over time: the direction of a 
weather vane, the length of a rubber band; the 
shape of a balloon and so on. Many others, of 
course, do not: the territory of the United States, 
the shape of a shadow on a surface, the shape of 
a tree when a limb is pruned. However, when it 

is known that a spatial entity does change con-
tinuously, that constraint can be very useful in 
reasoning about its behavior over time.

Consider the following inferences:

A.  Two interlocked jigsaw puzzle pieces cannot 
be separated by a movement in the plane of 
the puzzle, but can be separated by lifting 
one perpendicular to the plane.

B.  Consider a string loop of length L wrapped 
once around the waist of an hourglass with 
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ABSTRACT

This chapter discusses the use of transition graphs for reasoning about continuous spatial change over 
time. The chapter first presents a general definition of a transition graph for a partition of a topological 
space. Then it defines the path-connected and the homogeneous refinements of such a partition. The 
qualitative behavior of paths through the space corresponds to the structure of paths through the associ-
ated transition graphs, and of associated interval label sequences, and the authors prove a number of 
metalogical theorems that characterize these correspondences in terms of the expressivity of associated 
first-order languages. They then turn to specific real-world problems and show how this theory can be 
applied to domains such as rigid objects, strings, and liquids.

DOI: 10.4018/978-1-61692-868-1.ch003



99

Qualitative Reasoning and Spatio-Temporal Continuity

spherical globes of circumference C. If 
L>C then the loop can be removed from the 
hourglass without coming into contact with 
the hourglass and without ever being taut. 
If L<C, then the loop cannot be removed 
from the hourglass. If L=C, then the loop 
can be removed from the hourglass, but at 
some point it must be in contact with the 
hourglass, and it must be taut. It can be taken 
off either the upper or the lower globe.

If the globes of the hourglass are long cylinders, 
the circular cross section has circumference C, 
and C=L, then the string can be removed from the 
hourglass, but it will be taut and in contact with 
the hourglass over an extended interval of time.

If, instead of a string loop, we have a rubber 
band whose length is less than C at rest but can 
be stretched to a length greater than C, then it can 
be removed from the hourglass without being in 
contact with the hourglass, but it must be stretched 
in order to do so.

C.  A quantity of milk in a closed bottle remains 
in the bottle. If at time T1 there is milk sit-
ting in cup A, and at a later time T2 this 
milk has moved to a cup B, and both cups 
are stationary, then the milk came out of the 
top of cup A and went in the top of cup B.

D.  The dog can go from the dining room into 
the kitchen. However, if a chair is placed in 
the middle of the kitchen doorway, then the 
dog cannot go from the dining room to the 
kitchen. If the chair is placed at the edge of 
the doorway, then the dog can squeeze past 
and get into the kitchen.

E.  A person who is in Canada at one time and 
in the United States at a later time must cross 
the U.S. border at some time in between. 
A person who is in Alaska at one time and 
in Idaho at a later time must cross the U.S. 
border at least twice in between. It is possible 
to travel from any point in Idaho to any point 
in Ohio without crossing the border of the 

United States. This seems like the simplest 
of these inferences; in fact, however, it is the 
example for which the theory we develop in 
this chapter is least adequate.

A number of points may be observed about 
these examples. First, both the givens and the 
conclusions are qualitative; no precise measure-
ments or shape descriptions are given. Second, 
they depend on continuity: If Star Trek style 
teleportation were available, the inferences would 
not be valid. For that matter, analogous inference 
can fail if they involved entities that change dis-
continuously; for instance, when the Louisiana 
Purchase took effect in 1803, many objects went 
from being far from the United States to being 
deep inside the United States without ever being 
on the border. Third, many of the sample infer-
ences above depend on further physical limitations 
on the dynamic spatial behaviors of the objects 
involved in addition to continuity.

Moreover, the well-known scheme for rep-
resenting qualitative spatial change in terms of 
transitions between RCC relations is inadequate to 
justify or represent these inferences. In that theory, 
as we will discuss in greater detail in section 2, 
the relation between two regions is characterized 
in terms of eight possible mereotopological rela-
tions. Spatial change over time is characterized 
in terms of the sequence of the evolving sequence 
of these relations. Continuity is characterized in 
terms of possible and impossible transitions from 
one relation to another, as illustrated in the well 
known graph in Figure 1.

However, this representation is not expressive 
enough to deal with examples like those above, 
for a number of reasons. First, the set of states 
corresponding to a particular RCC relation is 
sometimes disconnected and we sometimes wish 
to distinguish different connected components. 
For instance, in example (A) we wish to distinguish 
the states where the jigsaw puzzle pieces are 
Externally Connected (EC) and interlocked from 
those where they are externally connected and 
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separable. Second, the set of states corresponding 
to a particular RCC relation is sometimes non-
uniform with respect to the possible transitions. 
For instance, in example (B), there is a transition 
from the contact state to the non-contact state, but 
that transition cannot be executed immediately 
when the string is around the middle of the cyl-
inder. Third, we sometimes wish to make qualita-
tive distinctions other than the RCC relations. For 
instance, in example (B), we wish to distinguish 
states in which the rubber band is relaxed from 
those in which it is stretched.

The aim of this chapter is to present a general-
ization of the RCC transition graph that addresses 
these issues for a broad range of constraints on 
shapes, definitions of continuity, and qualita-
tive relations. The essential idea is that, given a 
space of object configurations and a partition of 
that space into qualitative categories, we further 
subdivide each category into cells that are both 
connected and uniform with respect to transitions. 
That is, any two configurations in the same cell 
are connected by a path that remains within the 
cell and have the same possible transitions to other 
cells. This is called the Qualitative Homogeneous 
Decomposition (QHD) of the starting partition 
(section 3). The QHD can be viewed as a directed 
graph, called the QHD graph (section 3.1). We 
give a precise meta-logical characterization of 
the expressivity of QHD graphs as encodings of 
qualitative changes in dynamic systems (section 

3.2). We then discuss the ways in which this rep-
resentation can be applied to specific examples 
like those above (section 4).

2. RELATED WORK

Work on both qualitative and precise spatial 
reasoning using continuity constraints, includ-
ing certainly the current chapter, has mostly 
been centered around the construction and use 
of transition graphs of various kinds. To the best 
of my knowledge, transition graphs were first 
introducted in the NEWTON program of de Kleer 
(1977) and the FROB program of Forbus (1980). 
These programs addressed the problem of qualita-
tive reasoning about the motion of point objects 
in various physical environments. The transition 
graphs they generated combined spatial continuity 
constraints with dynamic constraints.

Transition graphs of this kind were likewise the 
chief output of so-called “qualitative reasoning” 
systems (Kuipers, 1986; Forbus, 1985; de Kleer & 
Brown, 1985). These constructed transition graphs 
that characterize the behavior of dynamic systems 
whose state is a tuple of real-valued parameters. 
Again, the transition graphs in these systems 
combine dynamic constraints with continuity 
constraints; the first analysis to separate these was 
in section 4.8 of (Davis, 1990). The most relevant 
aspect of this work to the current chapter is the 

Figure 1. Transition graph for RCC relations
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analysis of the topological issues, particularly the 
“transition ordering rules” of Williams (1985), and 
the “epsilon transition rule” of Kuipers (1986).

Configuration spaces were introduced as a 
method of characterizing the feasible behaviors 
of jointed robots in Lozano-Perez (1983). The 
problem of calculating the configuration space 
for interacting solid objects, given precise shape 
specifications, is known as the “motion planning” 
or “piano movers” problem. There is a large 
literature on the subject; see Part II of LaValle 
(2006) for an overview.

The RCC-8 relations between spatial regions 
were introduced in Randell and Cohn (1989). 
Figure 1 (with undirected arcs) was presented in 
Randell, Cui, and Cohn (1992) as showing the 
possible “topological” transitions between RCC 
relations—that is, those that are consistent with 
continuity constraints.

Galton (1993) presented the undirected transi-
tion graphs for RCC relations between two spatial 
fluents that are rigid but may interpenetrate. There 
are six of these, depending on the shapes of the 
two objects. Galton (1995) changed the undirected 
arcs representing transitions in previous stud-
ies to directed arcs; there is a directed arc from 
relation R to relation S if it is possible for R to 
hold at time t and S to hold at an open interval 
with lower bound t (In Galton’s terminology, R 
“dominates” S).

Recent knowledge representation research on 
continuous spatial change has mostly followed 
either an axiomatic or a semantic approach. In 
the axiomatic approach, the objective is to char-
acterize continuous change in terms of axioms 
over regions in space-time. The first attempt at 
this was in Muller (1998a). Muller used a first-
order language over “histories” (Hayes, 1979)—
that is, 4-dimensional regular regions in space-
time—with three primitives: “Cxy,” meaning that 
histories x and y are connected; “x<y “ meaning 
that x strictly precedes y in time; and “x y◊ ” 
meaning that x and y overlap in time. Using this 

language, he proposed the following definition 
of “continuity”:

CONTINU
CON TS P Ct

w
w xw x u uw xux u

�

∧ ∀ ∀ ∧ ◊ ∧ ⇒( ) .

Here “CONtw” means that the temporal projec-
tion of w is a connected time interval. “Puw” means 
that u is a subregion of w. “TSxw” means that x is 
a “time-slice” of w. All of these predicates can be 
defined in terms of the primitives (Muller, 1998a). 
It can be shown that Muller’s axiomatic definition 
of continuity corresponded to continuity relative 
to the Hausdorff distance (Davis, 2001). In Muller 
(1998b) Muller observed that the above definition 
allows a 4-dimensional region that shrinks to a 
point at an instant and then expand from there to 
be considered continuous; he therefore proposed 
an alternative, stronger definition1 of transitions.

Muller (1998b) also proposed an analysis of 
the feasible transitions between spatial RCC rela-
tions. For each RCC-8 relation R, he defines a 
spatial equivalent R spxy , meaning that x and y 
are coextensive in time and that they are related 
spatially by R throughout their lifetimes. He was 
able to prove axiomatically the impossibility of 
a number of transitions for continuous regions.

However, Muller’s approach does not allow 
the analysis of transitions that involve spatial 
relations that hold only for an instant. The limita-
tion was addressed in Davis (2000), which gives 
first-order constructions that in effect define the 
cross-section C of a history at a given time, a point 
x in space-time, and the relations x ∈ Interior(C), 
and x ∈Bd(C). The spatial RCC relations can 
then be defined in terms of points in the usual 
way, and the transition rules can be stated. How-
ever, these definitions are very complex, and it is 
unlikely that the transition rules can be proven 
from any plausible set of simple RCC axioms.

A more principled approach is taken in Haz-
arika and Cohn (2011). Here, the spatial relation 
between histories x and y at time t is defined in 
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terms of the connectivity relations of x y∩ , x y∪
, x y− , and y x− restricted to an interval ending 
at t and an interval beginning at t. Remarkably, 
using these definitions, they have been able to 
generate automatic proofs of the impossibility of 
each of the 45 transitions excluded in Figure 1 
using the first-order theorem prover SPASS (Wei-
denbach, 2001).

In the semantic approach, continuity is char-
acterized by defining a topology (generally a 
metric) over the space of spatial configurations. 
This approach was first applied to the analysis 
of transitions of RCC relations, in which a con-
figuration is a pair of regular regions, in Galton 
(2000a) and Davis (2001), which independently 
arrived at very similar results. Galton considered 
five metrics over regular regions: the Hausdorff 
distance, the Hausdorff distance between the 
boundaries (which, however, was found to be 
inadequate), the dual Hausdorff distance, the 
area of the symmetric distance, and the Fréchet 
distance between the boundaries. Davis considered 
four: the Hausdorff distance, the dual Hausdorff 
distance, the area of the symmetric difference, and 
the optimal-homeomorphism metric.

Galton’s monograph “Qualitative Spatial 
Change” (Galton, 2000a) is an extensive and rich 
study, combining representational and philosophi-
cal analysis. Chapters 7 and 8 deal with continuity.

There has also been work on continuous change 
in discrete models of space. These, of course, 
require substantially different definitions, both of 
topological relations and of continuity (Galton, 
2000b, 2003)

Finally, the concept of qualitative homoge-
neous decompositions introduced here is modelled 
on the concept of cylindrical algebraic decomposi-
tions in computational algebra (Collins, 1975), in 
the sense that a QHD, like a CAD, is a partition 
of the space into cells, each of which is connected 
and uniform with respect to specified properties.

3. QUALITATIVE HOMOGENEOUS 
DECOMPOSITIONS

In this section, we define QHD’s and study their 
properties in an abstract and general setting. We 
will return to specific issues of geometric change 
in section 4.

The general problem we address here is to char-
acterize a path through a general topological space 
T in terms of its transitions through “qualitatively 
different” subsets of T. For example T might be 
the space of all pairs of regular regions in the plane 
divided into eight subsets corresponding to one of 
the eight RCC relations. For the purposes of this 
section, we will treat the partition of T into “quali-
tatively different” subsets as externally given; 
that is, we are given a partition of T and told that 
this constitutes a qualitative discrimination. Our 
analysis below consists in subdividing this initial 
partition into a finer partition that characterizes 
points in terms of the qualitative characteristics 
of the paths that pass through them.

Throughout this section T will be a topologi-
cal space; in some cases, we will impose stronger 
requirements. We will use boldface lower case 
letters, such as x to denote points in T; boldface 
upper case letters, such as P, to denote subsets of 
T; and calligraphic letters such as U to denotes 
sets of subsets of T.

Definition 1 A collection U of subsets of T is 
a partition of T, if for every point x T∈ there is 
exactly one U ∈ U such that x U∈ . This set U 
is called the “owner” of x in U , denoted “ O x( , )U
.” The sets in U are called the cells of U .

Definition 2 Let U and V be partitions of T. 
V is a (non-strict) refinement of U , if for every 
V ∈ V there exists U ∈ U such that V U⊂ .

Definition 3 A path through T is a continuous 
function from the closed real interval [0,1] to T. 
A subset U of T is path-connected if, for every 
x y U, ∈ , there exists a path from x through U 
to y.
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Note that the image of a path in T is a compact 
set in T.

Definition 4 A partition U of T is locally finite 
if, for every point x T∈ there exists a neighbor-
hood N of x such that N intersects only finitely 
many cells of U .

Definition 5 Let U be a locally finite partition 
of T. The set of neighbors of x in U , denoted “
N x( , )U ” is defined as:

N x U x UT( , ) = { | ( )}U U∈ ∈Cl

where Cl T U( ) is the topological closure of U with 
respect to T.

Note that the owner of x is always one of its 
neighbors. If x is in the interior of its owner, then 
its owner is the only neighbor. In particular, if U 
is open, then U is the only neighbor of any of the 
points in U. If x is on the boundary of its owner, 
then x has other neighbors in addition to its owner.

Definition 6 Let U be a locally finite partition 
of T. A cell U ∈ U is uniform in its neighbors if, 
for every two points x y U, ∈ , N x N y( , ) = ( , )U U

Definition 7 A path π has a starting transition 
from point x to set V if π(0) = x , and for all 
t ∈ (0,1] , π( )t ∈ V . π has an ending transition 
from set V to point x if π(1) = x , and for all 
t ∈ [0,1) , π( )t ∈ V .

Definition 8 Let U be a locally finite partition 
of T. U allows simple transitions if, for every 
point x T∈ and for every neighbor Vof x in U , 
there exists a path πwith a starting transition from 
x to V.

An example of a partition that is locally finite 
but does not allow simple transitions is as follows: 
Let T be the closed unit square. Let:

A = ([0,1] [0,1 / 4]] ([0, 0] [0, 3 / 4])

[1 / 4, 3 / 4] [2
=0

(2 1)

× ∪ × ∪

×
∞ − +

k
k∪ ,, 2 ]

=

2−

−

k

B T A.

Thus A and B are alternating combs with in-
finitely many teeth (Figure 2). Note that A and B 
are both path-connected, A is closed regular, and 
B is open in T. The point 〈 〉0,1 / 2 is in A and is 
in the closure of B, but there is no starting transi-
tion from that point to B.

Another, more outré, example: Let T be the 
unit square [0,1] × [0,1]. Define A and B as fol-
lows:

A = { , | = 0 (0 < < 1 ) }〈 〉 ∨ ∧x y y y x is rational

B = { , | = 1 (0 < < 1 }〈 〉 ∨ ∧x y y y x is irrational

That is, A is the line at the bottom of the square 
plus all vertical lines with rational x-coordinates. B 
is the line at the top of the square plus all vertical 
lines with irrational x-coordinates. Then A and B 
are path-connected and uniform in their neighbors; 
every point has the neighbor set {A,B}. However, 
there cannot exist a path that has a starting transi-
tion from any point in A to B, or from any point 
in B to A, except where the starting point is at the 
boundary of the square.

Definition 9 A partition is locally simple if 
it is locally finite and allows simple transitions.

Definition 10 Let U be a locally simple parti-
tion of T. U is a path-connected partition of T if 
every cell U ∈ U is path-connected. U is a ho-

.

Figure 2. A locally finite partition that does not 
allow simple transitions
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mogeneous partition of T if every cell U ∈ U is 
path-connected and uniform in its neighbors.

Definition 11 Let U and Q be partitions of T. 
Q is the qualitative homogeneous decomposition 
(QHD) of U if the following are satisfied:

a.  Q is a homogeneous refinement of U .
b.  Every homogeneous refinement of U is a 

refinement of Q .

That is, Q is the coarsest homogeneous refine-
ment of U .

It is clear from the definition that any partition 
U can have at most one QHD (if there were two, 
each would be a refinement of the other); hence 
the phrase “the QHD of U “ is justified. A parti-
tion U may have no QHD; for example, there 
may exists a point x that is in the closure of infi-
nitely many connected components of U . How-
ever, theorem 1 states that, if U has any homo-
geneous refinement, then it has a QHD.

Theorem 1 Let U be a partition of T. If there 
exists a homogeneous refinement of U , then there 
exists a QHD of U .

Proof: See Appendix.
Theorem 2 gives a “constructive” definition 

for the QHD using transfinite induction.
Definition 12 Let U be a locally simple parti-

tion of T. Define the function Φ( )U to be the 
collection of all the path-connected components 
of U . Define the equivalence relation x y∼U as 
holding if x and y have the same owner and the 
same neighbors in U ; that is, O x O y( , ) = ( , )U U
and N x N y( , ) = ( , )U U . Define the function 
Ψ( )U as the collection of equivalence classes of 
T under the relation ∼U .

A number of immediate consequences may be 
noted. First, Φ( )U and Ψ( )U are refinements of 
U . Second, Φ( )U is the coarsest path-connected 
refinement of U ; it is the set of path-connected 
components of U . Third, a locally simple partition 
V is homogeneous if it is a fixed point under Φ
and Ψ ; that is, Φ Ψ( ) = ( ) =V V V .

Definition 13 Let U be a locally simple parti-
tion of T. The decompositional sequence corre-
sponding to U is a sequence of refinements Uσ
indexed by ordinals σ as follows:

• U U0 = .
• For each ordinal σ , U Uσ σ+1 = ( ( ))Ψ Φ , 

where σ + 1 is the successor to σ
• For each limit ordinal σ , define the equiv-

alence relation over T, x y∼σ if, for all 
i < σ , O x O y( , ) = ( , )U Ui i . Define Uσ to 
be the equivalence classes of T under ∼σ .

Theorem 2 Let U be a locally simple partition 
of T. Let Uσ be the decompositional sequence of 
U . Then:

• The sequence reaches a fixed point. That 
is, there exists an ordinal τ such that, for 
all σ τ> , U Uσ τ= .

• If Uτ is locally simple, then it is the QHD 
of U .

• If there exists a QHD of U , then it is Uτ .

Proof: See Appendix.
Tables 1 and 2 show simple examples of de-

compositional sequences, illustrated in Figures 
3 and 4.

In both these examples, the final partition 
divides the points in T according to the local 
topological structure of the starting partition; that 
is, in the final QHD, any two points in the same 
cell have neighborhoods that are homeomorphic 
in terms of the original labels. That is not always 
the case: for instance, if A is the line from 〈− 〉1, 0
to 〈 〉1, 0 , and B is the complement of A, then 
{A,B} is a homogeneous partition, even though 
the neighborhoods of the end points of the line 
are not homemorphic to the neighborhoods of the 
interior points of the line. The analysis in section 
4.1 of the three-dimensional jigsaw puzzle will 
give another example of this.
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3.1. Transition Graphs

The structure of a locally simple partition can be 
expressed as a graph. It should be noted that these 
“graphs” are not quite standard, in that they may 
have infinitely many vertices.

Definition 14 Let U be a partition of T. The 
corresponding transition graph G is defined as 
follows:

• The vertices of G are the cells in U .
• For any U V, ∈ U , there is an arc from U 

to V if V U≠ and U V∩ClT( ) is non-
empty. (That is, V is a neighbor of some 
point x U∈ .)

In the terminology of Galton (1995), there is 
an arc from U to V if U dominates V.

In general, a vertex in a transition graph may 
have infinite in-degree and infinite out-degree. 

Table 1. Decompositional sequence: example 1 

Let T be the plane, and let U consist of two cells:
 
A: The union of the solid disk of radius 1 centered at 〈 〉1, 0 , the annulus with inner radius 1/2 and outer radius 1 centered at 〈− 〉1, 0 , 
and the solid disk of radius 1 centered at 〈 〉0, 2 .
B: The complement of A.
 
The decompositional sequence proceeds as follows: 
 
U U0 = .

 
Φ( ) = { , , , }0U A1 A2 B1 B2  where

A1  is the disk centered at 〈 〉0, 2 .
A2 A A1= −  is the union of the other disk and the annulus;
B1  is the open disk of radius 1/2 centered at 〈− 〉1, 0
B2 B B1= − is the exterior of A .
U U1 0= ( ( )) = { }Ψ Φ A1a A1b A2a A2b A2c B1 B2, , , , , ,  where
A1a  is the boundary of A1 . Neighbor set: { A1 B2, }.
A1b  is the interior of A1 . Neighbor set: { A1 }.
A2a  is the part of boundary of A2 bordering B2 (the Figure 8).

Neighbor set: { A2 B2, }.
A2b  is the interior of A2 . Neighbor set: A2 .
A2c  is the part of the boundary of A2 bordering B1 (the inner circle).

Neighbor set: { A2 B1, }.
 
Φ( ) = { }1U A1a A1b A2a A2b1 A2b2 A2c B1 B2, , , , , , ,  where
A2b1  is the interior of the right-hand disk.
A2b2  is the interior of the annulus.
U U2 1= ( ( )) = { , }Ψ Φ A1a A1b A2a1 A2a2 A2a3 A2b1 A2b2 A2c B1 B2, , , , , , , , .

A2a1  is the point 〈 〉0, 0 . Neighbor set: { }A2a A2b1 A2b2 B2, , , .
A2a2  is the right-hand circle except for 〈 〉0, 0 . Neighbor set: { }A2a A2b1 B2, , .
A2a3  is the left-hand circle except for 〈 〉0, 0 . Neighbor set: { , , }A2a A2b2 B2 .
 
Φ( ) =2 2U U .

U U U3 2 2= ( ( )) =Ψ Φ , so a fixed point has been reached.



106

Qualitative Reasoning and Spatio-Temporal Continuity

If the partition is homogeneous, then since all 
points in the cell have the same neighbors and 
since a single point can have only finitely many 
neighbors, the out-degree of any vertex is finite, 
though the in-degree may still be infinite.

The direction of an arc in a transition graph 
does not indicate the allowable direction of a 
transition; a transition may occur either forward 
or backward along an arc. Rather, the direction 
of the arc indicates the topology of a transition. 
If there is an arc from cell U to V, then a path π
carries out a forward transition along that arc at 
time t if π( )t ∈ U , and π( )′ ∈t V for ′ ∈t t t( , 1)
for some t t1 > . The path π carries out a backward 

transition along that arc at time t if π( )′ ∈t V for 
′ ∈t t t( 1, ) for some t t1 < and π( )t ∈ U .

Definition 15 Let U be a partition of T. The 
Qualitative Homogeneous Decomposition graph 
(QHD graph) of U is the transition graph corre-
sponding to the QHD of U .

There can exist partitions in which there are 
arcs in both directions between two cells. For 
instance, in the initial partition U in the example 
in Table 2, there is an arc from A to B and an arc 
from B to A. I do not know whether this can hap-
pen with a homogeneous partition over �k ; it 
would certainly have to be highly pathological. 
It can happen with some kinds of partitions in 

Table 2. Decompositional sequence: example 2 

Let T be the plane, and let U consist of two cells:
 

A: The upper half-disk, open on the bottom. That is, A = { , | 1 > 0}2 2〈 〉 + ≤ ∧x y x y y
B: The complement of A.
 
The decompositional sequence proceeds as follows: 
 
U U0 = .

 
Φ( ) =0 0U U , since A and B are each path-connected.

U U1 0= ( ( )) = { }Ψ Φ A1 A2 B1 B2, , ,  where

A1  is the interior of the half-disk. Neighbor set { }A
A2 is the semi-circle A = { , | = 1 > 0}2 2〈 〉 + ∧x y x y y . Neighbor set { }A B, .
B1  is the line from 〈− 〉1, 0 to 〈 〉1, 0 . Neighbor set { }A B, .
B2 B B1= − . Neighbor set { }B .
 
Φ( ) =1 1U U .

U U2 1= ( ( )) = { , , , , }Ψ Φ A1 A2 B1a B1b B2 , where

B1a  is the two endpoints of the line, { 1, 0 , 1, 0 }〈− 〉 〈 〉 .
Neighbor set { }A1 A2 B1 B2, , ,
B1b B1 B1a= − is the rest of the line. Neighbor set { }A1 B1 B2, , .

 
Φ( ) = { }2U A1 A2 B1a1 B1a2 B1b B2, , , , ,  where

B1a1 = { 1,0 }〈− 〉 , the left-hand end point.
B1a2 = { 1,0 }〈 〉 , the right-hand end point.
U U U3 2 2= ( ( )) = ( )Ψ Φ Φ .

 
Φ( ) =3 3U U .

U U U4 3 3= ( ( )) =Ψ Φ , so a fixed point has been reached.
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some topological spaces of regions over �k ; for 
instance, in the space of open regular regions in 
the plane, topologized by the area of the sym-
metric regions, it is possible to have closed tran-
sitions in either direction between DC and EC, or 
between TPP and NTTP (Davis, 2001, Figure 9).

In such cases, we must distinguish between 
going from A to B forward along the arc 〈 〉A B,
as opposed to going from A to B backward against 

the arc 〈 〉B A, . In the first case, the path will be 
in A at the moment of transition, and in the second 
case it will be in B. Therefore, our definition of 
a path through the transition graph, which we will 
call a “gpath,” is a little different from the usual:

Definition 16 Let G be a transition graph. A 
gpath is an alternating sequence of vertices and 
edges in G 〈 〉−V V V1 1 2 2 1, , , , ,A A Ak k… , starting 
and ending with a vertex, such that Ai is either the 

Figure 3. Decompositional sequence: example 1
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arc 〈 〉+V Vi i, 1 or the arc 〈 〉+V Vi i1, . The sequence 
of a single vertex 〈 〉V1 is also considered a gpath.

3.2. The Expressivity of QHD Graph

In this section, we study the relation between the 
paths through a partitioned space and the gpaths 
through the corresponding transition graph.

It will be convenient to define an intermediate 
structure, called an “Interval Label Sequence” 
(ILS). We will use π , φ , and ψ , as variables 
over paths, α for interval label sequences, and β
for gpaths. We consider the vertices of the graph 
to be literally the cells of the partition; thus, we 
will use boldface letters for vertices of the graph.

We begin with a few definitions that describe 
how a path π through T is characterized in terms 

of the sequence of qualitative states it passes 
through.

A path through a partitioned space divides 
the unit time interval into subintervals; in each 
subinterval, the path remains in one cell. We are 
interested in the topology of these intervals. We 
consider two ways of characterizing the topology 
of a real interval, called “interval label sets.” The 
Z4 label set includes four labels: open (`O’), closed 
(`C’), closed on the left (`L’), and closed on the 
right (`R’). The Z5 label set includes five labels; it 
divides closed intervals into closed instantaneous 
(`CI’) and closed extended (`CE’), together with 
`O,’ `L,’ and `R.’ The difference reflects the dif-
ference between characterizing the shape of suc-
cessive transitions, in which case `CI’ and `CE’ 
are the same, versus characterizing the shape of 
the intervals, in which case they are different. As 

Figure 4. Decompositional sequence: example 2
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we shall see, the difference also corresponds to 
the difference between using a path-connected 
partition and a homogeneous partition.

Definition 17 Let Z be a interval label set; 
that is, either Z4 or Z5 as described above. The 
shape of an interval I in label set Z is denoted 
“shape( I Z, ).”

For any bounded real interval I, let l(I) and 
u I( )be respectively the lower and upper bounds 
of I.

Definition 18 A finite interval partition of the 
interval [0,1] is a finite partition 〈 〉I Ik1… of [0,1] 
such that for i k= 1 1… − , u I l Ii i( ) = ( )1+ .

Definition 19 Let U be a partition of T and 
let π be a path through T. The finite interval 
partition 〈 〉I Ik1… of [0,1] is induced by πwith 
respect to U if π occupies the same set in U
throughout each subinterval Ii and moves from 
one set to another in each transition from Ii to Ii+1

. Formally,

• For i k= 1… , if t t Ii1 2, ∈ then 
O O( ( ), ) = ( ( ), )1 2π πt tU U ; and

• For i k= 1 1… − , if t I t Ii i1 2 1,∈ ∈ + then 
O O( ( ), ) ( ( ), )1 2π πt tU U≠ .

If π induces a finite interval partition, then it 
is said to be finitary. Not all paths are finitary; a 
path that moves infinitely often between sets in 
U does not induce a finite interval partition. We 
will limit our discussion to finitary paths.

Definition 20 Let U be a locally simple parti-
tion of T and let Z be an interval label set. An 
interval label pair is a pair of a cell of U and a 
label in Z . An Interval Label Sequence (ILS) is 
a finite sequence 〈〈 〉 〈 〉〉U z U zk k1 1, ,… of interval 
label pairs.

Definition 21 Let U be a locally simple parti-
tion of T, let Z be an interval label set, and let π
be a finitary path. Let 〈 〉I Ik1… be the interval 
partition induced by π . The interval trace of π

through U , denoted ΓU Z, ( )π , is the interval label 
sequence:

〈〈 〉

〈 〉

〈

O
O

O

( ( ), ), ( , ) ,
( ( ), ), ( , ) ,
( (

1 1

2 2

π
π
π

I shape I Z
I shape I Z
I

U

U

… kk kshape I Z), ), ( , )U 〉〉

.

We have slightly abused notation in writing 
O( ( ),π Ii U ) to mean the value of O( ( ), )π t U for 
all t Ii∈ .

Definition 22 The closed labels are `C,’ `CI,’ 
and `CE.’ The left-closed labels are the closed 
labels and `L.’ The right-closed labels are the 
closed labels and ̀ R.’ The left-open labels are ̀ R’ 
and `O.’ The right-open labels are `L’ and `O.’

Definition 23 An interval label sequence 
〈〈 〉 〈 〉〉U U1 1, ,z zk k… is coherent if either

a.  k = 1and z1 = `C’ or `CE’; or
b.  k >1 and all the following hold:

b.1 z1 is left-closed.
b.2 zk is right-closed.
b.3 for i k= 1 1… − , either:
b.3.a zi is right-closed, zi+1 is left-open, and 

Ui+1 is a neighbor of Ui ; or
b.3.b zi is right-open, zi+1 is left-closed, and 

Ui is a neighbor of Ui+1 .

Theorem 3 The interval trace of any finitary 
path π is a coherent ILS.

Proof: Straightforward.
Definition 24 Let U be a locally simple parti-

tion of T, let G be the transition graph for U , 
and let Z be a label set. Let α = , ,1 1〈〈 〉 〈 〉〉U Uz zk k…
be a coherent ILS. The gpath through G corre-
sponding to α , denoted ∆( )α , is the gpath 
β = , , ,1 1 1〈 〉−U UA Ak k… where Ai i i= , 1〈 〉+U U
if zi is right-closed and Ai i i= ,1〈 〉+U U if zi is 
right-open.
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Example: Consider the path π shown in Figure 
5, using the partition of Figure 4. The correspond-
ing gpath is:

〈 〈 〉 〈 〉 〈 〉
〈 〉 〈

B2 B1a1 B2 B1a1 B1a1 A1 A1 B1b A1
B1b B1b A1 A1
, , , , , , , , ,
, , , , AA2 A1 A2 A2 B2 B2, , , , ,〉 〈 〉 〉.

The corresponding ILS is:

〈〈 ′〉 〈 ′〉 〈 ′〉 〈 ′〉

〈 ′〉 〈 ′
B2 B1a1 A1 B1b

A1 A2
,` , ,` , ,` , ,` ,
,` , ,`
L CI O CE
O CII R〉 〈 ′〉〉, ,`B2

Theorem 4 Under the assumptions of defini-
tion 24, if α is a coherent ILS, then ∆( )α is a 
gpath. Conversely, if β is a gpath then for both 
Z4 and Z5, there exists a coherent ILS α such that 
∆( ) =α β (For Z4, α is unique. In Z5, it may not 
be; if arc Aj−1 is traversed backward, and arc Aj
is traversed forward, then vertex Ej may be la-
belled either `CI’ or `CE.’).

Proof: Immediate from the definitions.
Definition 25 For any path π through T, the 

start of π , S( ) = (0)π π and the end of π , 
E( ) = (1)π π . For any interval label sequence 
α = , ,1 1〈〈 〉 〈 〉〉V Vs sk k… ,  the s tar t  of  α , 
S( ) = 1α V and the end of α , E k( ) =α V . For any 
gpath α = , , ,1 1 1〈 〉−V VA Ak k… , the start of α , 
S( ) = 1α V and the end of α , E k( ) =α V .

We now show the converse of theorems 3 and 
4: Any coherent ILS or coherent gpath is the trace 
of a finitary path. Moreover, one can choose the 
starting and ending points of the path to be any 
points in the starting and ending cell of the ILS/
gpath.

Theorem 5 Let U be a path-connected parti-
tion of T. Let αbe a coherent Z4 ILS for U . Let 
x be a point in S( )α and let y be a point in E( )α
. Then there exists a finitary path π through T 
such that S( ) =π x , E( ) =π y , and ΓU Z, 4( ) =π α

Proof: Ifα = ,`〈〈 〉〉U C ' , then, since U is path-
connected, let π be a path through U connecting 
x and y.

Otherwise, let α = , ,1 1〈〈 〉 〈 〉〉U Uz zk k… . For 
i k= 2 1… − , let ai be a point in Ui ; let a x1 =
and let a yk = . For i k= 1 1… − if zi is right-
closed, let bi be a point in Ui ∩Cl( Ui+1 ). Since 
ai and bi are in Ui , which is path-connected, there 
is a path πi from ai to bi. Since U is locally 
simple, there is a path φi that has a starting tran-
sition from bi into Ui+1 . Since Ui+1 is path-con-
nected, there is a path ψi from φi(1) to ai+1 . If zi
is right-open, let bi be a point in Cl( Ui ) ∩ +Ui 1 . 
Since ai+1 and bi are in Ui , which is path-con-
nected, there is a path ψi from bi to ai+1 . Since 
U is locally simple, there is a path φi that has an 
ending transition from Ui to bi. Since Ui is path-
connected, there is a path πi from ai to φi(0) . 
Then splicing all these together, the path 
π φ ψ π φ ψ π φ ψ1 1 1 2 2 2| | | | | | | |… k k k is a path 
satisfying the conclusion of the lemma.

Theorem 6 Let U be a homogeneous partition 
of T. Let αbe a coherent Z5 ILS through U , let 
x be a point in S( )α and let y be a point in E( )α  
Then there exists a finitary path π through T such 
that S( ) =π x , E( ) =π y , and ΓU Z, 5( ) =π α .

Proof: The proof is the same as that of the 
previous theorem, with two changes. First, since 
cells are uniform in their neighbors, the point bi 

.

.

Figure 5. Trace of a path
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can be identified with ai if zi is right-closed, and 
with ai+1 if zi is right-open, so the paths from ai 
to bi and from bi to ai+1 can be omitted. Second, 
for any ai let ψi−1 be the path leading into ai and 
let πi be the path leading out of ai, as constructed 
in the proof of the previous lemma. If zi is `CI,’ 
then splice πi directly onto ψi . If zi is ̀ CE,’ then 
construct a path φ that remains at the point ai for 
all of [0,1], and splice this between ψi and πi . ▪

Corollary 7 Let U be a path-connected parti-
tion of T. Let Z be an interval label set. Let β be 
a gpath through the transition graph of U . Let x 
be a point in S( )β and let y be a point in E( )β . 
Then there exists a finitary path π through T such 
that S( ) =π x , E( ) =π y , and ∆ Γ( ( )) =,U Z π β

Proof: Immediate from Theorems 4 and 5.
Note that corollary 7 holds even if Z Z= 5

and U is not homogeneous, because the transla-
tion ∆ from interval label sequences to gpaths 
obliterates the distinction between Z4 and Z5 
labels.

We next show that the condition in theorem 5 
that U is path-connected and the condition in 
theorem 6 are necessary conditions; the conclusion 
holds only if the conditions are satisfied:

Theorem 8 Let U be a locally simple partition 
of T. Suppose it is true that, for every coherent 
Z4 ILS α through U , and for any points x in S( )α
, y in E( )α , there exists a path π such that 
S( ) =π x , E( ) =π y , and ΓU Z, 4( ) =π α . Then 
U is path-connected.

Proof of the contrapositive. Let U be a cell in 
U that is not path-connected, and let x and y be 
points in different path-connected components of 
U . Then the interval label sequence 〈 〉U,C is 
coherent, but there is no path from x to y through 
U .

Theorem 9 Let U be a locally simple partition 
of T. Suppose it is true that for every coherent Z5 
interval label sequence α through U , and for any 
points x in S( )α , y in E( )α , there exists a path 

π such tha t  S( ) =π x ,  E( ) =π y ,  and 
ΓU Z, 5( ) =π α . Then U is homogeneous.

Proof of the contrapositive. Suppose that U
is not homogeneous. Then there exists a cell U
in U which is either not path connected or not 
uniform in its neighbors. If it is not path-connect-
ed, then the proof proceeds as in theorem 8. If it 
is not uniform in its neighbors, then there exists 
x U∈ and a neighbor V of U such that V is not 
a neighbor of x . Then the Z5 interval label se-
quence 〈〈 ′〉 〈 ′〉〉U V,̀ , ,̀CI R is coherent, but there 
is no path starting in x with that trace.

A Z5 interval label sequence fully characterizes 
the topology of an interval partition:

Definition 26 Two interval partitions 〈 〉I Ik1…
and 〈 〉J Jk1… are homeomorphic if and only if 
there is a direction-preserving automorphism 
H( )t from [0,1] to [0,1] such that H( ) =I Ji i .

Theorem 10 〈 〉I Ik1… and 〈 〉J Jk1… are ho-
meomorphic if shape(I Zi , 5 ) = shape(J Zi , 5 ) for 
i k= 1… .

Proof: It is immediately clear topologically 
that if J Ii i= ( )H then shape( I Zi , 5 ) = shape(
J Zi , 5 ). To prove the converse, we may construct 
H( )t as follows: For any t , let Ii be the interval 
containing t . If Ii is an instantaneous interval, 
define H( ) = ( )t l Ji . Otherwise, let:

H( ) = ( )
( ( )) * ( ( ) ( ))

( ) ( )
t l J

t l I u J l J
u I l Ii
i i i

i i

+
− −

−

It is easily shown that H satisfies the condi-
tions of the theorem.

Definition 27 Paths π and φ are U -homeo-
morphic if there exists a direction-preserving 
automorphism H( )t from [0,1] to [0,1] such that, 
for all t , O O( ( ), ) = ( ( ( )), )π φt tU H U .

Theorem 11 Paths π and φ are U -homeo-
morphic if and only if Γ ΓU Z U Z, 5 , 5( ) = ( )π φ .

Proof: The implication left to right is immedi-
ate from theorem 10. For the implication right to 

.
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left, let 〈 〉I Ik1… and 〈 〉J Jk1… be the interval 
partitions induced by π and φ respectively, and 
let H be the function defined in the proof of 
theorem 10. It is immediate that this satisfies the 
conditions.

We now show that Γpreserves the operation 
of splicing two paths, suitably defined.

Definition 28 Let π and φ be paths such that 
E S( ) = ( )π φ . The simple splice of π and φ , 
denoted π φ| , is the path ψ such that:

ψ
π
φ( ) =
(2 ) 0 1 / 2;
(2 1) 1 / 2 1.t
t for t
t for t

≤ ≤
− ≤ ≤










Definition 29 Let z1 and z2 be labels from the 
same interval label set, where z1 is closed-right, 
and z2 is closed-left. The splice of z1 and z2 de-
noted z z1 2| is defined as shown in Table 3.

Definition 30 Let α1 1 1= , ,〈〈 〉 〈 〉〉V Vz zk k…
and α2 1 1= , ,〈〈 〉 〈 〉〉W Wy ym m… be two coherent 
interval label sequences from the same label set. 
If V Wk = 1 then the splice of α1 and α2 ,

α α1 2

1 1 1 1 1 1 2 2

| =
, , = , | , , ,〈〈 〉 〈 〉 〈 〉 〈 〉 〈 〉〉− −V V V W W Wz z z y y yk k k k m m… … …

Note that since α1 and α2 are coherent, it fol-
lows that z yk | 1 is defined.

Theorem 12 If π and φ are paths such that 
E S( ) = ( )π φ t h e n 
Γ Γ ΓU Z U Z U Z, , ,( | ) = ( ) | ( )π φ π φ . If α1 and α2 are 
interval label sequences such that E S( ) = ( )1 2α α
then ∆ ∆ ∆( | ) = ( ) | ( )1 2 1 2α α α α .

Proof: Immediate from the definitions.

3.3. Metalogical Theorems

Using the above semantic theorems, we can now 
prove metalogical results, showing that the deci-
sion problem for certain first-order languages over 
the domains of finitary paths can be reduced to 

a decision problem for corresponding languages 
over gpaths and ILS’s.

There are a couple of issues to address at the 
outset. First, one has to be careful here not to 
make the language of paths too expressive. In 
particular, if the language supplies any way to 
express the relation that a point lies in the middle 
of a path, then the jig is up; there is no way to 
achieve this kind of reduction. The problem is 
that, in a one-dimensional cell U, like B1b of 
Table 2, it is a fact that there exist three distinct 
points x y z U, , ∈ such that any path from x to y 
that remains in U must go through z. In a language 
of points and paths with a predicate “On(x,p),” 
meaning point x lies on path p, this statement can 
be expressed in the formula

∃x,y,z x≠z≠y ⋀ ∀p [On(x,p) ⋀On(y,p) ⋀ [∀w 
On(w,p) ⇒ In(w,U)]] ⇒ On(z,p).

This kind of constraint is quite hopeless to 
capture in transition graphs or any reasonable 
extension of them. Since the relation “On(x,p)” 
can be defined in terms of the splice function, one 
likewise has to exclude the splice function. How-
ever, one needs something like splice so that there 
is some way to build up extended gpaths. The 
way out is that we will use relations “Z4Splice(
π φ ψ, , )” and “Z5Splice(π φ ψ, , ),” which hold if 
Γ Γ ΓU Z U Z U Z, , ,( ) = ( ) | ( )ψ π φ for Z Z= 4 or Z5 , 
respectively.

Second, even with this limited language, there 
is an inescapable logical distinction between a 
cell U with a single point, such as A2a1 of Table 
1, which satisfies the formula “ ∀ x,y  In(x,u) ∧
In(y,u) ⇒ x=y” and a cell with infinitely many 
points, which does not. (In a Hausdorff topology,2 
any path-connected cell must be one or the other.) 
Therefore, the cells in a transition graph must be 
labelled as either “singleton cells” or “infinite 
cells.”

We can now proceed to our formal construc-
tion. First, more typographical conventions. We 

.
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will use symbols in block capitals for relations in 
the domains. We will use typewriter font, such as 
Splice(a,b,c) for symbols in the formal language, 
using lower-case symbols for variables and sym-
bols beginning in upper-case for non-logical 
symbols. In defining domain relations, we will 
use curly angle brackets ≺� for demarcating 
tuples, since we have rather overused the standard 
angle brackets 〈〉 already.

Definition 31 If π is a path with one cell―that 
is, ΓU Z CE, 5( ) = ,`π 〈〈 ′〉〉U ―π  remains in cell 
U . If π is a path with two cells, then let 
ΓU Z, 5( ) = , , ,π 〈〈 〉 〈 〉〉U W V X . π has an open tran-
sition from cell U to cell V if W is open right and 
X is closed left. π has a closed transition from cell 
U to cell V if W is closed right and X is open 
left. π has a starting transition from cell U to cell 
V if X = C̀I ′ and W is open left. π has a ending 
transition from cell U to cell V if X is open right 
and W= C̀I ′ .

First we define a structure over the domain of 
finitary paths. We begin by defining two formal 
languages:

The language of paths for path-connected 
partitions, Lp , is the first-order language with the 
following predicate symbols (the arity is in pa-
renthesis): Point(1), Cell(1), Path(1), Singleton(1), 
In(2) ,  S tar t (2) ,  End(2) ,  Remains(2) , 
ClosedTrans(3), OpenTrans(3), and Z4Splice(3), 
together with a collection of constant symbols Ui 
for i = 1…∞ . The language of paths for homo-
geneous partitions, L Lc c= ∪ { StartTrans(3), 
EndTrans(3), Z5Splice(3) }.

We next define the corresponding relations 
over the domains of points, cells, and paths. Let 
T be a topological space and let U be a path-
connected partition over T . Define the relations 
shown in Box 1.

(In the definitions of Z4SPLICE and Z5SPLICE 
above, the first vertical bar is “such that” and the 
second is “splice.”)

For any partition U , let IU
p and IU

c be the 
interpretations of Lp and Lc respectively mapping 
each predicate symbol to the corresponding rela-
tion, and mapping each symbol Ui to a cell in U

Second, we define a structure over ILS’s. Let 
Ll be the first-order language with the following 
predicate symbols: Cell(1), ILS(1), Singleton(1), 
IRemain(2), IStartTrans(3), IEndTrans(3), 
ISplice(3), together with the constant symbols Ui. 
It is easy to show that any coherent ILS can be 
formed by splicing together primitive ILS’s that 
either remain in a cell, execute a starting transi-
tion, or execute an ending transition.

We define the corresponding relations as 
shown in Box 2.

Let IU
l be the interpretation of Ll mapping 

each predicate symbol to the corresponding rela-
tion, and mapping each symbol Ui to a cell in U

Third, we define a structure over gpaths in the 
transition graph. Let Lg be the first-order language 
with the following predicate symbols: Cell(1), 
GPath(1), GRemain(2), ForwardArc(3), Back-
wardArc(3), GSplice(3) together with the symbols 
Ui.

.

.

Table 3. Same interval label set 

z z1 / 2 `C’ `CI’ `CE’ `L’

`C’ `C’ --- --- `L’

`CI’ --- `CI’ `CE’ `L’

`CE’ --- `CE’ `CE’ `L’

`R’ `R’ `R’ `R’ `O’
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For any graph G , define the following rela-
tions:

CELLS is a vertex inG U U G= { |≺ � }

GPATHSG is a gpath throughG= { |≺ �β β }.

DGRAPH CELLS GPATHSG G G= ∪ .

GREMAIN
U GPATHS U

G

G

=
{ , | = }≺ �β β β∈ ∧ 〈 〉

FORWARDARC
U,V GPATHS U U V V

G

G

=
{ , | = , , , }≺ �β β β∈ ∧ 〈 〈 〉 〉
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Let IG
g be the interpretation of Lg mapping 

each predicate symbol to the corresponding rela-
tion, and mapping each symbol Ui to a cell in U

We can now state two parallel metalogical 
theorems. Theorem 13 states that the decision 
problem of a sentence in Lp relative to a path-
connected partition can be reduced to the decision 
of a corresponding sentence in Lg relative to the 
transition graph. Theorem 14 states that the deci-
sion problem of a sentence in Lc relative to a 
homogeneous partition can be reduced to the 
decision of a corresponding sentence in Li relative 
to the set of Z5 ILS’s. In both cases the translation 
from the language of paths to the language of the 
transition graph is independent of the particular 
partition involved, as long as it is path-connected 
or homogeneous, respectively.

Theorem 13 There exists a linear-time func-
tion Ap that maps every sentence in Lp to a 

sentence in Lg satisfying the following. Let T be 
a Hausdorff space, let U be a path-connected 
partition over T with at least 2 cells, and let IU

p

be the interpretation of Lp in DPATHSU defined 
above. Let G be the transition graph correspond-
ing to U and let IG

g be the interpretation of Lg in 
DGRAPHG defined above, such that for each 
symbol Ui,. I IG

g
i U

p
i( ) = ( )U U . Let Φ be any 

sentence in Lp . Then Φ holds in the structure 
≺ �DPATHSU

p
U
p, ,L I if and only if Ap( )Φ holds 

in the structure ≺ �DGRAPHG
g

G
g, ,L I .

Theorem 14 There exists a linear-time func-
tion Ac  that maps every sentence in Lc  to a 
sentence in Ll  satisfying the following. Let T  
be a Hausdorff space, let U  be a path-connected 
partition over T  with at least 2 cells, and let IU

c  
be the interpretation of Lc  in DPATHSU  defined 
above. Let IU

l  be the interpretation of Ll  in 
DILSU  defined above, such that for each symbol 
Ui , I IU

l
i U

c
iU U( ) = ( ) . Let Φ  be any sentence in 

Lc .  Then Φ  holds  in  the  s t ructure 
≺ �DPATHSU

c
U
c, ,L I  if and only if Ac( )Φ  holds 

in the structure≺ �DILSU
l

U
l, ,L I .

The proofs are in the appendix.
These results are not actually very surprising. 

We have carefully crafted the languages of paths 
so as to exclude the expression of any informa-
tion not in the transition graph, so it is no great 
surprise that any sentence in these languages can 
be translated into a sentence about the transition 
graph. The point of the theorems is that they give 
a precise characterization of what kind of infor-
mation about the paths is encoded in the graph.

From the point of view of worst-case computa-
tion theory this is not actually very encouraging, 
as the decision problem over the graph is in fact 
in general undecidable.3 However, it does give 
us a decision procedure for the language of paths 
that sometimes gives an answer, and never gives 
a wrong answer.

The situation as regards existential sentences 
(i.e. sentences with no universal quantifiers in 

.
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prenex form) is more promising. Both the map-
pings Ap and Ac map existential sentence to 
existential sentences. I conjecture that the decision 
problem for existential sentences over the ILS 
structure and the transition graph structure is of 
the same order of computational difficulty as the 
word equation problem of Makanin (1977), which 
is known to be in PSPACE though NP-hard 
(Plandowski, 1999).

4. TRANSITION GRAPHS FOR 
SOME SAMPLE PROBLEMS

We now return from the abstract and general 
discussion of paths through partitioned topologi-
cal spaces to the specifics of continuous spatial 
change. In this section we will discuss the reason-
ing examples enumerated in section 1 and describe 
the associated transition graphs, path-connected 
graph, and homogeneous graphs.

For our purposes the specification of a “spa-
tial continuity problem” involves the following 
elements:

Box 1.
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1.  There are a number of spatial fluents: that 
is, entities whose value at each moment of 
time is a geometric entity; equivalently, fuc-
tions from time to some space of geometric 
entities. In this chapter, we consider only 
problems with 1 or 2 non-constant spatial 
fluents. The state of the system at a point in 
time, called a configuration, is the tuple of 
the values of these fluents.

2.  For each fluent, there is a specification of 
the general category of values it attains, such 
as “the class of regular open regions,” “the 
class of points,” “the class of directions,” 
and so on. The general configuration space 
is the cross-product of these categories.

3.  For each fluent, there may be additionally 
be a restriction on the class of values it can 
attain, within the general category. For in-
stance, the region occupied by rigid object 
at time t is always congruent to the region 
it occupies at time 0. A quantity of liquid 
always occupies a constant volume. The 
restricted configuration space is the cross-
product of these more limited classes of 
values.

4.  There is a topology over the category of 
values in (2) that determines what changes 
are considered “continuous.” Two different 
fluents may have values in the same category 
but be subject to different kinds of continu-
ity constraints.

5.  There is a JEPD (Jointly Exhaustive, Pairwise 
Disjoint) set of “qualitative” relations over 
the tuple of values of the fluents.

The space of spatial continuity problems is 
thus complex and diverse, and we have not found 
any systematic way to analyze or explore it as a 
whole. Lacking that, we will discuss the examples 
of section 1, and try to get insights into the issues 
involved.

Relating this to the abstract structure developed 
in section 3: Let Q Qk1… be the k spatial fluents, 
and let Ci be the range of values of Q1 . We assume 
that there is a topology defined on each Ci , as in 
(4) above. A point in the topological space T is a 
configuration, and the space T is either the gen-
eral or the restricted configuration space. The 
topology on T is the cross-product of the topolo-
gies on the Ci . A path π( )t is a tuple 〈 〉Q t Q tk1( ) ( )…
. The partition U is the JEPD set of qualitative 
relations in (5).

A general caveat about the discussion in 
this section: All of the transition graphs shown 
below are mathematical claims and should, in 
principle, be proven. For many of these (e.g. the 
path-connected transition graph for the three-
dimensional jigsaw puzzle pieces) the proof would 
be long, difficult, boring, and quite pointless. A 
complete proof requires demonstrating that each 
cell is homogeneous; that no coarser refinement 
is homogeneous; that all the arcs in the graph are 
possible; and that none of the arcs omitted from the 
graph are possible. Rather, many of these claims 
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are based on my personal geometric intuition, 
which is fallible. In cases where I do not feel fairly 
confident, I have labelled these “conjectural.”

4.1. Example A: Jigsaw 
Puzzle Pieces

Two interlocked jigsaw puzzle pieces cannot be 
separated by a movement in the plane of the puzzle, 
but can be separated by lifting one perpendicular 
to the plane (see Figure 6).

Here we have an interaction of two rigid 
solid objects. As discussed in Section 2, this is 
one of the two most extensively studied problem 
of continuous motion in the computer science 
literature (the other is the problem of jointed or 
linked objects), almost all considering the problem 
of computing the configuration space from precise 
shape specifications.

There are a number of different ways to for-
malize this problem. Specifically, there are three 
choices with two different options each:

Two or three dimensions? As indicated in 
the problem statement above, the problem can 
be viewed in two dimensions, in which case the 
pieces cannot be separated, or in three dimensions, 
in which case they can.

Regions or placement? A state of the system 
can be specified, either in terms of the regions 
occupied by the two objects or in terms of their 

placements. The placement of object O at time 
t is a rigid mapping from some standard position 
of O to the position of O at t . Each of these has 
its advantage.

One advantage of a region-based ontology 
is that it generalizes easily to non-rigid entities. 
The flip side of this, though, is that the rigidity 
constraint has to be added on as an additional 
constraint, whereas it is built into the placement 
ontology.

Another advantage of a region-based ontology 
is that the qualitative relations—feasible, ex-
cluded—are fixed and simple relations over re-
gions. By contrast, as functions of the placements 
the qualitative relations must be indexed to the 
underlying shape of the objects. That is, in a region-
based representation, one can use a simple relation 
“Feasible(x,y)”; in a placement-based representa-
tion, one must use the representation 
“Feasibleα,β(x,y)” where α and β are the base 
shapes of the objects. Viewed purely as a function 
of placement x and y, the latter is a strange and 
seemingly arbitrary region in the configuration 
space.

The major advantage of the placement ontology 
is that it gives rise to a much simpler configuration 
space. The configuration space of placements of a 
single rigid object is a three-dimensional manifold 
for a two-dimensional object in the plane, and a 
six-dimensional manifold for a three-dimensional 

Figure 6. Jigsaw puzzle pieces



118

Qualitative Reasoning and Spatio-Temporal Continuity

object in three-space, and there is one standard 
topology. By contrast, the configuration space of 
regions is an strange, infinite dimensional space, 
with a number of different plausible topologies.

The configuration space of regions that are 
congruent (excluding reflection) to a reference 
region R0 is isomorphic to the configuration space 
of placements, except when the object has some 
kind of symmetry, in which case multiple place-
ments give the same region. For instance, if the 
three-dimensional jigsaw pieces are exactly sym-
metric, then the twelve homogeneous cells where 
the tab of B stick through the hole of A, as dis-
cussed below, reduce to 3; in the notation of 
Figure 10, the cells A B Ci i i, , and Di are all 
identified, for each i . Though this simplifies the 
configuration space for symmetric objects, over-
all it actually tends to be an advantage of the 
placement ontology: the topological space of 
placements is constant regardless of the shape of 
the object, whereas the topological space of regions 
congruent toR0  is isomorphic for all non-sym-
metric objects, but is different for symmetric 
objects, and each different kind of symmetry yields 
a different topological space. Moreover, small 
changes to shape that are irrelevant to the inter-
action—e.g. embossing the name of each jigsaw 
piece on its surface—will destroy the symmetry 
and thus alter the configuration space.

Absolute or relative position? For rigid ob-
jects, and only for rigid objects, one can view one 
of the objects as fixed, and characterize the position 
of the second relative to the first (i.e. its position 
in a coordinate system attached to the first).

The advantages here are closely related to 
those in the previous choice. A representation 
based on relative position does not generalize to 
non-rigid objects, and requires relations indexed 
on the shape of the fixed element or the shapes of 
both elements, depending on whether the ontol-
ogy is region-based or placement-based. On the 
other hand, it reduces the dimensionality of the 
configuration space by a factor of 2.

In terms of our formulation of continuous 
spatial problems, then, this problem has the fol-
lowing characteristics:

Fluents: Either two fluents, for the absolute 
position of each object, or one fluent, for their 
relative position.

Category: Either the space of regular4 bound-
ed regions in �k , or the space in placements in 
�k .

Additional restriction: If the category is the 
space of regions, then there is the additional re-
striction that the region occupied by an object at 
any time is congruent to the region occupied at 
time t0 . If the category is the space of placements, 
then this is built in.

Topology. The state of placements has a single 
natural topology. The space of regions has several; 
however, they are all identical when restricted to 
the subspace of a rigidly moving object.

Qualitative relations: As discussed above, in 
a region-based representation, the starting set of 
qualitative relations is { FEASIBLE, EXCLUD-
ED }; in a placement-based representation, it is 
{ , }, ,FEASIBLE EXCLUDEDα β α β , where α β,
are the base shapes of the objects. Unlike Galton 
(1993), we will not distinguish between different 
categories of excluded placements, such as OV 
or TPP, as these make no difference in this ap-
plication. If you want to categorize the relation 
between a solid object and an empty space which 
is defined by a rigid object, such as the inside of 
a suitcase, then OV and TPP are physically pos-
sible, and the distinction between them may be 
meaningful.

The simple transition graph is in Figure 7. 
This is the basic transition graph for the two re-
lations {FEASIBLE, EXCLUDED} in almost 
all situations.

Whatever the shapes of the objects involved, 
the excluded space is always uniform in its neigh-
bors, being open. It is generally path-connected. 
An exception is in the case of two-dimensional 
analysis of motions on a planar surface, where 
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the horizontal cross-sections of the obstacles that 
rise above the level of the floor may be discon-
nected (see example D below).

The feasible space for rigid objects may have 
multiple connected components, corresponding 
to different positions that cannot be attained one 
from another. There is always a single unbounded 
connected component, which includes all the 
configurations in which the two objects are fully 
separated. The remaining connected components 
are all bounded; there can be any number of 
these, or none. If object A has an interior cavity 
C which is large enough to hold object B, then the 
connected components of configuration space in 
which object B is in C are separate from those in 
which B is not in C.

In all cases, the homogeneous decomposition 
distinguishes between two kinds of feasible states: 
those that border the excluded region—i.e. those 
in which the two objects are in contact—and 
those that do not. It may also create additional 
distinctions, as we shall see below.

For the particular case of the jigsaw puzzle 
pieces: In the two dimensional case there are 
two connected components of feasible space: In 
one it is attached, and in the other it is not. The 
homogeneous decomposition creates the further 
distinction between feasible configurations where 
the two objects are in contact and configurations 
where they are separated (Figure 8)

In the three-dimensional case, the configura-
tions where the two pieces are attached is con-
nected in feasible space to the configurations 
where they are not, by sliding one of the pieces 
vertically. There are also configurations in which 

the tab of piece B goes through the hole in piece 
A, but I believe that, for the geometry pictured in 
Figure 8, these do not create additional con-
nected components.

The homogeneous decomposition here distin-
guishes between configurations where the pieces 
are attached in the usual way but possibly with a 
relative vertical displacement, and those where the 
pieces are separable and in contact in some other 
way. Even though these are connected in feasible 
space, they differ in terms of their neighbors. The 
latter border the configuration region where the 
two pieces are separated; the former do not. The 
homogeneous decomposition further subdivides 
this into three; two limit configurations, where 
the top plane of piece A is aligned with the bot-
tom plane of piece B, or vice versa; and interior 
configurations. The homegenous configuration 
also distinguishes four regions where the tab of 
piece B sticks through the narrow neck of piece A, 
meeting it on both sides (Figure 9); four, because 
B may face forwards or backwards and may stick 
downward or upward. Each of these is likewise 
divided into three cells—two limit regions, and 
the interior. The (conjectural) QHT graph is shown 
in Figure 10 (and Table 4).

Though this appears like a fine partition, it 
does not actually make all possible topological 
distinctions among placements. For example, state 
A1 includes both the configurations where the 
bottom face of the triangle of B is in contact with 
the top surface of, and those where it is not. This 
is another illustration of the observation made 
above after theorem 2, that not all points in a cell 

Figure 7. Basic transition graphs
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necessarily have neighborhoods that are homeo-
morphic with respect to the initial partition.

4.2. Example B1: String Loop 
around an Hourglass

Consider a string loop of length L around the 
waist of an hourglass with spherical globes of 
circumference C . If L C> then the loop can be 
removed from the hourglass without coming into 
contact with the hourglass and without ever being 
taut. If L C< then the loop cannot be removed 
from the hourglass. If L C= , then the loop can 
be removed from the hourglass, but at some point 
it must be in contact with the hourglass, and it 

must be taut. It can be taken off either the upper 
or the lower globe.

If the globes of the hourglass are long cylinders, 
the circular cross section has circumference C , 
and C L= , then the string can be removed from 
the hourglass, but it will be taut and in contact 
with the hourglass over an extended interval of 
time.

The hourglass is a rigid object, so the issues 
here are the same as in example A. For simplic-
ity, we will view the hourglass as fixed, taking its 
shape to be a boundary condition of the problem, 
and characterize the configurations of the string.

We will model the string using an idealized 
model in which a configuration of the string is a 
continuous, arc-length preserving function from 
the circle of circumference L into �3 . We allow 
the string to cross itself, to overlay itself, or to 
pass through itself. A better model would addition-
ally require that the configuration of the curve be 
a simple curve; i.e. a one-to-one function. We 
have not done this, because the analysis is much 
more complicated; the configuration space has 
infinitely many connected components, character-
ized by knot theory. If the string is taken to be of 
finite thickness T , then the number of connected 
components is exponential in L T/ . Even in this 
simplified model, the analysis in this section 
should be considered conjectural.

Figure 8. Transition network for jigsaw puzzle pieces: two-dimensional motion

Figure 9. Jigsaw piece B sticks through A
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Figure 10. QHT graph for jigsaw puzzle: three-dimensional motions

Table 4. Cell labels for Figure 10 

A1: Tab of B upward through A; faces forward; borders outside.
A2: Tab of B upward through A; faces forward; interior.
A3: Tab of B upward through A; faces forward; borders inside.
B1: Tab of B upward through A; faces back; borders outside.
B2: Tab of B upward through A; faces back; interior.
B3: Tab of B upward through A; faces back; borders inside.
C1: Tab of B downward through A; faces forward; borders outside.
C2: Tab of B downward through A; faces forward; interior.
C3: Tab of B downward through A; faces forward; borders inside.
D1: Tab of B downward through A; faces back; borders outside.
D2: Tab of B downward through A; faces back; interior.
D3: Tab of B downward through A; faces back; borders inside.
U: Horizontal projections attached; top of A aligned with bottom of B.
V: Attached: no horizontal motions possible.
W: Horizontal projections attached; bottom of A aligned with top of B.
X: Excluded.
Y: Loose contact.
Z: No contact.
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In terms of our format for problem specifica-
tion:

Fluents: There is a single fluent, the position 
of the string relative to the hourglass.

Category: Let SL be the unit circle of radius 
L / 2π . The category is the set of all continuous 
functionφ : SL→  �3 .

Topology: The natural metric over configura-
tions is d d x xC x SL

( , ) = ( ( ), ( ))φ ψ φ ψ∈max where 
d a b( , ) is the usual Euclidean distance in �3 . This 
is similar to the Fréchet distance between the 
corresponding curves; the metric here is never 
less and may be greater.

Additional restriction: Let Abe a connected 
arc in SL . Then φ( )A has a well-defined arc length, 
which is equal to the arc length of A .

Qualitative Relations: Let αbe the region 
occupied by the hourglass. There are two starting 
qualitative regions of configuration space:

EXCLUDEDα , where the string penetrates the 
interior of α and FEASIBLEα where it does 
not. The basic transition graph is always that 
shown in Figure 7a.

Let us assume that:

• The string has length L .
• The hourglass is solid; that is, we will not 

consider configuration in which the string 
lies inside the globes of the hourglass.

• The globes of the hourglass are identical 
spheres of radius C / 2π , with centers on 
the z -axis.

• The intersection of the surface of two 
spheres is a circle of radius W / 2π , and 
the hourglass is the union of the two 
spheres.

There are four cases to consider.
Case 1: L W< . The string will not go around 

the hourglass even at the waist. Hence, 
FEASIBLEα has a single path-connected com-

ponent. The path-connected transition graph is 

thus still Figure 7a. The homogeneous transition 
graph distinguishes configurations on the bound-
ary between FEASIBLEα and EXCLUDEDα

; i.e. configurations where the string has contact 
with the surface of α (Figure 7b).

Case 2: W L C≤ < . Let k L W= /  . Here 
FEASIBLEα has a 2 1k + connected compo-
nents, one component where it is separated from 
the hourglass, and 2k components where it is 
wrapped i times around the neck of the hourglass, 
for i k= 1… , clockwise or counterclockwise. 
The homogeneous decomposition distinguishes 
configurations in which the string is in contact 
with the hourglass from those in which it is not. 
If L kW> then there are thus 4 2k + cells. If 
L kW= , then there does not exist a configura-
tion in which the string wraps k times around the 
hourglass and is not in contact, though there do 
exist two configurations in which it wraps k times 
and is in contact; thus there are 4k homogeneous 
cells.

Case 3: L C> , ( ) /L C W− is not an integer. 
Let q L C W= ( ) / −  . If the string is wrapped 
i times around the waist, where q i L W< /≤  
, then it must remain so. As in Case 2, this gives 
2( / )  −L W q connected components, and either 
4( / )  −L W q or 4( / ) 2  − −L W q homoge-
neous cells, depending on whether L W/ is an 
integer. If the string is wrapped q or fewer times 
around the waist, then it can be removed from the 
hourglass without coming into contact with it; all 
such situations form a single connected component 
with the disattached configurations, and form two 
homogeneous cells (contact and non-contact).

Case 4: C qW L+ = for integer q ≥ 0 . This 
is the same as Case 3, with the following change: 
If the string is wrapped q + 1 times around the 
waist, then it is possible to separate the string 
from the hourglass, taking off one loop at a time; 
however, there is necessarily an instant at which 
the string is taut around both the globe and the 
waist. These configurations are thus also part of 
the connected component with the disattached 
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configurations, but give rise to ten homogeneous 
cells: wrapped around the waist, contact or no 
contact, clockwise or counter-clockwise (4 cells); 
taut around the upper/lower globe, clockwise and 
counter-clockwise (4 cells); and disattached, 
contact or no contact (2 cells).

If the globes of the hourglass are cylinders 
whose central axis is longer than L / 2 (the ge-
ometry for short cylinders is hairy), then the string 
can be removed at all from a position wrapped i
times around the waist if and only if L iC≥ . So, 
if i L C> / it cannot be removed; this gives 
2( / / )  −  L W L C connected components (each 
value of i , clockwise and counterclockwise) and 
4( / / )  −  L W L C homogeneous cells (contact 
and no contact, unless i L W= / is an integer, 
as in case 2). If i L C< / then it can be removed 
without contact; these configurations are therefore 
all part of the same single component that includes 
disattached configurations. This component has 
two homogeneous cells. If i L C= / is an integer, 
then this is also part of the disattached connected 
components, but gives rise to eighteen homoge-
neous cells: each of the taut cells of Case 4 above 
is split into three (at inner rim, at outer rim, in 
middle).

Figures 11 and 12 show the transition graphs 
for these four cases as explained in Table 5

4.3. Example B2: Rubber Band 
around an Hourglass

If, instead of a string loop, we have a rubber band 
whose length is less than C at rest but can be 
stretched to a length greater than C , then it can 
be removed from the hourglass without being in 
contact with the hourglass, but it must be stretched 
in order to do so.

The problem specification for this example 
differs from Example B1 in two respects: First, 
the Additional restrictions becomes the follow-
ing: Let Abe a connected arc in SL . Then φ( )A
has a well-defined arc length | ( ) |φ A and 
| | ( ) | |A A A≤ ≤φ γ where γ is the ratio between 
the length of the band when maximally stretched 
and the length of the band when relaxed.

Second, the Qualitative relations involve a 
distinction between whether the band is relaxed 
or stretched . Thus, the basic set of qualitative 
relations has four elements:

{ ,
,
,

FEASIBLE RELAXED
FEASIBLE STRETCHED
EXCLUDED RELAXED
E

α

α

α

∧

∧

∧

XXCLUDED STRETCHEDα∧ }
The transition graphs are formed by combining 

the transition graph from Example B1 for a string 
whose length is the relaxed length of the rubber 

Figure 11. Transition graphs for string and hourglass: cases 2 and 3
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band, and the transition graph for a string whose 
length is the maximal length of the rubber band.

4.4. Example C: Milk in a Bottle

A quantity of milk in a closed bottle remains in 
the bottle.

There are a number of different says to char-
acterize the continuous motion of a liquid (Davis, 
2008, 2009). For our purposes here, the simplest 
and most relevant is as follows: The fluent is the 
region occupied by the milk, which we take to 
be a regular region. Since liquid is incompress-
ible—that is, a body of liquid occupies a constant 

Figure 12. Transition graphs for string and hourglass: case 4 and cylinder
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Table 5. Transition graphs for string and hourglass: key 

Case 2: L W C= 2.5 < . Case 3: C W L W= 2.5 , = 4.2 .

          Path-connected graph

A: Wrapped twice CW Wrapped four times CW

B: Wrapped once CW Wrapped three times CW

C: Detachable Detachable

D: Wrapped twice CCW Wrapped four times CCW

E: Wrapped once CCW Wrapped three times CCW

X: Excluded Excluded

homogeneous graph

A1: Wrapped twice CW, contact Wrapped four times CW, contact

A2: Wrapped twice CW, no contact Wrapped four times CW, no contact

B1: Wrapped once CW, contact Wrapped three times CW, contact

B2: Wrapped once CW, no contact Wrapped three times CW, no contact

C1: Detachable, contact Detachable, contact

C2: Detachable, no contact Detachable, no contact

D1: Wrapped twice CCW, contact Wrapped four times CCW, contact

D2: Wrapped twice CCW, no contact Wrapped four times CCW, no contact

E1: Wrapped once CCW, contact Wrapped three times CCW, contact

E2: Wrapped once CCW, no contact Wrapped three times CCW, no contact

Case 4: C W L W= 2.5 , = 4.5 .

A,B,C,D,E,X,A1,A2,B1,B2,D1,D2,E1,E2: as in case 3.

C1: Detached, contact.

C2: Detached, no contact.

F1: Wrapped twice around waist CW, contact.

F2: Taut around upper globe and waist, CW.

F3: Wrapped twice around waist CW, no contact.

F4: Taut around lower globe and waist, CW.

G1: Wrapped twice around waist CCW, contact.

G2: Taut around upper globe and waist, CCW.

G3: Wrapped twice around waist CCW, no contact.

continued on following page
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volume—a natural metric to use is the following 
(original here, to the best of my knowledge):

Definition 32 Let V(R ) be the volume of 
region R . A function Φ over R1 is volume-pre-
serving if, for every subset R R⊂ 1 , V(Φ( )R ) = 
V ( R ) .  T h e  c o s t  o f  Φ o n  R1 , 
C R d p pp R( , 1) = ( , ( ))Φ Φ∈sup .

Let R1and R2 be closed, bounded, regular 
regions such that V(R1 )=V(R2 ). The volume-
preserving distance from R1 to R2 , d R Rvp( 1, 2)
is the infimum of C R( , 1)Φ for all volume-pre-
serving Φ such that Cl(Φ( 1)R )=R2  (Note that 
Φ need not be continuous, and therefore Φ( 1)R
may not be closed).

Example (Figure 13a): Let R1be the unit 
square [0,1]× [0,1], and let R2 be the pair of 
rectangles [0,1/2]× [0,1] ∪ [3/2,2]× [0,1]. Let Φ
be the function:

Φ( ) =
1/ 2
> 1/ 2

p
p if p
p x if p

x

x

≤
+




 ˆ

Then C( , 1) = 1Φ R . It is easily shown that no 
volume-preserving function has lower cost, so 
d R Rvp( 1, 2) = 1 .

It is easily shown that dvp is a metric over 
closed regular regions, and that it is always at 
least as large as the Hausdorff distance, and often 
greater. For instance in Figure13b, the Hausdorff 
distance from R1 to R2 is 1/16, since every point 
in R1 is within distance 1/16 of a point in R2 and 
vice versa. A volume-preserving function, how-
ever, must move one square unit of liquid from 
the left-hand side to the right hand side; it can be 
shown that d R Rvp( 1, 2) = 1/ 2 . Taking this kind 
of example to the limit, it follows that the topol-
ogy induced by d vp is stricly finer than that induced 
by the Hausdorff distance.

In terms of our format for problem specifica-
tion:

Fluent: There is a single fluent, which is the 
region occupied by the milk. We take the region 
αoccupied by the bottle to be a constant bound-
ary condition.

Category: The value of the fluent is a regular 
region.

G4: Taut around lower globe and waist, CCW.

Cylindrical globes, L W C= 4.5 = 2 .

A,B,C,D,E,X,A1,A2,B1,B2,C1,C2,D1,D2,E1,E2,F1,F3,G1,G3: as in case 4.

F2a: Taut around cylinder CW, at outer rim, upper cylinder.

F2b: Taut around cylinder CW, not at rim, upper cylinder.

F2c: Taut around cylinder CW, at inner rim, upper cylinder.

F4a: Taut around cylinder CW, at outer rim, lower cylinder.

F4b: Taut around cylinder CW, not at rim, lower cylinder.

F4c: Taut around cylinder CW, at inner rim, lower cylinder.

G2a: Taut around cylinder CCW, at outer rim, upper cylinder.

G2b: Taut around cylinder CCW, not at rim, upper cylinder.

G2c: Taut around cylinder CCW, at inner rim, upper cylinder.

G4a: Taut around cylinder CCW, at outer rim, lower cylinder.

G4b: Taut around cylinder CCW, not at rim, lower cylinder.

G4c: Taut around cylinder CCW, at inner rim, lower cylinder.

Table 5. Continued
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Additional constraint: The volume of the 
fluent is a constant value V .

Topology: The topology defined by the metric 
d vp .

Qualitative relation: EXCLUDEDα , in 
configurations where the milk penetrates the in-
terior of the bottle, and FEASIBLEα where it 
does not.

The basic transition graph is the standard one 
(Figure 7).

The feasible region actually has uncountably 
many connected components: for each V1between 
0 and V inclusive, the set of configurations with 
volume V1of milk inside the bottle and V V− 1
outside is a separate connected component. The 
effect of a homogeneous decomposition is just to 
divide each of these connected components into 
two parts: configurations where the milk is in 
contact with the bottle (either on the inside or 
outside), and those where it is not (Figure 14).

Nonetheless, the partition is locally finite, so 
the theory developed in Section 3 still applies.

4.5. Example C2: Milk in Cups

If at time T1 there is milk sitting in open cup A, 
and at a later time T2 the milk has moved to a 
cup B, and both cups are stationary, then the milk 
came out of the top of cup A and went in the top 
of cup B.

The problem formulation is the same as in C1, 
except that the shape of the cups is different from 
the shape of the bottle, and that the basic qualita-
tive relations are different. Specifically, we defined 
a region RC as cupped by region RO if the 
boundary of RC is the union of two parts, 
BO BT∪ where BO is a subset of the boundary 
of RO , and BT is a surface lying in a horizontal 
plane above RC (Figure 15). We then consider 
a basic set of four possible qualitative relations:

• EXCLUDED: configurations where the 
milk penetrates the interior of the material 
of cup.

• A if all of the milk is in a region cupped 
by cup A.

Figure 13. Volume preserving distance
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• B if all of the milk is in a region cupped 
by cup B.

• OTHER if the configuration is feasible, 
but neither A nor B holds.

Each of these cells is path-connected. A ho-
mogeneous decomposition divides cells A and B 
each into four subcells, according to whether the 
milk is (A1) in contact with the cup, (A2) with 

the opening at the top, (A3) both, or (A4) neither. 
It divides OTHER into two subcells, according 
to whether the milk is (O1) in contact with either 
cup or (O2) not (Figure 16a).

If we modify the problem to read that some 
but not all of the milk moves from cup A to cup 
B, then that can be formalized using a starting 
partition that has uncountably many cells, though 
it is locally finite:

• EXCLUDED: The milk penetrates the 
material of the cup.

• A B[V1] [V V1]& − : For any V1between 
0 and V , there is volume V1 in cup A and 
V V− 1 in cup B.

• OTHER: The configuration is feasible and 
some of the milk is outside both cups.

Each of these is path-connected. The homo-
geneous decomposition divides the cupped com-

Figure 14. Transition network for milk and bottle

Figure 15. Cupped region
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ponents into four, and the OTHER component 
into two, as in the earlier analysis (Figure 16b).

4.6. Example D: Blocking 
the Dog with a Chair

The dog can go from the dining room into the 
kitchen. However, if a chair is placed in the middle 
of the kitchen doorway, then the dog cannot go 
from the dining room to the kitchen. If the chair 
is placed at the edge of the doorway, then the dog 
can squeeze past and get into the kitchen.

The transition graph analysis of this problem 
is problematic. The problem is that if a configura-
tion is taken to be the pair of the position of the 
chair and the position of the dog, then the class of 
paths includes any simultaneous motion of the dog 
and the chair. The transition graph over this set 
of paths cannot represent the above conclusions, 
which describe the possible motions of the dog 
in which the chair is static. In fact, the homoge-
neous transition graph just has the three states 
NO CONTACT, CONTACT, and EXCLUDED 
(Figure 7b).

Figure 16. Transition networks for milk in cups
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We can solve this problem by using a hierarchy 
of transition graphs, with two layers. The bottom 
layer of transition graphs describes the motions of 
the dog for possible fixed positions of the chair. 
The upper layer describes the motions of the chair, 
characterized by the the transition graphs of the 
lower level. That is, we take the starting qualita-
tive relations over the position of the chair to be 
the transition graphs from the lower level (More 
precisely, equivalence classes of transition graphs 
under isomorphism; the graphs for any two posi-
tions of the chair are, strictly speaking, not equal 
because the corresponding cells created for the 
dog are not actually equal, just close.).

To simplify the analysis, I have taken the dog, 
the chair, and the walls of the two rooms to be 
circular, as shown in Figure 17; more realistic 
shapes will lead to both more complex transition 
graphs and more difficult analysis. Even with this 
simplification, the analysis here of the homoge-
neous case is somewhat conjectural. Let Dist(C,W) 
be the distance from the chair to the wall, and let 
Diam(D) be the diameter of the dog. The width 
of the doorway is equal to Dist(C,W)+Diam(D).

In a layered representation using path con-
nected graphs, there are three lower-level transi-
tion graphs:

A.  The chair does not block the dog, and 
Dist(C,W)<Diam(D). In this case there are 
two cells: (A1) feasible and (A2) 
excluded.

B.  The chair does not block the dog, and 
Dist(C,W)≥Diam(D). In this case, the ex-
cluded region has two connected compo-
nents, so there are three cells: (B1) feasible; 
(B2) dog overlaps walls; (B3) dog overlaps 
chair.

C.  The chair blocks the dog. In this case the fea-
sible region has two connected components 
so there are three cells: (C1) dog in dining 
room; (C2) dog in kitchen; (C3) excluded.

The upper-level transition graph has four cells 
(Figure 18):

U1: The chair does not block the dog, and 
Dist(C,W)<Diam(D). Lower-level graph 
A.

U2: The chair does not block the dog, Dist(C,W)
≥Diam(D), and the chair is in the dining 
room. Lower-level graph B.

U3: The chair does not block the dog, Dist(C,W)
≥Diam(D), and the chair is in the kitchen. 
Lower-level graph B.

U4: The chair blocks the dog. Lower-level graph C.

Figure 17. Dog and chair scenario
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Figure 18. Layered path-connected transition network for dog and chair

Figure 19. Positions of chairs creating different low-level homogeneous graphs



132

Qualitative Reasoning and Spatio-Temporal Continuity

In a layered representation using homogeneous 
graphs, there are six transition lower-level transi-
tion graphs (Figures 19 and 20).

A.  The chair blocks the dog. The homogeneous 
graph here has five cells: Dog in kitchen, 
(A1) with or (A2) without contact; dog in 
dining room,(A3) with or (A4) without 
contact; (A5) excluded.

B.  The chair in the doorway allows the dog to 
squeeze by on one side. The homogeneous 
graph has six cells: Dog in kitchen, (B1) 
with or (B2) without contact; dog in dining 
room, (B3) with or (B4) without contact; 
(B5) dog squeezing by; (B6) excluded.

C.  The chair is placed so as to allow the dog to 
squeeze by on either side. The homogeneous 
graph has ten cells: Dog in kitchen, (C1) 
with or (C2) without contact; dog in dining 
room, (C3) with or (C4) without contact; 
dog squeezing by (C5) on left or (C6) on 
right; dog in contact with chair (C7) on the 
kitchen side or (C8) on the dining room side; 
excluded because (C9) dog overlaps walls; 
(C10) dog overlaps chair.

D.  The chair does not block the dog, and 
Dist(C,W)<Diam(D). The homogeneous 
graph has three states: (D1) dog not in con-
tact, (D2) dog in contact, (D3) excluded.

E.  The chair does not block the dog, and 
Dist(C,W)=Diam(D). The homogeneous 
graph has six states: (E1) dog not in contact, 
(E2) dog in contact with walls, (E3) dog in 
contact with chair, (E4) dog in contact with 
both walls and chair, (E5) dog overlaps walls, 
(E6) dog overlaps chair.

F.  The chair does not block the dog, and 
Dist(C,W)>Diam(D). The homogeneous 
graph has five states: (F1) dog not in contact, 
(F2) dog in contact with walls, (F3) dog in 
contact with chair; (F4) dog overlaps walls, 
(F5) dogs overlaps chair.

The upper-level transition graph has eighteen 
cells (Figure 21):

U1a – U4b: Chair does not interfere with dog. 
Cross product of { Dist(C,W)=0 / Dist(C,W)
< Diam(D) / Dist(C,W) = Diam(D) / 
Dist(C,W)>Diam(D) } times { Chair in 
kitchen, chair in dining room }. Lower-
level graphs: D, D, D, D, E, E, F, F respec-
tively.

U5: Chair blocks dog. Lower-level graph A.
U6: Dog can squeeze through on right. Chair is 

(U6a) in dining room, (U6b) in kitchen, 
(U6c) against the left wall. Lower-level 
graph B.

U7: Dog can squeeze through on left. Chair is 
(U7a) in dining room, (U7b) in kitchen, 
(U7c) against the right wall. Lower-level 
graph B.

U8: Dog can squeeze through on both sides. Chair 
is (U8a) in dining room, (U8b) in kitchen. 
Lower-level graph C.

U9: Excluded: Chair overlaps walls. Lower-level 
graph D.

In terms of our structure for problem specifi-
cations: At the lower level, the fluent is the posi-
tion of the dog. The set of qualitative relations is 
{ , }EXCLUDED FEASIBLEα α where α is the 
region occupied by the walls and by the chair. At 
the upper level, the fluent is the position of the 
chair. The starting set of qualitative relations is 
the set of transition networks from the lower 
level, plus the excluded state. The remainder of 
both problem is the same as in example A.

However, this analysis is not satisfactory, 
because it introduces a false assymetry between 
the chair and the dog. It is equally true, after all, 
that if the dog has settled down in the center of the 
doorway, then one cannot move the chair from one 
room to another, but this transition graph structure 
expresses that only very indirectly.
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4.7. Example E: Travel 
from Alaska to Idaho

A person who is in Canada at one time and in the 
United States at a later time must cross the U.S. 
border at some time in between. A person who 
is in Alaska at one time and in Idaho at a later 

time must cross the U.S. border at least twice in 
between. It is possible to travel from any point in 
Idaho to any point in Ohio without crossing the 
border of the United States.

This is actually the simplest of our examples 
in terms of the configuration space. However, it is 
the most complex in terms of the qualitative rela-

Figure 20. Lower-level homogeneous graphs for dog and chair
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Figure 21. Upper-level transition graph for dog and chair
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tions and consequently the least suited to analysis 
in terms of our theory of transition graphs.

We idealize a person as a point object, which 
is reasonable in comparison to Alaska. There is a 
single fluent, which is the person’s position. The 
configuration space is the surface of the earth’s 
sphere, under the usual topology. There are no 
additional restrictions.

However, qualitative relations such as “in 
Alaska,” “in the United States,” and so on, do not 
form a JEPD set; they are neither exhaustive nor 
disjoint. Rather, these are a set of regions in con-
figuration space that are related by RCC relations. 
Therefore, this problem cannot be characterized 
in terms of transition graphs in anything like the 
form developed in this chapter.

One could turn these into a JEPD set by con-
structing all the non-empty complete Boolean 
combinations of the base relations, analogous to a 
frame of discrimination in probabilistic reasoning. 
The base relations are then characterized as a set 
of atomic relations. Figure 22 shows the transi-
tion graph for the particular regions in the above 
problem. However, this is not a very satisfactory 
solution. First, even if a complete characterization 
of the RCC relations between the given regions is 
given, that does not at all determine the relations 
between the Boolean combinations, still less the 
structure of the path-connected and homogeneous 

refinements. For instance, the first step in finding 
the path-connected refinement of Figure 22 is 
the very difficult one of determining how many 
path-connected components the US and Canada 
have. Second, the set of relations can become 
exponentially large, and reasoning about the base 
relations involves reasoning about these large sets. 
Third, the set of relations is likely to be overly 
fine for the given application.

5. CONCLUSION AND FUTURE 
WORK

In this chapter, we have defined the transition 
graph for a JEPD set of relations over a configura-
tion space, and we have defined two refinements 
of the basic graph: the graph of path-connected 
components and the homogeneous graph. We have 
proven metalogical theorems stating that the deci-
sion problem for specified first-order languages 
over continuous paths through configuration space 
is reducible to the decision problem for paths in 
the path-connected and homogeneous transition 
graphs; and that the same holds for the existential 
subset of those languages. We have shown how 
these techniques can be applied in a range of 
physical reasoning problems.

Figure 22. Transition network for traveller
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Many problems remain to be solved, however. 
The most important problem is the problem of de-
riving these transition networks from the problem 
specification. Currently, the only case where this 
is a well-developed theory for this is for the case 
of rigid objects with exact shape specification; this 
is the piano-movers problem. In a broader setting, 
such as the problems discussed in this chapter, 
we do not even have a reasonable representation 
language for problem specification, let alone an 
algorithm for deriving a transition network.

Other important problems include finding bet-
ter techniques for solving problems like examples 
D and E of this chapter. In example D, there are 
several moving objects, and one wants to reason 
about moving one of these at a time. In example 
E, the qualitative relations involved are not JEPD; 
their topological relations are known, possibly 
incompletely.

In general, the examples in this paper suggest 
that qualitative homogeneous decompositions are 
not qualitative enough; they tend to introduce large 
number of distinctions that are of no actual value 
for the applications involved.
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Key Terms and Definitions

Configuration Space: A point in a configura-
tion space corresponds to one spatial arrangement 
of the objects under consideration.

First-Order Definable: Structure S is first-
order definable in structure T if a collection of 
relations C isomorphic to the relations in S can 
be defined in the first-order language of T.

First-Order Equivalent: Two structures with 
the same language are first-order equivalent if the 
same first-order sentences are true in both.

Partition: P is a partition of T if P is a collec-
tion of subsets of T and every element of T is in 
exactly one set in P.

Path: A path in a space is a continuous func-
tion from a closed time interval into the space.

Path-connected: A region R is path-connected 
if every pair of points in R is connected by a path 
that remains in R.
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RCC-8: A exhaustive: disjoint, collection 
of topological relations between pairs of regions 
in Euclidean space. Two regions may be equal 
(EQ), overlap (OV), externally connected (EC), 
disconnected (DC), one may be a tangential partial 
part of the other (TPP and TPP-1), or one may be 
a non-tangential partial part of the other (NTPP 
and NTPP-1) [Randell, Cui, and Cohn, 1992].

Transition Graph: A directed graphs whose 
vertices are regions of configuration space and 
whose edges represent a possible transition.

ENDNOTES

1 It is not known whether this stronger defini-
tion corresponds to continuity relative to any 
topology over the space of regular regions. 
I would conjecture that it does not. It is 
certainly strictly stronger than continuity 

with respect to the Hausdorff distance and 
strictly weaker than continuity with respect 
to the dual-Hausdorff distance (Davis, 2001). 
Even if the conjecture is true, that does not 
indicate that the definition is flawed, just 
that standard results about continuity do not 
necessarily apply.

2 A Hausdorff topology satisfies the constraint 
that for any points x,y there exists disjoint 
open sets U,V such that x∊U and y∊V.

3 It is as hard as the decision problem for the 
first-order theory over the word problem 
discussed below, which is known to be 
undecidable (Martin Davis, personal com-
munication).

4 A point set is closed regular if it is equal to 
the closure of its interior. It is open regular 
if it is equal to the interior of its closure. The 
two categories are isomorphic, so it does not 
matter which is used.
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Appendix: Proofs

Proof of Theorem 1

Definition 33 Let T be a topological space and let Ωbe a collection of homogeneous partitions of T . 
Let Θ

Ω
=

Q
Q

∈∪ ; that is Θ is the set of all the cells that are in any partition in Ω . A sequence U U0… k

of cells in Θ is a chain through Ω if U Ui i− ∩ ≠ ∅1 for i k= 1… . If x U∈ 0 and y U∈ k , then we say 
that the chain connects x and y .

Lemma 15 Let x be a point in T , let U be a locally finite partition of T , and let V be a subset of 
T such that x ∈Cl( V ). Then there exists a cell U ∈ U such that U V∩ ≠ ∅ and x ∈Cl( U ).

Proof: Since U is locally finite, let N be a neighborhood of X that intersects only finitely many cells 
in U ; let these be U U1… k . Since U is a partition of T , it follows that N U U⊂ ∪ ∪1 … k ; hence 
N V U V U V∩ ⊂ ∩ ∪ ∪ ∩( ) ( )1 … k . Since the right hand is a finite union, Cl( N V∩ ) ⊂Cl( )1U V∩  
∪ ∪… Cl( )U Vk ∩ . Since x ∈Cl( N V∩ ), it must be the case that x ∈Cl( U Vi ∩ ) for at least one of 
the Ui . It is immediate that x ∈Cl( Ui ) and U Vi ∩ ≠ ∅ . ▪

Lemma 16 Let T be a topological space and let Ωbe a non-empty collection of homogeneous parti-
tions of T . Let Θ

Ω
=

Q
Q

∈∪ . Define an equivalence relation over elements of T , x y∼Ω if x and y
are connected by a chain through Ω . It is immediate that this is an equivalence relation. Let Q be the 
collection of equivalence classes of T under ∼Ω . Then Q is a homogeneous partition of T .

Proof: Since ∼Ω is an equivalence relation, it is immediate that Q is a partition.
It is likewise immediate that, if U U0… k is a chain through Ω , then there exists a cell U ∈Q that 

contains their union. In particular, each of the partitions in Ω is a refinement of Q .
We need to prove that Q satisfies four properties.
First, Q is locally finite. Let x be a point in T . Let U be a partition in Ω . Since U is locally finite, 

there is a neighborhood N of x that intersects only finitely many cells in U . Since U is a refinement of 
Q , it follows that N intersects only finitely many elements of Q .

Second, Q allows simple transitions. Let x be any point in T and let V be a cell in Q such that x ∈
Cl( V ). Let U be any partition in Ω . By lemma 15, there exists a cell U ∈ U such that x ∈Cl( U ) and 
U V∩ ≠ ∅ . Since U is a refinement of Q , we must have U V⊂ . Since U is locally simple, there is 
a path π such that π has a starting transition from x to U . But then π has a starting transition from x
to V . Thus Q allows simple transitions.

Third, Q is path-connected. Let Q be a cell in Q and let x and y be points in Q . Then there is a 
chain U U0… k through Ω connecting x and y ; as remarked above, all the Ui are subsets of Q . For 
i k= 1 1… − let zi be a point in U Ui i∩ +1 ; let z x0 = and let z xk = . Since zi and zi+1 are in Ui , 
which is path-connected, there is a path πi from zi to zi+1 that stays in Ui and hence in Q . Splicing the 
πi together gives a path from x to y that stays in Q .

Fourth, Q is uniform in its neighbors. Let Q be a cell in Q ; let x and y be points in Q , and let V
be a cell in Q such that x ∈Cl( V ). We need to show that y ∈Cl ( V ). Define the cells Ui and the points 
zi as in the previous paragraph. Let Ui be the partition in Ω containing Ui . By lemma 15, there is a cell 
W1 1∈ U such that z0 ∈Cl( W1) , and V W∩ ≠ ∅1 . Since U1 is a refinement of Q , W V1 ⊂ . Again, 
there is a cell W2 2∈ U such that z1 ∈Cl( W2) , and W W1 2∩ ≠ ∅ ; and again W V2 ⊂ . Continuing 
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on in this way, we can construct a chain W W W1 2, … k through Ω such that W Vi ⊂ and zi and zi+1 are 
in Cl( Wi ). Thus y ∈Cl( V ). ▪

Theorem 1 Let U be a partition of T . If there exists a homogeneous refinement of U , then there 
exists a QHD of U .

Proof: Let Ωbe the collection of all homogeneous refinements of U , and construct Q as in lemma 
16. By lemma 16, Q is a homogeneous partition of T . It is immediate that Q is a refinement of U and 
that every homogeneous refinement of U is a refinement of Q .

Proof of Theorem 2

Lemma 17 Let U be a partition of T , and let V be a homogeneous refinement of U . Then V is a refine-
ment of both Φ( )U and Ψ( )U .

Proof: First, let V be a cell of V and let x and y be points in V . Since V is path-connected, there 
is a path π from x to y that remains in V . Since V is a refinement of U , there exists a cell U ∈ U such 
that V U⊂ . Then π remains in U ; therefore V is a subset of one path-connected component of U . 
Therefore V is a refinement of Φ( )U .

Second, let V , x , y , and U be as above. Let W be a cell of U such that x ∈Cl( W ); we wish to 
show that y ∈Cl( W ). Since V is a refinement of U and since both V and U are locally finite, there 
exists a cell P ∈ V such that P W⊂ and x ∈Cl( P ). Since V is uniform in neighbors, y ∈Cl( P ); thus 
y ∈Cl( W ) as desired. Thus, by symmetry N x N y( , ) = ( , )U U , so x and y are in the same cell of Ψ( )U
. Hence V is a refinement of Ψ( )U .

Theorem 2 Let U be a locally simple partition of T . Let Uσ be the decompositional sequence of U
. Then:

a.  The sequence reaches a fixed point. That is, there exists an ordinal τ such that, for all σ τ> , 
U Uσ τ= .

b.  If Uτ is locally simple, then it is the QHD of U .
c.  If there exists a QHD of U , then it is Uτ .

Proof: First, we prove by transfinite induction that, if σ ν> then Uσ is a refinement of Uν . Assume 
that the statement holds for all η σ< . If σ is the successor of µ , and ν σ< then ν µ≤ so Uµ is a 
refinement of Uν by the inductive hypothesis. Since Φ( )V and Ψ( )V are refinements of V for any V , it 
follows that U Uσ µ= ( ( ))Ψ Φ is a refinement of Uµ and hence of Uµ .

If σ is a limit ordinal, then the conclusion is immediate from the definition.
Second, since each partition of T is a set of subsets of T , the cardinality of the set of partitions of 

T is certainly no more than 22
| |T

. Since refinement is a partial ordering over partitions, a chain of refine-

ments cannot have cycles, and consequently cannot have more than more than 22
| |T

different values. (It 
can easily be shown that the true bound is actually | |T , but we do not need that here.) Hence a fixed 
point must be reached for ordinals corresponding to that cardinality. This establishes part (a).

Third, since Uτ is a fixed point of Ψ Φ( ( ))⋅ , if it is also locally simple, then it is homogeneous, by 
definition. By a simple transfinite induction using lemma 17, it follows that, if V is any homogeneous 
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refinement of U , then it is a refinement of Uτ . Hence, if U is locally simple, then it is the QHD of U
. This establishes (b). Conversely, if there exists a QHD W of U , then it is a refinement of Uτ . Thus 
Uτ must be locally simple; hence it is a homogeneous refinement of U ; hence it must be equal to W . 
This establishes (c).

Proof of Theorems 13 and 14

The construction in this proof is a little involved, so we will begin with a general overview and some 
motivation. Throughout this section, U is a path-connected partition of T and G is the corresponding 
transition graph.

The proof proceeds in two steps. First, we slightly extend the domain of transition graphs and gpaths, 
and we define a structure over this extension that is first-order equivalent to the structure 
≺ �DPATHU

p
U
p, ,L I over domain of paths in T . Second, we show that this extension can be modelled 

in the unextended structure ≺ �DGRAPHG
g

G
g, ,L I over the domain of gpaths through the transition 

graph.
The obvious difference between the DPATH domain and the DGRAPH domain is that the former 

has points and the latter does not. So we will need to extend the latter to have something corresponding 
to points; we will call these “gpoints.”

Moreover, if a cell has infinitely many points, then, in a first-order language with equality, it can be 
stated that it has at least k points for any finite k , and this must be true of the gpoints as well. Therefore, 
for any cell with infinitely many points, there must exist infinitely many gpoints. For a cell with a single 
point, such as cell B1a1 of Table 2, there must exists a single gpoint. Therefore, we adopt the following 
definition:

Definition 34 Let Ωbe an arbitrary infinite set. A gpoint of U is any pair 〈 〉U,ω where ω ∈ Ω . If U
is an infinite cell, then every such pair is a gpoint of U . If U is a singleton cell, then there is one such 
pair that is a gpoint of U . The set of gpoints of U is denoted “GPS( U ).” If x is a gpoint of U , then we 
say that U is the owner of x , written U O x= ( ) .

Typographically, we will use boldface, lower case symbols for gpoints as well as points.
We also need to construct extended gpaths, called “egpaths” to deal with two issues. First, a path 

starts and ends in a point; so a egpath must start and end in a gpoint. Second, there is again an issue with 
the number of paths. For any starting point x U∈ , ending point y V∈ and gpath β from U to V , there 
normally exist infinitely many paths π that start at x , end at y , and have trace β ; so there must exist 
infinitely many egpaths of this kind as well. There is one exception: if U is a singleton cell, then there 
is a single path that stays in U .

Definition 35 A singleton path is a path that remains in a single singleton cell.
Let Ω and ω0 be as above. Let β be a gpath. An egpath corresponding to β is a quadruple 〈 〉β ω, , ,x y

where x ∈GPS S( ( ))β , y ∈GPS E( ( ))β , and ω ∈ Ω . If β is not a singleton path, then any such qua-
druple is a egpath for β . If β is a singleton path, then there is one such quadruple that is the unique 
egpath for β . The set of all egpaths corresponding to β is written “EGPATHS(β ).” If γ ∈EGPATHS(
β ) we will write β γ= ( )O .
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The only properties of gpoints and egpaths that matter are (a) that a gpoint is in a cell; (b) that a 
gpoint is the start or end of an egpath; (c) that there are the right number (one or infinite) of gpoints and 
egpaths for each cell or gpath respectively.

We now define a collection of relations on the space of gpoints, cells, and egpaths.

EGPOINTSG = the union of GPS( V ) for V ∈CELLSG .

EGPATHSG = the union of EGPATHS(β ) for β ∈GPATHSG

DEGPATHS GPOINTS CELLS EGPATHSG G G G= ∪ ∪ .

EGING= { , |≺ �x V x ∈GPS( V ) }.

EGSTARTG= { , |≺ �γ V O V O( ) = ( ( ))γ γ∈ ∧GPATHSG S }.

EGENDG= { , |≺ �γ V O V O( ) = ( ( ))γ γ∈ ∧GPATHSG S }.

EGREMAINSG= { , | ( ) =≺ �γ γV O V〈 〉) }

EGCLOSEDTRANS FORWARDARCG G= { , , | ( ), ,≺ �≺ �γ γV W O V W ∈ }

EGOPENTRANS BACKWARDARCG G= { , , | ( ), ,≺ �≺ �γ γV W O V W ∈ }

EGSPLICEG= { , , | ( ) | ( ) = ( )}1 2 3 1 2 3≺ �γ γ γ γ γ γO O O .

Define the interpretation I e of Lp as mapping each symbol onto the corresponding relation over 
DEGPATHU and as mapping the constant symbols Ui onto the same cells as I p . Let S p be the struc-
ture ≺ �DPATHSU

p
U
p, ,L I and let Se be the structure ≺ �DEGPATHSG

p
G
e, ,L I

Definition 36 A subset MP of DPATHSU is matchable if it satisfies the following:

• MP is the union of CELLSU with a finite (possibly empty) set of points and a finite set of paths.
• If path π ∈MP , then S MP( )π ∈ andE( )π ∈ MP .

A subset ME of DEGPATHSG is matchable if it satisfies the following:

• MP is the union of CELLSG with a finite (possibly empty) set of gpoints and a finite set of 
egpaths.

• If egpath γ β ω= , , ,〈 〉 ∈x y ME then x ∈ME and y ∈ME .
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Definition 37 Let MP be a matchable subset of DPATHSU and let ME be a matchable subset of 
DEGPATHSU . A bijection ζ from MP to ME is a correspondence if for all m n MP, ∈ :

• If m CELLSU∈ then ζ( ) =m m .
• If m POINTSU∈ then ζ( )m EGPOINTSG∈ and O O( , ) = ( ( ))m mU ζ .
• If m PATHSU∈ then ζ( )m EGPATHSG∈ and O( ( )) = ( ( )), 4ζ m mU Z∆ Γ .
• If m PATHSU∈ and n POINTSU∈ then

[n S m= ( )  if and only if ≺ �ζ ζ( ), ( )m n EGSTART G∈ ] and
[n E m= ( )  if and only if ≺ �ζ ζ( ), ( )m n EGENDG∈ ].
Definition 38 Let µ µ1… k be variable symbols. Let σ be a valuation of the µi in DPATHSU and 

let τ be a valuation of the µi in DEGPATHSG . We say that σ and τ correspond if there exist set MP
and ME and a correspondence ζ such that for each variable µi , σ µ( )i MP∈ , τ µ( )i ME∈ , and 
τ µ ζ σ µ( ) = ( ( ))i i

From here the proof proceeds along standard lines for proof of first-order equivalence. We show 
that any matching valuations have extensions that are still matching; we show that atomic formulas are 
equivalent under matching valuations; and we show inductively that complex formulas are equivalent 
under matching valuations.

Lemma 18 Let σ and τ be corresponding valuations, and let φ be an atomic formula in I p . Then 
S �U
p ,σ φ if and only if S �U

e , τ φ .
Proof: Straightforward from the definitions, though lengthy. Check each predicate and equality in turn.
Corollary 19 Let σ and τ be corresponding valuations, and let φ be a quantifier-free formula in I p

. Then S �U
p ,σ φ if and only if S �U

e , τ φ .
Proof: Immediate from lemma 18.
Definition 39 If σ is a valuation and µ is a variable not in the domain of σ , then an extension of σ

to µ is a valuation that agrees with σ on all the variables in the domain of σ and assigns a domain 
value to µ .

Lemma 20 Let σ and τ be corresponding valuations. Let σ ' be an extension of σ to a new variable 
µ . Then there exists an extension τ 'of τ to µ such that τ ' corresponds toσ ' .

Conversely, if τ ' is an extension of τ to µ then there exists an extension σ ' to µ that corresponds to 
τ .

Proof of the first implication: Let ζ be a correspondence matching σ and τ and let MP and ME be 
the associated matchable sets. If σ µ'( ) ∈MP , then define τ µ ζ σ µ' '( ) = ( ( )) .

Otherwise, let m = ( )σ µ' .
If m is a point, define ζ '( )m to be ζ( )m if m MP∈ ; otherwise, to be a gpoint n such that 

O O( ) = ( , )n m U and n ME∈ . Let τ 'be the extension of τ with τ µ'( ) = n .
If m is a path, define ζ '( )m to be ζ( )m if m MP∈ ; otherwise, to be a egpath n such that 

O( ) = ( ( )), 4n mU Z∆ Γ and n ME∈ . Define ζ '(S m( ))and ζ '(E m( )) as above. Let τ µ'( ) = n .
It is immediate that ζ ' is a correspondence and that σ ' and τ ' are corresponding valuations. Note 

that this construction relies, first, on the fact that there are infinitely many gpoints for every infinite cell 
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and infinitely many egpaths for every gpath and every starting and ending gpoint; and, second, that it 
relies on theorem 4 that there exists a gpath corresponding to every path.

The proof of the second implication has exactly the same structure. Here, in going from egpaths to 
paths, we rely on corollary 7 to be sure that there is a path corresponding to every gpath and starting 
and ending point. ▪

Lemma 21 Let σ and τ be corresponding valuations, and let φ be a formula in I p . Then S �U
p ,σ φ

if and only if S �G
e , τ φ .

Proof by induction on the number k of quantifiers in φ . Assume that φ has been placed in prenex 
form. The case k = 0 is just corollary 19.

Suppose that φ has the form ∃µψ . Let free variables µ µ1… q be the free variables of φ . If S �U
p ,σ φ

then let m be an entity in DPATHSU such that the extension of σ , σ σ µ' = { }∪ →m satisfies S �U
p ,σ ψ'

. By lemma 20 there exists a valuation τ ' extending τ corresponding to σ ' . By the inductive hypoth-
esis, S �G

e , τ ψ' . Therefore S �G
e , τ φ .

The converse --- if S �G
e , τ φ then S �U

p ,σ φ --- is exactly analogous.
Suppose that φ has the form ∀ µψ . Then S �U

p ,σ φ if and only if S �U
p ,σ ψµ∃ ¬ which by the contra-

positive to the previous paragraph holds if and only if S �G
e , τ ψµ∃ ¬ , which holds if and only if S �G

e , τ φ
Corollary 22 The structures SU

p and SG
e are first-order equivalent; i.e, for any sentence φ ∈ Lp , S �U

p φ
if and only if S �G

e φ .
Proof: This is just the special case of lemma 21 for formulas with no free variables. ▪
We now show that the structure SG

e is definable in SG
g , using a definitional mapping that is indepen-

dent of G . To do this, we will have to model gpoints and egpaths in terms of cells and gpaths, which 
are all we have in SG

g , and we have to translate the predicates (including equality and the universal rela-
tion) of Lp into corresponding formulas in Lg . Neither of these is very difficult.

First, we need to model Ω . Since all we need out of Ω is that it should be infinite and that we can 
determine equality and inequality, we can just use GPATHSG itself, since there are always infinitely 
many gpaths (This is why we require that U has at least two cells).

If x U= ,〈 〉ω is a singleton gpoint—i.e. the unique gpoint in singleton cell U —then we choose ω
to be the gpath 〈 〉U . If γ β ω= , , ,〈 〉x x is a singleton path—i.e the unique path that remains in a single-
ton cell U —then again then we choose ω to be the gpath 〈 〉U .

We map any entity m G∈DEGPATHS to a quadruple over DGPATHSG .
Definition 40 Define the mapping Θ : ( )4DEGPATHS DGPATHSG G→ as follows:

• If m is the cell U then Θ( ) = , , ,m ≺ �U U U U .
• If m is the gpoint 〈 〉U,ω then Θ( ) = , , ,m ≺ �U U Uω .
• If m is the egpath 〈 〉β ω, , , 1x y where x = ( ), 2〈 〉S β ω and y = ( ), 3〈 〉E β ω

then Θ( ) = , , ,1 2 3m ≺ �β ω ω ω .
Note that if m is a singleton gpoint, then m1 is a singleton cell, Remains(m m2 1, ) and m m m1 3 4= =  

If m is a singleton egpath, then there exists a singleton cell U such that Remains(m1,U ), and 
m m m m1 2 3 4= = = .

.

.
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The following rules specify the translation of each relation of SG
e into a first-order definable relation 

in ( )4SG
g . We will write �m as an abbreviation for the tuple ≺ �m m m m1 2 3 4, , , . For readability, we will 

omit the subscript G, which applies to all the relations below.

Θ( ) = , , ,U U U U Ui i i i i≺ �

Θ( ) = { | = = = }1 1 2 3 4CELLS CELLS�
m m m m m m∈ ∧

Θ( )SINGLETON ={ | ( ) )}1

� �
m m m∈ ∧ ∈Θ CELLS SINGLETON

.

Θ( )
| 1 1 2 1 3 4

GPOINTS
SINGLETON REMAINS  
=

∈ ∧ ∈ ∧ = = ∨{ [ , ]
[

�
≺ �m m m m m m m

mm m m m m1 2 1 3 4∈ − ∧ ∈ ∧ = =CELLS  SINGLETON GPATHS ]
}

The definition of Θ (EGPATHS) is rather complicated, because we have to deal, both with singleton 
egpaths and with the cases of non-singleton egpaths that begin or end at a singleton point. Moveover, 
we have structured this definition to be purely existential, so as to support a translation of an existential 
formula in Lp into an existential formula in Lg ; the translation could be somewhat simpler if we allowed 
the use of universal quantifiers. We begin by defining some relations over DGPATHS.

SINGLETONPATH = { | ,γ γ∃ ∈ ∧ ∈U SINGLETONU U≺ � GREMAINS }

NONSINGLETONPATH =

{ |γ ∃U ≺ �γ, U ∈GSTART ∧ [ U U∈ ∨ ∈SINGLETON ≺ �γ, GREMAINS] }

SINGLETONSTART = { , | ,≺ �≺ �γ γU U ∈GSTART ∧ U ∈SINGLETON }

NONSINGLETONSTART = { | ,γ γ∃ ∈U≺ �U GSTART ∧ U ∈ SINGLETON }

SINGLETONEND = { , | ,≺ �≺ �γ γU U ∈GEND ∧ U ∈SINGLETON }

NONSINGLETONEND = { | ,γ γ∃ ∈U≺ �U GEND ∧ U ∈ SINGLETON }
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Θ( ) =
{ | = = =1 1 2 3 4

1 2 3 4

EGPATHS
SINGLETONPATH�

m m m m m m
m m m m
[ ]
[ , , ,
∈ ∧ ∨

∈∈ ∧ ∈ ∧

∈ ∨

∃

GPATHS NONSINGLETONPATH
NONSINGLETONSTART 

U

m
m

m

1

1

1

[
[ ≺ ,, ,
[

U  U� ≺ �∈ ∧ ∈ ∧

∈

SINGLETONSTART GREMAINS]] 
NONSINGLETONE

m
m

3

1 NND 
SINGLETONEND GREMAINS]] U

∨

∃ ∈ ∧ ∈[ , ,
]

≺ � ≺ �m m1 4

}

U  U

Θ Θ Θ Θ( ) = ( ) ( ) ( )DEGPATHS CELLS GPOINTS EGPATHS∪ ∪ .

Θ (EGIN) = { ≺ � � �m n, |
�
m ∈ Θ (GPOINTS) ∧ �n ∈ Θ (CELLS) ∧m n1 1= }.

Θ (EGSTART) = { ≺ � � �m n, |
�
m ∈ Θ (EGPATHS) ∧ �n ∈ Θ (GPOINTS) ∧≺ �m n1 1, ∈GSTART }.

Θ (EGEND) = { ≺ � � �m n, |
�
m ∈ Θ (EGPATHS) ∧ �n ∈ Θ (GPOINTS) ∧≺ �m n1 1, ∈GEND }.

Θ (EGREMAINS) =

{ ≺ � � �m n, |
�
m ∈ Θ (EGPATHS) ∧ �n ∈ Θ (GPOINTS) ∧≺ �m n1 1, ∈GREMAINS }.

Θ (EGCLOSEDTRANS) =

{ ≺ � � � �m n p, , |
�
m ∈ Θ (EGPATHS) ∧ � �n p, ∈ Θ (CELLS) ∧≺ �m n p1 1 1, , ∈FORWARDARC }.

Θ (EGOPENTRANS) =

{ ≺ � � � �m n p, , |
�
m ∈ Θ (EGPATHS) ∧ � �n p, ∈ Θ (CELLS) ∧≺ �m n p1 1 1, , ∈BACKWARDARC }.

Θ (EGSPLICE) = { ≺ � � � �m n p, , |
� � �
m n p, , ∈ Θ (EGPATHS) ∧≺ �m n p1 1 1, , ∈GSPLICE }.

Θ (=) = { ≺ � � � � �m n m n, | , ∈ Θ (DEGPATHS) ∧ � �
m n= } .

That completes the definition of Θ .
Lemma 23 For any relation Φ in SG

e and entities x x DEGPATHSk G1… ∈ ,
≺ … �x xk1 ∈ Φ if and only if ≺ … �Θ Θ Θ Φ( ) ( ) ( )1x xk ∈ .
Proof: Long but straightforward case analysis. Each case follows immediately from the definition.
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Lemma 24 The structure SG
e is first-order definable in terms of SG

g . Moreover, the form of the defi-
nition is independent of G .

Proof: Immedate from lemma 23.
Theorem 10 There exists a linear-time function Ap that maps every sentence in Lp to a sentence in 

Lg satisfying the following. Let T be a Hausdorff space, let U be a path-connected partition over T with 
at least 2 cells, and let IU

p be the interpretation of Lp in DPATHSU defined above. Let G be the transi-
tion graph corresponding to U and let IG

g be the interpretation of Lg in DGRAPH G defined above, such 
that for each symbol Ui , I IG

g
i U

p
iU U( ) = ( ) . Let Φ be any sentence in Lp . Then Φ holds in the structure 

≺ �DPATHU
p

U
p, ,L I if and only if Ap( )Φ holds in the structure ≺ �DGRAPH G

g
G
g, ,L I .

Proof: Immediate from corollary 22 and lemma 24. ▪
The proof of theorem 14 is exactly analogous. Extended ILS’s are defined analogously to extended 

gpaths. One can then prove that the structure over extended ILS’s is elementary equivalent to the Z5 
structure of paths, and is definable in the structure of unextended ILS’s.


