
COGNITIVF SCIENCF 2, 277 282 tl978)

Tarskian Semantics, or
No Notation Without Denotation!

DREW MCDERMOTT
Yale Universit)'

Tarskian semantics is called "Tarskian" for historical reasons (Tarski,
1936). A more descriptive name would be "systematic denotational
semantics," or SD for short. The method is called "denotat ional" because it
specified the meanings of a notation in terms of what its expressions denote.
The method is called "systematic" in hopes that the rules that assign meaning
are precise enough to support statements and occasionally proofs of
interesting properties of the notation.

In a typical predicate calculus, we assign to primitive symbols denotations
which consist of objects, functions, or predicates. Then the meanings of more
complex expressions are defined by rules which define their meanings in
terms of the meanings of their parts. For sentences in such a language, this
amounts to specifying the conditions which make any given sentence true.

That is, the meaning of a sentence is a specification of what would make it
denote T and what would make it denote NIL. This specification may thus be
thought of as a generalization of an ordinary LISP predicate definition.

For example, we may assign to the predicate symbol PTRANS a predicate
which is true only if its first argument has ever caused its second argument to
be physically transferred from its third argument to its fourth argument. Then
the denotation of (ACTOR x ¢=~ PTRANS OBJ y FROM u TO v) should be T
just if the denotation of x has ever transferred the denotation of y from the
denotation of u to the denotation of v. (This is a long-winded way of writing a
typical semantic rule, which maps the syntax of an expression into a
denotation systematically. Syntax is not an issue in this paper, but notice that
the use of SD does not commit us to any syntax in particular, so long as it is
precise.) It is clear that the first argument of the denotation of PTRANS
should be an animate agent; its second, a physical object; its third and fourth,
places. If we wish to be precise, we must somehow forbid incongruous types to
appear in these places, or go on to specify what the denotation (ACTOR x ¢e~
PTRANS OBJ y FROM u TO v) is when x, y, u, or v is incongruous.

So far this may seem very fluffy stuff. What have we gained by (apparently)
just repeating in the semantic domain what is fairly obvious in the first place?
Mainly we have gained a certain commitment . By actually pinning ourselves
down, for example, to the requirement that a PTRANS expression signifies

278 MCDERMOTT

that a transfer ever occurred, we are in a position to pass judgment on the
truth of certain inferences, and on systems which license them

The real power of this method appears when we embed the notation in an
inference system of some kind. For example, say we require the inference rule,
" I f (ACTOR x ¢e~ PTRANS OBJ y FROM u TO v), then infer (ACTOR y IS
(LOC VAL v))." (Where is IS-LOC-VAL construct is to mean that x has at
some time been at v). Given an SD interpretation of this notation, we can ask,
ls this rule sound? That is, is it true that ifx ever transfers y to v, y will at some
time have been at v? The answer is clearly yes. On the other hand, consider the
rule, "If (ACTOR y IS (LOC VAL vl)) and (NOT (EQUAL vl v)) and (NOT
(ACTOR x ¢~ PTRANS OBJ y TO v)) then (NOT (ACTOR y IS (LOC VAL
v)))." If our intent is to capture the idea that nothing moves without a
PTRANS, we have failed, since, by the interpretation we are building, there is
no time relation between the hypothesized PTRANS and the statement (NOT
(ACTOR y IS (LOC VAL v))). The rule for NOT will map (NOT p) into T just
in case p is mapped into NIL, but this will happen only if the denotation o fy
has never been and never will be at the place denoted by v. So the rule says, "If
y has been some place besides v, and some agent x has never transferred y to v,
then y has never been at v." This rule is simply false. Of course, this one test
does not mean there is no way to express what we want in this language, but it
means the obvious way will not work. (And it provides a strong intuitive
argument that this particular language requires extension to be able to denote
particular times and events, and quantifications over them.)

Sometimes the precise study of semantics does enable us to make
generalizations about everything statable or derivable in an inference system.
In particular, we would like to know when a system allows us to infer too little
or too much. The Holy Grail of this study is a theorem to the effect that, given
an intuitively appealing assignment of meanings to the expressions of a
system, its inference rules entitles us to infer exactly the true sentences (those
with value T), no more and no less. Such a result is called a completeness
theorem. Often we have to settle for less, and prove only that the inferences
allowed by the system are true. This is a proof of soundness and consistenc.v.

Even when a system is too complex or evolving too fast for these proofs to
be available, the application of SD in an informal way can still be valuable.
Here the method suggests a strong self-discipline to be applied in considering
adding a rule or predicate symbol to the system. This discipline amounts to
asking, Does this new construct denote something we can pin down? Is a
proposed rule true? If we cannot answer this question, we have no way of
foreseeing all the interactions of new constructs with old. Even if we must
persist in adding a new rule "blindly," this attitude warns us to be on our
guard.

This advice may seem vacuous, but it has application to real AI systems.
For example, it puts a heavy burden on designers of production systems.

TARSKIAN SEMANTICS 279

These are systems of rules of the form "condition - - action," where the
condition is to match some memory structure and prescribe an action which
changes that structure. If the conditions can be given a precise semantics, and
if the actions are always of the form, "infer p," we can give an obvious
denotational semantics to the rules, and there will be no loose ends. (MYCIN
(Shortliffe, 1976) is like this, more or less.) Unfortunately, these restrictions
are not met by many such systems. This means that there is no way to say
whether a particular rule is sound, without studying the entire system of
which it is a part (and even then it is not clear what sort of statement we would
like to make about it).

Consider the A M O R D system of de Kleer, Doyle, Steele, and Sussman
(1977). This is for the most part a very well-disciplined production system
where the rules can be given an SD semantics. Its rules are used uniformly as
"forward deduction" rules: a - - b is used just to infer b after a has been inferred
(Notice that heretofore I have not mentioned inference procedure; in practice
one must distinguish between all inferences that are allowed and the subset
that a particular procedure actually does.) What if we want to use the same
abstract rule to try to prove a as a subgoal of trying to prove b? We can write
this as "b -- a." and define "back-ar row" thus:

(q --p) - - ((show q) -- (show p))

That is, "F rom q -- p, infer that if it is inferred that q is a goal, infer that p is a
goal." Both of these symbols, - - and SHOW, are defined by the user, not the
system. S H O W can be used to define other goal-oriented constructs. For
example, when the goal of proving a conjunction comes up, it is handled by a
rule like this (don't worry too much about understanding it):

(show (p & q))
-- { (show p)

(p- -{ (show q)

(q - - (P & q))l)]

which means, aplfarently, " I f you wish to show p & q, then you wish to show
p, and if p is concluded, you then wish to show q; i fp and q are concluded, you
may then infer p & q." I say "apparent ly" because we have not really given a
meaning to SHOW, and hence are in no position to judge the soundness 'of the
conjunction rule. You might think (SHOW p) means, "The system is
currently interested in the truth of p," but what does (SHOW (ON X
BLOCK I)) mean, when X is a variable? Is X to be thought of as universally
quantified? That is, is the system, for all X, interested in the truth o f (O N X
BLOCK 1)? This seems doubtful. For instance, i f A M O R D were to be used as
an insurance-company data base, we might have a rule:

(show (health john-doe x))
- - (do (cancel-policy john-doe))

280 MCDERMOTT

meaning, apparently, " I f someone is interested in John Doe's health, cancel
his policy." (Perverse, but not inconceivable for an insurance company.). But
then assertion o f (S H O W (HEALTH Z BAD)), meaning, "I am interested in
whose health is bad," will trigger the rule and cause John's policy to be
cancelled. This is not just unfair, it is unsound.

This does not mean A M O R D is worthless. It just means it is unanalyzable
at a crucial point. Most of the time the semantics of the system is well-
behaved; in fact, it uses a version of the well-understood resolution rule of
inference. But there are times when the only thing between the system's user
and nonsense is caution on the part of the user not to push the SHOW symbol
too far. (Not that he knows how far that is.)

Other examples abound. Any system which consists of undisciplined LISP
programs is resting on rules whose soundness (and meaning) are in doubt. A
system like KRL (Bobrow & Winograd, 1977), which consists of a splendid
edifice of notation with no denotation, is a castle in air. Who can say whether
two KRL expressions conflict, for instance? Similar criticisms can be made of
KRL's cousins, the semantic networks (see Woods, 1975).

I realize that some A1 people are liable to resist these ideas stubbornly.
They are likely to ask why we should bother with the immediate goal that an
inference system be sound, since in the long run the only criterion for such a
system is whether it "works." Further, since inference procedures for practical
reasons, are bound, to be incomplete with respect to their host inference
systems, why insist that the host systems be complete semantically?

The answer is this: It is not just important that a system be correct; it is also
crucial that it be understood. Granted that a practical system will be
incomplete, we should be able to say in what ways it is incomplete, and why.
(For this reason, in the long run, the study of the complexity of inference
procedures will be as important as the study of the semantics of inference
systems.) After all, a practical program will never be "finished"; it would be
nice to know that whatever fragment of one exists will maintain its integrity as
new rules are added or new applications are made of old rules. We would like
our programs to be "additive," that is, to be abre to assimilate new, correct
rules from experts without destroying the correctness of old ones. (At least we
would like, as in the MYC1N system, for the correctness of old rules to depend
on criteria explicit enough for the system to maintain them (Davis, 1976).)

It would perhaps be surprising for an outsider to learn that computer
scientists, in spite of the fact that they study purely formal objects like
programs and data structures, have a pronounced "anti-formalist" streak.
This arose initially from the painful discovery that even the most formal
objects have to be debugged. In AI, it comes from our early experience that
only trivia could be formalized. Impressive AI programs have been too
complex. However, we should not let this stop us. It may be true that formal
theories must always remain the study of ideal cases. This has been true in

TARSKIAN SEMANTICS 281

physics, without causing it any harm. (It is difficult to see how physics could
have progressed without the ideal gas.) It is also true that formal inquiry will
always depend on an influx of good ideas and urgent requirements from the
empirical exploration of practical programs. Large practical programs are,
however, likely to collapse under their own weight without a good
foundation. The structure of programs like A M O R D and MYCIN seems to
me revealing: they consist of a secure semantic base and patchwork in the
poorly understood areas. They work, but, more important , experience with
them tells us how to fill in the gaps, so that the next wave of programs can go
forward.

Let me now deal with a few more specific objections to "Tarskian
semantics." First, there is the objection that. "People do not carry Tarskian
semantics around in their heads, so Tarskian semantics is of no concern to AI
researchers interested in the way people do things." The premise here is true,
the conclusion false. Even the wildest denotationalist has not claimed that
semantics should be located "in the head" of a robot. The semantics is for our
use, as a tool in analyzing knowledge representations. Of course, if our goal is
to duplicate the human representational system, it is not enough to be
systematic; we must also be accurate.

The objection has been made that denotational semantics cannot be the
semantics of natural language in all its glory. This may or may not be true (if
"denotat ional" is construed broadly), but has nothing to do with its use as a
semantics of internal knowledge structures.

One weakness of systematic denotational semantics as developed so far is
that it has been mainly a tool of philosophers and logicians, whose goals are
rather different from ours. Much of what they have done is of no interest to
us, and questions of burning importance to AI they have left untouched. For
example, it is characteristic of all logical systems that adding new axioms to a
system leaves all old inferences valid. This property is called "monotonic i ty"
(by Minsky, 1974). There is no way to say, for instance, " I f you have car keys
and gasoline (or money), and there is no information ruling it out, you may
use your car to go distances up to a few hundred miles." (Then the required
inference may be blocked by the addition of the axiom. "Someone has stolen
your tires.") However, this is no objection to denotational semantics as such,
but raises the technical problem within denotational semantics of repre-
senting". . , is not ruled out." Much progress has already been made on the
practical side of developing programs that can handle constructions like this,
but the underlying theory needs work.

There is another area in which most (but by no means all) logicians' results
have been inadequate. I said earlier that the denotation of a proposit ion was
always T or NIL. This is called extensional semantics, and is standard for
mathematical applications. If our language includes a predicate like
"BELIEVES," this is inadequate. Consider a proposition like (BELIEVES

282 MCDERMOTT

MARY (FAT JOHN)).'Clearly, the truth value of this proposition does not
depend at all on the truth value of (FAT JOHN). So, if the denotation of a
formula is to depend only on the denotations of its parts, formulas will have to
denote more abstract entities, and have truth values only indirectly. This is the
object of intensional semantics (Bressan, 1972).

Systematic semantics is a method for solving representational problems,
not a catalogue of solutions. We still do not know how to represent time,
space, creation and destruction of individuals, knowledge, individuals made
out of liquids (Hayes, 1974), and procedures. We will make faster progress on
these problems if we keep semantics in mind.

ACKNOWLEDGMENTS

I wish to thank David Barstow. Eugene Charniak, and Patrick Hayes for ideas and criticism. (I
haven't bothered to repcat many complementary remarks on semantics made by Hayes (1977).)

REFERENCES

Bobrow. D. & Winograd, T. An overview of KRL, a knowledge representation language.
Cognitive Science. 1977. /. 3.

Bressan. A. A general interpreted modal calculus. New Haven: Yale Univ. Press. 1972.
Davis. R. Applications of meta level knowledge to the construction, maintenance and use of

large knowledge bases. Stanford AI Laboratory Memo 283. Palo Alto. California, 1976.
Hayes. P, .I. Some problems and non-problems in representation theory. Proc. AISB, 1974, 1.

63.
de Kleer, J. Doyle, J., Steele. G. L. & Sussman, G. J. Explicit control of reasoning. MIT AI

Laboratory Cambridge, Mass., 1977 Memo. 427. Also in Proceedings of the conference on A1
and Programming Languages, Rochester. New York.

Minsky. M. A framework for representing knowledge. MIT AI Memo 306. Cambridge, Mass.,
1974.

Shortliffe. E. H. Computer-based medical consultations: MYCIN. New York: American
Elsevier. 1976.

Tarski, A Der Wahrheitsbegrifl in den formalisierten Sprachen. Studia Philo.~. 1936, 1. 261.
Woods, W. What's in a link? In D. G. Bobrow & A. Collins (Eds.), Representation and

under.wamling. New York: Academic Press. 1975.

