
Programming Assignment: Network Connection
Chapter 7: Linear Algebra and Probability for Computer Science Applications

Consider the following situation: There is a network of links between nodes — that is, an undirected
graph whose vertices are the nodes and whose edges are the links. Each links fails with probability
P . You wish to know what is the probability that K pairs of nodes are connected, for K between 0
and N(N − 1)/2 where N is the number of nodes.

Part A

Write a program NumConnectedPairs(E,P) that takes as input a symmetric array E of 1’s and 0’s
corresponding to the network and a probability P that any given link will fail. It should return
a probability distribution D such that D[I] is the probability that exactly I pairs of cities are
connected. This omits the probability that no cities are connected, which is always just PL where L
is the number of links.

There is no polynomial-time solution to this problem, so you should just use exhaustive enumeration;
consider all possible subsets of the links, and for each, compute their probability and the number of
pairs of nodes connected, and add up the total probability for each.

For a given subnetwork, the number of pairs connected can be computed as follows: Use a depth-first
search to divide the network into connected components. Then each connected component of size
K connects K(K − 1)/2 pairs of nodes.

For instance, consider the simple network of three cities shown below and suppose that each link
can fail with probability 0.2.

1 3 42

The corresponding function call would be

E=[0,1,0,0; 1,0,1,0; 0,1,0,1; 0,0,1,0];

P=0.2;

NumConnectedPairs(E,P)

Since there are three links, there are 8 possible sub-networks. These are shown in the table below.

Case Active links Pairs connected Probability
1. 1-2, 2-3, 3-4 6 0.512
2. 1-2, 2-3 3 0.128
3. 1-2, 3-4 2 0.128
4. 1-2 1 0.032
5. 2-3, 3-4 3 0.128
6. 2-3 1 0.032
7. 3-4 1 0.032
8. ∅ 0 0.008

1



Therefore the probability is 0.096 that 1 pair of cities is connected; 0.128 that 2 pairs are connected;
0.256 that 3 pairs are connected; and 0.512 that 6 pairs are connected. So the function should return
[0.096, 0.128, 0.256, 0, 0, 0.512]

Part B

In the same situation as part A, write a function ProbConnected(E,P,PairA) where E and P are the
same as in part A, and PairA is a pair of nodes. For instance, in the above example with the same
values of E and P, ProbConnected(E,P,[1,2]) should return 0.8 and ProbConnected(E,P,[1,4])

should return 0.512.

In this case the probability is easily computed, but that will not be the case in general; you should
carry out the same enumeration of cases as in part A.

Part C

In the same situation as part A, write a function CondProbConnected(E,P,PairA,PairB,BConn)

where E and P are the same as in part A; and PairA and PairB are each a pair of nodes. If BConn=1
then the function returns the conditional probability that PairA is connected given that PairB is
connected; if BConn=0 then the function returns the conditional probability that PairA is connected
given that PairB is not connected.

For instance, in the above example
CondProbConnected(E,P,[1,2],[1,4],1) should return 1.
CondProbConnected(E,P,[1,2],[1,4],0) should return 0.5902 (Cases 2,3,4 out of cases 2-8).
CondProbConnected(E,P,[1,4],[1,2],1) should return 0.64.
CondProbConnected(E,P,[1,4],[1,2],0) should return 0.
CondProbConnected(E,P,[2,4],[1,3],1) should return 0.8.
CondProbConnected(E,P,[2,4],[1,3],0) should return 0.3556 (Case 5 out of cases 3-8).

For all three parts of this problem it is OK to write an exponential space solution (i.e. one that
essentially generates the table above as a data structure), but it is certainly better to write code
that requires only reasonable amounts of memory, though an exponential amount of time.

2


