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Abstract

Direction fields, line fields and cross fields are used in a variety
of computer graphics applications ranging from non-photorealistic
rendering to remeshing. In many cases, it is desirable that fields ad-
here to symmetry, which is predominant in natural as well as man-
made shapes. We present an algorithm for designing smooth N-
symmetry fields on surfaces respecting generalized symmetries of
the shape, while maintaining alignment with local features. Our for-
mulation for constructing symmetry fields is based on global sym-
metries, which are given as input to the algorithm, with no isome-
try assumptions. We explore in detail the properties of generalized
symmetries (reflections in particular), and we also develop an algo-
rithm for the robust computation of such symmetry maps, based on
a small number of correspondences, for surfaces of genus zero.

CR Categories: I.3.5 [Computer graphics]: Computations geom-
etry and object modeling—Curve, surface, solid and object repres.

Keywords: symmetry, n-rosy field, quad mesh

Links: DL PDF

1 Introduction

Many geometry processing applications require the construction of
N -symmetry (a.k.a. N -RoSy) fields on surfaces, i.e., fields that as-
sociate to every point a set of N unary vectors forming equal an-
gles between radially consecutive directions. For example, a line
(2-symmetry) field can be used to guide texture placement or tex-
ture synthesis, as well as for anisotropic smoothing or text place-
ment; a cross (4-symmetry) field is useful for constructing quad-
rangulations, for anisotropic remeshing, and for supporting non-
photorealistic rendering; 6-symmetry fields have been used very re-
cently to support hexagonal parametrization [Nieser et al. 2012].

In most cases, it is desirable for the fields to respect the symmetries
of surfaces: meshes respecting symmetry are visually preferable
and reduce deformation/animation artifacts; patterns and small-
scale geometry (for example, fish scales or fur) are often required
to follow the shape’s symmetries. Figure 1 shows field-aligned
parametrization using cross field constructed with our method, side
by side with the mixed-integer quadrangulation (MIQ) field of
Bommes et. al.[2009]. We highlight field singularities, as well as
some integral lines to emphasize the symmetry aspect of the fields.

The goal of this work is to provide an algorithm for the construc-
tion of quasi-symmetric N -symmetry fields on surfaces with sym-
metry, which strikes a balance between three important properties

of fields: symmetry, smoothness, and alignment with local geome-
try; we found this combination to be essential: while coarse global
symmetry is highly desirable, alignment with local, possibly non-
symmetric features is necessary as well, and smoothness must be
always guaranteed. These fields can be used, e.g., to generate a
quadrangulation; there is no guarantee that the resulting quadran-
gulation is fully symmetric, though.

To construct symmetric fields, we need to choose a class of surface
symmetries (i.e., mappings of the surface to itself identifying sym-
metric points) that the fields can adhere to, and methods to construct
such mappings. Most works on symmetry detection consider iso-
metric maps (either intrinsic or extrinsic) as the principal model for
symmetries, and make the assumption that the relevant symmetries
are close to isometric. We formulate our algorithm for a broader
class of generalized symmetries based on surface diffeomorphisms,
without making any assumption about isometry.

There are three-fold advantages to this approach: (1) our method
for symmetric field construction is less dependent on specific as-
sumptions about the symmetry maps; (2) we can handle signifi-
cant local deviations from isometry gracefully; and (3) in the case
of genus zero surfaces, the concept of generalized symmetries and
their properties lead to a robust and efficient algorithm for com-
puting symmetry maps from a small number of correspondences.
While our symmetric field construction algorithm can use symme-
try maps produced by different algorithms, we demonstrate that the
new algorithm yields substantially better quality.

To summarize, the main contributions of our work include

1. the introduction of generalized symmetries, with focus on
generalized reflections, and invariant N -symmetry fields;
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Figure 1: Field-aligned parametrization of the knelt human model
using the symmetry field construction method developed in this
paper, and using the MIQ technique of Bommes et. al.[2009].
Red/blue bullets represent field singularities with positive/negative
index. Red lines trace flows of the cross field.
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2. an algorithm that takes in an input symmetry map and builds a
quasi-symmetric N -symmetry fields, which maintains align-
ment to local (possibly asymmetric) features - the single tun-
able parameter is used to adjust the relative importance of
symmetry vs smoothness in the output (see Figure 2);

3. an algorithm for computing generalized intrinsic reflection
maps of surfaces of genus zero, providing robust input for the
symmetric field computation algorithm.

Figure 2: Global symmetry vs local alignment on a synthetic
model: (left) non-symmetric field obtained without symmetry de-
tection; note the global bias introduced by local features; (center)
direct field symmetrization transfers singularities also to the smooth
side; (right) local alignment allows to combine global symmetry
with local feature alignment.

2 Related work

N-symmetry fields. A variety of methods were proposed for
cross field and more generally N -symmetry field construction. A
number of methods rely on manually placed singularities and other
user-specified information [Ray et al. 2008; Crane et al. 2010; Lai
et al. 2010]. As for shapes even of moderate complexity defining all
singularities especially in a symmetric way is difficult, our method
computes singularity positions automatically, based on the Mixed-
Integer (MIQ) algorithm of [Bommes et al. 2009]. In this method,
extending [Ray et al. 2008], fields are represented by per-triangle
angles in fixed frames, and matchings on edges, indicating the ad-
ditional kπ/N rotation of the field to transition between adjacent
faces. MIQ [Bommes et al. 2009] uses a greedy strategy to make
the field as smooth as possible, with both angles and integers k as
variables. Other methods include nonlinear optimization [Hertz-
mann and Zorin 2000; Ray et al. 2006; Ray et al. 2009] also using
angles to represent fields, and a linear optimization of a tensor field
representation [Palacios and Zhang 2007]. As far as we know, no
construction takes symmetry of the domain into account.

Line fields, cross fields and 6-symmetry fields have been used
to compute mesh parametrization and surface remeshing. Field-
alignment techniques [Ray et al. 2006; Kälberer et al. 2007;
Bommes et al. 2009; Nieser et al. 2012] adapt a parameterization to
a shape by fitting the parametrization gradient to smoothed princi-
pal curvature directions, or more generally, to a smooth field cap-
turing surface features. The topological structure of the field (sin-
gularities and separating lines) indirectly determines how fine the
domain mesh can be. Some recent results address domain simpli-
fication by either reducing the number of singularities [Peng et al.
2011] or disentangling the graph of separating lines [Bommes et al.
2011; Tarini et al. 2011].

Symmetry detection methods. Several techniques based on
voting have been proposed in the literature to detect either global or

partial extrinsic symmetries. In [Podolak et al. 2006; Cailliere et al.
2008], symmetry planes are detected, while symmetric patches are
found in [Mitra et al. 2006]. PIRS [Xu et al. 2009] extends the
voting approach to find stationary lines of partial intrinsic sym-
metries. However, PIRS does not provide a dense map of corre-
spondences, and the detection of the stationary line for approximate
(non-isometric) symmetries is not stable enough to support our al-
gorithm.

Other techniques reduce intrinsic symmetry to extrinsic by
“straightening” objects through deformation. [Mitra et al. 2007]
proposed a fully automatic method, which works for symmetric
objects with multiple extrinsic symmetries, based on [Mitra et al.
2006]. A similar approach is proposed in [Kazhdan et al. 2009;
Ghosh et al. 2010], requiring manual input for the starting phase.
These approaches do not provide a dense map of correspondences.

In [Golovinskiy et al. 2009; Podolak et al. 2007] some of the above
methods are combined with mesh simplification techniques to pro-
duce symmetric triangle meshes.

A few other works address intrinsic symmetry through embedding
methods that either reduce intrinsic to extrinsic symmetry [Ovs-
janikov et al. 2008], or factor out symmetry by mapping sets of
symmetric points to a single point in an embedding space [Ovs-
janikov et al. 2010; Lipman et al. 2010]. These techniques are fully
automatic; they may provide a dense (in a vertex-to-vertex sense)
mapping of symmetries; and they may be easily generalized to find
the stationary line. However, they are not robust to surface defor-
mations that break isometry.

Embedding techniques, as well as voting techniques, do not ex-
ploit spatial coherence: point-to-point symmetry is estimated with-
out taking into account what happens at nearby points. For this
reason, they may be prone to errors such as false matchings and
discontinuous mapping, which may severely hinder the application
of extracted maps for our purposes.

Most recent approaches exploit spatial coherence by using surface
parametrization: [Kim et al. 2010; Kim et al. 2011] present fully
automatic methods that first find sparse matchings of symmetric
points, and then apply a Möbius transform that realizes extrinsic
symmetry in parameter space, assuming a topologically restricted,
conforming parametrization. These methods can provide continu-
ous mappings of symmetries, but they are prone to severe errors in
the presence of false matchings during the coarse phase.

To the best of our knowledge, approximate intrinsic symmetries in
the non-isometric case have been addressed only in [Raviv et al.
2007; Raviv et al. 2010] by using an alternative definition to the
one we present in Section 3. However, their definition (even in
the continuous case) does not imply a smooth diffeomorphism: the
derived algorithms are combinatorial in nature and they are meant
more to assess the degree of non-isometry than to detect an explicit
map of symmetry.

Given a set of few symmetric landmark pairs, one can think of using
inter-surface mapping methods for building the symmetry map. A
common approach is to find a common parametrization domain for
the two surfaces [Praun et al. 2001]. Later work [Kraevoy and Shef-
fer 2004; Schreiner et al. 2004] developed automatic algorithms to
find a suitable base parameter meshes. However, these methods are
general and do not exploit the fact that the final map should be a
symmetry. For example, in case of bilateral reflective symmetry
these methods will not force the existence of a stationary closed
curve, as we require for our field construction.

3 Symmetric fields

Symmetries on a surface are usually defined as isometric automor-
phisms: extrinsic symmetries preserve Euclidean distance, while



intrinsic symmetries preserve geodesic distance. The class of in-
trinsic symmetries trivially includes the class of extrinsic ones.

In practice, few surfaces have perfectly isometric symmetries, and
deviations, sometimes quite large, need to be allowed.

To be able to handle such maps, we regard any smooth automor-
phism of a surface as a symmetry, and we focus on topological
properties, as it is common in mathematical study of symmetries of
surfaces (cf. [Farb and Margalit 2011]).

We considerN -symmetry fields defined on 2-manifolds, as defined
in [Ray et al. 2008], and we study the properties that one such field
must have to comply with a given symmetry on its domain. In
Section 6, we discuss the generalization to sets of symmetries.

3.1 Generalized reflections

We focus on reflections, which account for most global symmetries
observed in real objects. A reflection g and identity form a finite
group of transformations, and each point has an orbit with respect
to this group consisting of two points. In the extrinsic isometric
case, all global symmetries for compact objects can be composed of
reflections, as any 3D rotation can be decomposed into two reflec-
tions. While objects with rotational but no reflectional symmetries
do exist, they are relatively rare.

Figure 3: Two models with non-isometric symmetry: the stationary
line is depicted in magenta; our algorithm computes a field that re-
spects these generalized symmetries. Fields rendered with hatching
from [Palacios and Zhang 2011].

A diffeomorphism g : M → M is a smooth map with a smooth
inverse from the surface to itself. M(g) denotes the stationary set
of g, i.e., the set of points p of M for which g(p) = p. For a point
p on M , TpM is the tangent plane at p. The differential of g at
p, Dgp : TpM → Tg(p)M maps tangent vectors at p to tangent
vectors at g(p).

Generalized reflections. We adopt the following definition of a
generalized reflection (cf. [Koszul 1965]):
Definition 1. A reflection on M is a diffeomorphism g, such that
g(g(p)) = p for all p ∈ M , and the set of non-stationary points of
g is nonempty (hence g is not the identity) and disconnected.

Stationary points of symmetry mappings g play a particularly im-
portant role in the symmetric field construction of Section 4. For
a generalized reflection g, it turns out that the local behavior near
stationary points is similar (although not identical) to the behavior
of isometric reflections.
Lemma 1. Let g be a reflection. If p is a stationary point of g, then:

1. the differential Dgp has a stationary direction sp;

2. for a choice of an orthonormal coordinate system on Tp the
differential Dgp has the form[

1 c
0 −1

]
.

3. [Montgomery and Zippin 1955] There is a neighborhood
U(p), and a choice of smooth coordinates h : U → R2 sys-
tem on U such that g in these coordinates is a linear transfor-
mation Ag , i.e.

g = h−1 ◦Ag ◦ h (1)

We prove this Lemma in the supplementary material.

In the proximity of the stationary line, Dg behaves as a linear re-
flection combined with a shear, and the value of factor c determines
the amount of shear. If a map is conformal it follows that c = 0 and
g is isometric at stationary points.

Global properties of generalized reflections are also similar to the
familiar reflections about a symmetry plane of an object [Koszul
1965]. More specifically, the following proposition holds.
Proposition 2. If g is a reflection on M , then:

1. g is orientation-reversing;

2. the stationary set of g is a set of closed smooth curves on M
(it generalizes intersection with the symmetry plane);

3. M ′ = M \M(g) consists of two connected components M1

and M2

4. g maps M1 and M2 to each other.

An important consequence of Proposition 2 is the following.
Corollary 3. For surfaces of genus zero (1) holds globally, i.e. for a
generalized reflection g there is a diffeomorphism onto the extended
complex plane1 h : M → Ĉ, such that g = h−1 ◦ A ◦ h, where A
is a reflection, A(z) = z.

The proof of the proposition and the corollary can be found
in the supplemental material. We construct this type of global
parametrization for genus zero surfaces in Section 5.

3.2 N -symmetry fields

AN -symmetry field v on the surface is an assignment to every point
p ∈ M (excluding a set isolated singularities) of N unit vectors
v1, . . . , vN lying on the tangent plane TpM and forming equal an-
gles of 2π/N between adjacent vectors. The most common and
useful examples are direction fields, line fields, cross fields (i.e.,
1-symmetry, 2-symmetry and 4-symmetry fields, respectively) and
6-symmetry fields. We primarily focus on cross fields, but the algo-
rithm described in Section 4 applies to any value of N , and would
be easily adapted to non-unit fields.

Transport of N -symmetry fields. To define N -symmetry fields
that respect a symmetry map g, we need a way to compare the val-
ues of the field at symmetric points. In order to do this, we must
be able to transport the symmetry field at a given point p to the
tangent plane at g(p). The differential Dg defines a natural map
TpM → Tg(p)M for vector fields. If Dg is orthogonal, then it
can be trivially extended to transport any N -symmetry field: the N
vectorsDg vi(p) form aN -symmetry value (a set ofN unit-length
vectors separated by equal angles). In a more general case of N -
symmetry fields, Dg applied to the component vectors of the field
does not yield a new N -symmetry value unless Dg is an isome-
try. Broadening the class of fields we consider is possible, but un-
desirable, as many target algorithms expect orthogonal directions.
Instead, we define an orthogonal transport TpM → Tg(p)M asso-
ciated with g, as the closest orthogonal transform Rg to Dg. As g
is orientation-reversing, this transform is a reflection. See Figure 4
for illustration.

1The extended complex plane is the complex plane C =

{x + iy | x, y ∈ R} with infinity added to it, that is Ĉ = C ∪ {∞}.



g

p0

M

uv
Dgp(u) Dgp(v)

Rg
p(v)Rg

p(u)

p
TpM Tp0M

M(g)

Figure 4: Summary of notation for surface M with non-isometric
reflection g. Orthonormal vectors u and v are transported to non-
orthonormal orange vectors by differential Dg and to orthonormal
red vectors by its closest orthogonal transform Rg .

We map theN -symmetry field v using the closest orthogonal trans-
form Rg to Dg, which can be obtained from the unique polar de-
composition

Dg = RgSg, (2)

where Rg is orthonormal and Sg is symmetric positive definite2.
Note that, if g is an isometry, we trivially have Dg = Rg .
Lemma 4. Rg(p) : TpM → Tg(p)M continuously depends on
Dg, and if g is a reflection, then for every p ∈ M , and for any
N -symmetry field v, we have v(p) = Rg(g(p))Rg(p)v(p).

The Lemma is proved in the supplemental material.

We can now define the symmetric N -symmetry fields:
Definition 2. A N -symmetry field v is symmetric with respect to a
symmetry map g if either p and g(p) are both singularities of v, or

Rg
p(p)v(p) = v(g(p)), (3)

where Rg
p is the closest orthonormal transform to the differential

Dgp at a point p, as defined above.

N -symmetry fields on stationary lines. Symmetric N -
symmetry fields are highly constrained at stationary points. The
next corollary follows from Lemma 1 and definition of Rg by ob-
serving that Dg at stationary points is a combination of linear re-
flection and shear and so Rg at that point is just a linear reflection:
Corollary 5. If p is a stationary point of g, then Rg : TpM →
TpM is a reflection defined by a linear transform.

By definition, if v is a symmetric N -symmetry field, and p is a
stationary point, then we must have Rgv(p) = v(p). The above
corollary also indicates that Rg is a linear reflection. This imposes
stringent requirements on field v.
Proposition 6. If v is symmetric with respect to a symmetry trans-
form g and p is a stationary point of g, then one of the following
holds: (1) v has a singularity at p, (2) one of the directions of v is
the stationary direction sp of Rg

p; (3) one of the bisectors of angles
formed by consecutive vectors of v is aligned with sp.

The proposition is proved in the supplemental material.

The proposition implies that only two possible orientations exist at
each point of the stationary line for a symmetric field v. Moreover,
by continuity of v, the same choice must hold at all points along
a connected component of the stationary line, unless it contains a
singularity. We will use this fact as a basis of our algorithm for com-
puting a symmetric field. Figure 5 shows the two possible choices
for cross field at stationary curve.

2These decompositions can be computed, e.g., either via SVD: Dg =
UΣV T , hence Rg = UV T and Sg = V ΣV T ; or through an explicit
formula, Rg = B/

√
|det(B)|, B = (1/2)(Dg + DgT − Tr(Dg)I),

with Dg expressed as a 2× 2 matrix in an orthonormal basis.

Figure 5: A field can have just two possible orientations at the
stationary line: results for a cross field either aligned with the sta-
tionary line, or rotated by π/4. Field singularities are depicted by
blue/red bullets. Field rendered with [Palacios and Zhang 2011]
and MIQ remeshing.

4 Field symmetrization

Given a meshM , a generalized reflection g, and a set of orientation
constraints, our algorithm computes an N -symmetry field v on M
that is smooth, symmetric with respect to g, and aligned with the
orientation constraints. The objectives of symmetry and smooth
alignment to local shape features may be in conflict. Our algorithm
provides a trade-off between the two, with a smoothness parameter
chosen by the user. The foundation of our algorithm is the field
optimization phase of the MIQ [Bommes et al. 2009].

Algorithm outline. We assume that for the symmetry map g it
is possible to: evaluate the stationary set M(g) (realized as a set
of segments on a subset of triangles); evaluate the field transport
Rg (as rigid linear transform between triangles t, t′); and evaluate
the orbit O(p) at any point p (for p ∈ t, we calculate g(p) ∈ t′,
on a triangle t′). Computing stationary lines, transport maps and
orbits for specific symmetry maps will be addressed in Section 5.
Our algorithm is not specific to a single reflection; we make no
assumptions about the size of the orbit, or the specific origin of
the transport map. This allows us to apply it in the case of sets of
symmetries (Section 6).

Our method consists of the following steps:

1. Set hard orientation constraints at selected feature points.

2. Set additional hard constraints at the stationary curve of g,
M(g) (excluding conflicts with constraints from 1), by fixing
one of the two possible orientations of v at stationary points
(see Prop. 6), then extend field v to the rest of M by running
the MIQ smoothing algorithm. We found that constraining the
field on stationary lines is crucial for high-quality results.

3. Use field transport Rg (Equation (2)) to symmetrize field v,
by averaging over orbits (excluding orientation feature points
and stationary points). Denote the output field of this stage v̄.

4. Repeat (once) Step 2, to obtain the final field v using v̄ as soft
constraint (this is where the parameter controlling smoothness
vs. symmetry comes in).

Next, we describe each step of the algorithm in detail. At the end
of this section, we briefly discuss an alternative approach and the
reasons why this particular algorithm structure was chosen.



Figure 6: Algorithm steps. From the left: input mesh with sym-
metry; after constrained field optimization algorithm follows sta-
tionary line but it is not symmetric everywhere; after symmetriza-
tion and final optimization field is fully symmetric. Red lines show
field flow; circles highlight non-symmetric singularities that be-
come symmetric after optimization.

Steps 1,2 - Constrained field optimization. Similarly to [Ray
et al. 2008; Bommes et al. 2009], a discrete field v is represented
at triangle ti by an angle θi with respect to a local frame. With
each eij separating triangles ti and tj , we associate a constant an-
gle κij and an integer variable pij (period jump or matching). The
angle κij is the rotation of the reference frame from ti to tj . The
period jump pij , determines the additional rotation 2πpij/N of the
N -symmetry field between values on triangles ti and tj . This rota-
tion maps an N -symmetry value to itself, so it needs to be encoded
separately (cf. [Ray et al. 2008])3.

The smoothness energy of the MIQ algorithm is

Esmooth =
∑

eij∈E

(θi + κij +
2π

N
pij − θj)2. (4)

Since variables θi and θj are real, while the pij’s are integer, opti-
mization of the field v with respect to Energy (4) is a mixed-integer
problem. This problem has a space of equivalent solutions: to make
the minimizer unique, the value of pij is fixed at a subset of edges.
Feature constraints are given as a set of angles {θ̂i1 , . . . , θ̂ik} on a
subset of triangles which remain fixed during optimization; we add
stationary lines constraints described below to this set. A greedy
mixed-integer optimization algorithm is used for optimization. (see
[Bommes et al. 2009] for details).

Stationary set constraints. For all g ∈ G, the stationary set M(g)
is given by a set of line segments li on a subset of triangles of M .
The direction of li is the stationary direction of Rg at ti. We add
a hard constraint by expressing the direction of li as an angle θ̂i
with respect to local coordinate frame at ti. Alternatively, the angle
θ̂i + π/N can be used, according to Prop. 6. This choice is left
to the user and it must be consistent for all triangles intersecting
a given connected component of M(g). In our experiments, we
always constrained v to be aligned with the stationary line. Figure
5 shows results obtained by using the alternative direction.

Energy (4) is minimized by freezing all variables corresponding to
hard constraints (see [Bommes et al. 2009] for details). The result
of this phase already improves over the standard MIQ in terms of
field symmetry in the proximity of the stationary line, while it does
not warrant symmetry far from it (see Figure 6 center).

3We note that one can consider discrete principal connections instead of
fields [Crane et al. 2010], replacing matchings with a more geometrically
natural notion of holonomy angles; we prefer [Ray et al. 2008] formulation
as it allows for more natural handling of constraints.

Step 3 - Symmetrization by field transport. Field v is sym-
metrized by averaging it over orbits of symmetry. We set the con-
vention that field values are attached to triangles’ centroids ci ∈ ti.

Fuzzy orbits. Since discrete symmetry maps do not map triangles
exactly to triangles, we use the notion of fuzzy orbits (similarly
to [Lipman et al. 2010]) in order to define a symmetry-averaging
operator. In particular, given a non-stationary triangle t, we define
its fuzzy orbitO(t) as the union of all triangles in its 1-ring and the
1-ring of the triangle containing g(c). We assign a weight si(t) to
every ti ∈ O(t) inversely proportional to its distance fromO(c) =
{c, g(c)}, namely we set

s̃i(t) = Φ( min
c′∈O(c)

∥∥ci − c′∥∥),

where we picked Φ(r) to be a Gaussian with standard deviation
equals the maximum of the triangles’ 1-ring diameter. To define
averaging, s̃i(t) is normalized to have a unit sum:

si(t) = s̃i(t)/
∑
i

s̃i(t).

Averaging over orbits. For every triangle t, we average the field val-
ues over the orbit O(t) using the weights si(t) and the field trans-
port Rg as follows.

For every t′ ∈ O(t) we transport the field value at t′ to t us-
ing Rt′,t. Rt′,t is defined as Rt′,t = (Rg

t )−1Rloc, where Rg
t

is the field transport from t to the triangle t̃ containing g(c) (c
centroid of t), and Rloc is the closest rotation in 3D taking t′ to
t̃. Following [Palacios and Zhang 2007], we observe that the N -
symmetry field can be represented in a given frame by a vector
w = [cos(Nθ), sin(Nθ)], eliminating the 2π/N ambiguity. Then,
instead of transporting the N -symmetry field vectors by (Rg

t )−1

and then converting to the N -th power vectors, w can be trans-
ported directly by R−N

t′,t . The symmetrized value of the vector field
is defined explicitly by normalizing

wsym(t) =
∑
i

si(t)R
−N
ti,tw(ti).

Step 4 - Optimization with soft symmetry constraints. Field v̄
obtained from the previous step will be mostly smooth, but smooth-
ness can be broken in some parts of M , namely:

• in the proximity of hard constraints, since the field is fixed at
such triangles, while it is possibly deviated by symmetrization
at neighboring triangles;

• in the proximity of singularities and of their symmetric mates,
since directions of the field are arbitrary at singularities, thus
symmetrization may produce invalid results.

Discontinuities may also introduce many undesirable singularities
in the field. Therefore, we smooth v̄ further by minimizing a modi-
fied energy, using values θ̄i as soft constraints. Following [Bommes
et al. 2009], we measure the local roughness of v̄ at each triangle ti
as the constant-weight discrete Laplacian of the field at ti:

δi = min
p̄ij

∑
tj∈Ni

(θ̄i + κij +
2π

N
p̄ij − θ̄j)/3,

where Ni contains the three neighbors of ti and the p̄ij can take
values in 0, . . . , N−1. We note that this method is justified only for
uniform triangulations, but we did not see a significant difference
in practice, and using dual-mesh discrete Laplacian results in less
stable behavior for badly shaped triangles. We define the symmetry
constraint weight:

w(δi) = max(0, δ0 − δi)/maxi(δ0 − δ),



Figure 7: Effect of the smoothness parameter. From left to
right: curvature and symmetry constraints; smoothness of the sym-
metrized field; and final results with α = 0.1 and α = 0.9.

which is zero if roughness exceeds a threshold δ0. We have used
δ0 = 10◦ in all our experiments. For a uniform triangulation, δ0
can be set automatically as the maximal rate of field rotation for
the average triangle size. Finally, we define the modified energy as
follows:

Esymm = (1− α)Esmooth + α
∑
ti∈M

wi(δi)(θi − θ̄i)2, (5)

with the second term constraining the field values to be close to
symmetric values. The final result is thus obtained by minimizing
Energy (5) with the same hard constraints and the same mixed in-
teger solver used in Step 2.

Parameter α is the main parameter of our method, and it is used ex-
plicitly to allow the user selecting either a smoother or a more sym-
metric result. In Figure 7, we report results obtained with different
values of α. Note that α = 0 necessarily yields the same result
that we obtain after Step 1; while, as α approaches value 1, field
smoothing is progressively restricted just to areas where roughness
exceeds threshold δ0.

Alternative approaches. A natural alternative method for field
symmetrization is to formulate the field construction as a single en-
ergy minimization, with terms penalizing the difference between
a the field at a point with the transported value of the field at the
symmetric point. We have explored this approach in our initial ver-
sion of the algorithm. Resulting fields did not show much improve-
ment compared to MIQ fields even in the extrinsic case and with
a manually placed symmetry plane, due to two main reasons: (a)
in the generic case of an asymmetric mesh connectivity, it is hard
to design a MI field optimization algorithm that works symmetri-
cally; (b) it was difficult to provide a good-quality trade-off between
asymmetric local feature alignment constraints, and global symme-
try. Problem (a) in our algorithm is to great extent resolved by
hard constraints on the symmetry line. Symmetrization followed by
smooth interpolation in our algorithm resolves (b): we are able to
produce a globally symmetric field with controllable smooth tran-
sition near feature constraints.

5 Symmetry detection algorithms

Our construction of symmetric N -symmetry fields requires a gen-
eralized reflection mapping g, as well as ways to evaluate its sta-
tionary set M(g), and its transport Rg , as described in Section 3.
The quality and precision of this transform, its stationary curve, and
its transport are crucial. It turns out that existing intrinsic symme-
try methods typically do not yield maps of sufficient quality for our
problem (Figure 8).

In this section, we present a simple novel semi-automatic method
for construction of generalized bilateral intrinsic symmetries on

genus zero surfaces, and a simple embedding method to construct
extrinsic symmetry maps on surfaces of arbitrary genus.

5.1 Intrinsic symmetry by fixed-point circle

In this section, we assume our surface M is of genus zero.

Our algorithm requires a small number of user-defined correspon-
dences; from these correspondences, it interpolates a smooth sym-
metry map and provides a stable set of inputs for our field construc-
tion algorithm: reliable orbits, smooth stationary line, and robust
transport maps.

We have tested several existing automatic algorithms for intrinsic
symmetry detection. While on a number of models sufficiently
close to extrinsically symmetric or perfect isometry these provide
good quality symmetry maps, we found that for many shapes with
clear intrinsic symmetry, we could not get orbits and/or stationary
lines and and/or transport maps with sufficiently high quality suit-
able for our algorithm. Even with manual correspondences existing
manifold interpolation methods often failed to produce an accept-
able map. We compare to existing work in greater detail at the end
of this section.

Representing a generalized reflection as a linear reflection
Our method is motivated by Corollary 3. We compute a generalized
reflection g : M → M, given as input several pairs of symmetric
landmarks (correspondences) (pi, qi) ⊂M ×M , i = 1, .., n. We
compute it as a composition of a map φ : M → Ĉ to the ex-
tended complex plane and a linear reflection in the plane: if we
denote σ(x+ iy) = x− iy (the reflection w.r.t. the real axis) then,
σ = φ ◦ g ◦ φ−1, and equivalently,

g = φ−1 ◦ σ ◦ φ. (6)

This point of view has several advantages: 1) it provides a (global)
linear representation of the generalized reflection as a simple linear
reflection σ; 2) it provides an analytic representation of the station-
ary curve Im(z) = 0; and 3) it allows defining the operator Dg
(from which we extract the transport Rg) in the discrete case in a
natural way, as we explain below.

Note that using a per-vertex definition of a map g : M → M ,
mapping vertices to points on triangles, it is not trivial to define Dg
or extract the stationary curveM(g) = {g(p) = p} in a robust way
numerically.

From the purely topological point of view, there is much freedom
in choosing g, φ that satisfies eq. (6), even when given a set of land-
marks {pi, qi}. To restrict the space of possible maps, we add a
natural constraint that if there is an isometric reflection that in-
terpolates the given landmarks, our map will reproduce it. [Kim
et al. 2010] observe that if the surface is mapped conformally to
the extended plane ϕ : M → Ĉ, then a perfect intrinsic sym-
metry g : M → M has to be an anti-Möbius map over Ĉ, i.e.,
ϕ ◦ g ◦ ϕ−1 = m̃, where m̃(z) = (az + b)/(cz + d), for some
a, b, c, d ∈ C with ad − bc 6= 0. To obtain a symmetry map for
a set of landmarks mapped to Ĉ, [Kim et al. 2010] fits an anti-
Möbius transform and uses GH-type (Gromov-Hausdorff) interpo-
lation. However, as the surface deviates significantly from being
perfectly intrinsically symmetric this approach suffers from three
main drawbacks: 1) it results in non-continuous (and not smooth)
symmetry maps; 2) the least-squared fitted anti-Möbius m̃ do not
necessarily satisfy m̃2 = Id, nor will it generically have a curve
stationary set; and 3) it will not get us the desired representation
(6).

We propose a new approach with two key ingredients. First, we use
anti-involutions, rather than general anti-Möbius transformations, a



Figure 8: Symmetry detection methods on a human with non-isometric deformation of the neck. On right we show automatic methods:
Blended intrinsic maps [Kim et al. 2011], and Partial Intrinsic Reflectional Symmetry (PIRS) [Xu et al. 2009]; note that these erroneously
extrapolate the dominant body symmetry to the head. On left, we use a set of coarse correspondences (shown as black and red dots on the
leftmost figure); we show GH-type interpolation [Mémoli and Sapiro 2004; Bronstein et al. 2006], side by side with our generalized reflection
map. Our map is smooth and have analytic representation of the symmetry stationary curve.

subset of the anti-Möbius transformations that satisfy m̂2 = Id
[Schwerdtfeger 1979] which is consistent with our definition of
generalized reflection (Definition 1). An important property of anti-
involutions is they represent an inversion w.r.t. a circle which is
their stationary set m̂(z) = z (consistent with Proposition 2 and
Corollary 3). This stationary circle is our initial guess of the sta-
tionary curve. Second, we will define our diffeomorphism φ using
a smooth perturbation of the anti-involution. In particular our algo-
rithm consists of the following steps:

1. Calculate the conformal map ϕ : M → Ĉ of the genus zero
mesh to the plane;

2. Transform the landmarks to the extended complex plane zi =
ϕ(pi), wi = ϕ(qi), i = 1, .., n;

3. Fit (in the least-squares sense) an anti-involution m̂(zi) ≈ wi

to the input landmarks;

4. Extract the stationary circle C of the anti-involution defined
by m̂(z) = z;

5. Map via a Möbius transformation m(z) the circle C to the
real axis;

6. Extract optimal (in the least-squares sense) symmetric config-
uration of the landmarks m(zi),m(wi) w.r.t. the real axis;

7. Use smooth deformation (thin-plate splines) ψ to move
the landmarks to their optimal symmetric configurations
ψ(m(zi)) = ψ(m(wi));

8. The final map is φ = ψ ◦m ◦ ϕ.

The first and second stages are performed similarly to the algorithm
of [Kim et al. 2010].

Step 3–4. To find the anti-involution Möbius m̂(z) minimizing the
deviation of m̃(zi) from wi, i = 1..n we use the following lemma:
Lemma 7. An anti-Möbius transformation m̃(z) = az+b

cz+d
is an

anti-involution iff the matrix of coefficients
(

c d
−a −b

)
is her-

mitian, that is d = −a, and c, b ∈ R.

For a proof see [Schwerdtfeger 1979] (page 79). Therefore, an anti-
involution can be written as m̂(z) = (az+b)/(cz−a), where b, c ∈
R. We fit an anti-involution to the symmetry data by multiplying
both sides of the equations m̂(zi) = wi by czi − a, and solve in
the least-squares sense the resulting linear equations:

cwizi − awi − azi − b = 0 , i = 1, .., n.

One delicate point is that the stationary circle of an anti-involution
can be imaginary and therefore will not form a “real” circle in C.
This would happen if in solving the above equations our solution
gives |a/c|2 + b/c < 0. However, this means that the deviation
from isometry is extreme and we did not observe this problem in
practice.

in original embedding

(a) (b)

Figure 9: Steps 4-7 in the intrinsic symmetry fit of the model from
Figure 8: (a) shows fitting the best circle to a set of symmetric
landmarks (red and black). Note how the landmarks in the head
area (blow-up figure) are not conforming with the global symmetry.
(b) shows the points after a smooth map is applied to bring them to
be perfect reflectional symmetric w.r.t. the real axis; the head points
are also symmetrized, as the blow-up figure shows.

Step 5. Our next step is to find a Möbius transformation taking the
circle stationary set of the anti-involution m̂ to the real axis. The
stationary circle of m̂ has the explicit equation |z−z0| = r2, where
z0 = a/c, and r2 = |a/c| + b/c. Figure 9 (a) shows the circle C
for the example in Figure 8 (the symmetric landmarks are shown in
red and black, consistently with the left image in Figure 8). Note
how the landmarks on the head (shown in blow-up figure) do not
agree with the global intrinsic symmetry as revealed by the circle.

For the Möbius transform mapping it to the real axis there are three
degrees of freedom to set. We simply take three equal distant points
t1, t2, t3 on the circle C and find the Möbius transform m by solv-
ing a system of equations of the type ati + b = (cti + d)xi,
i = 1, 2, 3, where xi ∈ R are three points on the real axis.

Step 6–7. Next, we map the landmarks zi, wi with m and extract
L2 symmetric optimal points si ∈ C, i = 1, .., n such that si =
argminz

[
|si −m(zi)|2 + |si −m(wi)|2

]
. It is not hard to see

that the minimizer is si = (m(zi) + m(wi))/2. Finally, we find
a thin-plate spline ψ : R2 → R2 such that ψ(m(zi)) = si, and



ψ(m(wi)) = si. Our final map is φ = ψ ◦m ◦ ϕ, the symmetry
map in these new coordinates is z 7→ z and the stationary curve is
Im(z) = 0. Figure 9(b) shows the landmarks zi, wi, after applying
ψ ◦ m to it; note that they are now perfectly symmetric w.r.t. the
real axis. Figure 8 shows (in purple) the stationary curve Im(z) = 0
back-projected to the original model.

Computational complexity. The algorithm for finding φ, and
g = φ−1 ◦ σ ◦ φ requires solving one sparse linear system in the
size of the mesh for the discrete harmonic part (standard cotangent
Laplacian) of the uniformization, followed by linear time computa-
tion of its conjugate. The next steps of the algorithm are negligible
computationally and require solving two linear systems in the order
of number of landmarks (we typically used 5 to 10 landmarks).

Evaluation of orbits, stationary lines and transport. Function
φ provides a parametrization forM , which can be evaluated in both
directions: given a point p ∈ M , its symmetric mate g(p) is eval-
uated using Equation 6. The stationary line M(g) is simply the
pre-image φ−1(`)of the real line ` = {Im(z) = 0}. More specifi-
cally, given a triangle ti of M , let t̄i be φ(ti). Triangle ti intersects
the stationary line if and only if t̄i intersects the real axis; and the
linear segment of stationary line corresponding to ti has endpoints
at φ−1(a) and φ−1(b), where a and b are the intersections of edges
of t̄i with the real axis.

Evaluation of transport Rg . In principle, the differential Dg
and, as a consequence, Rg can be obtained by computing the gra-
dient of g numerically; while the maps we construct in the intrinsic
case are quite smooth, we found that the following method pro-
vides the most robust results. Let ζ, ξ : M −→ R be two scalar
functions such that ζ is symmetric and ξ is antisymmetric, i.e.,
ζ(p) = ζ(g(p)) and ξ(p) = −ξ(g(p)). By chain rule,

∇ζ(p) = ∇ζ(g(p))Dgp and
∇ξ(p) = −∇ξ(g(p))Dgp.

(7)

whereDgp is the differential of g computed at p. System (7) allows
us to solve forDg at any point, if the surface gradients of ζ and ξ are
computed everywhere. Rg is then obtained from Dg as described
in Section 3. In our case, we choose ζ(p) = Re(φ(p)) and ξ(p) =
Im(φ(p)).

Comparison to previously proposed methods for intrinsic
symmetry detection. A simple example is shown in Figure 8.
This model of a human (SCAPE dataset [Anguelov et al. 2005])
has a dominant extrinsic reflection symmetry (neck down) while
the head is rotated to the right. The deformation at the neck area
involves a considerable metric distortion with respect to the rest
pose, which makes recognizing head symmetry difficult for a global
method. This problem is reinforced since the head has pretty good
continuous rotational symmetry excluding negligible (in terms of
area) features like ears and nose. Figure 8 shows the result of
two automatic state-of-the-art-methods: PIRS [Xu et al. 2009], and
Blended Intrinsic Maps [Kim et al. 2011]. PIRS is a particularly
suitable algorithm for extracting stationary lines. However, as it
is based on aggregating votes, the dominant extrinsic symmetry of
the surface in this case overrides the symmetry of the head. Blended
Intrinsic Maps also use a global deformation energy and therefore
“extrapolate” the dominant extrinsic symmetry to the head.

We also compare to a method in the spirit of Gromov-Hausdorff
(GH) [Bronstein et al. 2006; Mémoli and Sapiro 2004], where
geodesic distances to the known landmark points are used to de-
fine feature vectors and closest point in the corresponding feature
space defines the correspondences. Using five pairs of symmet-
ric points (shown at the left of Figure 8) with GH-type interpola-
tion produces a reasonable result in certain areas (like the head and

the lower torso) where there are relatively many landmarks and/or
geodesic distances reliably detect the symmetry transform. How-
ever, in vicinity of intrinsically distorted areas, where geodesics are
not reliable, this method tends to produce results of lower quality
compared to ours (e.g., the neck and left shoulder area). Another
drawback of this type of methods in our context is that the corre-
spondence mapping is not necessarily smooth or even continuous,
and it hard to reliably extract the field transport from it. Lastly,
given the set of correspondences it is also not trivial to extract the
stationary line to be a closed curve, see for example the bottom and
neck area again where any such curve is likely to be cut.

5.2 Extrinsic symmetry through embedding

In the extrinsic case, a reflection mapping g is a simple orthogo-
nal reflection about a plane Π in 3D space, its stationary set M(g)
coincides with M ∩Π, and its differential Dg = Rg is g itself.

For this simpler case, we have combined two existing algorithms
to find the reflection g and the stationary set M ∩ Π in a robust
way. Following [Osada et al. 2002] we have built extrinsic sym-
metry invariants at every point and used it to define a symmetry
correspondence matrix, similar to [Lipman et al. 2010]. The sta-
tionary plane was found by averaging the points’ 3D coordinates
over fuzzy orbits, and the final reflection g was set according to that
plane. Let us briefly elaborate on each step.

Extrinsic symmetry invariant histograms. For each triangle t
of M , we compute the Euclidean distances from its centroid ct to
the centroids of all other triangles of M , and we build a histogram
of these distances using b bins. (We have used b = 50 for all our
results.) We denote by Ψ(t) ∈ Rb the histogram vector for triangle
t. Next, we fill a symmetry correspondence matrix S, by setting
Si,j = m − d(Ψ(ti),Ψ(tj)), where d is the Euclidean 2-norm,
and m = maxi,j d(Ψ(ti),Ψ(tj)). We make sure S is sparse by
keeping only 50 biggest values at each row and zero everywhere
else. Finally, we normalize each row of S to make it row-stochastic.
The i-th row of S provides the fuzzy orbit of triangle ti.

The symmetry plane and stationary curve M(g). Let Ct ∈
Rn×3, where n is the number of triangles, be the matrix of all cen-
troids’ 3D coordinates. The product SCt averages the 3D coordi-
nates over the the orbit and therefore projects the points onto the
stationary set (in 3D) (see [Lipman et al. 2010]). We fit a plane Π
using Principal Component Analysis (PCA). The stationary line is
extracted simply by collecting the triangles of M that intersect Π.

Field transport Rg . We perform a change of coordinates that
places the origin in Π and aligns the z axis with the least signifi-
cant direction yield by the PCA. Then we estimate Dg = Rg by
means of the procedure that we use for intrinsic symmetries, by set-
ting ζ(p) = px and ξ(p) = pz , where p = (px, py, pz) is a generic
point of M .

6 Fields that are symmetric with respect to
sets of transforms

Next we explain how the theory and algorithms of the previous sec-
tions apply in the case when a shape has multiple symmetries. It is
natural to define a field to be symmetric with respect to a set G of
transforms, if it is symmetric with respect to all elements of G. For
example,Gmay consists of reflections about two or more planes of
symmetries. The input to our algorithm requires orbits, stationary
lines, and transport maps.

The orbit for a point p with respect to a set G are simply the union
of the orbits for individual transforms inG (we want to symmetrize



our field at a point p with field values at all points g(p), g ∈ G).

Similarly, the stationary set of interest is the union of the stationary
set of individual elements of G. Note that if a point p is in two
stationary sets M(g1) and M(g2), there are two distinct alignment
requirements for the field. If the stationary directions of Rg1(p) an
Rg2(p) are orthogonal, then both have to be satisfied at once, which
may not always be possible, in which case the best we can do is to
minimize the deviation from symmetry.

Defining the transport map requires a consistency condition be-
tween symmetry maps: there may be two maps f and h mapping
a point p1 to the same point p2 = f(p1) = h(p2). We want the
transports defined by f and g to be the same, so we require

Rfv = Rhv, at p1, for any f and h with f(p1) = h(p1). (8)

Observe that in this case, h−1 ◦ f is a non-identity transform with
p1 as a stationary point. So the field at p1 and the mapRh−1

Rf has
to satisfy Proposition 6. In the cases of primary interest to us (sets
of generalized reflections) the compositions of distinct reflections
have, in general, only isolated stationary points which have little
effect on the overall field behavior.

For all other points p, for each q in the orbit of O(p), there is a
unique g mapping p to q, which defines the transport of the field
from p to q unambiguously.

Rotations. A rigid rotation can be computed as a composition of
two reflections, and in general it has only isolated stationary points
on a surface. It is natural to generalize the rotations as compositions
of two reflections with isolated stationary points. This allows direct
extension of all constructions we need to the case of sets including
such generalized rotations.

7 Results

We have tested our methods on a range of geometric objects with
approximate intrinsic and extrinsic symmetries (see Table 1). In this
section, we describe our findings, discuss alternative approaches
and design choices we made. Our algorithms are used to detect
symmetries and generate symmetric N -symmetry fields. We use
existing algorithms for field rendering ([Nieser et al. 2012]) and
field-aligned parametrization and quadrangulation (MIQ, [Bommes
et al. 2009]). Note that we do not modify MIQ process for fitting the
parametrization to a field: this would be desirable, e.g., to force the
stationary line to lie exactly on an integer parametric line. As our
focus is on computing symmetric fields, we leave full integration of
symmetry into all stages of the quadrangulation pipeline as future
work.

Extrinsic and intrinsic symmetry detection performance.
The method for intrinsic symmetry detection required between 5
and 10 landmarks (as specified in Table 1), and typical running
times were between one and five minutes. Comparison with other
methods have been discussed in Section 5 and in particular Figure
8. The method for extrinsic symmetry detection is about five times
slower (as it requires creating histograms of all pair distances), but
it is fully automatic and it works for objects of any genus. On ob-
jects where both methods can be applied, results are overall similar
(see Figure 10).

Stationary line constraints. We found that stationary line con-
straints play an essential role in the quality of the results; Figure 12
compares the result of our algorithm with the result we obtain with
no stationary line constraints. Note that without this constraint, al-
though generally symmetric the field is not “parallel” along the sta-
tionary curve.

Figure 10: Comparison of extrinsic (left) and intrinsic (right) sym-
metry detection on an extrinsically symmetric model. There are
small differences in cone placements, but the field alignment is
similar.

Figure 11: Imposing symmetric cones is not sufficient, generally,
to produce symmetric fields.

Effects of smoothness parameter. Our algorithm has three pa-
rameters: two parameters defining the features used in the mixed-
integer field optimization, and the smoothness parameter α. The
feature-detection parameters are the same as in [Bommes et al.
2009], and their effect is limited to changing the number of con-
strained faces. Figure 7 shows dependence of the results on the
choice of α: the higher α is, the sharper the transition between
features and symmetrized areas; as a result the field’s smoothness
decreases and additional cones may appear.

Multiple symmetries. Figure 13 shows experiments with multi-
ple symmetry objects. For multiple stationary lines, the field is fixed
on their union. Note how cones tend to respect symmetry relations
in this case as well.

Comparisons. As there are no direct analogs of our method, we
compare to a “naive” method described below and a non-symmetry-
aware method of [Bommes et al. 2009].

“Naive” method. Once the symmetry map is available, a naive
approach would be to first compute a non-symmetric field (with
MIQ); then reflecting the cone singularities found on one side of
the stationary line to their symmetric mates; and finally comput-
ing a field constrained to such singularities. As shown in Figure
11, while this may work in some cases (bunny), in general the field
fails to follow the stationary line (e.g. Bimba model) and it may
also introduce very large distortions (e.g. the right leg of the human
model).

Mixed-integer field optimization. In most cases, “symmetry-
unaware” mixed integer algorithm would not produce symmetric
results, as its global behavior depends strongly on the local feature
symmetry. Only if the feature constraints of the MIQ are well dis-



Figure 12: A field symmetrized without (center) and with (right)
stationary line constraints. The field in the middle/left image is
overall symmetric but it does not follow the stationary line.

Figure 13: Stationary lines and quadrangulations for a few objects
with several bilateral symmetries.

tributed and symmetric, a symmetric field is produced.

Figures 1 and 14 show our results compared with [Bommes et al.
2009]. In most cases, we observe a substantial improvement in vi-
sual quality: in the standing human model, note how our method
produces fields following the line corresponding to sagittal plane
even under a strong non-isometric deformation of the neck and
head. Our method also preserves a horizontal field on the chest.
Similar behavior can be seen in the Busto and Igea models, where
MIQ-placed singularities asymmetrically at small details of the
face, thus pushing the field away from respecting symmetry. On
objects with an extrinsic global symmetry, like the lion and fertility
models, plain MIQ yields satisfactory results, yet our method still
improves the symmetry awareness of the resulting field. In the Igea
model, our algorithm preserves global symmetry while adapting
to local non-symmetric features like the asymmetric broken piece
from one cheek. Note how our method manages symmetry also in
complicated models like the octopus (small picture shows the sym-
metry line), and in open meshes like the lion (open at the neck).
In the teddy bear we show an example of 6-symmetry field (MIQ
version is obtained with a straightforward variant of the MIQ field
optimization).

Model: # faces α int/ext # lmks # cones
bimba 100,000 0.15 I 9 97 / 87
bumpy-cube 34,754 0.25 E - 56 / 56
busto 50,930 0.30 I 8 28 / 46
egea 30,000 0.35 E - 26 / 32
fertility 46,388 0.10 E - 38 / 44
gargoyle 54,000 0.25 E - 94 / 92
holes3 28,800 0.15 E - 32 / 16
knelt human 40,000 0.10 I 5 56 / 64
lion 66,696 0.25 E - 66 / 66
Max Planck 54,000 0.20 E . 20 / 33
octopus 10,000 0.25 I 7 76 / 74
ogre 52,306 0.30 I 10 238 / 265
rolling 20,000 0.12 E - 27 / 33
stand. human 24,978 0.10 I 8 49 / 57
teddy 25,290 0.10 I 4 42 / 34

Table 1: Statistics of datasets and results. We report: number of
faces in the input; value of parameter α used; whether it has intrin-
sic or extrinsic symmetry; number of landmarks used for detecting
intrinsic symmetry; number of cone singularities in the output (our
algorithm / MIQ).

8 Concluding remarks

We introduced a new approach to symmetry-aware field design on
surfaces. Our key idea is to incorporate symmetry averaging of
field values over symmetry orbits with existing mixed-integer field
generation techniques. This required several steps: 1) introducing
general non-isometric reflections, and developing the formulations
for field transport and symmetric averaging; 2) developing meth-
ods to compute symmetric maps, transport and stationary sets on
shapes deviating from perfect isometry; and 3) incorporating the
symmetric averaging operator into the Mixed-Integer framework.
Based on experiments on a variety of models, we believe the in-
troduced algorithm can significantly improve visual aesthetics and
symmetry-awareness of N -symmetry fields on models.

A significant limitation of our intrinsic symmetry construction
method is the restriction to genus-zero objects: extension of this
technique to higher-genus objects is nontrivial and is an important
direction for future work. N -symmetry fields are often a building
block in other types of geometry processing algorithms; symmetry
also needs to be integrated with other stages of these algorithms
(e.g., quadrangulation or texture generation).
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connections on discrete surfaces. Computer Graphics Forum 29,
5 (July), 1525–1533.

FARB, B., AND MARGALIT, D. 2011. A primer on mapping class
groups. Princeton Univ Press.

GHOSH, D., AMENTA, N., AND KAZHDAN, M. 2010. Closed-
form blending of local symmetries. Computer Graphics Forum
29, 5, 1681–1688.

GOLOVINSKIY, A., PODOLAK, J., AND FUNKHOUSER, T. 2009.
Symmetry-aware mesh processing. Mathematics of Surfaces
XIII, 170–188.

HERTZMANN, A., AND ZORIN, D. 2000. Illustrating smooth sur-
faces. In Proceedings of SIGGRAPH 2000, 517–526.
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