
Real-Time Creased Approximate Subdivision Surfaces

Denis Kovacs∗

New York University
Jason Mitchell†

Valve
Shanon Drone‡

Valve
Denis Zorin§

New York University

Figure 1: Left: A car model rendered with smooth ACC. Right: The same model with creases and corners added.

Abstract

We present an extension of recently developed Loop and Schaefer’s
approximation of Catmull-Clark surfaces (ACC) for surfaces with
creases and corners which are essential for most applications. We
discuss the integration of ACC into Valve’s Source game engine
and analyze performance of our implementation.

CR Categories: I.3.5 [Computing Methodologies]: Computer
Graphics—Computational Geometry and Object Modeling

Keywords: subdivision surfaces, geometric modeling, GPU tes-
sellation, hardware rendering, video games

1 Introduction

Catmull-Clark subdivision surfaces are the dominant higher-order
surface type used in feature films, particularly in the area of char-
acter modeling [Catmull and Clark 1978] [DeRose et al. 1998].
Modeling with Catmull-Clark surfaces is familiar and intuitive to
artists and the limit surface behaves well when the control mesh is
animated. As a result, the real-time graphics community has be-
come very interested in using Catmull-Clark subdivision surfaces
and their approximations. A simple and efficient, yet high-quality
bicubic approximation of Catmull-Clark surfaces (ACC) suitable
for integration into existing game engines was recently introduced
in [Loop and Schaefer 2008a].

Our goal is to extend ACC to support piecewise smooth surfaces
with creases and boundaries with corners. Such surfaces are com-
mon in applications: most models found in computer games contain
such features, which makes it essential to retain high visual surface
quality of ACC near such points. The original paper presents a

∗e-mail: kov@cs.nyu.edu
†e-mail: jasonm@valvesoftware.com
‡e-mail: sdrone@valvesoftware.com
§e-mail: dzorin@mrl.nyu.edu

construction for a smooth boundary (excluding a common situation
described in section 5). This construction can be used anywhere
except at vertices where multiple creases meet, near corner vertices
on the boundaries, or on interior creases.

There are two important differences between corner points and in-
terior points:

• Catmull-Clark surfaces may not have well-defined tangents at
corner points, and the tangents of modified Catmull-Clark sur-
faces [Biermann et al. 2000] turn out to be unsuitable for use in
tangent Bezier patches for many meshes;

• Vertices of the control mesh tagged as corners need to be inter-
polated.

We demonstrate shading artifacts that result from using incorrect
tangents at corner vertices, and present a formula for tangents that
leads to good visual quality.

Interpolation of corner control points may result in artifacts (“over-
hangs”) both in subdivision surfaces and their bicubic approxima-
tion. We discuss how these can be avoided. In addition to extending
ACC, we briefly discuss integration of our implementation with a
production game engine, Valve’s Source engine (Section 7). We
present performance comparisons of instanced versus native tessel-
lation as well as a comparison with results published by [Ni et al.
2008] for a C1 scheme in Section 8.

2 Related Work

Our work is a direct extension of the work of Loop and Schaefer
[Loop and Schaefer 2008a] and we refer the reader to that paper
for a more detailed discussion of related work; here we present a
brief summary. The central idea of using separate tangent and posi-
tion fields to define visually smooth geometry without constructing
a C1 surface explicitly was introduced in [Vlachos et al. 2001]. A
number of algorithms were proposed in the past to generate smooth
(typically C1) piecewise polynomial surfaces, but few attempted
to match the visual quality of Catmull-Clark surfaces. A C1 (al-
most everywhere C2) patch approximation of Catmull-Clark sur-
faces was proposed in [Peters 2000], but requires one or two ad-
ditional subdivision steps. G2-continuity is achieved in [Loop and
Schaefer 2008b] but requires evaluation of relatively complex high-
order patches. Techniques for direct evaluation of subdivision sur-
faces on GPUs [Bolz and Schröder 2002; Shiue et al. 2005] require

additional subdivision steps or multiple passes [Bunnell 2005].

An important recent approach for smoothing quad meshes with C1

patches is [Ni et al. 2008]. In this work, all extraordinary quads
(with at least one vertex of valence 6= 4) are converted to four tri-
angular patches of total degree 4 each. As we target relatively low
polygon count models common in games, most faces in such mod-
els tend to be extraordinary, which makes the lower complexity of
control point setup and patch evaluation of ACC more appealing in
our setting.

Subdivision surfaces with creases were introduced in [Hoppe
et al. 1994], and rules for interior-independent creases and cor-
ners that ensure tangent plane continuity were introduced in Bier-
mann [Biermann et al. 2000]. As we discuss in Section 4,
these rules do not necessarily meet the needs of our application.
Boubekeur [Boubekeur et al. 2005] adds smooth crease curves to
PN triangles as well as additional parameters for crease shape con-
trol, but does not consider corners.

Our preferred implementation method is instanced tessellation,
one of the two primary means for implementing tessellation on
graphics hardware, available in shader model 3.0 hardware with
vertex texture fetch capabilities such as NVIDIA GeForce 8x00
and ATI RADEON HD 2x00. The main alternative is native tes-
sellation (ATI RADEON HD 2x00 and XBox 360) [Lee 2006]
[Tatarchuk 2007]. In instanced tessellation, rendering multiple
pretessellated meshes containing parametric and index data makes
it possible to use the vertex shader to evaluate tessellated surface
position [Forsyth 2003]. In [Grün 2005] and [Ni et al. 2008] hard-
ware instancing is used to accelerate rendering of PN-triangles and
a patch-based C1 surface construction respectively.

For the upcoming release of DirectX 11, Microsoft has proposed
adding three pipeline stages after the vertex shader: the hull shader,
the tessellator and the domain shader [Gee 2008]. Developers will
typically map vertex animation operations such as skinning to the
vertex shader, basis transformations such as ACC to the hull shader
and higher order surface evaluation to the domain shader.

3 Bicubic Approximation of Catmull-Clark
surfaces

We briefly review the construction of [Loop and Schaefer 2008a] to
set up the notation. Geometry patches are Bezier patches of bide-
gree 3, defined by a grid of 16 control points (Figure 2): 4 corner,
8 edge and 4 interior points. Their positions are determined us-
ing fixed-weight masks depending on the valence (see [Loop and
Schaefer 2008a] for mask definitions). The weights are chosen so
that each edge point is the midpoint of two adjacent interior points,
and each corner point is the centroid of the adjacent endpoints of
all nearby patches.

b03

b02

b01

b00 b10 b20
b30

b11

b12

b13 b23

b22
b21

b31

b32

b33

u03

u01 u11
u21

u02
u13

u23u12
u22

u00 u10 u20

v02
v01

v00
v10

v11

v12 v22
v21
v20

v30

v31

v32

Figure 2: Control points of geometry patches and control vectors
of tangent patches.

For boundaries, the weights for corners and edge points on the
boundary are chosen to produce a B-spline curve on the bound-
ary, with the exception of vertices of valence 2, which are forced
to be corners (i.e., have 2 distinct tangents). The interior points
are determined in the same way as for patches non-adjacent to the
boundary, with the boundary vertex regarded as an interior vertex
of valence 2k, where k is the number of incident patches, which we
call face valence. Informally, a smooth boundary vertex is regarded

as interior vertex with a half-ring of incident patches.

Tangent patches are Bezier patches of degree (2,3), with 12 con-
trol vectors (Figure 2). Separate patches ∂u and ∂v are defined for
parametric directions u and v; the formulas used for control vectors
are the same, so we consider only the ∂v tangent patch. The cor-
ner vectors are obtained using Catmull-Clark tangent mask weights
applied to the ring of edge and face neighbor vertices of the corner
point, with signs reversed for corners v02 and v32. For boundary
points, tangent masks of modified the Catmull-Clark scheme [Bier-
mann et al. 2000] are used.

All edge and interior control vectors are obtained from the geome-
try patch directly using the standard formula vi j = 3

(
bi, j+1 −bi j

)
,

excluding edge control vectors along the edges with two control
points. These vectors are defined using correction factors that en-
sure tangent field continuity

v1 j = 3
(
b1, j+1 −b1 j

)
+

1
3
(
2c0u1 j − c1u0 j

)
v2 j = 3

(
b2, j+1 −b2 j

)
+

1
3
(
2c0u2 j − c1u1 j

) (1)

We rederive these formulas in a slightly more general form to con-
struct tangent fields at corner vertices in Section 4. Interior and edge
control vectors are computed in the same way for patches adjacent
to creases or boundaries.

4 Creases and corners

A control mesh for a piecewise smooth surface of the type described
in [Biermann et al. 2000] has a number of edges tagged as crease
edges. A vertex of a crease edge can be tagged as either a crease
smooth vertex (default), or a crease corner vertex. Crease corner
vertices are interpolated, and the crease curves may have two dis-
tinct tangents at the corner. We consider only the case of interior-
independent sharp crease curves, which are completely defined by
the control points on the crease.

Figure 3: Three
sectors defined at a
crease vertex

If a vertex has more than two incident
crease edges, we always tag it as a cor-
ner, so that it is interpolated, although
some of the incident crease curves may
have common tangents. In this setup, lo-
cally near a crease vertex, we can split
the control mesh into independent parts
(sectors), each of which can be treated
as a surface with boundary (Figure 3).
For smooth crease vertices, the rules of
Loop and Schaefer are used, excluding
the case of face valence 2, for which
Loop and Schaefer use a special-case corner rule.

To define corner rules, we first consider what can be regarded as the
desired behavior at corner vertices.

Surface behavior near crease corners. Intuitively, one expects the
smooth surface to “follow” the control mesh; this natural require-
ment, combined with crease independence from the interior leads
to unexpected difficulties at crease corner vertices. If one requires
the surface to have a well-defined tangent plane at corners, and the
tangent curves do not depend on control points away from the mesh
crease, then the tangents of the two crease curves meeting at the
corner determine the tangent plane of the surface. Furthermore,
there are two types of possible local surface behavior [Biermann
et al. 2000]: convex and concave corners (Figure 4). One can ob-
serve that neither of these options matches the control mesh behav-
ior: one intuitively expects the normal to the surface to be as close
as possible to being perpendicular to the incident mesh edges. In
contrast, at interior vertices, the tangent masks effectively average
the tangent directions, so the resulting normal can be regarded as
the average of normals of planes spanned by all possible pairs of
incident edges.

Figure 4: Left: concave cor-
ner. Right: convex corner.
[Biermann et al. 2000]

The situation is substantially
different at corner vertices at
the crease, as the crease inde-
pendence requirement forces
a tangent plane independent of
interior control points. For
the type of surface shown
in Figure 4, this results in
surface normals nearly par-
allel to mesh edges. For
Bezier-interpolated normals,
the problem is further exacerbated (Figure 5). Two possible ap-
proaches to resolving this contradiction are:

• Relax the tangent plane continuity requirement at crease corner
vertices: introduce cones, so that a different normal corresponds
to each edge direction at the corner vertex, but the normal is
continuous everywhere else;

• Allow normal directions that are dependent on interior control
points.

Depending on the desired appearance, either option may be suit-
able. However, in the context of ACC, the first option turns out to
be unusable because of the limitations of the Bezier representation.

a b

c d

Figure 5: Comparison of different tangent definitions for a corner:
a,b: Edge tangents are computed as linear combinations of two
crease tangents (modified Catmull-Clark). c,d: Our scheme used
for tangent control vectors for the same control meshes.

Cones. Making corner crease vertices into cones presents two dif-
ficulties: first, there are a few smooth configurations for which a
cone is not the best possible behavior. Second, even more impor-
tantly, it is impossible to produce a single-point normal disconti-
nuity with nondegenerate tangent Bezier patches. Indeed, tangents
ti(s), i = u,v, along the boundary of a patch parametrized by s, are
given by cubic or quadratic polynomials, so (non-unit length) nor-
mal n(u) = tu × tv is a polynomial of degree 5. The condition that
normals on two sides of the boundary are collinear can be expressed
as n(u)× n̂(u) = D(u) = 0, where n̂ is the normal computed for the
same boundary curve for the adjacent patch. D(u) is a polynomial
of degree at most 10. If the normals are not collinear and nonde-
generate at the corner vertex u = 0, then D(u) 6= 0 at u = 0, and
can vanish at most at 10 points along the boundary, which makes
normal continuity at all boundary points away from the corner ver-
tex impossible. D(0) = 0 implies either collinear normals (which
means the point is not a cone), or singular parameterization. It is
clear how one can construct cones by collapsing control points of a
Bezier patch to a single control point at one of the patch boundaries.

As singular parametrization is highly undesirable for tessellation
(especially based on instancing as discussed in Section 7), and tex-
ture mapping, we consider the latter option impractical.

Interior-dependent tangent patches. We adopt the second possi-
ble option, that is, introduce dependency of normals at crease cor-
ners on the mesh interior. Recall that the primary reason to use an
interior-independent construction for edge and corner points on the
crease is to ensure that patches on different sides of creases match
perfectly. At the same time, the normals are discontinuous across
creases, so no such constraint is essential for tangent patches, al-
though it is still desirable that the normals on the crease depend
only on control points on the same side. This observation leads to
the following overall approach:

• Compute geometry patches in the same way as boundary
patches in [Loop and Schaefer 2008a], but make sure that the
crease corner point c is interpolated;

• Define a suitable tangent plane P for c;
• Project crease edges incident at c to P, and obtain tangents for

interior edges incident at c by interpolation of two normals.

To define the tangent plane at interior and smooth crease vertices,
the tangents are obtained by applying fixed modified Catmull-Clark
tangent weights, and the normal is computed from the tangents. In
the case of corners, this solution is not available, as the modified
Catmull-Clark surface of [Biermann et al. 2000] the tangent plane
is spanned by the two crease tangents, and the original Catmull-
Clark surface in general is not tangent-plane continuous.

Instead, we use the average of the normals to geometry patches
directly. If we choose the indices in each patch so that the crease
corner vertex is b00, and number patches from 0 to k,

n = norm
(k−1

∑
i=0

norm
((

b(i)
10 −b(i)

01
)
×

(
b(i)

10 −b(i)
00

)))
(2)

v00
v10 v20 v30

u00 u10 u20

v00v00 v10v10 v20v20
v30v30

Figure 6: Control vectors of
tangent fields u(t), v(t) and
v̂(t).

where norm(x) = x/|x|. In the
case when normals average to
zero, there is no meaningful
common normal, and we use the
cross-product of two tangents.

While this direct procedure is
more expensive than computing
a linear average of tangents us-
ing fixed weights, we found that
the results are substantially bet-
ter for all choices of averaging
of tangents with which we have
experimented. If the expense of
this calculation is a concern, for
all control point configurations we have examined in practical mod-
els just averaging the normal to the first and last geometry patches
still yields a tangent plane superior to other alternatives.

Tangent interpolation. Once the tangent plane P with unit nor-
mal n is defined, we project the crease tangents tinit

0 = p0 − c and
tinit
k = pk −c, where p0 and pk are two crease vertices adjacent to c,

and k is its face valence, to the tangent plane P to obtain two basis
tangents tP

i = norm
(
tinit
i − (n · tinit

i)n
)
, i = 0,k. Next, we interpo-

late these tangents to obtain corner control vectors for each tangent
patch incident at the crease corner vertex, in a way that insures tan-
gent plane continuity.

We use a slightly more general form of patch continuity condi-
tions of [Loop and Schaefer 2008a] used to derive (1). Consider
three tangent fields defined on an edge e shared by two patches:
the quadratic ∂u field u(t), and two cubic ∂v fields v(t) and v̂(t)
(Figure 6). To ensure normal field continuity across the edge, these
three fields have to be linearly dependent at each t. We can multi-
ply u(t) by any linear function (a+bt) without changing its direc-
tion. If three linear polynomials (a+bt)u(t), v(t), v̂(t) are linearly
dependent, but pairwise independent (which is the case whenever
there are no degeneracies in the patches), we can write the depen-

dency condition as (a + bt)u(t) = cv(t)+ dv̂(t), with c,d 6= 0. As
a and b are arbitrary, we can set c to one. As the choice of order
between v and v̂ is arbitrary, it is natural to require that c = d, and c
can be chosen to be 1. As for polynomials to coincide, their Bezier
points have to coincide, we arrive at the conditions of a form similar
to [Loop and Schaefer 2008a], but with undefined a and b.

au00 = v00 + v̂00, bu20 = v30 + v̂30 (3)
1
3
(
bu00 +2au10

)
= v10 + v̂10,

1
3
(
2bu10 +au20

)
= v20 + v̂20 (4)

As in [Loop and Schaefer 2008a], equations (4) can be satisfied
by a suitable choice of v10, v20, v̂10, and v̂20 as functions of other
control vectors. We index the edges e incident at the crease corner c
counterclockwise starting with a crease edge. The vectors u00, v̂00,
and v00 are tangents along an edge e j, the previous edge e j−1 and
the next edge e j+1, respectively. If we denote them by t j, t j−1 and
t j−1, each of the equations (3) has the form

t j+1 = a jt j − t j−1

j = 1 . . .k−1, where k is the face valence of c. In [Loop and Schae-
fer 2008a] two choices of formulas for t j (Catmull-Clark tangent
formulas for interior vertices and smooth boundaries) satisfy these
equations for a fixed a. Three additional natural assumptions deter-
mine a unique answer: (1) a j = a independent of j; (2) t0 = tP

0 and
tk = tP

k so that the tangent control vectors on the crease are aligned
with the crease curve tangents as well as possible (3) if these tan-
gents are of equal length, we expect all inferred t j j = 1 . . .k are of
equal length. In this case,

ti =
1

sinθ

(
sin

(i− k)θ
k

tP
0 + sin

iθ
k

tP
k
))

(5)

where θ is the angle between the tangents t0 and tk. The angle θ

is measured in counterclockwise direction if we look at the tangent
plane from the direction of the averaged normal n. Equation (5)
leads to numerical difficulties if θ is close to π , although resulting
tangent vectors are well-behaved even in the limit θ = π . If t0 and
tk are normalized to be of the same length, which we take to be
the average of their lengths, one can write this expression in a less
symmetric but more stable form as

ti = cos
iθ
k

tP
0 + sin

iθ
k

n× tP
0 (6)

Formulas (2) and (6) define tangent control vectors at crease corner
vertices. We have found this approach to be quite robust and insen-
sitive to perturbations and degenerate cases. Examples of applying
these formulas are shown in Figures 5 and 11 (left).

5 Smooth Creases for Face Valence 1

00

03
1

3
1

2
1

2
1

2
1

2
1

3
4

3
4 0

. .
.

Figure 7: Face valence 1 crease vertices.

Smooth creases can be thought of as boundaries inside the mesh.
Loop and Schaefer describe geometry patch stencils and limit tan-
gents for boundaries, but choose to define a crease vertex of valence

2 to be a corner, defining a special-case rule. However, we have ob-
served in practice (Figure 7) that it is often desirable to have smooth
boundaries with face valence 1 vertices.

Defining the crease to be a uniform B-Spline curve as in the other
cases results in the problem that now the tangents and bitangents of
the geometry patch are collinear and no longer define a normal.

The limit normal, however, still exists and can be found by consid-
ering tangents along the curve γ(s) = B(s,s) where B(u,v) is the
Bezier patch. A direct computation shows that up to higher order
terms, the tangent is γ ′(s) = st3 +O(s2), where t3 can be computed
from the control points using the mask in Figure 7. This allows us
to obtain the normal to the surface at the smooth vertex with k = 1
as the cross product of the tangent to the crease curve and t3.

In practice, one can avoid a special-case code for the normal com-
putation by perturbing the boundary tangents instead, setting them
to t0 + εt3 and t1 + εt3 respectively. We use ε = 10−4. As a result,
the tangent control vectors at the boundary are no longer perfectly
collinear; we could not find any cases where a perturbation of this
magnitude would cause artifacts, yet it is sufficiently large to make
the normal computation stable. The result of applying this proce-
dure on a car model are shown in Figure 11(right).

6 Artifacts and how to fix them

Just as for subdivision surfaces, many different types of visual qual-
ity defects can be identified. We address the two most significant
types of artifacts that occur near corners.

Figure 8: Left: An ACC surface with an overhang. Right: a modi-
fication of the control mesh eliminating the overhang.

Overhangs. Crease corner points are interpolated by an ACC
surface, while nearby noncorner mesh vertices are moved to av-
eraged positions of their neighbors. This, in turn, affects place-
ment of interior and edge Bezier points near a corner. As the edge
Bezier points determine tangent directions at patch boundaries, for
highly nonuniform meshes, extreme shifts of tangents may result
in patches with angles between tangents exceeding 180 degrees.
For reasons discussed in [Biermann et al. 2000], a Bezier patch,
which always has convex corners in the parameteric domain, can-
not have a concave corner, so the patch folds over and approaches
the boundary curves from the smaller angle side, developing over-
hangs shown in Figure 8a. The problem disappears if the designer
chooses a more uniform set of quads near the crease corner or in-
creases its valence (Figure 8b).

Lack of smoothness near convex corners. For highly non-planar
corners of low valence, in some cases, the bicubic patches cannot
approximate the behavior of the subdivision surface well, even if
a least-squares fit is used as close as possible to the surface. In
this case, the angle between actual normals of geometry patches

is significant and cannot be fully masked by using tangent patches
(Figure 9). In this case, increasing the valence of the crease corner
or decreasing the size of adjacent faces solves the problem.

Figure 9: Nonsmooth appearance near a corner. Note the mis-
match between the Catmull-Clark surface (red) and bicubic patches
(blue), and the sharp angle between parameteric lines on adjacent
patches.

7 Implementation

We have implemented the above extensions to ACC in Valve’s
Source engine. We have mapped the DirectX 11 pipeline onto
DirectX 9, including instanced and native tessellation codepaths
where the vertex shader and hull shader are implemented in soft-
ware on the CPU and the remaining stages are executed on the GPU.

The CPU-side vertex shading operations include skinning, vertex
morphing and other operations which are appropriate to perform at
the control mesh level. Post-transform control mesh vertices are
then sent to the software hull shader where they are mapped to a
set of Bezier patches using our technique. This data is copied asyn-
chronously to GPU memory. Domain points are instantiated with
appropriate mesh connectivity on the GPU. The vertex shader—
playing the role of domain shader—evaluates Bezier patch point
positions and tangent frames using Bezier control points fetched
from the floating point texture generated earlier by the CPU-side
hull shader.

ATI’s hardware tessellator instantiates the vertex shader at u,v
points in the [0..1] domain and provides the shader with access to
all of the “super-primitive” data from the input vertices [Lee 2006]
[Tatarchuk 2007]. The shader can use the input super-primitive data
and the Bezier patch data to evaluate patch attributes. The remain-
der of the graphics pipeline is unchanged, so an implementor need
only alter existing vertex shaders and vertex buffer layouts.

It is also possible to emulate tessellation by using instancing hard-
ware to replicate a pretessellated patch across the input mesh, one
instance for each ACC patch [Grün 2005] [Ni et al. 2008]. The ver-
tex shader then evaluates the bicubic patch in the same manner as
in the native tessellated version.

8 Performance

In Table 1, we compare instanced and native tessellation perfor-
mance of the datasets shown in Figure 10 using the ATI RADEON
4870 X2, which is able to run both codepaths. Due to differences in
the hardware interfaces, the native tessellation shader uses roughly
16% more instructions than the instanced patch shader. In our mea-
surements, we have seen that the instanced patch performance is
frequently as much as twice as fast as the native hardware tessel-
lation performance. We conclude that the performance improve-
ment seen when using instanced patches is not entirely related to
shader length, but rather, related to driver or hardware implemen-
tation. (Both perform the same number of texture operations.) We
have also compared our systems performance to that of [Ni et al.
2008] as shown in Table 2. (In this case, we have used a GeForce
8800 GT in order to remain consistent with the hardware used by
Ni et al.)

Native Tessellation Instanced Tessellation
Mesh N=3 N=9 N=15 N=3 N=9 N=15
Car 1344 1296 589 1550 1301 846
Ship 1245 326 137 1196 473 222
Poly 747 160 65 532 304 132

Table 1: Performance Comparisons - The Car, Ship and Poly mod-
els contain 1164, 5180 and 10618 quad faces. Performance num-
bers are in frames per second, measured on an Intel Quad Core
Q9450 2.66GHz and ATI RADEON 4870 X2. N = number of tes-
sellated vertices per control mesh edge.

Instanced Results Ni et al.
Mesh N=9 N=17 N=33 N=9 N=17 N=33
Sword 1480 1480 539 965 965 703
Frog 728 256 63 392 226 87

Table 2: Instanced results using our technique for the Sword and
Frog datasets which contain 138 and 1292 quad faces respectively.
Performance data from [Ni et al. 2008] is shown on the right.

Figure 10: Car, Ship, Poly, Sword and Rocket Frog models

Using NVPerfHUD, we have determined that both the instanced
and native hardware tessellation shaders are vertex texture fetch
bound. Each invocation of the domain shader performs 30 fetches
of packed control point data (12 for the control points, and 9 for
each of the two tangent patches). For regular patches (with all ver-
tices of valence 4), we can avoid fetching the tangent patch control
points and simply use the de Casteljau algorithm to compute posi-
tions and normals. This saves 18 texture fetches for these patches at
the expense of drawing regular and extraordinary patches with two
API calls rather than one. In this case, we measured a 20% (1.9ms)
performance improvement in GPU evaluation cost at N = 33 for the
rocket frog mesh by splitting evaluation of regular and extraordi-
nary patches. In addition, we avoid calculating tangent patches for
regular patches when converting from Catmull-Clark to ACC. This
saves an additional 0.26 ms on the rocket frog.

9 Future Work

We are currently working on layering of displacement maps onto
ACC patches to provide high frequency detail. Additionally, we
intend to address adaptive subdivision as this will be critical for
performance and LOD management, particularly if we move past
characters and into terrain rendering.

While overall we have obtained good results with extended ACC,
the artifacts such as those discussed in Section 6 require designers

Figure 11: Top: an example of corner artifacts on the spaceship
model (left) eliminated by our technique (right). Bottom: an exam-
ple of face valence 1 smooth crease vertex with vanishing normal
(left) and with the normal computed using our technique (right).

to adapt the models; while some of the limitations are fundamental
(it is impossible to create cones or approximate well the subdivi-
sion surface near certain types of corners without refinement), one
can hope to design techniques to deal with some of these problems
automatically; this is a promising direction for future work.

References

BIERMANN, H., LEVIN, A., AND ZORIN, D. 2000. Piece-
wise Smooth Subdivision Surfaces With Normal Control. In
SIGGRAPH ’00: Proceedings of the 27th annual confer-
ence on Computer graphics and interactive techniques, ACM
Press/Addison-Wesley Publishing Co., New York, NY, USA,
113–120.

BOLZ, J., AND SCHRÖDER, P. 2002. Rapid Evaluation of Catmull-
Clark Subdivision Surfaces. In Proceedings of the seventh inter-
national conference on 3D Web technology, ACM New York,
NY, USA, 11–17.

BOUBEKEUR, T., REUTER, P., AND SCHLICK, C. 2005. Scalar
Tagged PN Triangles. In EUROGRAPHICS 2005 (Short Pa-
pers), Eurographics.

BUNNELL, M. 2005. Adaptive Tessellation of Subdivision Sur-
faces With Displacement Mapping. GPU Gems 2, 109–122.

CATMULL, E., AND CLARK, J. 1978. Recursively Generated B-
Spline Surfaces on Arbitrary Topological Meshes. Computer-
Aided Design, 350–355.

DEROSE, T., KASS, M., AND TRUONG, T. 1998. Subdivision
Surfaces in Character Animation. In SIGGRAPH ’98: Proceed-
ings of the 25th annual conference on Computer graphics and
interactive techniques, ACM, New York, NY, USA, 85–94.

FORSYTH, T. 2003. Practical Displacement Mapping. In Game
Developers Conference.

GEE, K. 2008. DirectX 11 Tessellation. In Microsoft GameFest.

GRÜN, H. 2005. Efficient Tessellation on the GPU Through In-
stancing. Journal Of Game Development 1, 3.

HOPPE, H., DEROSE, T., DUCHAMP, T., HALSTEAD, M., JIN,
H., MCDONALD, J., SCHWEITZER, J., AND STUETZLE, W.
1994. Piecewise Smooth Surface Reconstruction. In SIG-
GRAPH ’94: Proceedings of the 21st annual conference on
Computer graphics and interactive techniques, ACM, New York,
NY, USA, 295–302.

Figure 12: Character from the game Team Fortress 2 modeled as
a Catmull-Clark subdivision surface and rendered with our tech-
nique. The character and his weapon contain sharp features which
require crease support to render correctly. In the second image,
the black lines indicate patch edges with tagged crease edges high-
lighted in green.

LEE, M. 2006. Next-Generation Graphics Programming on XBox
360. In Microsoft GameFest.

LOOP, C., AND SCHAEFER, S. 2008. Approximating Catmull-
Clark Subdivision Surfaces with Bicubic Patches. ACM Trans.
Graph. 27, 1, 1–11.

LOOP, C., AND SCHAEFER, S. 2008. G2 Tensor Product Splines
Over Extraordinary Vertices. In Proceedings of the 2008 Eu-
rographics/ACM SIGGRAPH Symposium on Geometry Process-
ing.

NI, T., YEO, Y. I., MYLES, A., GOEL, V., AND PETERS, J. 2008.
GPU Smoothing of Quad Meshes. In IEEE International Con-
ference on Shape Modeling and Applications.

PETERS, J. 2000. Patching Catmull-Clark Meshes. In Proceedings
of the 27th annual conference on Computer graphics and inter-
active techniques, ACM Press/Addison-Wesley Publishing Co.
New York, NY, USA, 255–258.

SHIUE, L., JONES, I., AND PETERS, J. 2005. A Realtime GPU
Subdivision Kernel. Proceedings of ACM SIGGRAPH 2005 24,
3, 1010–1015.

TATARCHUK, N. 2007. Real-Time Tessellation on the GPU. In
SIGGRAPH Advanced Real-Time Rendering in 3D Graphics and
Games Course, ACM.

VLACHOS, A., PETERS, J., BOYD, C., AND MITCHELL, J. 2001.
Curved PN Triangles. In I3D 2001: Proceedings of the 2001
Symposium on Interactive 3D Graphics, ACM, New York, NY,
USA, 159–166.

