
Shading-Based Surface Editing

Yotam Gingold∗and Denis Zorin
New York University

Abstract

We present a system for free-form surface modeling that allows a
user to modify a shape by changing its rendered, shaded image us-
ing stroke-based drawing tools. User input is translated into a set of
tangent and positional constraints on the surface. A new shape,
whose rendered image closely approximates user input, is com-
puted using an efficient and stable surface optimization procedure.
We demonstrate how several types of free-form surface edits which
may be difficult to cast in terms of standard deformation approaches
can be easily performed using our system.

CR Categories: I.3.6 [Methodology and Techniques]:Interaction
techniques I.3.5 [Computational Geometry and Object Modeling]:
Geometric algorithms, languages, and systems

Keywords: sketch-based modeling, deformations, interactive
modeling, image-based modeling

1 Introduction

Three-dimensional models are often created and manipulated using
two-dimensional interfaces. User actions are typically translated
into the three-dimensional motion of spline or subdivision surface
control points, or into the three-dimensional motion of points on
the surface, with the rest of the surface deforming variationally.
The relationship between user actions and changes in appearance
is indirect: the effect on appearance may be hard to predict, and
conversely, it may be difficult to decide which deformation has to
be applied to achieve a particular visual effect; e.g., make the out-
line smoother, remove an unwanted shadow in a view of a model,
or reshape a highlight.

In this paper, we describe a sketch-based modeling technique based
on changing shaded images of three-dimensional models directly,
using free-form strokes for two-dimensional image editing. The
shape is automatically adjusted to match desired changes of ap-
pearance by minimizing a quadratic functional with tangent and
positional constraints deduced from user image modifications. This
approach complements many other sketch-based modeling tech-
niques. For example, an overall shape can be designed using a
system similar to Teddy or FiberMesh [Igarashi et al. 1999; Nealen
et al. 2007] and further refined using a combination of our system,
displacement editing, and silhouette editing [Nealen et al. 2005].

Our choices of algorithms and user interface elements are guided
by a general principle: if a user makes a small change in sur-
face appearance, the resulting shape change should be small. For
most types of modeling interfaces, this continuity of modifications

∗e-mail: gingold@mrl.nyu.edu

Figure 1: In our system, users edit 3D models by drawing 2D shad-
ing strokes.

is nearly automatic. For shading-based modeling, because a local
modification of shading may require a global shape modification,
enforcing this principle is inherently difficult. This can be seen
for simple stroke examples in Figure 6. Furthermore, the task of
inferring shape changes from image changes is closely related to
the problem of recovering the shape from a single image. This is
a classic problem in computer vision, which in a standard formula-
tion (Lambertian surface, orthographic projection, directional light)
is known to be ill-posed.

Compared to recovering a shape from shading or normal informa-
tion, in our setting we have the advantage of access to the unmod-
ified shape and the ability to control which surface changes are al-
lowed to happen. At the same time, we face additional difficulties,
most importantly:

• some types of small shading modifications lead to large and
unintuitive model changes (see Section 3);

• one needs to preserve existing surface detail during editing;

• it is often necessary to keep the surface exactly unchanged far
from the modified area and the transition between the modi-
fied area and the rest of the surface smooth;

• surface updates should happen at interactive rates.

Our technique to solve these problems has two complementary
parts. First, we design user-interface tools (primarily stroke-based)
which retain the intuitive feel of two-dimensional drawing and
painting brushes. These tools ensure that image modifications that
may lead to unexpected and discontinuous surface changes are not
possible (Section 3). Second, the restricted class of image modi-
fications permitted by the stroke-based interface allows us to up-
date the surface by solving a quadratic optimization problem, with-
out assuming small deformations or image changes. In contrast,
typical shape-from-shading techniques solve a much more general
problem, but require solving more complex nonlinear equations.

2 Related Work

We build on a broad range of work in the areas of variational surface
modeling, sketch-based modeling, and shape-from-shading recon-
struction (SfS). Our work is most closely related to [van Overveld
1996], [Bourguignon et al. 2004], [Kerautret et al. 2005], and [Wu
et al. 2007; Ng et al. 2007].

[van Overveld 1996] is, as far as we know, the first paper to intro-
duce the idea of shading-based modeling. This paper describes a
system for editing height fields sampled on a regular grid. The user
modifies the gradients of the height field directly. [Rushmeier et al.
2003] presents a technique for mesh modification and repair based
on a variational shape-from-shading algorithm. [Bourguignon et al.

2004] uses equal height region propagation to reconstruct height
fields from a set of initial equal height contours specified by the user
and hand-drawn shading information. [Wu et al. 2007] introduces a
paradigm for modeling shapes by transferring normal information
from a a reference shape (shape palette) to the modeled height field.
[Ng et al. 2007] describes a method for recovering a surface from
dense or sparse normal information using radial basis functions in
a variational context, without restricting the resulting surface to be
a height field, also found to be essential in our context.

In contrast to previous work, we do not use SfS or gradient recovery
methods directly. Rather, we focus on modification tools for exist-
ing surfaces that yield predictable and controllable surface changes.
Most of our operations are based on simple strokes, painted by the
user, considerably narrowing the scope of the problem and allowing
it to be posed as a quadratic optimization problem. A related idea
of painting strokes (silhouettes and suggestive contours [DeCarlo
et al. 2003]) appeared in [Nealen et al. 2005].

The techniques we use for surface updates extend Laplacian and
gradient-based surface editing [Sorkine et al. 2004; Yu et al. 2004]
(see a recent comprehensive survey [Botsch and Sorkine 2008]),
which can be thought of as data-driven variational modeling [Cel-
niker and Gossard 1991; Moreton and Séquin 1992; Welch and
Witkin 1992; Botsch and Kobbelt 2004]. Following other sketch-
based modeling work (e.g., [Igarashi et al. 1999; Cheutet et al.
2004; Lawrence and Funkhouser 2004; Kara et al. 2006; Karpenko
and Hughes 2006; Nealen et al. 2007]), we use free-form sketching
as a user interface for surface shape changes. Silhouette-based tech-
niques [Nealen et al. 2005; Zimmermann et al. 2007] are comple-
mentary to ours: our system allows for creating silhouettes, which
can then be edited using these techniques.

Using modifiable strokes also resembles curve-based modeling
tools [Singh and Fiume 1998; Schaefer et al. 2004; Nealen et al.
2007].

SfS is a well-studied problem in computer vision (the state of the
art is surveyed in detail in [Prados 2004]). In its simplest setting,
the scene is assumed to have a single Lambertian, directional light
source and an orthographic camera. A variety of techniques for
SfS were proposed, including variational (such as in [Rushmeier
et al. 2003] for modeling) and various types of front propagation
methods (e.g. in [Bourguignon et al. 2004]). Variational techniques
typically use a smoothness penalty term, which can be thought of
as a special case of differential coordinate surface deformation with
the reference surface being flat.

Some recent methods use user-specified normals or gradients as ad-
ditional information to solve the SfS problem [Zeng et al. 2005], or
they infer the surface from sparse normal information [Zhang et al.
2001].

3 Shading Changes to Shape Changes

An ideal shading-based modeling system would allow the user to
make arbitrary changes to the rendered image of an object, and the
resulting modified surface would appear visually indistinguishable
from the user-modified image, while guaranteeing the stability of
surface changes and satisfying boundary constraints. (We use sta-
bility in the sense that small changes produce small effects.)

Several fundamental aspects of the relationship between the shaded
image and the corresponding shape make such an ideal system im-
possible. Rather than attempting to match an arbitrary change of the
surface image exactly, our system restricts the types of changes that
can be applied, and attempts to approximate the target image mod-
ification as closely as possible, without causing unstable changes.
We briefly consider several aspects of converting a change in shad-
ing into a shape change to motivate our design choices.

Shading changes along curves. Our interface is stroke-based; a
typical case for which we need to solve the shape recovery prob-
lem is darkening or brightening an image along a curve of uniform
thickness, while keeping it unchanged elsewhere. Consider a ver-
tical stroke across a flat square patch, with the light and view di-
rections coinciding (Figure 2). In this case, there are three areas of
constant shading. We assume the solution to be continuous and to
have well-defined normals in each area. If the left boundary is fixed,
the solution can be recovered uniquely for any darkening stroke, up
to a choice of one of two slopes for each area (the slope ambiguity,
which we discuss below). We observe that the surface modifica-
tion amounts to rotating the normals in the area under the stroke
about the stroke direction. An additional complication arises when
two sides of the patch are fixed: the target image can no longer
be matched exactly. However, the solution obtained by minimizing
the L2 norm of the error in shading is also obtained by rotating the
normals under the stroke about the stroke direction.

The cases of darkening and brightening strokes are asymmetrical.
For certain combinations of light direction and degree of bright-
ening, there is no continuous solution. The reason for this is that
brightening to values close to maximal essentially prescribes the
normal everywhere on the stroke; it has to point towards the light
source. Furthermore, this discontinuous solution is not stable; for
sufficiently long strokes, a small shading change (brightening) can
produce a large shape change. In our model square patch example,
continuity requires that normals are rotated about the stroke direc-
tion.

In our system, we use this observation to maintain stability: nor-
mals can rotate only in the planes perpendicular to the stroke (Sec-
tion 5.2).

darkening stroke

brightening stroke

Figure 2: A vertical stroke across a flat square patch. Red lines are
fixed edges and the arrow represents the coinciding light and view
directions. Above: a darkening stroke; a continuous solution for
one side fixed; an approximate solution for two sides fixed. Below:
a brightening stroke. For this light direction and stroke intensity,
all solutions are discontinuous (with either one or two sides fixed).

Instability near highlights. In some situations, a small change in
shading may require a large change in the surface shape (Figure 3),
contradicting the interface stability principle we have adopted. A
common situation of this type is related to highlight removal. If the
viewer and light positions coincide, the highlight points are also the
extremal points of the distance from the surface to the image plane,
requiring a large change to the surface to remove. Clearly, for a
closed surface there is always a point closest to the light; we con-
clude that generally, a highlight cannot be erased by a smooth sur-
face deformation, so decreasing highlight intensity even by a small
amount requires a large change in the surface shape. To prevent
this, we terminate strokes which attempt to erase highlights before
the stroke reaches the highlight (Section 5.3).

Slope ambiguity. It is well known that images can be ambiguous:
concave and convex objects can have exactly the same image (Fig-

before darkening

before darkening

after darkening after darkening

Figure 3: Unstable change of intensity: a stroke, shown in yel-
low, applies very small (less than 1%) darkening to a highlight, an
imperceptible change. To effect this change, a part of the exactly
recovered surface has to flip.

ure 4a). A closely related type of ambiguity, particularly relevant
to stroke-based editing, is slope direction ambiguity (Figure 4b). In
our system, strokes modify an existing surface, so we can resolve
the ambiguity by choosing the slope which changes the surface the
least.

a b

top view top viewside view side view

Figure 4: (a) Convex-concave ambiguity; (b) slope ambiguity

4 Overview of the System

The input to our system is an arbitrary manifold mesh, possibly with
boundary. The type of interaction we describe is most suitable for
relatively smooth meshes; otherwise, shading is not likely to pro-
vide easily understandable information concerning surface shape.
The user arbitrarily positions the mesh, chooses its material prop-
erties, and positions the light source. Only one light source can be
used.

Most of the interaction is done using several types of brushes: a
shading modification brush, highlight motion brush, and silhouette
brush. These brushes are demonstrated in Figure 5. The user can
choose a brush’s width, opacity, smoothness, and other attributes.
An applied stroke can be modified after application (i.e., its at-
tributes can be changed).

The shading modification brush is used to change shading, primar-
ily away from highlights. A darkening shading stroke which crosses
a point highlight is terminated, but a darkening stroke can cross a
highlight line or highlight area. The user has explicit control over
the surface tilt ambiguity: by default, the direction is chosen to
minimize the change in slope under the stroke, but can be flipped
by pressing a button after the stroke is drawn. Silhouette strokes
add silhouette lines to the surface. The width of the stroke in this
case controls the size of the created fold. The highlight motion tool
is used to reposition highlights (including pushing them to merge
with other highlights). A combination of highlight repositioning
and shading modification can be used to change a highlight’s shape.

Last but not least, it is possible to fix a region of interest (ROI) on
the surface to ensure that no changes are made to the surface outside
this area.

Additional views are provided so that the user can observe the ef-
fects of modifications from different points of view.

thin shading strokes

silhouette stroke

highlight stroke

ROI definiton result with no ROI

thick low-opacity shading stroke

Figure 5: Examples of different tools applied to simple surfaces.

5 Problem Formulation

In this section, we provide a mathematical definition of our stroke
parameters (Section 5.1) and demonstrate how the problem of con-
verting shading changes specified by strokes into shape changes can
be formulated as a quadratic surface optimization problem with lin-
ear constraints (Section 5.2). The problem formulation is indepen-
dent of the choice of discretization, and can be applied, for example,
to spline or subdivision surfaces. We consider its discretization in
Section 6.1.

The goal of our technique is to modify a given surface M, with or
without boundary. We assume that M is a smooth (C1) surface,
such that the normals are defined everywhere, there are no self-
intersections, and it is approximated by a mesh.

A single light source is located at a point pl , or at infinity in di-
rection l. For simplicity of discussion, we use a directional light
source. Similarly, the camera is located at a point pv, or at infinity,
and the view direction (the normal to the image plane) is v. The
projection to the image plane is denoted P; e.g., for an orthographic
projection to a plane passing through zero, P = I−vvT .

We assume the material has uniform properties specified by a re-
flectance function ρ(n), where n are surface normals. We use sim-
ple reflection functions with Lambertian and glossy reflection terms
of the form (1−β)〈n, l〉+β 〈n,h〉p, where β is the degree of glossi-
ness, p is the Phong exponent, and h = (v+ l)/‖v+ l‖ is the halfway
vector. We emphasize that we use this specific type of shading as
a user interface widget. We do not attempt to make it possible to
do shading-based modeling in realistic lighting conditions. Multi-
ple light sources, complex reflection models, and variable surface

properties make it much more difficult for the user to visualize de-
sired changes in appearance.

In the context of this work, the image of the surface M is a function
I(q) = ρ(n(p)), where p is the closest point of M projecting to q.
(I is defined in the area of the image plane corresponding to P(M),
the projection of M.)

The user modifies the image function, I(q), to obtain a new func-
tion, Ĩ. The modification is confined to the smooth areas of I (i.e.,
we fix the silhouettes). Our goal is to construct a new surface, M̃,
whose image matches Ĩ as closely as possible, subject to a number
of restrictions. Most modifications are based on strokes, defined by
curves C in the image plane, corresponding to curves P−1(C) on
the surface.

5.1 Stroke types

Strokes determine how the target intensity field is specified.
While the attributes of strokes are similar to those found in
two-dimensional drawing programs, a few aspects of these strokes
need to be adapted to our application.

Strokes have an intuitive informal geometric interpretation: they
correspond to variable rotations of the tangent planes about the cen-
terline of the stroke. The attributes of the stroke determine how the
planes are rotated and how the rotation propagates from the stroke.
The surface change required for simple changes in appearance, such
as uniform darkening, may be quite complex, although qualitatively
we ensure that the behavior is intuitive; in particular, the rotation
changes continuously along the stroke. The primary attributes of a
stroke are the base curve C, width w, and value Iv.

Strokes have softness f , and opacity α , and can be applied in one
of two modes, multiply or replace, which determine the interpre-
tation of Iv. Stroke parameters, with the exception of softness and
width, are used to determine target intensities for the surface. Sup-
pose the original intensity of the surface at a point under the stroke
is I0. Then the target intensity Itrg is determined according to the
following formulas.

• replace mode:

Itrg = αIv +(1−α)I0

In this mode, Iv is interpreted as intensity and ranges from
0 . . .1, with blending between the old and new intensity de-
termined by opacity. In geometric terms, for Lambertian sur-
faces at 100% opacity, this corresponds to twisting the surface
about the stroke in a way that forces the surface normals to
have a given angle with the light direction.

• multiply mode:

Itrg = αmin(1, IvI0)+(1−α)I0

In this mode, the stroke darkens or brightens the underlying
surface by a percentage determined by Iv, which ranges from
0 . . .1.5. As a surface is painted over with a darkening stroke
multiple times, it gets increasingly darker, asymptotically ap-
proaching zero intensity. Geometrically, this also twists the
surface at each point, by an amount proportional to the angle
of the normal with the light direction (again, for Lambertian
surfaces).

Softness determines the sharpness of the transition between the
stroke and the rest of the surface. The mechanism used for this
is described in Section 5.3. A softness of zero corresponds to a
sharp transition (normal discontinuity), and the maximal softness is
one. The effects of changing different stroke attributes are shown
in Figure 6.

changing stroke width

opacity 1 opacity 0.1 softness 0 softness 0.7

Figure 6: Changing stroke attributes: width, smoothness, and
opacity.

5.2 Constrained Surface Optimization

In this section, we describe our surface optimization functional and
basic stroke constraints.

In our system, the user modifies the surface one stroke at a time,
generally changing shading in a small area of the surface. As a
consequence, the goal of finding a modified surface which agrees
with the updated image can be separated into two parts: recovering
a (relatively small) part that matches the modified surface under the
stroke, and keeping the rest of the surface as close as possible to the
original.

The central idea of our approach is to treat the stroke as a special
type of constraint and use a weighted detail-preserving functional
to minimize the changes in the rest of the surface.

We motivate our choice for the detail-preserving functional first and
then explain how stroke constraints are defined.

Preserving appearance outside strokes. There is a fundamental
conflict between shading-based modifications and preserving the
surface itself exactly unchanged outside the stroke. This can be
clearly seen in Figure 6: if an area on a plane is darkened, the parts
of the plane on two sides of the stroke can remain flat, but they need
to be displaced. Similar to observations in [Sorkine et al. 2003] and
[Alliez et al. 2003], we note that high-frequency error matters more
for appearance preservation; i.e., low-frequency error is preferred.

A natural choice for functionals of this type are those based on
surface gradients [Yu et al. 2004] and Laplacians [Sorkine et al.
2004], used in a variety of contexts. The vector Laplacian is the
normal scaled by the mean curvature: ∆Mx = Hn, where ∆M is the
Laplace-Beltrami operator on the original surface M, and H is the
mean curvature. If the surface changes remain close to isometric,
the Laplacian operator does not change [Wardetzky et al. 2007], and
the Laplacian difference∫

M
(∆Mx−∆Mx0)2dA =

∫
M

(Hn−H0n0)2dA

is a change in the normal orientation scaled by mean curvature.
While we do not restrict our deformations to be isometric, if the tri-
angle distortion stays small, one can view the Laplacian difference
energy as a weighted normal change penalty. This closely matches
what is needed for appearance preservation. A first-order Poisson
approach uses the functional∫

M
(∇x−∇x0)2dA.

In this case, the relationship to normal preservation can be seen
from the Euler-Lagrange equation:

∆Mx = ∆Mx0.

The difference between the two functionals is primarily in sup-
ported boundary conditions. While the gradient-based functional
allows only for positional or normal constraints on the boundary of
the region of interest, the Laplacian-based functional makes it pos-
sible to join the modified patch with the surface smoothly, which is
more suitable for our problem. We use a weighted Laplacian-based
functional ∫

M
g(x0)(∆Mx−∆Mx0)2dA. (1)

(The weighting function g is used to implement stroke smoothness,
discussed in Section 5.3.)

Gradient-based Laplacian, different smoothness

Figure 7: Laplacian vs. Poisson penalty outside of the stroke.

We note that detail-preserving differential coordinate techniques
are often complemented by various types of rotations applied to the
differential coordinates (Laplacians and gradients) (e.g., [Lipman
et al. 2005; Botsch and Sorkine 2008]). In the context of large de-
formations, it is desirable to preserve the orientation of details with
respect to some coarse reference surface, as opposed to preserving
details’ world-space orientations. In our context, however, these ro-
tations are clearly undesirable; for the surface to retain unchanged
appearance, we do want the normals to retain their spatial direction
with respect to the viewing direction and the light source.

Strokes as constraints. We treat strokes as normal and positional
constraints on our weighted, detail-preserving functional.

The simplest case is hairline strokes of zero width. We treat this
type of stroke as the combination of normal constraints along the
stroke curve P−1(C) and positional constraints on the projection of
P−1(C) to the image plane. The target intensities for the stroke are
computed as explained in Section 5.1. In principle, in the case of
a hairline stroke, the normal directions can be defined arbitrarily
(integrability constraints need to be satisfied only if the normals are
specified on an area). We find that the most predictable behavior is
obtained if the normal is rotated in the plane perpendicular to the
tangent to the stroke. If the initial normal is n0, and the stroke unit
tangent is t, the choice of normals is restricted to

n(α) = cos(α)n0 + sin(α)t×n0. (2)

For each point, we find the minimal angle of rotation α such that
ρ(n(α)) = Itrg, to obtain the target normal ntrg. Figure 12 por-
trays these terms along with their discrete counterparts (discussed
in Section 6.1). (We note that this works even if the reflectance
function has multiple maxima, although we believe that simpler
lighting choices are best for modeling.) If the surface is smooth,
this angle changes continuously along a stroke, excluding the case
of strokes passing through a highlight, as discussed in Section 5.3.

We discuss the discretization of stroke constraints in Section 6.1.

Choice of variables. Most work on shading-based surface recovery
operates on height fields; that is, the surface is allowed to move
only in the view direction. Since we regard the problem as one
of maintaining the three-dimensional surface shape away from the
stroke, there is no particular reason to restrict motion of the surface
to this single dimension. We find that distributing the error to all
three dimensions, rather than restricting it to the view direction,
is preferable. As shown in Figure 13, restricting deformations to
height fields leads to extreme distortion of the mesh even in the
simple situation of a single darkening stroke.

5.3 Realization of Stroke Attributes

In this section, we present the implementation of stroke smoothness
and thick strokes, silhouette strokes, the interaction of strokes with
highlights, and highlight motion strokes.

Stroke smoothness and thick strokes. Using hairline strokes
to define constraints for optimizing a detail-preserving functional
would not provide much control over the width of the stroke and
the sharpness of the transition between modified and unmodified
parts of the surface. One of the crucial elements of our construction
is adding a weighting function to the Laplacian functional, making
it possible to control stroke width and softness. The base curve of
a thick stroke places the same constraints as a hairline stroke; they
differ only in this weighting function.

The idea of the weighting function is to “weaken” the link between
the stroke area and the rest of the surface, allowing the surface to
bend more flexibly at the stroke boundary or even form a sharp fea-
ture for hard strokes. At the same time, part of the surface remains
tightly linked by the detail-preserving energy and rotates with the
normals along the stroke base curve.

Substituting for g in Equation 1, we have our complete surface-
preserving functional,∫

M
h(d(P(x0),C))(∆Mx−∆Mx0)2dA, (3)

where d(P(x0),C) is the image plane distance from the projection
of a point on the surface to the stroke, and h(r) is a weighting func-
tion defined by the width w and softness f of the stroke as follows.

h(r) =

 1, for −w/2+d < r < w/2−d and |r|> |w/2+d|
1− cB((r +w/2)/d), for −w/2−d ≤ r ≤−w/2+d
1− cB((r−w/2)/d), for w/2−d ≤ r ≤ w/2+d

where B(t) is a quadratic spline function satisfying B(0) = 1,

2d 2d

c c

w

Figure 8: Weighting function profile across the stroke.

B(−1) = B(1) = B′(−1) = B′(1) = 0. As can be seen in Figure 8,
the weighting function is constant, excluding two areas at the stroke
boundaries, of width d, and depth c. Generally, d has a very sub-
tle effect on appearance; for meshes, it is selected to be sufficiently
wide so that there is a closed chain of mesh edges entirely within d
of the stroke boundary; this ensures that when the functional is dis-
cretized, the non-unit weighting is applied to an area of the mesh
surrounding the stroke. Once d is chosen, c is computed from the
condition (1−c)/d = f (very small values of d require c close to 1
for hard strokes).

The motivation for this choice is that the integral under the bump re-
mains constant. Analytic computations for one-dimensional stroke
cross-sections indicate, and experiments confirm, that the shape of
the stroke is insensitive to the choice of d, as long as (1− c)/d
remains constant, within a broad range of d.

We found that this relatively simple approach works remarkably
well. While it does not ensure uniform darkening if the stroke is
applied to a surface area with lots of details, it effectively ensures
average darkening while preserving the geometry of small-scale de-
tail, as shown in Figure 9. An attempt to darken all points uniformly
results in detail “smudging.” While this is desirable in some cases,
we believe this may be best controlled by a separate attribute.

original centerline constr. area constr.

Figure 9: Detail preservation: a thick stroke with base curve con-
straints only, and the same stroke with constraints on normals im-
posed over the whole area in the least-squares sense.

Silhouette strokes. Silhouette strokes are implemented similarly
to shading strokes, but they have no opacity α or value Iv.

Specifically, silhouette strokes are also based on constraining
normal orientations along the base curve of the stroke, in this
case finding n(α) perpendicular to the view direction (see Equa-
tion 2). Silhouette strokes do have smoothness, implemented
exactly in the same way as for shading strokes. Combined with
shape-preservation optimization, this typically leads to some faces
becoming back-facing. (Silhouette strokes would not be possible
with a height field representation.)

Interaction with highlights. If a stroke passes a highlight, i.e.,
a local maximum of ρ(n), then the normal rotation may experi-
ence a jump at this point: the preferred direction of rotation may
change (but there are highlights for which it does not). This leads
to nonintuitive behavior which we prefer to avoid. Thus, when a
discontinuity of this type is detected, the stroke is terminated at the
highlight (Figure 10).

Highlight motion strokes. A highlight motion stroke is designed
to move a highlight. In highlight motion mode, the highlights are
detected by thresholding the intensity at vertices, and the user can

stopping at
highlight

crossing
highlight

Figure 10: Types of stroke behavior at highlights.

draw a stroke starting at a highlight.

nold

xold

nnew

xnew

nold

xold

nnew

xnew
trg

trgtrg

trg

image plane

Figure 11: The effect of a highlight motion stroke, viewed from the
side. The highlight motion stroke is depicted as a red arrow parallel
to the image plane. The initial configuration is shown at left, and
the result is shown at right.

Overall, the stroke operates the same way shading strokes work;
however, the target normals along the stroke are defined differently.
Let xold and xnew be the old and new positions of the highlight
on the surface. The constraints for a highlight motion stroke are
defined as follows, and illustrated in Figure 11.

• The target position xtrg
new of xnew has the same position in the

image plane as xnew and displacement from the image plane
equal to that of xold . The normal at xnew is constrained to be
the negative view direction.

• The target position xtrg
old of xold has the same position in the

image plane as xold and displacement from the image plane
equal to that of xnew. The target normal at xold is constrained
to be perpendicular to xtrg

new −xtrg
old .

• The rotations of normals between these two points interpolate
the rotations at endpoints.

6 Discrete problem

In this section, we describe the discretization we use for our surface
optimization functional and for stroke constraints.

The discretization of the weighted Laplacian functional (Equa-
tion 3) is standard, using the well-known cotangent formula for
Laplacians. (At the boundary of the mesh, the edges get only a
single cotangent in their weight [Sorkine 2008].) We refer to the
work on Laplacian editing for details.

6.1 Discretization of Stroke Constraints

The constraints we impose for strokes affect vertices of edges in-
tersecting the stroke. The stroke curve (if necessary, smoothed by
subsampling and spline interpolation) is projected to the mesh and
intersected with mesh edges. The target normals along the stroke
are defined using the tangent to the stroke, the original normal, and
the target intensity. Furthermore, the image plane position of the
stroke, C, is constrained to be fixed.

We discretize these constraints as follows. An edge normal, ne,
is computed for every edge, e, intersected by the projected stroke.
A target normal, ntrg

e , is computed for the edge, according to the
stroke type and its attributes. Figure 12 portrays these terms along

with their continuous counterparts.

t

P-1(C)

n trg n trgn0

M

ne

p1

p2

ete

pe
etrg

Figure 12: Notation for stroke constraints. A continuous (left) and
discrete (right) surface patch.

The simplest linear constraint would be to require the new position
of the tangent, p2 −p1, where p1 and p2 are the endpoints of the
edge, to be orthogonal to ntrg

e ; i.e., 〈p2 −p1,n
trg
e 〉 = 0. However,

this constraint is also satisfied if the edge has zero length, and we
observe that the triangles often do degenerate. Instead, we obtain a
target tangent vector etrg by applying the minimal rotation mapping
ne to ntrg

e to the edge, resulting in the constraint p2−p1 = etrg. The
advantages of this approach are shown in Figure 13. Both types of
constraints are linear in vertex positions. In addition to constraining
the edge direction, we also constrain the projected position of the
point P(p) = P(ap1 +(1− a)p2) where the stroke intersected the
edge. This insures that the position of the projection of the stroke
to the image plane does not change.

stroke height field full tangent normal dot prod.

Figure 13: Dot product with target normal vs. full tangent con-
straints.

Adaptive refinement. One of the problems with image-space
strokes is that it may not be possible to reproduce the stroke on
the surface exactly—especially strokes with low softness or thin
strokes—if the mesh is coarse. We use adaptive

√
3-subdivision

to refine the mesh in the area of the stroke (Figure 14). The crite-
rion for refinement is to reduce the image-space length of the edges
overlapped by the stroke boundary to a user-specified threshold (in
pixels). Note that if the view of the model is zoomed, and a stroke
is reapplied, additional refinement will occur, as the criterion is de-
fined in image space.

stroke

nonadaptive

adaptive

Figure 14: Adaptive refinement. The unrefined mesh has 441 ver-
tices, which increases to 1302 vertices in the refined mesh.

6.2 System Assembly

Summarizing the above, we describe the construction of the linear
system of equations that we solve. We minimize the following en-
ergy:

E =
N

∑
i=0

g(xi
0)A

i
0‖∆xi −∆xi

0‖
2 +wlsqEconstraint

where g is defined (by substitution) in Equation 3, xi is the posi-
tion of vertex i, xi

0 is the undeformed position of vertex i, Ai
0 is

the area corresponding to vertex i in the undeformed mesh, and
N is the number of vertices in the ROI. Econstraint = Etangent +
Emidpoint, where

Etangent = ∑
(i, j)=e∈C

‖(xi −x j)− etrg‖2

and
Emidpoint = ∑

(i, j)=e∈C
‖P(aexi +(1−ae)x j)−P(pe)‖2

and C is the set of constrained edges. etrg and p are defined in
Section 6.1. We use wlsq = 1e7 for all examples.

Since we fix silhouettes, all vertices belonging to back-facing faces
are considered to be outside the ROI. (An exception is made for
small back-facing components—those whose area is less than 10%
of the front-facing ROI area—to prevent small cavities such as nos-
trils from becoming fixed.) In addition, an automatic ROI deter-
mination is available, which sets the ROI to the part of the surface
whose image plane projection lies within a user-specified distance
of the stroke. This reduces the system size for large meshes.

If the positions are transformed so that z is the view direction, then
the system is decoupled.

7 Results

We demonstrate how our system can be used to modify a variety
of models. The two main scenarios are modifying existing detailed
models or refining a simple existing model. Examples can be seen
in Figures 15-17. Shading strokes are shown in yellow and silhou-
ette strokes are shown in orange.

In Figure 15 (left), an eye is added to a simple horse model using
many thin, smooth shading strokes. The initially coarse mesh is
adaptively refined to allow for the addition of fine detail. In this
example, all strokes are drawn from a single point of view. Mus-
cles and sharp features are added to a simple male model in Fig-
ure 15 (right). Shading strokes are used at varying scales to create
medium as well as fine geometry changes. Figure 16 (left) depicts
eyes, nostrils, and ear cavities added to a model created in the Fiber-
Mesh system. The eyes are added with several thin, sharp shading
strokes, creating ridges. Such features are difficult to create using
displacement editing tools. The nostrils and ear cavities are each
created with a single smooth silhouette stroke. In Figure 16 (right),
wear and tear is added to a couch. The creases are added using with
silhouette strokes. The rest of the features are added with shading
strokes. In Figure 17 (left), a thick shading stroke is used to give
the mannequin head puffy cheeks. A silhouette stroke creates a
more pronounced lip. In Figure 17 (right), a sharp silhouette stroke
is used to deepen a brow line on an elephant, and smooth shading
strokes are used to create a bulging leg muscle.

All interaction sessions were recorded on a MacBook Pro with a
2 GHz Intel Core Duo processor. A single core is used for compu-
tations. A graphics tablet is used as the input device.

The time for a stroke to be applied greatly depends on the stroke
size, ROI setting, mesh size, and degree of adaptive refinement,

ranging from instantaneous to seconds. The total optimization time
is dominated by building and solving the system of equations. In
our implementation, we use the sparse direct LU solver in the
PETSc package. Any direct LU solver will suffice, and faster ones
are available.

Performance is summarized in the following table. Each row rep-
resents a stroke applied to a model. Models indicated appear in
Figures 15-17. The ROI column indicates the number of vertices
in the ROI of the stroke; the system size is three times this num-
ber, squared. The constraints column indicates the number of con-
straints equations induced by the stroke. The “total” column sum-
marizes the total computation for the stroke, in seconds. The “build-
ing” and “solving” columns indicate the percentage of the total
computation spent building and solving the system.

model ROI constraints total (s) building solving
fig. 16, left 931 162 .25 37% 39%

horse 3859 237 1.38 44% 51%
elephant 9950 267 3.71 44% 52%

8 Conclusions and Future Work

We have described a general framework for controllable shading-
based surface editing, providing a direct and intuitive interface for
a broad range of surface modifications. Our primary tool, shad-
ing strokes, have both an intuitive meaning when viewed as two-
dimensional strokes in the image plane, and a predictable geomet-
ric behavior. A set of attributes makes them sufficiently flexible to
achieve fine control over surface appearance.

We plan to extend this work in a number of ways. The control of
highlights our tool provides is still quite limited We found detail-
preserving strokes most useful. However, in some cases it is desir-
able to eliminate details in a controllable way, so adding a “blur”
attribute to the stroke would be useful. Our system naturally com-
plements a number of other sketch-based approaches, so we will
explore integration with other systems.

Acknowledgements. We would like to thank our NYU Computer
Science colleagues for their help; the anonymous reviewers for their
suggestions; and Zach Shukan for his artwork.

References

ALLIEZ, P., COHEN-STEINER, D., DEVILLERS, O., LÉVY, B.,
AND DESBRUN, M. 2003. Anisotropic polygonal remeshing.
ACM Transactions on Graphics (TOG) 22, 3, 485–493.

BOTSCH, M., AND KOBBELT, L. 2004. An intuitive framework
for real-time freeform modeling. ACM Transactions on Graphics
(TOG) 23, 3, 630–634.

BOTSCH, M., AND SORKINE, O. 2008. On linear variational sur-
face deformation methods. IEEE Transactions on Visualization
and Computer Graphics 14, 1, 213–230.

BOURGUIGNON, D., CHAINE, R., CANI, M.-P., AND DRET-
TAKIS, G. 2004. Relief: A modeling by drawing tool. In Eu-
rographics Workshop on Sketch-Based Interfaces and Modeling
(SBM), 151–160.

CELNIKER, G., AND GOSSARD, D. 1991. Deformable curve and
surface finite-elements for free-form shape design. Computer
Graphics (SIGGRAPH Conference Proceedings) 25, 4, 257–266.

CHEUTET, V., CATALANO, C. E., PERNOT, J. P., FALCIDIENO,
B., GIANNINI, F., AND LEON, C. 2004. 3D sketching with
fully free form deformation features (δ -f4) for aesthetic design.
In Eurographics Workshop on Sketch-Based Interfaces and Mod-
eling (SBM), 9–18.

DECARLO, D., FINKELSTEIN, A., RUSINKIEWICZ, S., AND
SANTELLA, A. 2003. Suggestive contours for conveying shape.
ACM Transactions on Graphics (TOG) 22, 3, 848–855.

IGARASHI, T., MATSUOKA, S., AND TANAKA, H. 1999. Teddy: a
sketching interface for 3D freeform design. In Computer Graph-
ics (SIGGRAPH Conference Proceedings), 409–416.

KARA, L. B., D’ERAMO, C. M., AND SHIMADA, K. 2006. Pen-
based styling design of 3D geometry using concept sketches and
template models. In Proceedings of the ACM Symposium on
Solid and Physical Modeling (SPM), 149–160.

KARPENKO, O. A., AND HUGHES, J. F. 2006. SmoothSketch:
3D free-form shapes from complex sketches. ACM Transactions
on Graphics (TOG) 25, 3, 589–598.

KERAUTRET, B., GRANIER, X., AND BRAQUELAIRE, A. 2005.
Intuitive shape modeling by shading design. In Smart Graphics:
5th International Symposium.

LAWRENCE, J., AND FUNKHOUSER, T. 2004. A painting interface
for interactive surface deformations. Graphical Models 66, 6,
418–438.

LIPMAN, Y., SORKINE, O., LEVIN, D., AND COHEN-OR, D.
2005. Linear rotation-invariant coordinates for meshes. ACM
Transactions on Graphics (TOG) 24, 3, 479–487.

MORETON, H. P., AND SÉQUIN, C. H. 1992. Functional optimiza-
tion for fair surface design. In Computer Graphics (SIGGRAPH
Conference Proceedings), 167–176.

NEALEN, A., SORKINE, O., ALEXA, M., AND COHEN-OR, D.
2005. A sketch-based interface for detail-preserving mesh edit-
ing. ACM Transactions on Graphics (TOG) 24, 3, 1142–1147.

NEALEN, A., IGARASHI, T., SORKINE, O., AND ALEXA, M.
2007. FiberMesh: designing freeform surfaces with 3D curves.
ACM Transactions on Graphics (TOG) 26, 3, 41.

NG, H.-S., WU, T.-P., AND TANG, C.-K. 2007. Surface-from-
gradients with incomplete data for single view modeling. In
Proceedings of the 11th IEEE International Conference on Com-
puter Vision (ICCV), 1–8.

PRADOS, E. 2004. Application of the theory of the viscosity solu-
tions to the Shape From Shading problem. PhD thesis, University
of Nice-Sophia Antipolis.

RUSHMEIER, H., GOMES, J., BALMELLI, L., BERNARDINI, F.,
AND TAUBIN, G. 2003. Image-based object editing. Proceed-
ings of the Fourth International Conference on 3D Digital Imag-
ing and Modeling (3DIM), 20–28.

SCHAEFER, S., WARREN, J. D., AND ZORIN, D. 2004. Loft-
ing curve networks using subdivision surfaces. In Proceedings
of the Eurographics/ACM SIGGRAPH Symposium on Geometry
Processing (SGP), 103–114.

SINGH, K., AND FIUME, E. 1998. Wires: a geometric deforma-
tion technique. In Computer Graphics (SIGGRAPH Conference
Proceedings), 405–414.

SORKINE, O., COHEN-OR, D., AND TOLEDO, S. 2003. High-
pass quantization for mesh encoding. In Proceedings of the Eu-
rographics/ACM SIGGRAPH Symposium on Geometry Process-
ing (SGP), 42–51.

SORKINE, O., COHEN-OR, D., LIPMAN, Y., ALEXA, M.,
RÖSSL, C., AND SEIDEL, H.-P. 2004. Laplacian surface edit-
ing. In Proceedings of the Eurographics/ACM SIGGRAPH Sym-
posium on Geometry Processing (SGP), 175–184.

SORKINE, O. 2008. Personal communication.

VAN OVERVELD, C. W. A. M. 1996. Painting gradients: free-

Figure 15: Left: adding an eye to a horse model with shading strokes; the mesh is adaptively refined. The mesh begins with 19851 vertices
and is refined to 21116 vertices. Right: refining a simple male model. The mesh begins with 5914 vertices and ends with 9151 vertices.

Figure 16: Left: refining a model created in the FiberMesh system. The eyes are added using shading strokes; the nostrils and ears are added
with silhouette strokes. The mesh begins with 3498 vertices and is refined to 5330 vertices. Right: adding features to a couch. The couch
contains 31013 vertices.

Figure 17: Left: a shading stroke and a silhouette stroke applied to the mannequin head. The mesh begins with 10883 vertices and is refined
to 12515 vertices. Right: deepening a crease and adding a muscle on an elephant model. The mesh contains 45682 vertices.

form surface design using shading patterns. In Proceedings of
the conference on Graphics Interface (GI), 151–158.

WARDETZKY, M., BERGOU, M., HARMON, D., ZORIN, D., AND
GRINSPUN, E. 2007. Discrete quadratic curvature energies.
Computer Aided Geometric Design 24, 8-9, 499–518.

WELCH, W., AND WITKIN, A. 1992. Variational surface model-
ing. In Computer Graphics (SIGGRAPH Conference Proceed-
ings), 157–166.

WU, T.-P., TANG, C.-K., BROWN, M. S., AND SHUM, H.-Y.
2007. ShapePalettes: interactive normal transfer via sketching.
ACM Transactions on Graphics (TOG) 26, 3, 44.

YU, Y., ZHOU, K., XU, D., SHI, X., BAO, H., GUO, B., AND
SHUM, H.-Y. 2004. Mesh editing with poisson-based gradient

field manipulation. ACM Transactions on Graphics (TOG) 23,
3, 644–651.

ZENG, G., MATSUSHITA, Y., QUAN, L., AND SHUM, H.-Y.
2005. Interactive shape from shading. CVPR 1, 343–350.

ZHANG, L., DUGAS-PHOCION, G., SAMSON, J.-S., AND SEITZ,
S. M. 2001. Single view modeling of free-form scenes. CVPR
01, 990.

ZIMMERMANN, J., NEALEN, A., AND ALEXA, M. 2007. SilS-
ketch: Automated sketch-based editing of surface meshes. In
Eurographics Workshop on Sketch-Based Interfaces and Model-
ing (SBM).

