Homework 5, due May 21.

- 1. Chapter 8, problem 2.
- 2. Chapter 8, problem 4.
- 3. (a) Compute the interpolating polynomial $P_L(x)$ in Lagrange form for the function y(x) = ln(x), evaluated at points $x_1 = 0.1$, $x_2 = 1$, $x_3 = 2$, $x_4 = 2.9$. (b) Find a cubic polynomial Q(x) such that $Q(x_1) = y(x_1)$, $Q'(x_1) = y'(x_1)$, $Q'(x_4) = y'(x_4)$ and $Q(x_4) = y(x_4)$. Compare the error of $P_L(x)$ and the $Q_L(x)$ at the point x = 1.5: which one approximates the function y(x) = ln(x) better?
- 4. Suppose we want to interpolate values $y_1, y_2, \ldots y_n$ defined at points $x_1, x_2, \ldots x_n$ with a piecewise quadratic polynomials, $p_i(x) = a_i x^2 + b_i x + c_i$, $p_i(x)$ interpolates points (x_i, y_i) and (x_{i+1}, y_{i+1}) , $i = 1 \ldots n 1$, so that the resulting interpolating functions has continuous derivative everywhere, including points x_i . Additionally, assume that $x_i = i$. Write a system of equations for a_i, b_i, c_i . Does it have a unique solution? If not, what additional data you can add to make the solution unique?