
2D spring-mass systems in equilibrium

Vector notation preliminaries

First, we summarize 2D vector notation used in the derivations for the spring
system.

We use ‖a‖ to denote the length of a vector a, ‖a‖ =
√

a2
x + a2

y. The outer

product abT of two vectors a and b is a matrix[
axbx axby

aybx ayby

]
Differentiating a scalar function f(p) of a vector argument p = (x, y), with

respect to p means calculating the vector

∂f

∂p
=

[
∂f

∂x
,
∂f

∂y

]
.

If we differentiate a vector function with respect to a vector we get a matrix
(one can think about this as differentiating the vector function component by
component, and stacking two resulting row vectors together); if the components
of f(p) are fx(x, y) and fy(x, y), then

∂f
∂p

=

[
∂fx

∂x
∂fx

∂y
∂fy

∂x
∂fy

∂y

]
This notation makes linear approximations to vector functions look exactly

the same way as in the scalar case: instead of

f(x) ≈ f(x0) + f ′(x)(x− x0)

we get

f(p) ≈ f(p0) +
∂f
∂p

(p− p0)

where the second term is a matrix-vector product. Several useful identities:

•
∂p
∂p

= I

that is, if fx(x, y) = x and fy(x, y) = y, the matrix ∂f/∂p is just the
identity matrix.

• For a scalar function g, and vector function f , we get the product rule:

∂gf
∂p

= g
∂f
∂p

+ f
∂g

∂p

T

where the second term is an outer product. This can be easily verified
applying the definitions of the derivative of the vector function, the usual
scalar derivative product rule, and the outer product definition.

1

• Chain rule for two vector functions g(p) and f(q):

∂f(g(p))
∂p

=
∂f
∂q

∂g
∂p

where the right-hand side is the matrix product.

Spring equations

pi

pj
pjrij

Rest configuration One point moved

Fij

Fji

A spring-mass system is a collection of point masses mi with positions pi con-
nected by springs. Some of the points are fixed, some are allowed to move.
Our goal is to find positions of the moving points for which the total force from
springs acting on each point is zero, in other words, the system is in its rest
(equilibrium) state to which it relaxes if no external forces are applied.

A spring (i, j) connects two points pi and pj . Each spring has a rest length,
rij . If the distance ‖pi − pj‖ between spring endpoints is rij , there there is
no contribution from the spring to the total force acting on either point. If
the distance is different, there is a spring force acting on each endpoint: the
magnitude of the force acting on pi, is k‖pi −pj‖, and it acts along the spring,
that is, the line connecting spring endpoints; the coefficient k is called stiffness.
For simplicity, we assume that all springs have the same stiffness. In vector
form, the force can be written as

Fij = k(‖pi − pj‖ − rij)
pj − pi

‖pi − pj‖
In this expression, pj − pi/‖pi − pj‖ is just a unit vector pointing along the

spring away from pi.
We denote neighbor(i) the set of indices of points connected to point i by a

spring. Then the total force acting on a point i is

Fi =
∑

j∈neighbor(i)

Fij =
∑

j∈neighbor(i)

k(‖pi − pj‖ − rij)
pj − pi

‖pi − pj‖
(1)

Let If be the set of indices of points that are fixed, and Im be the set
of indices of moving points; we assume that all moving points precede in the
list of points all fixed points, that is, the moving points have indices Im =
{0 . . . Nm − 1}, and fixed points If = {Nm . . . Nm + Nf − 1}. Later we will
discuss how to eliminate this assumption.

We build a vector F of length 2Nm, which is obtained by concatenating 2D
vectors of forces Fi for all moving points. Similarly, we concatenate all moving
point positions pi to get a vector p.

2

Then the equation we need to solve has the form

F(p) = 0 (2)

One can see that for the equilibrium problem, the actual mass of each point
does not matter, because the forces only depend on spring stiffnesses (for the
dynamic problem, Fi = miai, where ai is the acceleration of i-th point, the
mass is important).

These equations are nonlinear, so we cannot solve this system using, for
example, LU decomposition.

Solving the system using Newton’s method

The Newton method iteration for (2) (See Chapter 9 of the textbook for details)
is

pk+1 = pk − J [F](pk)−1F(pk)

where J [F](pk) is the Jacobian matrix of F evaluated for point positions pk.
The Jacobian matrix is the matix of partial derivatives with entry (s, t) equal
to ∂Fs/∂pt, where s, t = 0 . . . 2Nm − 1, are indices in vectors F and p. Note
that this is a more general case of the 2× 2 derivative matrix ∂f/∂p.

It is convenient to view each Newton step as solving a linear system

J [F]∆pk+1 = −F(pk)

where ∆pk+1 = pk+1 − pk.
We already know how to obtain the vector F(pk); so the only other element

that we need is the Jacobian matrix.

Assembling the Jacobian matrix. It is convenient to assemble this matrix
from 2 blocks, obtained by differentiating individual spring forces Fij . Instead
of treating p as a flat vector [px

1 , py
1, p

x
2 , py

2, . . .], we regard it as a vector of points
[p1,p1,p2 . . .], and take the same approach to F. Now we build J [F] as a
Nm ×Nm matrix of 2× 2 blocks ∂Fi/∂pj , i, j = 0 . . . Nm − 1.

An individual block ∂Fi/∂pj can be interpreted as the rate of change of the
force acting on point pi due to the change in position of point pj .

First, we consider the case when i 6= j. In this case, in the sum Fi =
∑

l Fil,
at most one term depends on pj : if there is a spring connecting pi with pj ,
then Fij depends on j, and the rest do not, and if there is no spring, no terms
depend on j. So we get, for i 6= j,

∂Fi

∂pj
=

{
∂Fij

∂pj
, if there is a spring (i, j)

0 otherwise.

If i = j, all terms in the sum depend on pj = pi, so the derivative will be
the sum:

∂Fi

∂pi
=

∑
l∈neighbor(i)

∂Fil

∂pi
(3)

On the other hand, we observe that Fil depends only on the difference dil =
pi − pl, so we can write it as a composition of functions F(dil(pi − pl)). As
∂dil/∂pi = I and ∂dil/∂pl = −I, by the chain rule, we can see that ∂Fil/∂pi =
−∂Fil/∂pl.

Based on this, we see that we can rewrite the expression (3) as

3

∂Fi

∂pi
= −

∑
l∈neighbor(i)

∂Fil

∂pl

There is a subtlety here related to fixed points: some of the points pl attached
to the moving point pi may be fixed; we still need to include terms ∂Fil/∂pl in
the summation above, although pl for a fixed point is not changing.

So all blocks in the matrix can be obtained as soon as we know ∂Fij/∂pj .

Computing force derivative for an individual spring. To compute this
derivative, we rewrite Fij as sum of two terms

Fij = k(pj − pi)− krij
pj − pi

‖pi − pj‖
The derivative of the first term with respect to pj is kI. The derivative of

the second term requires a bit more effort. We compute it using the chain rule:
denote d = pj − pi. Then we can write the second term as

Gij = krij
d
‖d‖

= krij
d√
d · d

The complete derivative is obtained as (∂Gij/∂d)(∂d/∂pj). But ∂d/∂pj =
∂pj/∂pj −∂pj/∂pi = I−0 = I, so our derivative is simply ∂Gij/∂d. As krij is
constant, it remains to compute ∂(d/‖d‖)/∂d, which we do using the product
rule:

∂‖d‖−1d
∂d

= ‖d‖−1 ∂d
∂d

+ d
(

∂‖d‖−1

∂d

)T

The derivative ∂(d·d)1/2

∂d is (−1/2)(d · d)−3/2 ∂d·d
∂d = −‖d‖−3d, so we get the

expression

∂‖d‖−1d
∂d

=
‖d‖2I − ddT

‖d‖3

And the final expression for the derivative of the force Fij with respect to
the point position pj is

Jij =
∂Fij

∂pj
= kI − krij

‖dij‖2I − dijdT
ij

‖dij‖3

where dij = pj − pi.
An additional observation we can make about these expression is that Jij =

Jji, because dij = −dji, and sign changes of d cancel in the expressions. This
allows us to compute only Jij for j < i, and use it for two subblocks of the
matrix.

By-spring assembly. The total forces Fi acting on each point can be com-
puted if we iterate over all points and compute the sums (1) for each. This
would require additional data structures for adjacency information, and a loop
for each point. Alternatively, we observe that we can have a loop over springs
(i, j), and add forces due to each spring to the parts of the total force vector
corresponding to points pi and pj :

for each spring (i, j), i < j
compute Fij

if i < Nm add Fij to Fi

if j < Nm add Fij to Fj.

4

Here we take advantage of the fact that Fij = −Fji to compute the force
only once.

Similarly, instead of assembling the matrix J [F] using a double loop over Fs

for rows and pt for columns, we can compute ∂Fij/∂pj for each spring (i, j),
and add it to the 2× 2 block in the matrix corresponding to the pair of points
(i, j). As we know that the coordinates of i-th moving point occupy slots 2i
and 2i + 1 in the vectors F and p, thanks to the assumption that all moving
points precede fixed, the block Jij corresponds to the matrix subblock in rows
2i, 2i + 1 and columns 2j, 2j + 1.

This leads to the following algorithm that can be implemented with just sev-
eral lines of code, where we use numpy notation for matrix subblock assignment:

Initialize the matrix J to 2Nm × 2Nm zero matrix
foreach spring (i, j), i < j

compute Jij = ∂Fij

∂pj

if i < Nm

update the sum for the diagonal block, if i is not fixed
J [2i : 2i + 2, 2i : 2i + 2]+ = −Jij

if i < Nm and j < Nm,
set off-diagonal blocks if neither point is fixed
J [2i : 2i + 2, 2j : 2j + 2] = Jij

J [2j : 2j + 2, 2i : 2i + 2] = Jij

An alternative way of handling fixed points. If we fix and unfix points
interactively, like we do in our code, it is convenient not to assume that indices
of all moving points precede indices of fixed points: this would require resorting
the points each time.

The idea is to regard all points, including fixed, as variables, but modify
the system so that moving points stay in their positions. That is, now the
vector p has all points in it, no longer in any particular order, and its length is
2(Nm + Nf) = 2N . The force vector F is assembled in the same way as p.

Then we zero out the entries in the force vector corresponding to fixed points,
so that there is no force acting on them; as a consequence, these do not move.

Now the matrix J [F] is 2N×2N . We start with assembling it as if all points
were moving: we use the algorithm above, but eliminate the check if the points
pi and pj are moving or not. Finally, we replace the rows and columns of the
matrix corresponding to fixed points with corresponding rows and columns of
identity matrix.

One can verify that for this approach the fixed points are not modified by
the Newton iteration, and the submatrix for the moving points has exactly the
same entries as in the original algorithm.

Here is an illustration of this approach in the case of three points, p0,p1,p2,
with p0 and p2 fixed, and two springs (0, 1) and (1, 2):

1. Initially, we set F = [F01,−F01 + F12,−F12]. Then, we set forces on fixed
points to zero: F = [0,−F01 + F12, 0].

2. To assemble J [F], we first assemble the matrix as if all points were moving: −J01 − J02 J01 J02

J01 −J01 − J12 J12

J02 J12 −J02 − J12

5

3. Then we set the rows and columns corresponding to fixed points 0 and 2
to the rows and columns of the identity matrix of the same size as J [F]:

J [F] =

 I 0 0
0 −J01 − J12 0
0 0 I

The inverse of this block-diagonal matrix has the same block form, with

diagonal entries inverted:

J [F]−1 =

 I 0 0
0 (−J01 − J12)−1 0
0 0 I

When we multiply J [F]−1 by F for the Newton update step, we get J [F]−1F =

[0, (−J01−J12)−1(−F01 +F12), 0], so there is no change in positions of the fixed
points, and the correct update, that we would have obtained using the first
method for matrix assembly for the moving points. This requires maintaining a
larger matrix, but eliminates the need to change point indices when points are
fixed and unfixed.

6

