Homework 3, due Thursday, April 3.

- 1. Write down a system for fitting the function $f(t) = c_0 + c_1 t + c_2 e^{(t)}$ to data points (t_i, y_i) , $i = 1 \dots n$. Modify the least-squares curve code to solve this problem. Make sure that degenerate cases when the problem does not have a solution or has multiple solutions are detected. Extra credit: in the case of multiple solutions, find a way to choose a reasonable unique solution.
- 2. Show that the Housholder matrix used in QR decomposition $H(v) = I 2\frac{vv^T}{(v \cdot v)}$, where v is a nonzero vector, has the following properties: a) $H^T H = I$, b) $H = H^T$ (and, as a consequence $H^2 = I$). Find a vector v for which this matrix annihilates all but the first entry of the vector $e = [1, 1, ..., 1]^T$, i.e. $He = [a, 0, ..., 0]^T$.
- 3. Write down the definition of a quadratic Bezier segment. (a) What is the geometric meaning of the middle control point? (b) If we want to construct a smooth curve out of quadratic segments what conditions the control points should satisfy?
- 4. Modify the code posted on the web page to draw smooth curves made out of quadratic Bezier segments. If the user specifies points (x_i, y_i) , $i = 0 \dots n$, use points $(x_0, y_0), (x_2, y_2), (x_4, y_4)$ as Bezier segment endpoints and even points as middle control points for quadratic segments. If the number of points is even, do not draw the last segment.
- 5. Suppose we interpolate n points (t_i, y_i) with a piecewise degree 5 polynomial P(t) (that is, on each interval between points the curve is a polynomial). What is the maximal number of continuous derivatives can we have at t_i ? Prove your answer.