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In this lecture, we discuss polynomial parametric curves, which is the most commonly used
type of curvesin geometric modeling. We consider two ways of representing such curves which
are useful for computational purposes viz., Bezier and B-spline curves. We also discuss some
properties of Bezier and B-spline curves.

Representation of Curves

For computational purposes, we need to represent curves in some form. The most commonly
used representation is the parametric representation. As we have seen in the previous lecture,
parametric method is to represent the curve in the form of afunction of one parameter

y(t):R—-R" n=23,...

It would be good if the function y(t) is simple because using arbitrary functions which can
be obtained say by composition of commonly used elementary functions is computationally
expensive. So we look for class of functions which is as simple as possible and yet diverse
enough to represent a wide variety of curves. Polynomial functions to large extent satisfy this
requirement. A general polynomial function is represented in the following way:

n

y(t) = Z a;tt

=0

where n isthe degree of the polynomial.

The variety of curves that you can obtain using polynomials depends on the maximum al-
lowed degree. The higher the degree, the greater variety of shapes one can represent. For
example, to define a curve with n wiggles, we need a polynomial of degree n + 1. But higher
degrees result in some problems. The computational complexity of maintaining the curve in-
creases with increasing degree. The higher the degree of a curve, the less controllable it is,
in a sense that small changes in coefficients are likely to result in large changes in the shape
of the curve. Furthermore, the curves of high degree are more likely to develop “bumps’ in
unpredictable when the shape of the curve is changed.

Let ustry to figure out what is the minimal degree we can get away with. For simplicity, let
us consider the functional case only. Degree 1 polynomials can only be used to represent straight
lines; degree 2 curves are parabolas in non-degenerate cases. The problem with parabolais that
it does not have a point of inflection, where the curve turns from being concave to convex or
vice-versa, and hence a curve with point of inflection cannot be represented using a degree 2
polynomial; we can stitch several degree 2 polynomials together, but at inflection points the
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curvature is likely to be discontinuous unless it is zero. Cubics on the other hand may have
points of inflection with curvature changing continuously.

To represent arbitrarily complex curves one usually uses piecewise polynomials, stitching
together many polynomial pieces.

The next question we need to address is how to specify polynomia curves. The most
straightforward approach is to define a curve using the polynomial coefficients. For example, a
two-dimensional curve can be represented using polynomialsin the following way:

y(t) = aop + art + ast® + ast®

where a,’s are two-dimensional points. One can see that y(¢) is the weighted average of
aop, a1, az, az but it isnot intuitively clear though how y(t) istraversed ast changes, and how «;
influence the shape of y(t).

Bezier Curves

One can make the coefficients describing a polynomia more intuitive by changing the basis
functions. Instead of using the standard monomial basis [1, ¢, 2, t3], we use the Bernstein basis:
[(1—1)°,3t(1 —t)*, 3t(1 — t), t?]. Oneway to derive this set of basis function isto look at the
expansion of 13:

I=1—t+t)°=00—t)>+3t(1 —t)> +33(1 —t) + 13 (1)

Why this basis? We shall see that Bezier curves have anumber of nice properties. Bernstein
basis is defined for any n. For n = 1, the Bernstein basisis [(1 — t),t] and for n = 2 itis
[(1—t)%,2t(1 —t),%]. The Bernstein basisfor n = 3 are shown in Figure 1.

Any polynomial can be written as a combination of the four polynomials of the Bernstein
basis. If pg, p1, p2, p3 aefour points in space, then the cubic polynomial curve

3
= piBu(t) (2)
=0

where Bs ; istheith Bernstein polynomial is called a
cubic Bezier curve with control points py, . . . p3.

Properties of cubic Bezier curves

1. Interpolation. One can easily see that p*(0) = po and p?(1) = ps, i.e. the Bezier curve
p3(t) interpolates the points py,and ps

2. Affine Invariance. This property can be easily verified by considering an affine map
d(x) = Ax + v where A isa3 x 3 matrix and v isin R?. Now

3 3

Z ®(pi)Bs,i(t) = Z(Apz +v)Bs,i)( AZPzB:u +v= ‘D(sz‘Bg,z‘(t))

i=0 =0

The last transformation uses the fact that Bernstein basis functions sum up to one (1).
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Figure 1: Bernstein basis functionsfor n = 3
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Figure 2: Bezier Interpolation

3. Tangent to the curve at point p, is the vector pop; and tangent to the curve at ps iS paps.
This can be easily verified by differentiating (2) and substituting appropriate parameter
values. t = 0 for po and ¢t = 1 for p3. This property can be used to test whether two
Bezier curves are joined smoothly: use this property to find the tangents at the common
point and then see whether they are parallel.

4. Convex Hull. Itisclear that Bs;(t) > 0 for ¢ € [0,1]. Thisand (1) meansthat all points
on the Bezier curve lie inside the convex hull of pointspy . . . ps.

Polar forms and blossoming

Polar form of a polynomial of P(t) : R — R of degree n is a multiaffine symmetric function
P(tl,tg,. o ,tn) R" — RSJChthat

P(t,t,....t) = P(t) 3)

We focus on the case n = 3. The two properties of polar forms are defined as follows:
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Figure 3: Blossoming for Bezier curves.

e A function f(¢1,...,t,) is symmetric if the value of the function is the same for any
permutation of the argumentst,, .. .%,.

e Afunction f(ty,...,t,) ismultiaffineif for any argumentst,, ...}, t},...t, andany a

flty,.atl+(1=a)th, . ty) =af(tr, .. )t t)+(L—a) f(tr, ..., th, .. t)

For any polynomial, there exists a unique symmetric and multiaffine polar form. We do

not give a formal proof for it but an intuition behind it for the case n = 3 will make it clear.

Because the polar form is multiaffine it is linear in each argument; therefore it is a polynomial

inty, to, t3, Of total power 3 asit follows from (3). Therefore the polar form can be expressed

as by + biito + biots + bists + bortits + baotats + bagtits + +bstitats. Writing equations for
symmetry and taking (3) into account yields a

a
Pty to ts) = ap + = ; Lty 1) + ?(tltg oty + tits) + astitots

Suppose P(ty, ts,t3) is the polar form of a cubic polynomia P(t), then the value of P(t)
for any arbitrary ¢ can be found if the values of P(0,0,0), P(0,0,1)P(0,1,1)and P(1,1,1) are
given. Thisisdone by repeated linear interpolation and is shown in Figure 3.

In this way we can compute the value of the polynomial at any point ¢ using a sequence
of linear interpolations. Polar form representation is useful because it provides a uniform and
simple approach to computing values of a polynomia using a variety of representations from
Bezier curves to NURBS (non-uniform rational B-splines).

B-splines

B-splinesisadifferent approach to representing piecewise polynomial curves, which overcomes
some of the drawbacks of Bezier curves.

Suppose we wish to design along curve with many undulations. One approach would be to
use ahigh-degree Bezier curve. Aswe have aready discussed, thisisnot avery good approach;
also note that each of n + 1 control points of a Bezier curve of degree n influences the whole
curve, which means that it is difficult to introduce a small feature without changing the curve
everywhere. Another approach using Bezier curvesis to construct the curve from many parts
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(piecewise Bezier); in this case we need to match at | east the values and tangents at the endpoints
of each segment. Values are easily matched by constraining the last control point of segment j
and the first control point of segment j + 1 to be the same: pg = p%—H. Tangents can be made
the same if the points p), p = p) ', p/™" of the segments j and j + 1 are constrained to be on
the same line. Thisisthe way curves are constructed in many drawing programs, for example,
in Adobe Illustrator. Resulting curves need not be C? however, and it is not that easy to make
them “fair” which typically means that we want the curvature not to change abruptly.

To summarize, three commonly desirable properties of curves are:

1. C?-continuity: Should be C? continuous at all points.
2. Interpolation: Should interpolate the input control points.

3. Local control: The modification of a particular control point should modify the curve
only locally.

Aswe have seen, piecewise Bezier curvesinterpolate the control points shared by segments,
and have local control, but need not be C2-continuous. It turns out that these three properties
areincompatible for cubic curves. e.g. if we attempt to write a system of equations that ensures
that sequential Bezier segments are joined with C* continuity, we will seethat “interior” control
poi ntSp{ pg for segment j have to depend on the endpoints p; = pi,™* for al i, i.e. thereisno
local control.

If we give up the interpolation property thereisatype of piecewise cubic polynomial curves
which satisfies the remaining requirements called the B-spline curves. If we require interpola-
tion but give up local control we get curves called natural splines, which we will not discussin
detail.

A B-spline curve defined everywhere on R can be written in the following form:

p(t) = Z piBi(t)

1==00

where p; are control points and B;(t) are the basis functions associated with control points p;.
Each basis function can be thought of as the variable weight which determines how the control
point p; influences the curve at parametric value t. For uniform splines, the basis functions
satisfy

Bi(t) = B(t — 1) @

for afixed function B.

We choose the basis function B(¢) in such away that the resulting curves are C-continuous,
the influence of the control pointsislocal (i.e. B(t) # 0 on the smallest possible interval) and
the curves are piecewise cubic polynomials on each each interval [i, i + 1]. We would like the
influence of acontrol point to be maximal at regions of the curve closetoit and for thisinfluence
to decrease as we move away along the curve and disappear completely at some distance. Also
desirable is affine invariance property that we have seen for Bezier curves. we describe how to
construct basis functions satisfying all these requirements.

There are many different ways to define B-splines; we will consider two equivalent defini-
tions: using convolution and using blossoming.
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B-spline basis functions

We start with the simplest functions which already meet some of the requirements above: piece-
wise constant coordinate functions. Any piecewise constant function can be written as

p(t) = Z piBox(t — 1)

where Box(t) isthe box function defined as

1, ifo<t<l1
Box(t) = { 0 otherwise

We define the convolution of two functions f(¢) and g(¢) as

(f % 9)(t) = / " F)glt — s)ds

The remarkable property of convolution is that each time we convolve a function with a
box its smoothness increases. We will see that convolution can be seen as “moving average”
operation.

A B-spline basis function of degree n can be obtained by convolving a B-spline basis func-
tion of degreen — 1 with the box Bozx(t). For example, the basis function of degree 1 is defined
as the convolution of Boz(t) with itself. We need to compute

/OO Box(s)Box(t — s)ds

—0o0

Graphically, this convolution can be evaluated by sliding one box function along the coor-
dinate axis from —oo to oo and keeping the second box fixed (see Figure 4). The value of the
convolution for a given position of the second box is simply the area under the product of the
boxes, which isjust the length of the interval where both boxes are non-zero.

At first the two graphs do not have common area. Once the moving box reaches O, thereis
agrowing overlap between the areas of the graphs. The value of the convolution increases until
t = 1. Then the overlap starts decreasing, and the value of the convolution decreases down to
zeroat t = 2. Thefunction B, (t) = (Box * Box)(t) isasshownin Figure 4.

Now take the convolution of Box(t) with B;(¢) and we obtain B;(t), the degree 2 basis
function. We can continue further and obtain degree 3 B-spline, Bs(t) by convolving Bs(t)
with Box(t) (Figure5).

Properties of B-splines

e B,(t) is a piecewise polynomial of degree n (each convolution increases the degree by
1).

e B,(t) hasasupport of length n + 1. We have seen that Box(t) has a support 1 and each
convolution increases the support by 1.
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Figure 4: The definition of Degree 1 B-spline basis function through convolution of Box func-
tion with itself.
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Figure 5: Degree 3 B-spline basis function

e B"(t) is C"!-continuous. Box(t) is C° continuous and each convolution increases
smoothness by 1.

e The set of functions B,,(t — i), i = —oco...occ isdffine invariant. This comes from the
observation that

o0

Y But—i)=1

i=—00
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Figure 6: Blossoming in B-splines

which can be proved by in induction observing that this property holds for the box func-
tion and is preserved by the convolution.

Blossoming in B-splines

For a cubic B-spline, if t € [2, 3], then we can obtain the value of P(t) = P(t,t,t) from the
valuesof P(0,1,2), P(1,2,3), P(2,3,4), P(3,4,5) asshown in Figure 6.

For t € [i,i + 1] and cubic B-splines, we need four control points P(i — 2,i — 1,4), P(i —
Liayi+ 1), P(i,i+1,i4+2),P(i+ 1,0+ 2,i + 3).



