
G22.3033-002: Topics in Computer Graphics: Lecture #2
Geometric Modeling
New York University

Bezier Curves and B-splines, Blossoming

Lecture #2: 16 September 2002
Lecturer: Prof. Denis Zorin
Scribe: Kranthi K Gade

In this lecture, we discuss polynomial parametric curves, which is the most commonly used
type of curves in geometric modeling. We consider two ways of representing such curves which
are useful for computational purposes viz., Bezier and B-spline curves. We also discuss some
properties of Bezier and B-spline curves.

Representation of Curves

For computational purposes, we need to represent curves in some form. The most commonly
used representation is the parametric representation. As we have seen in the previous lecture,
parametric method is to represent the curve in the form of a function of one parameter

y(t) : R → R
n, n = 2, 3, . . .

It would be good if the function y(t) is simple because using arbitrary functions which can
be obtained say by composition of commonly used elementary functions is computationally
expensive. So we look for class of functions which is as simple as possible and yet diverse
enough to represent a wide variety of curves. Polynomial functions to large extent satisfy this
requirement. A general polynomial function is represented in the following way:

y(t) =
n∑

i=0

ait
i

where n is the degree of the polynomial.
The variety of curves that you can obtain using polynomials depends on the maximum al-

lowed degree. The higher the degree, the greater variety of shapes one can represent. For
example, to define a curve with n wiggles, we need a polynomial of degree n + 1. But higher
degrees result in some problems. The computational complexity of maintaining the curve in-
creases with increasing degree. The higher the degree of a curve, the less controllable it is,
in a sense that small changes in coefficients are likely to result in large changes in the shape
of the curve. Furthermore, the curves of high degree are more likely to develop “bumps” in
unpredictable when the shape of the curve is changed.

Let us try to figure out what is the minimal degree we can get away with. For simplicity, let
us consider the functional case only. Degree 1 polynomials can only be used to represent straight
lines; degree 2 curves are parabolas in non-degenerate cases. The problem with parabola is that
it does not have a point of inflection, where the curve turns from being concave to convex or
vice-versa, and hence a curve with point of inflection cannot be represented using a degree 2
polynomial; we can stitch several degree 2 polynomials together, but at inflection points the



2 G22.3033-002: Lecture #2

curvature is likely to be discontinuous unless it is zero. Cubics on the other hand may have
points of inflection with curvature changing continuously.

To represent arbitrarily complex curves one usually uses piecewise polynomials, stitching
together many polynomial pieces.

The next question we need to address is how to specify polynomial curves. The most
straightforward approach is to define a curve using the polynomial coefficients. For example, a
two-dimensional curve can be represented using polynomials in the following way:

y(t) = a0 + a1t + a2t
2 + a3t

3

where ai’s are two-dimensional points. One can see that y(t) is the weighted average of
a0, a1, a2, a3 but it is not intuitively clear though how y(t) is traversed as t changes, and how ai

influence the shape of y(t).

Bezier Curves

One can make the coefficients describing a polynomial more intuitive by changing the basis
functions. Instead of using the standard monomial basis [1, t, t2, t3], we use the Bernstein basis:
[(1 − t)3, 3t(1 − t)2, 3t2(1− t), t3]. One way to derive this set of basis function is to look at the
expansion of 13:

1 = (1 − t + t)3 = (1 − t)3 + 3t(1 − t)2 + 3t2(1 − t) + t3 (1)

Why this basis? We shall see that Bezier curves have a number of nice properties. Bernstein
basis is defined for any n. For n = 1, the Bernstein basis is [(1 − t), t] and for n = 2 it is
[(1 − t)2, 2t(1 − t), t2]. The Bernstein basis for n = 3 are shown in Figure 1.

Any polynomial can be written as a combination of the four polynomials of the Bernstein
basis. If p0, p1, p2, p3 are four points in space, then the cubic polynomial curve

p3(t) =
3∑

i=0

piB3,i(t) (2)

where B3,i is the ith Bernstein polynomial is called a
cubic Bezier curve with control points p0, . . . p3.

Properties of cubic Bezier curves

1. Interpolation. One can easily see that p3(0) = p0 and p3(1) = p3, i.e. the Bezier curve
p3(t) interpolates the points p0,and p3

2. Affine Invariance. This property can be easily verified by considering an affine map
Φ(x) = Ax + v where A is a 3 × 3 matrix and v is in R

3. Now

3∑
i=0

Φ(pi)B3,i(t) =
3∑

i=0

(Api + v)B3,i)(t) = A
3∑

i=0

piB3,i(t) + v = Φ(
3∑

i=0

piB3,i(t))

The last transformation uses the fact that Bernstein basis functions sum up to one (1).



G22.3033-002: Lecture #2 3

0

1

1

B3,0

B3,1 B3,2

B3,3

Figure 1: Bernstein basis functions for n = 3

Figure 2: Bezier Interpolation

3. Tangent to the curve at point p0 is the vector ¯p0p1 and tangent to the curve at p3 is ¯p2p3.
This can be easily verified by differentiating (2) and substituting appropriate parameter
values: t = 0 for p0 and t = 1 for p3. This property can be used to test whether two
Bezier curves are joined smoothly: use this property to find the tangents at the common
point and then see whether they are parallel.

4. Convex Hull. It is clear that B3,i(t) ≥ 0 for t ∈ [0, 1]. This and (1) means that all points
on the Bezier curve lie inside the convex hull of points p0 . . . p3.

Polar forms and blossoming

Polar form of a polynomial of P (t) : R → R of degree n is a multiaffine symmetric function
P (t1, t2, . . . , tn) : R

n → R such that

P (t, t, . . . , t︸ ︷︷ ︸
n

) = P (t) (3)

We focus on the case n = 3. The two properties of polar forms are defined as follows:



4 G22.3033-002: Lecture #2

Figure 3: Blossoming for Bezier curves.

• A function f(t1, . . . , tn) is symmetric if the value of the function is the same for any
permutation of the arguments t1, . . . tn.

• A function f(t1, . . . , tn) is multiaffine if for any arguments t1, . . . t
0
j , t

1
j , . . . tn and any a

f(t1, . . . , at0j +(1−a)t1j , . . . tn) = af(t1, . . . t
0
j , tj+1, . . . tn)+(1−a)f(t1, . . . , t

1
j , . . . , tn)

For any polynomial, there exists a unique symmetric and multiaffine polar form. We do
not give a formal proof for it but an intuition behind it for the case n = 3 will make it clear.
Because the polar form is multiaffine it is linear in each argument; therefore it is a polynomial
in t1, t2, t3, of total power 3 as it follows from (3). Therefore the polar form can be expressed
as b0 + b11t2 + b12t3 + b13t3 + b21t1t2 + b22t2t3 + b23t1t3 + +b3t1t2t3. Writing equations for
symmetry and taking (3) into account yields a

P (t1, t2, t3) = a0 +
a1

3
(t1 + t2 + t3) +

a2

3
(t1t2 + t2t3 + t1t3) + a3t1t2t3

Suppose P (t1, t2, t3) is the polar form of a cubic polynomial P (t), then the value of P (t)
for any arbitrary t can be found if the values of P (0, 0, 0), P (0, 0, 1)P (0, 1, 1) and P (1, 1, 1) are
given. This is done by repeated linear interpolation and is shown in Figure 3.

In this way we can compute the value of the polynomial at any point t using a sequence
of linear interpolations. Polar form representation is useful because it provides a uniform and
simple approach to computing values of a polynomial using a variety of representations from
Bezier curves to NURBS (non-uniform rational B-splines).

B-splines

B-splines is a different approach to representing piecewise polynomial curves, which overcomes
some of the drawbacks of Bezier curves.

Suppose we wish to design a long curve with many undulations. One approach would be to
use a high-degree Bezier curve. As we have already discussed, this is not a very good approach;
also note that each of n + 1 control points of a Bezier curve of degree n influences the whole
curve, which means that it is difficult to introduce a small feature without changing the curve
everywhere. Another approach using Bezier curves is to construct the curve from many parts



G22.3033-002: Lecture #2 5

(piecewise Bezier); in this case we need to match at least the values and tangents at the endpoints
of each segment. Values are easily matched by constraining the last control point of segment j
and the first control point of segment j + 1 to be the same: pj

3 = pj+!
0 . Tangents can be made

the same if the points pj
2, p

j
3 = pj+1

0 , pj+1
1 of the segments j and j + 1 are constrained to be on

the same line. This is the way curves are constructed in many drawing programs, for example,
in Adobe Illustrator. Resulting curves need not be C2 however, and it is not that easy to make
them “fair” which typically means that we want the curvature not to change abruptly.

To summarize, three commonly desirable properties of curves are:

1. C2-continuity: Should be C2 continuous at all points.

2. Interpolation: Should interpolate the input control points.

3. Local control: The modification of a particular control point should modify the curve
only locally.

As we have seen, piecewise Bezier curves interpolate the control points shared by segments,
and have local control, but need not be C2-continuous. It turns out that these three properties
are incompatible for cubic curves: e.g. if we attempt to write a system of equations that ensures
that sequential Bezier segments are joined with C2 continuity, we will see that “interior” control
points pj

1 pj
2 for segment j have to depend on the endpoints pi

3 = pi+1
0 for all i, i.e. there is no

local control.
If we give up the interpolation property there is a type of piecewise cubic polynomial curves

which satisfies the remaining requirements called the B-spline curves. If we require interpola-
tion but give up local control we get curves called natural splines, which we will not discuss in
detail.

A B-spline curve defined everywhere on R can be written in the following form:

p(t) =
∞∑

i==∞
piBi(t)

where pi are control points and Bi(t) are the basis functions associated with control points pi.
Each basis function can be thought of as the variable weight which determines how the control
point pi influences the curve at parametric value t. For uniform splines, the basis functions
satisfy

Bi(t) = B(t − i) (4)

for a fixed function B.
We choose the basis function B(t) in such a way that the resulting curves are C2-continuous,

the influence of the control points is local (i.e. B(t) �= 0 on the smallest possible interval) and
the curves are piecewise cubic polynomials on each each interval [i, i + 1]. We would like the
influence of a control point to be maximal at regions of the curve close to it and for this influence
to decrease as we move away along the curve and disappear completely at some distance. Also
desirable is affine invariance property that we have seen for Bezier curves. we describe how to
construct basis functions satisfying all these requirements.

There are many different ways to define B-splines; we will consider two equivalent defini-
tions: using convolution and using blossoming.



6 G22.3033-002: Lecture #2

B-spline basis functions

We start with the simplest functions which already meet some of the requirements above: piece-
wise constant coordinate functions. Any piecewise constant function can be written as

p(t) =
∞∑

i=−∞
piBox(t − i)

where Box(t) is the box function defined as

Box(t) =

{
1, if 0 ≤ t < 1

0 otherwise

We define the convolution of two functions f(t) and g(t) as

(f � g)(t) =

∫ ∞

−∞
f(s)g(t − s)ds

The remarkable property of convolution is that each time we convolve a function with a
box its smoothness increases. We will see that convolution can be seen as “moving average”
operation.

A B-spline basis function of degree n can be obtained by convolving a B-spline basis func-
tion of degree n−1 with the box Box(t). For example, the basis function of degree 1 is defined
as the convolution of Box(t) with itself. We need to compute

∫ ∞

−∞
Box(s)Box(t − s)ds

Graphically, this convolution can be evaluated by sliding one box function along the coor-
dinate axis from −∞ to ∞ and keeping the second box fixed (see Figure 4). The value of the
convolution for a given position of the second box is simply the area under the product of the
boxes, which is just the length of the interval where both boxes are non-zero.

At first the two graphs do not have common area. Once the moving box reaches 0, there is
a growing overlap between the areas of the graphs. The value of the convolution increases until
t = 1. Then the overlap starts decreasing, and the value of the convolution decreases down to
zero at t = 2. The function B1(t) = (Box � Box)(t) is as shown in Figure 4.

Now take the convolution of Box(t) with B1(t) and we obtain B2(t), the degree 2 basis
function. We can continue further and obtain degree 3 B-spline, B3(t) by convolving B2(t)
with Box(t) (Figure 5).

Properties of B-splines

• Bn(t) is a piecewise polynomial of degree n (each convolution increases the degree by
1).

• Bn(t) has a support of length n + 1. We have seen that Box(t) has a support 1 and each
convolution increases the support by 1.



G22.3033-002: Lecture #2 7

Figure 4: The definition of Degree 1 B-spline basis function through convolution of Box func-
tion with itself.

0

0.2

0.4

0.6

1 2 4

1
6
t3

2
3

2t + 2t2
1
2
t3

2
3

2(4 t)

+2(4 t)2
1
2
(4 t)3

1
6
(4 t)3

Figure 5: Degree 3 B-spline basis function

• Bn(t) is Cn−1-continuous. Box(t) is C0 continuous and each convolution increases
smoothness by 1.

• The set of functions Bn(t − i), i = −∞ . . .∞ is affine invariant. This comes from the
observation that

∞∑
i=−∞

Bn(t − i) = 1



8 G22.3033-002: Lecture #2

P(0,1,2) P(1,2,3) P(2,3,4)

P(1,2,t) P(2,3,t)

P(2,t,t)

P(t,t,t)

P(3,t,t)

P(3,4,t)

P(3,4,5)
4–t
3

t–1
3

3–t t–2

3–t
3

t
3

4–t
2

t–2
2

3–t
2

t–1
2

5–t
3

t–2
3

Figure 6: Blossoming in B-splines

which can be proved by in induction observing that this property holds for the box func-
tion and is preserved by the convolution.

Blossoming in B-splines

For a cubic B-spline, if t ∈ [2, 3], then we can obtain the value of P (t) = P (t, t, t) from the
values of P (0, 1, 2), P (1, 2, 3), P (2, 3, 4), P (3, 4, 5) as shown in Figure 6.

For t ∈ [i, i + 1] and cubic B-splines, we need four control points P (i − 2, i − 1, i), P (i −
1, i, i + 1), P (i, i + 1, i + 2), P (i + 1, i + 2, i + 3).


