
Key Derivation Without Entropy Waste

Yevgeniy Dodis ∗ Krzysztof Pietrzak † Daniel Wichs ‡

April 9, 2013

Abstract

We revisit the classical question of converting an imperfect source X of min-entropy k into a usable
m-bit cryptographic key for some underlying application P . If P has security δ (against some class of
attackers) with a uniformly random m-bit key, we seek to design a key derivation function (KDF) h
that allows us to use R = h(X) as the key for P and results in comparable security δ′ ≈ δ. Seeded
randomness extractors provide a generic way to solve this problem for all applications, provided that
k ≥ m + 2 log (1/δ), and this lower bound on k (called “RT-bound”) is known to be tight in general.
Unfortunately, in many situations the loss of 2 log (1/δ) bits of entropy is unacceptable, motivating the
study KDFs with less entropy waste for important special classes of sources X or applications P .

In this work we obtain the following new positive and negative results in this regard:

• Efficient samplability of the source X does not help beat the RT-bound for general applications.
This resolves the SRT (samplable RT) conjecture of Dachman-Soled et al. [DGKM12] in the
affirmative, and also shows that the existence of computationally-secure extractors beating the
RT-bound implies the existence of one-way functions.

• We continue the line of work initiated by Barak et al. [BDK+11] by constructing information-
theoretic KDFs which beat the RT-bound bound for large but restricted classes of applications.
Specifically, we design efficient KDFs that work for all unpredictability applications P (signatures,
MACs, one-way functions, etc.) and can either: (1) extract all of the entropy k = m with a very
modest security loss δ′ = O(δ · log (1/δ)), or alternatively, (2) achieve optimal security δ′ = O(δ)
with a very modest entropy loss k ≥ m + loglog (1/δ). In comparison, the best prior results
from [BDK+11] for this class of applications achieved δ′ = O(

√
δ) when k = m and needed

k ≥ m+ log (1/δ) for δ′ = O(δ).

• The weaker bounds of [BDK+11] hold for a larger class of so-called “square-friendly” applications
(which includes all unpredictability, but also some important indistinguishability, applications).
Unfortunately, we show that these bounds are tight for this strictly larger class of applications.

• We abstract out a clean, information-theoretic notion of (k, δ, δ′)-unpredictability extractors,
which guarantee “induced” security δ′ for any δ-secure unpredictability application P , and char-
acterize the parameters achievable for such unpredictability extractors. Of independent interest,
we also relate this notion to the previously-known notion of (min-entropy) condensers, and im-
prove the state-of-the-art parameters for such condensers.

∗New York Unviersity. E-mail: dodis@cs.nyu.edu
†Institute of Science and Technology Austria. E-mail:pietrzak@ist.ac.at
‡Northeastern University. E-mail: wichs@ccs.neu.edu

1

1 Introduction

Key Derivation is a fundamental cryptographic task arising in a wide variety of situations where a
given application P was designed to work with a uniform m-bit key R, but in reality one only has a
“weak” n-bit random source X. Examples of such sources include biometric data [DORS08, BDK+05],
physical sources [BST03, BH05], secrets with partial leakage, and group elements from Diffie-Hellman
key exchange [GKR04, Kra10], to name a few. We’d like to have a Key Derivation Function (KDF)
h : {0, 1}n → {0, 1}m with the property that the derived key h(X) can be safely used by P , even though
the original security of P was only analyzed under the assumption that its key R is uniformly random.

Of course, good key derivation is generally impossible unless X has some amount of entropy k to begin
with, where the “right” notion of entropy in this setting is min-entropy H∞(X): for any x ∈ {0, 1}n we
must have Pr[X = x] ≤ 2−k. We call such a distribution X an (n, k)-source, and generally wish to design
a KDF h which “works” for all such (n, k)-sources X. A bit more formally, assuming P was δ-secure
(against some class of attackers) with the uniform key R ≡ Um, we would like to conclude that P is
still δ′-secure (against nearly the same class of attackers) when using R = h(X) instead. The two most
important parameters are: (1) ensuring that the new security δ′ is “as close as possible” to the original
security δ, and (2) allowing the source entropy k to be “as close as possible” to the application’s key
length m. Minimizing this threshold k is very important in many practical situations. For example, in
the setting of biometrics and physical randomness many natural sources are believed to have very limited
entropy, while in the setting of Diffie-Hellman key exchange reducing the size of the Diffie-Hellman group
(which is roughly 2k) results in substantial efficiency improvements. Not surprisingly, the design of good
KDFs has received a lot of attention from both theoreticians and practitioners. Unfortunately, as we
detail below, there is a huge gap between the theory and practice of key derivation, not only in terms of
the actual functions used, but also in the min-entropy threshold k which is considered “safe”.

Key Derivation in Practice. In practice, one would typically use so called “cryptographic hash
function” h, such as SHA or MD5, for key derivation. As discussed in detail by [DGH+04, Kra10, DRV12],
there are several important reasons for this choice. From the perspective of this work, we will focus on
the arguably the most important such reason — the common belief that cryptographic hash function
achieve excellent security δ′ ≈ δ already when k ≈ m. This can be easily justified in the random oracle
model; assuming the KDF h is a random oracle which can be evaluated on at most q points (where q is
the upper bound of the attacker’s running time), one can upper bound δ′ ≤ δ + q/2k, where q/2k is the
probability the attacker evaluates h(X). In turn, in time q the attacker can also test about q out of 2m

possible m-bit keys, and hence achieve advantage q/2m. This means that the ideal security δ of P cannot
be lower than q/2m, implying q ≤ δ · 2m. Plugging this bound on q in the bound of δ′ ≤ δ + q/2k above,
we get that using a random oracle (RO) as a KDF achieves “real security”

δ′ ≤ δRO
def
= δ + δ · 2m−k (1)

In particular, δ′ ≤ 2δ even when k = m. For example, to derive a 128-bit key for a CBC-MAC with
security δ ≈ δ′ ≈ 2−64, one needs k ≈ 128 bits of min-entropy.

Of course, as any analysis in the random oracle model [CGH98], the bound above is ultimately a
heuristic. Moreover, as was pointed out by [DGH+04, Kra10], existing hash functions, such as SHA
and MD5, as far from ideal, since they use a highly structured Merkle-Damgard mode of operation
when processing long inputs. In particular, the provable “extraction bounds” one gets when taking this
structure into account are nowhere close to the amazing bound in (1), even under the generous assumption
that the “compression function” f of h is “ideal”. Still, the lack of realistic attacks on any of the most
common uses of cryptographic hash functions as KDFs when k ≈ m, leaves us with the following central
question of this work:

Our Main Question: Can one find reasonable application scenarios where one can design a provably-
secure KDF achieving “real security” δ′ ≈ δ when k ≈ m (matching the heuristic bound in (1))?

2

More generally, for a given (class of) applications P ,
(A) What is the best (provably) achievable security δ′ when k = m?

(B) What is the smallest (provable) entropy threshold k to achieve security δ′ = O(δ)?

In this work we will provide several positive and negative answers to our main question, including a general
way to (nearly) match the bound from Equation (1) information-theoretically for all unpredictability
applications. But first we turn to what is known in the theory of key derivation.

Randomness Extractors. In theory, the cleanest way to design a general KDF is by using so called
(strong) randomness extractors [NZ96]. Such a (k, ε)-extractor Ext has the property that the output
distribution Ext(X) is ε-statistically close to the uniform distribution Um, which means that using Ext(X)
as a key will degrade the original security δ of any application P by at most ε: δ′ ≤ δ + ε. However,
the sound use of randomness extractors comes with two important caveats. The first caveat comes from
the fact that no deterministic extractor Ext can work for all (n, k)-sources [CG89] when k < n, which
means that extractors must be probabilistic, or “seeded”. This by itself is not a big limitation, since the
extracted randomness Ext(X;S) is ε-close to Um even conditioned on the seed S, which means that the
seed S can be reused and globally shared across many applications.1 From our perspective, though, a
more important limitation/caveat of randomness extractors comes from a non-trivial tradeoff between the
min-entropy k and the security ε one can achieve to derive an m-bit key Ext(X;S). The best randomness
extractors, such as the one given by the famous Leftover Hash Lemma (LHL) [HILL99], can only achieve
security ε =

√
2m−k. This gives the following very general bound on δ′ for all applications P :

δ′ ≤ δALL
def
= δ +

√
2m−k (2)

As we can see, this provable (and very general) bound is much worse than the heuristic bound in Equa-
tion (1). In particular, we get no meaningful security when k = m (giving no answer to Question (A)),
and must assume k ≥ m+ 2 log (1/δ) to ensure that δ′ = O(δ) for Question (B). For example, to derive
a 128-bit key for a CBC-MAC with security δ ≈ δ′ ≈ 2−64, one needs k ≈ 256 bits of min-entropy.

Of course, part of the reason why the provable bounds are so much worse is their generality: extractors
work for all (n, k)-sources X and all applications P . Unfortunately, Radhakrishnan and Ta-shma [RTS00]
showed that in this level of generality nothing better is possible: any (k, ε)-extractor must have k ≥
m + 2 log (1/ε) (we will refer to this as the “RT-bound”). This implies that for any candidate m-bit
extractor Ext there exists some (possibly indistinguishability) application P , some (possibly inefficiently
samplable) source X of min-entropy k and some (possibly exponential time) attacker A, such that A(S)
can break P with key R = Ext(X;S) with advantage

√
2m−k.

Thus, there is hope that better results are possible if one restricts the type of applications P (e.g.,
unpredictability applications), sources X (e.g., efficiently samplable) or attackers A (e.g., polynomial-
time) considered. We discuss such options below, stating what was known together with our new results.

Efficiently Samplable Sources. This natural restriction is known to be useful for relaxing the
assumption that the source distribution X is independent of the seed S [TV00, DRV12], which was the
first caveat in using randomness extractors. Unfortunately, it was not clear if efficient samplability of X
helps with reducing the entropy loss L = k−m below 2 log (1/ε). In fact, Dachman-Soled et al. [DGKM12]
conjectured that this is indeed not the case when Ext is also efficient, naming this conjecture the “SRT
assumption” (where SRT stands for “samplable RT”).

SRT Assumption [DGKM12]: For any efficient extractor Ext with m-bit output there exists an effi-
ciently samplable (polynomial in n) distribution X of min-entropy k = m+ 2 log (1/ε)−O(1) and a (gen-
erally inefficient) distinguisher D which has at least an ε-advantage in distinguishing (S,R = Ext(X;S))
from (S,R = Um).

1However, it does come with an important assumption that the source distribution X must be independent of the seed
S. Although this assumption could be problematic in some situations, such as leakage-resilient cryptography (and has led
to some interesting research [TV00, CDH+00, KZ03, DRV12]), in many situations, such as the Diffie-Hellman key exchange
or biometrics, the independence of the source and the seed could be naturally enforced/assumed.

3

As our first result, we show that the SRT assumption is indeed (unfortunately) true, even without
restricting the extractor Ext to be efficient.

Theorem 1.1. (Informal) The SRT assumption is true for any (possibly inefficient) extractor Ext.
Thus, efficiently samplability does not help to reduce the entropy loss of extractors below 2 log (1/ε).

Square-Friendly Applications. The next natural restriction is to limit the class of applications P in
question. The idea is that for such applications one can argue that the derived key R = hs(X) is still “good
enough” for P despite not being statistically close to Um (given s). This approach was recently pioneered
by Barak et al [BDK+11], and then further extended and generalized by Dodis et al. [DRV12, DY13].
In these works the authors defined a special class of cryptographic applications, called square-friendly,
where the pessimistic RT-bound can be provably improved. Intuitively, while any traditional application
P demands that the expectation (over the uniform distribution r ← Um) of the attacker’s advantage
f(r) on key r is at most δ, square-friendly applications additionally require that the expected value of
f(r)2 is also bounded by δ. The works of [BDK+11, DY13] then showed that the class of square-friendly
applications includes all unpredictability applications (signatures, MACs, one-way functions, etc.), and
some, but not all, indistinguishability applications (including chosen plaintext attack secure encryption,
weak pseudorandom functions and others). Additionally, for all such square-friendly applications P it
was shown that universal (and thus also the stronger pairwise independent) hash functions {hs} yield the
following improved bound on the security δ′ of the derived key R = hs(X):

δ′ ≤ δSQF
def
= δ +

√
δ · 2m−k (3)

This provable and still relatively general bound lies somewhere in between the idealized bound (1)
and the fully generic bound (2): in particular, for the first time we get a meaningful security δ′ ≈

√
δ

when k = m (giving partial answer to Question (A)), or, alternatively, we get full security δ′ = O(δ)
provided k ≥ m + log (1/δ) (giving a partial answer to Question (B)). For example, to derive a 128-bit
key for a CBC-MAC having ideal security δ = 2−64, we can either settle for much lower security δ′ ≈ 2−32

with k = 128, or get full security δ′ ≈ 2−64 with k = 192. However, both bounds are still far from the
expected bound δ′ ≈ 2−64 with k = 128, raising the question if further improvements are possible.

As a simple (negative) result, we show that the bound in Equation (3) cannot be improved in general
for all square-friendly applications. Interestingly, the proof of this result uses the proof of Theorem 1.1
to produce the desired source X for the counter-example.

Theorem 1.2. (Informal) There exists a δ-square friendly application P with an m-bit key such that for
any family H = {hs} of m-bit key derivation functions there exists (even efficiently samplable) (n, k)-
source X and a (generally inefficient) distinguisher D such that D(S) has at least δ′ = Ω(

√
δ · 2m−k)

advantage in breaking P with the derived key R = hS(X) (for random seed S).

Hence, to improve the parameters in Equation (3) and still have information-theoretic security, we
must place more restrictions on the class of applications P we consider.

Unpredictability Applications. This brings us to our main (positive) result: we get improved
information-theoretic key derivation for all unpredictability applications.

Theorem 1.3. (Main Result; Informal) Assume P is any unpredictability2 application which is δ-secure
with a uniform m-bit key against some class of attackers C. Then, there is an efficient family of hash
functions H = {hs : {0, 1}n → {0, 1}m}, such that for any (n, k)-source X, the application P with the
derived key R = hS(X) (for random public seed S) is δ′-secure against class C, where:

δ′ ≤ δUNP
def
= O

(
1 + log (1/δ) · 2m−k

)
δ. (4)

In particular, we get the following nearly optimal answers to Questions (A) and (B):
2Recall, an unpredictability application is any cryptographic game where the attacker’s advantage is simply the probability

of him “winning the game”. (In contrast, for indistinguishability applications one subtracts 1/2 from this probability.)

4

- δ′ ≤ (1 + log (1/δ))δ when k = m (answering Question (A)).

- δ′ ≤ 3δ provided k ≥ m+ loglog (1/δ) + 4 (answering Question (B)).

In fact, our basic KDF hash family H is simply a t-wise independent hash function where t =
O(log (1/δ)). Hence, by using higher than pairwise independence (which was enough for weaker security
given by Equations (2) and (3)), we get a largely improved entropy loss: loglog (1/δ) instead of log (1/δ).

As we can see, the provable bound on δ′ above nearly matches the idealized bound δ′ ≤ δ + δ · 2m−k
from Equation (1), except for the mild security loss O(log (1/δ)), or alternatively, mild entropy loss
loglog (1/δ). For example, to derive a 128-bit key for a CBC-MAC having ideal security δ = 2−64 (so
that loglog (1/δ) = 6), we can either have excellent security δ′ ≤ 2−57.9 with k = 128, or get full security
δ′ ≤ 2−62.4 with k = 138. Thus, for the first time we obtained an efficient, theoretically-sound key
derivation scheme which nearly matches the parameters achieved by heuristic KDFs. In particular, for
the first time we can offer a provably-secure alternative to the existing practice of using cryptographic
hash functions as KDFs and achieve nearly optimal parameters.

Unpredictability Extractors and Condensers. To better understand the proof of Theorem 1.3,
it is helpful to abstract the notion of an unpredictability extractor UExt which we define in this work.
Recall, standard (k, ε)-extractors ε-fool any distinguisher D(R,S). In contrast, when dealing with δ-
secure unpredictability applications, we only care about “fooling” so called δ-distinguishers D: these are
distinguishers s.t. Pr[D(Um, S) = 1] ≤ δ, which directly corresponds to the emulation of P ’s security ex-
periment between the “actual attacker” A and the challenger C. Thus, we define (k, δ, δ′)-unpredictability
extractors as having the property that Pr[D(UExt(X;S), S) = 1] ≤ δ′ for any δ-distinguisher D.3 With
this cleaner notion in mind, our main Theorem 1.3 can be equivalently restated as follows:

Theorem 1.4. (Main Result; Restated) A family H = {hs : {0, 1}n → {0, 1}m} which is O(log (1/δ))-
wise independent defines a (k, δ, O(1 + log (1/δ) · 2m−k)δ)-unpredictability extractor UExt(x; s) = hs(x).

In turn, we observe that unpredictability extractors are closely connected to the related notion of
a randomness condenser [RR99, RSW06]: such a (k, `, ε)-condenser Cond : {0, 1}n → {0, 1}m has the
property that the output distribution Cond(X;S) is ε-close (even given the seed S) to some distribution
Y s.t. the conditional min-entropy H∞(Y |S) ≥ m − ` whenever H∞(X) ≥ k. In particular, instead of
requiring the output to be close to uniform, we require it to be close to having almost full entropy, with
some small “gap” `. While ` = 0 gives back the definition of (k, ε)-extractors, permitting a small non-zero
“entropy gap” ` has recently found important applications for key derivation [BDK+11, DRV12, DY13].
In particular, it is easy to see that a (k, `, ε)-condenser is also a (k, δ, ε+ δ ·2`)-unpredictability extractor.
Thus, to show Theorem 1.4 it suffices to show that O(log (1/δ))-wise independent hashing gives a (k, `, δ)-
condenser, where ` ≈ loglog (1/δ).

Theorem 1.5. (Informal) A family H = {hs : {0, 1}n → {0, 1}m} of O(log (1/δ))-wise independent hash
functions defines a (k, `, δ)-condenser Cond(x; s) = hs(x) for either of the following settings:

- No Entropy Loss: min-entropy k = m and entropy gap ` = loglog (1/δ).

- Constant Entropy Gap: min-entropy k = m+ loglog (1/δ) +O(1) and entropy gap ` = 1.

It is instructive to compare this result with the RT-bound for (k, δ)-extractors: to have no entropy
gap ` = 0 requires us to start with entropy k ≥ m+ 2 log (1/δ). However, already 1-bit entropy gap ` = 1
allows us to get away with k = m + loglog (1/δ), while further increasing the gap to ` = loglog (1/δ)
results in no entropy loss k = m.

Balls and Bins, Max-Load and Balanced Hashing. Finally, to prove Theorem 1.5 (and, thus,
Theorem 1.4 and Theorem 1.3) we further reduce the problem of condensers to a very simple balls-and-
bins problem. Indeed, we can think of our (k, `, δ)-condenser as a way to hash 2k items (out of a universe

3This notion can also be viewed as “one-sided” slice extractors [RTS00]. Unlike this work, though, the authors of [RTS00]
did not use slice extractors as an interesting primitive by itself, and did not offer any constructions of such extractors.

5

of size 2n) into 2m bins, so that the load (number of items per bin) is not too much larger than the
expected 2k−m for “most” of the bins. More concretely, it boils down to analyzing a version of average-
load: if we choose a random item (and a random hash function from the family) then the probability
that the item lands in a bin with more than 2`(2k−m) items should be at most ε. We use Chernoff-type
bounds for limited independence [Sie89, BR94] to analyze this version of average load when the hash
function is O(log 1/δ)-independent.

Optimizing Seed Length. The description length d of our O(log (1/δ))-wise independent KDF hs is
d = O(n log (1/δ)), which is much larger than that needed by universal hashing for standard extractors.
We show how to adapt the elegant “gradual increase of independence” technique of Celis et al. [CRSW11]
to reduce the seed length to nearly linear: d = O(n log k) (e.g., for k = 128 and δ = 2−64 this reduces the
seed length from 128n to roughly 7n). It is an interesting open problem if the seed length can be reduced
even further (and we show non-constructively that the answer is positive).

Computational Extractors. So far we considered information-theoretic techniques for designing
theoretically-sound KDFs trying to approach the heuristic bound in Equation (1). In contrast, the
derivation of Equation (1) critically used the fact that the attacker D can only make a bounded number
q of random oracle queries.4 On the one hand, this explains why the impossibility results in Theorem 1.1,
Theorem 1.2 all had to use inefficient attackers D (as otherwise, by contradicting Equation (1), they
would find unexpected weakness in existing cryptographic hash functions). On the other hand, it opens
the possibility that one can actually match the bound in Equation (1), or perhaps overcome some of our
impossibility results, by explicitly assuming that the attacker D is computationally bounded.

We largely leave the exploration of this exciting direction to future research, here only making the
following two initial observations. Both observations are negative results about computational extrac-
tors [DGH+04, Kra10, DGKM12] Ext, whose output R = Ext(X;S) looks pseudorandom to D (given S)
for any efficiently samplable (n, k)-source X, which would suffice for our KDF goals if very strong results
were possible for such extractors.

Expand-then-Extract Approach. One very natural way to build computational extractors is the
folklore extract-then-extract approach (recently explored in more detail by [Kra10, DGKM12]). The idea
is to define Ext(X;S) = Prg(Ext′(X;S)), where Prg : {0, 1}m′ → {0, 1}m is a computationally (t, δPRG)-
secure pseudorandom generator (PRG), and Ext′ is an information-theoretic (k, ε)-extractor with an
m′-bit output. It is clear that the resulting computational extractor has has security δPRG + ε, which
means that R = Ext(X;S) can be used in any computationally (t, δ)-secure application P , and result
in (t, δ′)-security, where δ′ ≤ δ + ε + δPRG. In particular, it is tempting to set δPRG ≈ ε ≈ δ, which
gives δ′ = O(δ), and ask what is the smallest entropy threshold for k where such setting of parameters is
possible. In other words, how good is the extract-then-expand approach for answering our Question (B)?

Unfortunately, we show that the resulting parameters must be poor, at least for the low-entropy
settings we care about. Indeed, since the best information-theoretic security δ for the extractor Ext′ is
δ =
√

2k−m′ [RTS00], we get that the best value of k we can hope for is k = m′ + 2 log (1/δ), where m′ is
the smallest possible seed length for a (t, δ)-secure PRG. However, it is well known (e.g., see [DTT10])
than any non-trivial (m′, δ)-secure PRG with an m’-bit seed must have seed length m′ > 2 log (1/δ). This
gives a lower bound k > 4 log (1/δ) even for linear-time distinguishers (and the bound actually gets worse
when t grows). For example, if δ = 2−64, we get k > 256, which is already worse that the naive bound we
directly got from an information-theoretic secure extractor when m = 128 (see Equation (2)). Indeed, in
this case the PRG itself must have a longer seed m′ > 128 than the derived 128-bit key we are looking
for! Thus, although the extract-then-expand approach is indeed useful for medium-to-high rage values of
k (e.g., k � 256), it does not appear to be of any use for the more important low-entropy (e.g., k < 256)
scenarios.

4For example, unlike our bound in Equation (4), one cannot apply the heuristic bound from Equation (1) to derive a key
for an information-theoretically secure MAC.

6

Beating RT-bound Implies OWFs. Despite provably failing to solve our Main Question for low-
entropy regimes, the extract-then-expand approach at least showed that computational assumptions help
in “beating” the RT-bound k ≥ m+2 log (1/ε) for any (k, ε)-secure extractor, as applying the PRG allows
one to increase m essentially arbitrarily (while keeping k = m′+2 log (1/ε)). Motivated by this, Dachman-
Soled et al. [DGKM12] asked an interesting theoretical question if the existence of one-way functions (and,
hence, PRGs [HILL99]) is essential for beating the RT-bound for unconditional extractors. They also
managed to give an affirmative answer to this question under the SRT assumption mentioned earlier.
Since we unconditionally prove the SRT assumption (see Theorem 1.1), we immediately get the following
Corollary, removing the conditional clause from the result of [DGKM12]:

Theorem 1.6. (Informal) If Ext is an efficient (k, ε)-computational extractor with an m-bit output, where
m > k − 2 log (1/ε)−O(1), then one-way functions (and, hence, PRGs) exist.

2 Preliminaries

We recap some definitions and results from probability theory. Let X,Y be random variables with
supports SX , SY , respectively. We define their statistical difference as

∆(X,Y) =
1

2

∑
u∈SX∪SY

|Pr[X = u]− Pr[Y = u]| .

We write X ≈ε Y and say that X and Y are ε-statistically close to denote that ∆(X,Y) ≤ ε.
The min-entropy of a random variable X is H∞(X)

def
= − log(maxx Pr[X = x]), and measures the “best

guess” for X. The conditional min-entropy is defined by H∞(X|Y = y)
def
= − log(maxx Pr[X = x|Y = y]).

Following Dodis et al. [DORS08], we define the average conditional min-entropy:

H∞(X|Y)
def
= − log

(
E

y←Y

[
max
x

Pr[X = x|Y = y]
])

= − log

(
E

y←Y

[
2−H∞(X|Y=y)

])
.

We say that a random variable X is an (n, k)-source if the support of X is {0, 1}n and the entropy of
X is H∞(X) ≥ k.

Lemma 2.1 (A Tail Inequality [BR94]). Let q ≥ 4 be an even integer. Suppose X1, . . . , Xn are q-wise
independent random variables taking values in [0, 1]. Let X := X1 + · · · + Xn and define µ := E[X] be

the expectation of the sum. Then, for any A > 0, Pr[|X − µ| ≥ A] ≤ 8
(
qµ+q2

A2

)q/2
. In particular, for any

α > 0 and µ > q, we have Pr[X ≥ (1 + α)µ] ≤ 8
(

2q
α2µ

)q/2
.

3 Defining Extractors for Unpredictability Applications

We start by abstracting out the notion of general unpredictability applications (e.g., one-way functions,
signatures, message authentication codes, soundness of an argument, etc.) as follows. The security of
such all such primitives is abstractly defined via a security game P which requires that, for all attackers
A (in some complexity class), Pr[PA(U) = 1] ≤ δ where PA(U) denotes the execution of the game P
with the attacker A, where P uses the uniform randomness U .5 For example, in the case of a message-
authentication code (MAC), the value U is used as secret key for the MAC scheme and the game P is
the standard “existential unforgeability against chosen-message attack game” for the given MAC. Next,
we will assume that δ is some small (e.g., negligible) value, and ask the question if we can still use the
primitive P if, instead of a uniformly random U , we only have some arbitrary (n, k)-source X?

5In contrast, for indistinguishability games we typically require that Pr[PA(U) = 1] ≤ 1
2

+ δ.

7

To formally answer this question, we would like a function UExt : {0, 1}n×{0, 1}d → {0, 1}m (seeded
unpredictability extractor) such that, for all attackersA (in some complexity class), Pr[PA(S)(UExt(X;S)) =
1] ≤ ε, where the seed S is chosen uniformly at random and given to the attacker, and ε is not much
larger than δ. Since we do not wish to assume much about the application P or the attacker A, we can
roll them up into a unified adversarial “distinguisher” defined by D(R,S) := PA(S)(R). By definition, if
R = U is random and independent of S, then Pr[D(U, S) = 1] = Pr[PA(S)(U) = 1] ≤ δ. On the other
hand, we need to ensure that Pr[PA(S)(UExt(X;S)) = 1] = Pr[D(UExt(X;S), S) = 1] ≤ ε for some ε
which is not much larger than δ. This motivates the following definition of unpredictability extractor
which ensures that the above holds for all distinguishers D.

Definition 3.1 (UExtract). We say that a function D : {0, 1}m × {0, 1}d → {0, 1} is a δ-distinguisher
if Pr[D(U, S) = 1] ≤ δ where (U, S) is uniform over {0, 1}m × {0, 1}d. A function UExt : {0, 1}n ×
{0, 1}d → {0, 1}m is a (k, δ, ε)-unpredictability extractor (UExtract) if for any (n, k)-source X and any
δ-distinguisher D, we have Pr[D(UExt(X;S), S) = 1] ≤ ε where S is uniform over {0, 1}d.

Notice that the above definition is essentially the same as that of standard extractors except that: (1)
we require that the distinguisher has a “small” probability δ of outputting 1 on the uniform distribution,
and (2) we only require a one-sided error that the probability of outputting 1 does not increase too much.
A similar notion was also proposed by [RTS00] and called a “slice extractor”.

Toward the goal of understanding unpredictability extractors, we show tight connections between the
above definition and two seemingly unrelated notions. Firstly, we define “condensers for min-entropy” and
show that the they yield “good” unpredictability extractors. Second, we define something called “balanced
hash functions” and show that they yield good condensers, and therefore also good unpredictability
extractors. Lastly, we show that unpredictability extractors also yield balanced hash functions, meaning
that all three notions are essentially equivalent up to a small gap in parameters.

Definition 3.2 (Condenser). A function Cond : {0, 1}n×{0, 1}d → {0, 1}m is a (k, `, ε)-condenser if for
all (n, k)-sources X, and a uniformly random and independent seed S over {0, 1}d, the joint distribution
(S,Cond(X;S)) is ε-statistically-close to some joint distribution (S, Y) such that, for all s ∈ {0, 1}d,
H∞(Y |S = s) ≥ m− `.

Lemma 3.3 (Condenser⇒ UExtract). Any (k, `, ε)-condenser is a (k, δ, ε∗)-UExtract where ε∗ = ε+2`δ.

Proof. Let Cond : {0, 1}n×{0, 1}d → {0, 1}m be a (k, `, ε)-condenser and let X be an (n, k)-source. Let
S be uniform over {0, 1}d, so that, by definition, there is a joint distribution (S, Y) which has statistical
distance at most ε from (S,Cond(X;S)) such that H∞(Y |S = s) ≥ m− ` for all s ∈ {0, 1}d. Therefore,
for any δ-distinguisher D, we have

Pr[D(Cond(X;S), S) = 1] ≤ ε+ Pr[D(Y, S) = 1]

= ε+
∑
y,s

Pr[S = s] Pr[Y = y|S = s] Pr[D(y, s) = 1]

≤ ε+
∑
y,s

2−d2−H∞(Y |S=s) Pr[D(y, s) = 1]

≤ ε+ 2`
∑
y,s

2−(m+d) Pr[D(y, s) = 1] ≤ ε+ 2`δ.

Definition 3.4 (Balanced Hashing). Let h := {hs : {0, 1}n → {0, 1}m}s∈{0,1}d be a hash function family.

For X ⊆ {0, 1}n, s ∈ {0, 1}d, x ∈ X we define LoadX (x, s) := |{x′ ∈ X : hs(x
′) = hs(x)}| .6 We say that

6Note that we allow x′ = x and so LoadX (x, s) ≥ 1.

8

the family h is (k, t, ε)-balanced if for all X ⊆ {0, 1}n of size |X | = 2k, we have

Pr
[
LoadX (X,S) > t2k−m

]
≤ ε

where S,X are uniformly random and independent over {0, 1}d,X respectively.

Lemma 3.5 (Balanced ⇒ Condenser). Let H := {hs : {0, 1}n → {0, 1}m}s∈{0,1}d be a (k, t, ε)-balanced

hash function family. Then the function Cond : {0, 1}n×{0, 1}d → {0, 1}m defined by Cond(x; s) = hs(x)
is a (k, `, ε)-condenser for ` = log(t).

Proof. Without loss of generality, we can restrict ourselves to showing that Cond satisfies the condenser
definition for every flat source X which is uniformly random over some subset X ⊆ {0, 1}n, |X | = 2k. Let
us take such a source X over the set X , and define a modified hash family h̃ = {h̃s : X → {0, 1}m}s∈{0,1}d
which depends on X and essentially “re-balances” h on the set X . In particular, for every pair (s, x)
such that LoadhX (x, s) ≤ t2k−m we set h̃s(x) := hs(x), and for all other pairs (s, x) we define h̃s(x) in

such a way that Loadh̃X (x, s) ≤ t2k−m (the super-script is used to denote the hash function with respect
to which we are computing the load). It is easy to see that this “re-balancing” is always possible. We
use the re-balanced hash function h̃ to define a joint distribution (S, Y) by choosing S uniformly at
random over {0, 1}d, choosing X uniformly/independently over X and setting Y = h̃S(X). It’s easy to
check that the statistical distance between (S,Cond(X;S)) and (S, Y) is at most Pr[hS(X) 6= h̃S(X)] ≤
Pr[LoadhX (X,S) > t2k−m] ≤ ε. Furthermore, for every s ∈ {0, 1}d, we have:

H∞(Y |S = s) = − log(max
y

Pr[Y = y|S = s])

= − log(max
y

Pr[X ∈ h̃−1
s (y)]) ≥ − log(t2k−m/2k) = m− log t.

Therefore Cond is a (k, ` = log t, ε)-condenser.

Lemma 3.6 (UExtract⇒ Balanced). Let UExt : {0, 1}n×{0, 1}d → {0, 1}m be a (k, δ, ε)-UExtractor for
some, ε > δ > 0. Then the hash family H = {hs : {0, 1}n → {0, 1}m}s∈{0,1}d defined by hs(x) = UExt(x; s)
is (k, ε/δ, ε)-balanced.

Proof. Let t = ε/δ and assume that H is not (k, t, ε)-balanced. Then there exists some set X ⊆ {0, 1}n,
|X | = 2k such that ε̂ := Pr[LoadX (X,S) > t2k−m] > ε where X is uniform over X and S is uniform over

{0, 1}d. Let Xs ⊆ X be defined by Xs := {x ∈ X : LoadX (x, s) > t2k−m} and let εs
def
= |Xs|/2k. By

definition ε̂ =
∑

s 2−dεs. Define Ys ⊆ {0, 1}m via Ys := hs(Xs). Now by definition, each y ∈ Ys has at least

t2k−m pre-images in Xs and therefore δs
def
= |Ys|/2m ≤ |Xs|/(t2k−m2m) ≤ εs/t and δ :=

∑
s 2−dδs ≤ ε̂/t.

Define the distinguisher D via D(y, s) = 1 iff y ∈ Ys. Then D is a δ-distinguisher for δ ≤ ε̂/t ≤ ε/t
but Pr[D(hS(X), S) = 1] = ε̂ ≥ ε. Therefore, UExt is not a (k, ε/t, ε)-UExtractor.

Summary. Taking all of the above lemmata together, we see that they are close to tight. In particular,
for any ε > δ > 0, we get:

(k, δ, ε)-UExt
Lem.3.6⇒ (k, ε/δ, ε)-Balanced

Lem.3.5⇒ (k, log(ε/δ), ε)-Condenser
Lem.3.3⇒ (k, δ, 2ε)-UExt

4 Constructing Unpredictability Extractors

Given the connections established in the previous section, we have paved the road for constructing
unpredictability extractors via balanced hash functions, which is a seemingly simpler property to analyze.
Indeed, we will give relatively simple lemmas showing that “sufficiently independent” hash functions are
balanced. This will lead to the following parameters (restating Theorem 1.3 from the introduction):

9

Theorem 4.1. There exists an efficient (k, δ, ε)-unpredictability extractor UExt : {0, 1}n × {0, 1}d →
{0, 1}m for the following parameters:

1. When k = m (no entropy loss), we get ε = (1 + log(1/δ))δ.

2. When k ≥ m+ log log 1/δ + 4, we get ε = 3δ.

3. In general, ε = O(1 + 2m−k log(1/δ))δ.

In all cases, the function UExt is simply a (log(1/δ) +O(1))-wise independent hash function and the seed
length is d = O(n log(1/δ)).

Although these constructions may already be practical, the level of independence we will need is
O(log 1/δ), which will result in a large seed O(n log(1/δ)). We will show how to achieve similar parameters
with a shorter seed O(n log k) in Section 4.2. We now proceed to prove all of the parts of Theorem 4.1 by
constructing “good” balanced hash functions and using our connections between balanced hashing and
unpredictability extractors from the previous section.

4.1 Sufficient Independence Provides Balance

First we start with a simple case where the output m is equal to the entropy k.

Lemma 4.2. Let H := {hs : {0, 1}n → {0, 1}k}s∈S be (t+1)-wise independent. Then it is (k, t, ε)-balanced

where ε ≤
(
e
t

)t
and e is the base of the natural logarithm.

Proof. Fix any set X ⊆ {0, 1}n of size |X | = 2k. Let X be uniform over X and S be uniform/independent
over {0, 1}d. Then

Pr[LoadX (X,S) > t] ≤ Pr[∃C ⊆ X , |C| = t ∀x′ ∈ C : hS(x′) = hS(X) ∧ x′ 6= X]

≤
∑

C⊆X ,|C|=t

Pr[∀x′ ∈ C : hS(x′) = hS(X) ∧ x′ 6= X]

≤
(

2k

t

)
2−tk ≤

(
e2k

t

)t
2−tk ≤

(e
t

)t
.

Corollary 4.3. For any 0 < ε < 2−2e, any δ > 0, a (log(1/ε) + 1)-wise independent hash family
H = {hs : {0, 1}n → {0, 1}k}s∈{0,1}d is:

(k, log(1/ε), ε)-balanced, (k, log log(1/ε), ε)-condenser, (k, δ, log(1/ε)δ + ε)-UExtractor.

Setting δ = ε, we get a (k, δ, (1 + log(1/δ))δ)-UExtractor.

Proof. Set t = log(1/ε) in Lemma 4.2 and notice that
(
e
t

)t ≤ 2−t ≤ ε as long as t ≥ 2e.

This establishes part (1) of Theorem 4.1. Next we look at a more general case where k may be larger
than m. This also covers the case k = m but gets a somewhat weaker bound. It also requires a more
complex tail bound for q-wise independent variables.

Lemma 4.4. Let H := {hs : {0, 1}n → {0, 1}m}s∈S be (q+ 1)-wise independent. Then, for any α > 0, it

is (k, 1 + α, ε)-balanced where ε ≤ 8
(

q2k−m+q2

(α2k−m−1)2

)q/2
.

10

Proof. Let X ⊆ {0, 1}n be a set of size |X | = 2k, X be uniform over X , and S be uniform/independent
over {0, 1}d. Define the indicator random variables Define C(x∗, x) to be 1 if hS(x) = hS(x∗) and 0
otherwise. Then:

Pr[LoadX (X,S) > (1 + α)2k−m] =
∑
x∗∈X

Pr[X = x∗] Pr[LoadX (x∗, S) > (1 + α)2k−m]

= 2−k
∑
x∗∈X

Pr

 ∑
x∈X\{x∗}

C(x∗, x) + 1 > (1 + α)2k−m


≤ 8

(
q2k−m + q2

(α2k−m − 1)2

)q/2
Where the last line follows from the tail inequality Lemma 2.1 with the random variables {C(x∗, x)}x∈X\{x∗}
which are q-wise independent and have expected value µ = E[

∑
x∈X\{x∗}C(x∗, x)] = (2k−1)2−m ≤ 2k−m,

and by setting A = (1 + α)2k−m − 1− µ ≥ α2k−m − 1; recall that C(x∗, x∗) is always 1 and C(x∗, x) for
x 6= x∗ is 1 with probability 2−m.

Corollary 4.5. For any 0 < ε < 2−7, k ≥ m+ log log(1/ε) + 4, a (log(1/ε) + 4)-wise independent hash
function family H = {hs : {0, 1}n → {0, 1}m}s∈{0,1}d is:

(k, 2, ε)-balanced, (k, 1, ε)-condenser, (k, δ, 2δ + ε)-UExt for any δ > 0.

Setting δ = ε, it is a (k, δ, 3δ)-UExt.

Proof. Set q = log(1/ε) + 3, α = 1 and 2k−m = 5q. Then we apply Lemma 4.4

8

(
q2k−m + q2

(α2k−m − 1)2

)q/2
≤ 8

(
6q2

(5q − 1)2

)q/2
≤ 8

(
1

4

)q/2
≤ 8(2−q) ≤ ε.

The second step assumes q > 10 meaning that ε < 2−7.

The above corollary establishes part (2) of Theorem 4.1. The next corollary gives us a general bound
which establishes part (3) of the theorem. Asymptotically it implies both Corollary 4.5 and Corollary 4.3
but with worse constants.

Corollary 4.6. For any ε > 0 and q := log(1/ε) + 3, a (q + 1)-wise independent hash function family
H = {hs : {0, 1}n → {0, 1}m}s∈{0,1}d is (k, 1 + α, ε)-balanced for

α = 4
√
q2m−k + (q2m−k)2 = O(2m−k log(1/ε) + 1).

By setting δ = ε, a (log 1
δ + 4)−wise independent hash function is a (k, δ, O(1 + 2m−k log 1

δ)δ)-UExtactor.

Proof. The first part follows from Lemma 4.4 by noting that

8

(
q2k−m + q2

(α2k−m − 1)2

)q/2
≤ 8

(
q2k−m + q2

1
4(α2k−m)2

)q/2
≤ 8

(
1

4

)q/2
≤ ε.

For the second part, we can consider two cases. If q2m−k ≤ 1 then α ≤ 4
√

2 and we are done. Else,
α ≤ 4

√
2(q2m−k) = 4

√
2(log(1/ε) + 3)2m−k.

11

4.2 Minimizing the Seed Length

In both of the above constructions (Corollary 4.3, Corollary 4.5), to get an (k, δ, ε)-UExtractor, we
need a O(log(1/ε))-wise independent hash function hs : {0, 1}n → {0, 1}m, which requires a seed-length
d = O(log(1/ε) · n). Since in many applications, we envision ε ≈ 2−k, this gives a seed d = O(kn). We
should contrast this with standard extractors constructed using universal hash functions (via the leftover-
hash lemma), where the seed is d = n. We now show how to optimize the seed length of UExtractors
to O(n log k). We adapt the technique of Celis et al. [CRSW11] which shows how to construct hash
functions with a small seed that achieve essentially optimal “max-load” (e.g., minimize the hash value
with the most items inside it). We show that a lightly modified analysis can also be used to show that
such hash functions are “balanced” with essentially optimal parameters.

We start by recalling the notion of q-wise δ-dependent hash functions.

Definition 4.7 ((Almost) Independent Hashing). A hash family H : {h : {0, 1}n → {0, 1}m}s∈{0,1}d
is q-wise δ-dependent if for any distinct x1, . . . , xq ∈ {0, 1}n,

(hS(x1), . . . , hS(xq)) ≈δ (U1, . . . , Uq)

where S is uniformly random over {0, 1}d and Ui are uniformly random/independent over {0, 1}m.

Such almost independent hash functions can be constructed using ε-biased distributions [NN93,
AGHP92]. The following parameters are stated in [CRSW11].

Lemma 4.8. For any integers n, `, there exists a family of q-wise δ-dependent hash functions from n-bits
to `-bits with seed-length d = O(n+ ` · q + log(1/δ)).

We will also rely on the following tail-bound from [CRSW11].

Lemma 4.9 ([CRSW11], Lemma 2.2). Suppose that X1, . . . , Xn are q-wise δ-dependent random variables
taking values in [0, 1]. Let X := X1 + · · ·+Xn and define µ := E[X] be the expectation of the sum. Then,

for any α > 0, Pr[X ≥ (1 + α)µ] ≤ 2
(

qn
(αµ)2

)q/2
+ δ

(
n
αµ

)q
.

Construction. Our goal is to construct a hash function family H = {hs : {0, 1}n → {0, 1}k}s∈{0,1}d
such that H is (k, t, ε)-balanced for some small ε ≈ 2−t. Assume that n ≥ k ≥ t. We will choose hs to be a
concatenation of several hash functions with gradually increasing levels of independence qi and gradually
decreasing output size `i while keeping the product qi`i = O(t) essentially constant. More precisely, let
H1, . . . ,Hr,Hr+1 be hash function families, where each family Hi = {hsi : {0, 1}n → {0, 1}`i}si∈{0,1}di
is qi-wise δi-dependent with the parameters qi, `i and δi being chosen as follows:

• For i = 1, . . . , r (where r will be specified later), set `i so that
∑i

j=1 `i = b
(

1−
(

3
4

)i)
kc. Note that

this means `i = 1
4(3

4)i−1k ± 1 and k −
∑i

j=1 `i = 3`i ± 4 = 4`i+1 ± 5.

• For i = 1, . . . , r, set qi := 4dt/`ie+ 1.

• Set r be the largest integer such that `r ≥ log t+2 log log4/3 k+7. Note that r ≤ log4/3 k = O(log k).

• Set `r+1 := k −
∑r

i=1 `i. This gives `r+1 = O(log t+ log log k). Set qr+1 = 4t+ 1

• For i = 1, . . . , r, set δi := 2−18k and set δr+1 = 2−t`r+1−2t = 2−O(k log k).

Let H := H1 ◦ . . . ◦ Hr+1 meaning that H = {hs : {0, 1}n → {0, 1}k}s∈{0,1}d is defined by

hs(x) := hs1(x)|| · · · ||hsr+1(x)

where s = (s1, . . . , sr, sr+1) and hsi ∈ Hi and ‘||’ denotes concatenation. Notice that, using the parameters
of Lemma 4.8 for the function families Hi, we can get the total seed-length to be d = |s| =

∑r+1
i=1 di =

O(n log k), assuming n ≥ k ≥ t.

12

Theorem 4.10. The above family H : {hs : {0, 1}n → {0, 1}k}s∈{0,1}d is (k, t, 2−t)-balanced for any

n ≥ k ≥ t ≥ log log4/3 k + 4 = log log k +O(1).

The seed length is d = O(n log k). In particular, H is also (k, log(t), 2−t)-condenser and a (k, δ, tδ+ 2−t)-
UExtract for any δ > 0.

We can also consider the family H′ : H1 ◦ . . . ◦ Hr, defined analogously to the above but excluding
Hr+1, so that H′ = {hs : {0, 1}n → {0, 1}m}s∈{0,1}d′ where d′ =

∑r
i=1 di and m = k−`r+1 = k−O(log t+

log log k).

Theorem 4.11. The above family H′ : {hs : {0, 1}n → {0, 1}m}s∈{0,1}d′ is (k, (e + 1), ε)-balanced for
any

n ≥ k ≥ t ≥ log log4/3 k + 4 = log log k +O(1),m = k − `r+1 = k −O(log t+ log log k)

with ε = 2−t. The seed length is d = O(n log k). In particular, H is also (k, log(e+ 1), ε)-condenser and
a (k, δ, (e+ 1)δ + ε)-UExtract for any δ > 0.

Proof of Theorem 4.10 and Theorem 4.11. We start with the proof of Theorem 4.10. Let us choose
some arbitrary set X ⊆ {0, 1}n, |X | = 2k and some arbitrary x ∈ X . For a seed s = (s1, . . . , sr+1) ←
{0, 1}d=

∑r+1
i di we will iteratively define X0 = X \{x} and for i > 0, Xi = {x′ ∈ Xi−1 : hsi(x

′) = hsi(x)}.
We start with the following lemma:

Lemma 4.12. Let α = 1/r and assume that for some i ∈ {1, . . . , r}, we have |Xi−1| ≤ (1+α)i−12k−
∑i−1

j=1 `j .
Then

Pr
si←{0,1}di

[
|Xi| > (1 + α)i2k−

∑i
j=1 `j

]
< 3 · 2−2t

Proof. Without loss of generality, assume the worst-case scenario that |Xi−1| = b(1 + α)i−12k−
∑i−1

j=1 `jc ≥
2k−

∑i−1
j=1 `j . In this case, we can write the above as:

Pr
si←{0,1}di

[
|Xi| > (1 + α)i2k−

∑i−1
j=1 `j

]
≤ Pr

si←{0,1}di

 ∑
x′∈Xi−1

{
1 if hsi(x

′) = hsi(x)
0 otherwise

}
> (1 + α)

|Xi−1|
2`i


≤ 2

(
4dt/`ie|Xi−1|
(α|Xi−1|/2`i)2

)2dt/`ie
+ δi

(
|Xi−1|

α|Xi−1|/2`i

)4dt/`ie
(5)

≤ 2

(
4dt/`ie22`ir2

2k−
∑i−1

j=1 `j

)2dt/`ie

+ δi(2
4dt/`ie(`i+log r))

≤ 2

(
4dt/`ier2

22`i−5

)2dt/`ie
+ δi2

4(t+`i+t log r/`i+log r) (6)

≤ 2 · 2−2t + 2−2t ≤ 3 · 2−2t (7)

Line (5) follows from Lemma 4.9 and the fact that the variables being summed are (qi − 1)-wise δi-

dependent with mean µ = |Xi−1|
2`i

. Line (6) follows from the fact that k −
∑i−1

j=1 `j ≥ 4`i − 5. Line (7)
follows from the fact that

2`i ≥ 2`r ≥ 2log t+2 log r+7 ≥ 4tr225 ≥ 4dt/`ier2/2−5

which gives the bound for the left-hand summand, and

4(t+ `i + t log r/`i + log r) ≤ 4(t+ k + t+ log log4/3 k) ≤ 16k

which gives the bound for the right hand summand as long as δi ≤ 2−18k ≤ 2−16k−2t.

13

By using Lemma 4.12 inductively, we get Prs1,...,sr

[
|Xr| ≥ (1 + 1/r)r2k−

∑r
j=1 `j

]
≤ (3r)2−2t. Since

(1 + 1/r)r ≤ e and `r+1 = k −
∑r

j=1 `j , we can rewrite the above as:

Pr
s1,...,sr

[
|Xr| ≥ e2`r+1

]
≤ (3r)2−2t (8)

Assuming that |Xr| ≤ e2`r+1 . Then

Pr[|Xr+1| ≥ t] = Pr
sr+1←{0,1}dr+1

[∃C ⊆ Xr, |C| = t ∀x′ ∈ C : hsr+1(x′) = hsr+1(x)]

≤
∑

C⊆Xr,|C|=t

Pr[∀x′ ∈ C : hsr+1(x′) = hsr+1(x)]

≤
(
|Xr|
t

)
(2−t`r+1 + δr+1)

(
e22`r+1

t

)t
(2−t`r+1 + δr+1)

≤ (e2/t)t + δr+12t`r+1 ≤ 2−2t + 2−2t ≤ 2 · 2−2t.

Therefore, altogether, we have

Pr
s←{0,1}s

[Xr+1 ≥ t] ≤ 3(r + 1)2−2t ≤ 3(log4/3 k + 1)2−2t ≤ 2−(t+1)

since we chose t so that 2t−1 ≥ 3(log4/3 k + 1). Moreover, we have LoadHX (x, s) = |Xr+1| + 1 (since we

must also include the point x itself). Therefore Pr[LoadHX (X,S) ≥ t + 1] ≤ 2−(t+1) which proves the
Theorem 4.10.

To prove Theorem 4.11, we go back to equation (8) and notice that Prs1,...,sr
[
|Xr| ≥ e2`r+1

]
≤

(3r)2−2t ≤ 3(r + 1)2−2t ≤ 2−t. Combining this with the fact that LoadH
′
X (x, s) = |Xr+1| + 1, we get

for every X and x ∈ X :

Pr
s←{0,1}d′

[LoadH
′
X (x, s) ≥ (e+ 1)2k−m] = Pr[|Xr+1| ≥ e2`r+1] ≤ 2−t.

4.3 A Probabilistic Method Bound

We also give a probabilistic method argument showing the existence of unpredictability extractors with
very small seed length d ≈ log(1/δ) + log(n− k). In other words, unpredictability extractors with small
entropy loss do not, in principle, require a larger seed than standard randomness extractors (with much
larger entropy loss).

See e.g., Theorem 4.1 of [MR95], for the following Chernoff tail-bound.

Lemma 4.13 (Multiplicative Chernoff Bound). Let X1, . . . , Xn be independent random variables taking
on values in {0, 1} with Pr[Xi = 1] = δi and E[

∑n
i=1Xi] = δn. Then, for any α > 1, we have

Pr

[
n∑
i=1

Xi > αδn

]
<

(
e(α−1)

αα

)δn
≤
(e
α

)αδn
.

We use the above tail-bound to prove the following theorem.

Theorem 4.14. There exists a (k, δ, ε)-UExtract with input length n, output length m, seed length d as
long as:

ε ≥ 2eδ + log(e/δ)δ2m−k , d ≥ log(1/δ) + log(n− k) + 1.

In particular if k = m, we can set ε = δ(3+log(1/δ)), and if k ≥ m+log(log(1/δ))+1 we can set ε = 2δ.

14

Proof. We use the probabilistic method argument. For simplicity of notation, let N = 2n,K = 2k, D =
2d,M = 2m. Let R : {0, 1}n×{0, 1}d → {0, 1}m be chosen uniformly at random from the setR of all such
functions. Then R fails to be a (k, δ, ε)-Uextract if there exists some subset X ⊆ {0, 1}n, |X| = K and
some (deterministic) δ-distinguisher D such that |{x ∈ X , s ∈ {0, 1}d : D(R(x; s), s) = 1}| > εKD. For
a fixed X ,D and a uniformly random R, we can define indicator random variables {V Dx,s}x∈X ,s∈{0,1}d via

V Dx,s = 1 iff D(R(x; s), s) = 1. These variables are mutually independent (but not identically) distributed

with Pr[V Dx,s = 1] = δs := |{y∈{0,1}m:D(y,s)=1}|
2m and E[

∑
x,s V

D
x,s] =

∑
x,s δs = δKD. Therefore, we have:

Pr
R

[R is not a (k, δ, ε)-UExtract] ≤ Pr
R

∃D,X s.t.
∑

x∈X ,s∈{0,1}d
V P
x,s > εDK


≤

∑
D,X

Pr
R

 ∑
x∈X ,s∈{0,1}d

V Dx,s > (ε/δ)δKD


<

(
N

K

)(
MD

δMD

)(
e

(ε/δ)

)εKD
≤

(
eN

K

)K (e
δ

)δMD
(

e

(ε/δ)

)εKD

where the third line follow by the Chernoff bound Lemma 4.13. Therefore, the above probability is
strictly less than 1 as long as: (

(ε/δ)

e

)εKD
≥
(
eN

K

)K (e
δ

)δMD

Taking the logarithms (base 2) of both sides, we get the equivalent requirement:

ε(log(ε/δ)− log e) ≥ (log e+ n− k)
1

D
+ (log e+ log(1/δ))δ

M

K
.

Assuming D ≥ (log e+ n− k)/δ and ε ≥ 2eδ the above is implied by:

ε ≥ δ + (log e+ log(1/δ))δ
M

K
.

5 SRT Lower-Bound: Samplability Doesn’t Improve Entropy Loss

In this section, we prove the ‘SRT’ conjecture of Dachman-Soled et al. [DGKM12], showing that ran-
domness extractors need to incur a 2 log 1/ε entropy loss (difference between entropy and output length)
even if we only require them to work for efficiently samplable sources. The lower-bound even holds if the
extractor itself is not required to be efficient. The efficient source for which we show a counter-example
is sampled via a 4-wise independent hash function. That is, we define the source X = hr(Z) where
Z ← {0, 1}k is chosen uniformly at random and hr : {0, 1}k → {0, 1}n is chosen from some 4-wise
independent hash function family. The choice of the seed r will need to be fixed non-uniformly; we show
that for any “candidate extractor” Ext there is some seed r such that the above efficiently sampleable
source makes (Ext(X;S), S) distinguishable from uniform with advantage ≈ 2(m−k)/2.

15

5.1 Preliminaries: Anti-Concentration Bounds

Lemma 5.1 ([Ber91], Theorem 2.3). For any random variable V , we have: E[|V |] ≥ E[V 2]3/2

E[V 4]1/2
.

Corollary 5.2. Let V1, . . . , Vq be 4-wise independent random variables over R such that for all i ∈ [q] we
have E[Vi] = 0,E[V 2

i] ∈ [p/4, p], E[V 4
i] ≤ p for some p ≥ 1/q. Then E[|

∑q
i=1 Vi|] ≥

1
16

√
q · p.

Proof. Let us define V :=
∑q

i=1 Vi. Then

E[V 2] =
∑
i,j∈[q]

E[Vi · Vj] =
∑
i∈[q]

E[V 2
i] ≥ qp/4

E[V 4] =
∑

i,j,r,t∈[q]

E[Vi · Vj · Vr · Vt] =
∑
i∈[q]

E[V 4
i] + 3

∑
i 6=j∈[q]

E[V 2
i]E[V 2

j]

≤ qp+ 3(qp)2 ≤ 4(qp)2

Therefore, by Lemma 5.1, we have

E[|V |] ≥ E[V 2]3/2

E[V 4]1/2
≥

(1
4qp)

3/2

(4(qp)2)1/2
=

1

16

√
qp

5.2 Statement of Lower Bound

Let Ext : {0, 1}n×{0, 1}d → {0, 1}m be a candidate strong extractor, and let X be some random variable
over {0, 1}n. Define the distinguishability of Ext on X via:

Dist(X)
def
=

1

2

∑
s∈{0,1}d,y∈{0,1}m

|Pr[S = s,Ext(X; s) = y]− Pr[S = s, Y = y]|

=
1

2d+1

∑
s∈{0,1}d,y∈{0,1}m

∣∣∣∣Pr[Ext(X, s) = y]− 1

2m

∣∣∣∣ .
where S, Y are uniformly and independently distributed over {0, 1}d,{0, 1}m respectively. Note that
Dist(X) is simply the statistical distance between (S,Ext(X;S)) and (S,Um) where Um is uniformly
random m bit string.

Theorem 5.3. For any (possibly inefficient) function Ext : {0, 1}n × {0, 1}d → {0, 1}m, any positive
integer k ≥ m + 2 such that n > 3k −m + 14, there exists a distribution X with H∞(X) ≥ k, which is
efficiently samplable by a poly(n)-size circuit, such that Dist(X) ≥ 2(m−k)/2−8.

Alternatively, for any positive k ≥ m such that n > k + log(k) + 11, there exists some distribu-
tion X with H∞(X) ≥ k, which is efficiently samplable by a poly(n)-size circuit such that Dist(X) ≥
2(m−k−log(k))/2−9.

5.3 Proof of Lower Bound

Let X = {x1, . . . , x2k} ⊆ {0, 1}n be a multiset (i.e, we may have xi = xj for i 6= j) and let X be a random
variable distributed uniformly over X (i.e., to sample x ← X, choose random i ∈ [2k] and output xi).

16

Define Dist(X)
def
= Dist(X). Then we can write:

Dist(X) =
1

2d+1

∑
s∈{0,1}d,y∈{0,1}m

∣∣∣∣Pr[Ext(X, s) = y]− 1

2m

∣∣∣∣
=

1

2d+1

∑
s∈{0,1}d,y∈{0,1}m

∣∣∣∣∣
∑

i∈[2k] bi,s,y

2k
− 1

2m

∣∣∣∣∣
=

1

2d+k+1

∑
s∈{0,1}d,y∈{0,1}m

∣∣∣∣∣∣
∑
i∈[2k]

(
bi,s,y − 2−m

)∣∣∣∣∣∣
where bi,s,y = 1 if Ext(xi; s) = y and 0 otherwise.

Now let us choose the multiset X randomly via X = {X1, . . . , X2k} where the Xi are 4-wise indepen-
dent random variables, each of which is uniform over {0, 1}n. For example, let H be a 4-wise independent
family of hash functions h : {0, 1}k → {0, 1}n and define Xi = h(i) where the randomness is over the
choice of h ← H. Such hash functions can be efficient so that we can compute h(i) in poly(n)-time. In
that case, taking an expectation over the choice of X , we can write:

E[Dist(X)] =
1

2d+k+1

∑
s∈{0,1}d,y∈{0,1}m

E

∣∣∣∣∣∣
∑
i∈[2k]

(
Bi,s,y − 2−m

)∣∣∣∣∣∣


where Bi,s,y is an indicator random variable which is 1 if Ext(Xi; s) = y and 0 otherwise. We now prove
the following:

Claim 5.4. For all s ∈ {0, 1}d, y ∈ {0, 1}m, we have E
[∣∣∣∑i∈[2k] (Bi,s,y − 2−m)

∣∣∣] ≥ 1
642(k−m)/2

Proof. Let us fix some arbitrary s ∈ {0, 1}d, y ∈ {0, 1}m. Let p
def
= |{x∈{0,1}n : Ext(x;s)=y}|

2n , so that for
all i ∈ [2k] we have, E[Bi,s,y] = Pr[Bi,s,y = 1] = p. First, let us consider the case that |p − 2−m| ≥
1
64 · 2

−(k+m)/2. In the case, by Jensen’s inequality and the linearity of expectation, we have:

E

 ∣∣∣∣∣∣
∑
i∈[2k]

(
Bi,s,y − 2−m

)∣∣∣∣∣∣
 ≥

∣∣∣∣∣∣
∑
i∈[2k]

E[Bi,s,y]

− 2k−m

∣∣∣∣∣∣
≥ 2k|p− 2−m| ≥ 1

64
2(k−m)/2

which matches the claim.
Therefore, we are left to consider the alternate case, where |p− 2−m| < 1

642−(k+m)/2. In this case, we
have the bounds:

p ≤ 2−m + 2−(k+m)/2 ≤ 2−m + 2−m−1 ≤ 3

4

2kp ≥ 2k(2−m − 2−(k+m)/2) ≥ 2k(2−m − 2−m−1) ≥ 2k−m−1

where the latter also implies p ≥ 2−k since k ≥ m+1. Let us define the random variables Vi := (Bi,s,y−p).
Then these variables are 4-wise independent, and for all i ∈ [2k] we have E[Vi] = 0 and:

E[V 2
i] = p(1− p)2 + p2(1− p) = p(1− p) ∈ [p/4, p]

E[V 4
i] = p(1− p)4 + p4(1− p) ≤ p.

17

Let use define V :=
∑

i∈[2k] Vi. Then, by applying Corollary 5.2 with q = 2k, we have

E[|V |] ≥ 1

16
(2kp)1/2 ≥ 1

32
2(k−m)/2.

Finally, we have:

E

∣∣∣∣∣∣
∑
i∈[2k]

(
Bi,s,y − 2−m

)∣∣∣∣∣∣
 = E

 ∣∣∣∣∣∣
∑
i∈[2k]

(Bi,s,y − p) +
∑
i∈[2k]

(p− 2−m)

∣∣∣∣∣∣


≥ E[|V |]− 2k|p− 2−m| ≥ 1

64
2(k−m)/2

which concludes the proof of the claim.

Using the above claim, we get a bound for the expected distinguishing advantage as:

E[Dist(X)] =
1

2d+k+1

∑
s∈{0,1}d,y∈{0,1}m

E

∣∣∣∣∣∣
∑
i∈[2k]

(
Bi,s,y − 2−m

)∣∣∣∣∣∣


≥ 1

2
· 2m

2k
· 1

64
· 2(k−m)/2 =

1

128
2(m−k)/2 = 2(m−k)/2−7.

This already shows the expected distinguishing advantage for X is sufficiently high. We now want to
show that the distinguishing advantage is high with “good” probability:

Pr

[
Dist(X) ≤ 1

2
E[Dist(X)]

]
= Pr

[
1− Dist(X) ≥ 1− 1

2
E[Dist(X)]

]
≤ 1− E[Dist(X)]

1− 1
2 E[Dist(X)]

≤ 1− E[Dist(X)]2 ≤ 1− 2m−k−14

where the second line follows by Markov inequality and the fact that Dist(X) ∈ [0, 1]. Therefore, we get:

Pr[Dist(X) > 2(m−k)/2−8] > 2m−k−14.

Next, we want to show that, if X is uniform over X , then H∞(X) ≥ k with overwhelming probability
over the choice of X . This happens as long as X1, . . . , X2k are all distinct, which happens with probability
≥ 1− Pr[∃i 6= j s.t. Xi = Xj] ≥ 1− 22k−n. Therefore, we get:

Pr[(Dist(X) > 2(m−k)/2−8) ∧ (H∞(X) ≥ k)] > 2(m−k)−14 − 22k−n > 0

as long as n > 3k − m + 14. This means that, as long as the above inequality is satisfied, there exits
some choice of X = {x1, . . . , x2k} from the 4-wise independent family (e.g., some hash function h ∈ H
with xi = h(i)) such that, if X is uniform over X , we have H∞(X) ≥ k, and Dist(X) ≥ 2(m−k)/2−8. As
long as the has function h is efficiently computable, we can sample from X efficiently in poly(n)-time.
Therefore, this proves the first part of theorem.

For the second part of the theorem, we first generalize our bound on entropy by choosing the elements
X1, . . . , X2k of X via a (t + 1)-wise independent distribution. In that case, we get H∞(X) ≥ k − log(t)
as long as the multiplicity of any element of X is at most t, which happens with probability

Pr[H∞(X) ≥ k − log(t)] ≥ 1−
(

2k

(t+ 1)

)
2−tn ≥ 2(t+1)k−tn.

18

Therefore, we get:

Pr[(Dist(X) > 2(m−k)/2−8) ∧ (H∞(X) ≥ k − log(t))] > 2(m−k)−14 − 2(t+1)k−tn > 0

as long as n > k + 2k/t− (m− 14)/t.
Finally, to prove the second part of the theorem, for any k′ ≥ m, n > k′+log(k′)+11 let us apply the

generalized bound on k = k′ + log(k′) + 2 and t = 2k′. Note, k ≥ m+ 2 and n > k + 2k/t− (m− 14)/t.
Therefore, we get:

Pr[(Dist(X) > 2(m−k′−log(k′))/2−9) ∧ (H∞(X) ≥ k′)] > 0.

This proves the second part of the theorem, by noting that we can (t = 2k′)-wise independent hash
functions can be efficiently computable in poly(n)-time.

6 Lower Bound: Square-Friendly Applications

In this section we prove Theorem 1.2. We define an application P for which we show that it is δ-square
secure in Claim 6.1, but a single run can be broken with advantage Ω(

√
δ · 2m−k). The two claims imply

Theorem 1.2.
We consider the following (artificial) indistinguishability application P between a distinguisher D and

a challenger C(r), which is initialized with a key r ∈ {0, 1}m and a bit b ∈ {0, 1} (where b = 0 means
we’re playing the random, and b = 1 the real game.)

• C(r) flips a biased coin α where Pr[α = 1] =
√
δ.

• If α = 0, C(r) sends ⊥ to D.

• If α = 1 and b = 1 then C(r) sends r to D.

• If α = 1 and b = 0 then C(r) samples a random r′ ← {0, 1}m and sends r′ to D.

• D outputs its guess b′.

Let fD(r) denote the advantage of D (over the choice of b) in the above game

fD(r) = Pr
b←{0,1}

[b = b′]− 1/2

By the following claim P is δ/4-square secure (against computationally unbounded distinguishers and
any distribution of keys).

Claim 6.1. For any D and any possible key r, |fD(r)| ≤
√
δ/2 (and thus also E[fD(Um)2] ≤ δ/4)

Proof.

|Pr[b = b′]− 1/2| = |Pr[α = 1]︸ ︷︷ ︸
√
δ

Pr[b = b′|α = 1] + Pr[α = 0]︸ ︷︷ ︸
1−
√
δ

Pr[b = b′|α = 0]︸ ︷︷ ︸
1/2

−1/2| (9)

≤ |
√
δ Pr[b = b′|α = 1]−

√
δ/2| ≤

√
δ/2 (10)

In the last step we used that any probability is between 0 and 1, in the second step we used that
conditioned on α = 0, D gets no information about the uniformly random bit b and thus any guess b′

will be equal to b with probability exactly 1/2.

Claim 6.2. For any family H = {hs} of functions {0, 1}n → {0, 1}m, there exists an (even efficiently
samplable) (n, k)-source X and a (generally inefficient) distinguisher D(.) such that

E
S

[fD(S)(hS(X))] = Ω(
√
δ · 2m−k)

19

Proof. By Theorem 1.1 there exists an efficiently samplable X such that, for a random S, the statistical
distance of the derived key hS(X) from uniform is

∆((Um, S) , (hS(X), S)) = Ω(
√

2m−k)

And thus, we can define a (potentially inefficient) distinguisher D(S) that can distinguish (hS(X), S)
from (Um, S) with advantage Ω(

√
2m−k), and thus guess b with the same advantage whenever he gets to

see the key (i.e. α = 1).
Concretely, the distinguisher D(s) is defined as follows. If it receives ⊥ (i.e. α = 0), it simply

outputs a random guess b′ ← {0, 1}. If it receives some r ∈ {0, 1}m (i.e. α = 1), then it outputs 1 if
PrX(hs(X) = r) ≥ 2−m and 0 otherwise. We have

E
S

[fD(S)(hS(X))] = Pr[α = 0]︸ ︷︷ ︸
1−
√
δ

Pr[b = b′|α = 0]︸ ︷︷ ︸
1/2

+ Pr[α = 1]︸ ︷︷ ︸
√
δ

Pr[b = b′|α = 1]︸ ︷︷ ︸
1/2+Ω(

√
2m−k)

−1/2

= Ω(
√
δ · 2m−k)

References

[AGHP92] Noga Alon, Oded Goldreich, Johan H̊astad, and René Peralta. Simple construction of almost
k-wise independent random variables. Random Struct. Algorithms, 3(3):289–304, 1992.

[BDK+05] Xavier Boyen, Yevgeniy Dodis, Jonathan Katz, Rafail Ostrovsky, and Adam Smith. Se-
cure remote authentication using biometric data. In Ronald Cramer, editor, Advances in
Cryptology—EUROCRYPT 2005, volume 3494 of LNCS, pages 147–163. Springer-Verlag,
2005.

[BDK+11] Boaz Barak, Yevgeniy Dodis, Hugo Krawczyk, Olivier Pereira, Krzysztof Pietrzak, François-
Xavier Standaert, and Yu Yu. Leftover hash lemma, revisited. In Phillip Rogaway, editor,
CRYPTO, LNCS, pages 1–20. Springer, 2011.

[Ber91] Bonnie Berger. The fourth moment method. In Alok Aggarwal, editor, SODA, pages 373–383.
ACM/SIAM, 1991.

[BH05] Boaz Barak and Shai Halevi. A model and architecture for pseudo-random generation with
applications to /dev/random. In Proceedings of the 12th ACM Conference on Computer and
Communication Security, pages 203–212, 2005.

[BR94] M. Bellare and J. Rompel. Randomness-efficient oblivious sampling. In 35th Annual Sympo-
sium on Foundations of Computer Science, pages 276–287. IEEE, 1994.

[BST03] Boaz Barak, Ronen Shaltiel, and Eran Tromer. True random number generators secure in
a changing environment. In Proceedings of the 5th Cryptographic Hardware and Embedded
Systems, pages 166–180, 2003.

[CDH+00] Ran Canetti, Yevgeniy Dodis, Shai Halevi, Eyal Kushilevitz, and Amit Sahai. Exposure-
resilient functions and all-or-nothing transforms. In Bart Preneel, editor, Advances in
Cryptology—EUROCRYPT 2000, volume 1807 of LNCS, pages 453–469. Springer-Verlag,
2000.

[CG89] Benny Chor and Oded Goldreich. On the power of two-point based sampling. Journal of
Complexity, 5:96–106, 1989.

20

[CGH98] Ran Canetti, Oded Goldreich, and Shai Halevi. The random oracle methodology, revisited.
In Proceedings of the Thirtieth Annual ACM Symposium on Theory of Computing, pages
209–218, Dallas, Texas, 23–26 May 1998.

[CRSW11] L. Elisa Celis, Omer Reingold, Gil Segev, and Udi Wieder. Balls and bins: Smaller hash
families and faster evaluation. In Rafail Ostrovsky, editor, FOCS, pages 599–608. IEEE,
2011.

[DGH+04] Yevgeniy Dodis, Rosario Gennaro, Johan H̊astad, Hugo Krawczyk, and Tal Rabin. Ran-
domness extraction and key derivation using the cbc, cascade and hmac modes. In Matt
Franklin, editor, Advances in Cryptology—CRYPTO 2004, volume 3152 of LNCS, pages
494–510. Springer-Verlag, 15–19 August 2004.

[DGKM12] Dana Dachman-Soled, Rosario Gennaro, Hugo Krawczyk, and Tal Malkin. Computational
extractors and pseudorandomness. In Ronald Cramer, editor, TCC, volume 7194 of Lecture
Notes in Computer Science, pages 383–403. Springer, 2012.

[DORS08] Yevgeniy Dodis, Rafail Ostrovsky, Leonid Reyzin, and Adam Smith. Fuzzy extractors: How
to generate strong keys from biometrics and other noisy data. SIAM Journal on Computing,
38(1):97–139, 2008.

[DRV12] Yevgeniy Dodis, Thomas Ristenpart, and Salil P. Vadhan. Randomness condensers for effi-
ciently samplable, seed-dependent sources. In 9th Theory of Cryptography Conference, pages
618–635, 2012.

[DTT10] Anindya De, Luca Trevisan, and Madhur Tulsiani. Time space tradeoffs for attacks against
one-way functions and prgs. In CRYPTO, pages 649–665, 2010.

[DY13] Yevgeniy Dodis and Yu Yu. Overcoming weak expectations. In TCC, pages 1–22, 2013.

[GKR04] Rosario Gennaro, Hugo Krawczyk, and Tal Rabin. Secure hashed diffie-hellman over non-
ddh groups. In Christian Cachin and Jan Camenisch, editors, Advances in Cryptology—
EUROCRYPT 2004, volume 3027 of LNCS, pages 361–381. Springer-Verlag, 2004.

[HILL99] J. H̊astad, R. Impagliazzo, L.A. Levin, and M. Luby. Construction of pseudorandom generator
from any one-way function. SIAM Journal on Computing, 28(4):1364–1396, 1999.

[Kra10] Hugo Krawczyk. Cryptographic Extraction and Key Derivation: The HKDF Scheme. In
Tal Rabin, editor, Advances in Cryptology - CRYPTO 2010, volume 6223 of LNCS, pages
631–648. Springer-Verlag, 2010.

[KZ03] Jess Kamp and David Zuckerman. Deterministic extractors for bit-fixing sources and
exposure-resilient cryptography. In 44th Annual Symposium on Foundations of Computer
Science, pages 92–101, Cambridge, Massachusetts, October 2003. IEEE.

[MR95] Rajeev Motwani and Prabhakar Raghavan. Randomized Algorithms. Cambridge University
Press, 1995.

[NN93] Joseph Naor and Moni Naor. Small-bias probability spaces: Efficient constructions and
applications. SIAM J. Comput., 22(4):838–856, 1993.

[NZ96] Noam Nisan and David Zuckerman. Randomness is linear in space. Journal of Computer
and System Sciences, 52(1):43–53, 1996.

21

[RR99] Ran Raz and Omer Reingold. On recycling the randomness of states in space bounded
computation. In Proceedings of the 31st ACM Symposium on the Theory of Computing,
pages 159–168, 1999.

[RSW06] Omer Reingold, Ronen Shaltiel, and Avi Wigderson. Extracting randomness via repeated
condensing. SIAM J. Comput., 35(5):1185–1209, 2006.

[RTS00] Jaikumar Radhakrishnan and Amnon Ta-Shma. Bounds for dispersers, extractors, and depth-
two superconcentrators. SIAM Journal on Computing, 13(1):2–24, 2000.

[Sie89] Alan Siegel. On universal classes of fast high performance hash functions, their time-space
tradeoff, and their applications (extended abstract). In FOCS, pages 20–25, 1989.

[TV00] Luca Trevisan and Salil Vadhan. Extracting randomness from samplable distributions. In
41st Annual Symposium on Foundations of Computer Science, pages 32–42, Redondo Beach,
California, November 2000. IEEE.

22

