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Popular Children’s Game
• Each child chooses scissors, paper or rock

– Rock beats Scissors

– Scissors beat Paper

– Paper beats Rock

• What do we play?
– For any strategy there is a better response !

• Solution: play  AT  RANDOM
– No matter what the opponent does, break 

even on average !

• Randomization essential here
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Randomness
• Crucial in many areas:

– Approximation algorithms 

– Distributed computing

– Property testing

– Counting problems

– Symmetry breaking

– Reducing Complexity (sampling, embedding)

– Game theory

– Cryptography

– …
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The Big Picture
1. Reasons for Randomness in Crypto

2. Imperfect Sources of Randomness

3. Cryptography from entropy alone?

– Does crypto requires extraction?

4. Randomness Extraction

– Variants: fuzzy, local, interactive,…

5. Leakage+Resilient Cryptography

6. Pseudorandomness
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Randomness in Crypto
• Unlike many other examples, randomness 

essential for security!
• Secret keys have to be random

– If not, everything is easy

• Security against “replay” attacks (e.g., 
challenge9response, encryption, …)

• Privacy and Anonymity
– Many examples (stay tuned)

• Unpredictability (e.g., of challenges, 
fingerprints, …)
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Key generation 1
• Toy example: Ceasar cipher

• Enc(letter) = letter + 3 mod 26
– Enc(RANDOM) = UDQGRP

– Can’t rely on secrecy of algorithms, only of 
secret keys (Keirkhoff’s principle)!

• Example 2: shift cipher

• Encs(x) = x+s mod 26
– Key is too short, only 26 keys !

– Keys must have enough entropy to defeat 
brute force attacks !
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Key generation 2
• Example 3: permutation cipher

• Encππππ(letter) = ππππ(letter), where π π π π is 
random permutation
– Encππππ(NOT GOOD) = RZP BZZQ

– # keys = 26! = 295 (large enough)

– Not good, see that same letter “Z” appeared 
three times (frequency analysis kills it)

– Entropy alone is not enough ! (more later)

– Need to have precise goal and argue that 
your system meets it
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Key generation 3
• Example 3: one9time pad

• Goal: encrypt n9bit message once and 
have ciphertext reveal “no information” 
about the plaintext (e.g., H(M) = H(M|C), 
for any distribution on M)
– Even the goal is probabilistic in nature !

• EncK(m) = m ⊕ K, DecK(c) = c ⊕ K
– Satisfies defn, provided K is truly random 

(aside: |K|=|M|, bad but best possible �)

– How crucial is this assumption?
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Randomness of keys?

• If Eve knows some info about K  ⇒
translates to the same info about M !
– E.g., M1 = C1 ⊕ K1

– In general, partial info reduces brute force 
search and most cryptanalysis techniques !

• Important: assume can generate keys 
according to the “distribution we need” 
(which is typically uniformly random in 
the symmetric key setting)
– Revisit this later, but assume for now !
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Randomness of keys?
• What about “practical” ciphers (DES, 

AES, RC2, …)?
– Often believe “any key is good”

• Dangerous
– Ex: 056, 028 128, 156, 128 028 weak for DES

– Not the design criteria of creators

– Meaningless formally: any “specific” key is 
weak since “know” the secret key

– Need random experiment to even make 
sense of security !
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Randomness of keys?
• Heuristics: if K has enough entropy, 

practical systems based on DES, AES, … 
are secure.
– No formal justification !

– In fact, I will later give strong evidence 
that this is very suspect ! [DOPS04]

• Punchline: current symmetric key 
systems crucially rely on the randomness 
of their secret keys !
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What about Public Keys?
• Example: ElGamal encryption. 

• All we need to know is that need common 
prime p where discrete log (from p, g and 
y = gx mod p compute x) is “hard”

• “Great” choice: use p of the form 2k + 1
– Recall, order of multiplicative group (p91)

(zp91 = 1 for all z by Fermat’s little theorem)

– Very fast operations !

• Insecure: discrete log is easy !
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Attack

• Easy to see: xk is even iff y 2k91 mod p = 1

• More generally x ends with j zeros iff

y 2k9j mod p = 1

• For j = 0 to k91

– Set xk9j = 0 iff y 2k9j91 mod p = 1

– If xk9j = 1, change y:=y/g mod p

• Output x1…xk
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Key Generation
• Moral: every crypto system (PK or SK) has a 

well defined hardness assumption (or security 
proof) involving, among other things, 
generation of public/secret keys 
– Security might crucially rely on key generation 

performed exactly as specified by the assumption

– Most often need uniform random data

• Discrete Log: if p is random k9bit prime, g –
random generator of Zp and x – random
exponent in {1…p91}, then hard to compute x 
given (p, g, y = gx mod p)
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Lessons
• Crypto depends on randomness of keys

– Even security goal are probabilistic

• Need high9entropy, but not enough

• Most current systems need uniformly random
bits (or something derived from them)

• Security might break if the key distribution is 
not what you expect (more later)

• Key assumption: assume have a source of truly 
random bits – will revisit later
– separates use of randomness from generation

• What can we do with it???
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Reasons for Randomness
• Key Generation �
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Reasons for Randomness
• Key Generation

• Privacy: masking, blinding, hiding, re9
randomizing
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Ex. 1: Adding 2 Numbers
• Alice has a, Bob has b

• Chris needs to compute S = a ⊕ b

• Alice does not want Chris or Bob to learn a

• Bob does not want Chris or Alice to learn b

• Alice: pick random r and send it to Bob

• Alice: Compute a’ = a ⊕ r and send it to Chris

• Bob: Compute b’ = b ⊕ r and send it to Chris

• Chris: compute a’ ⊕ b’ = a ⊕ b ⊕ (r ⊕ r) = a ⊕ b
– Does not give Chris any info about a, b beside sum

• Alice and Bob also only know random r
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Ex. 2: Blind RSA Signature
• Recall RSA: n = pq, where p,q 9 primes

• ϕ(n) = (p91)(q91). For any z, z ϕ(n) = 1 mod n

• Pick random e and let d = e91 mod ϕ(n) 

• PK = (n,e). SK = d.  

• SigSK(m) = H(m)d mod n, 
– here H is “good” hash function (not important)

• VerPK(σ,m):   Check σ e = H(m) mod n
– Indeed, σ e = H(m)ed = H(m)1 = H(m) mod n

• Assume Bob knows d, Alice knows m, and wants 
to compute Sig(m) without telling m to Bob?
– “blind” signature, useful for e9cahs, etc. (stay tuned)
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Ex. 2: Blind RSA Signature

• Alice (knows n,e,m, not d): 
– Pick random r and compute A = re H(m) mod n

– Send A to Bob for signing

– Note, A is random and independent from H(m)

• Bob (knows d,τ but not r, m): 

– Compute τ = Ad mod n and send τ to Alice

– Note, τ = Ad = red H(m)d = r H(m)d = rσ mod n

• Alice: 
– Compute σ =τ r91 = H(m)d mod n
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Randomness for Privacy

• We will see many other examples: 
encryption, commitment, zero9knowledge,…

• Perhaps most important use in crypto

• Strongly requires uniform randomness
– i.e., non9uniform pads, masks, etc. leak partial 

information

• We will see later that it is very hard 
(impossible?) to securely realize such 
applications without perfect randomness
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Reasons for Randomness
• Key Generation

• Privacy: masking, blinding, hiding, re9
randomizing

• Unpredictability (random challenges)
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Unpredictability
• Do not want the attacker to guess some 

information before it becomes available
• Example: identification
• Alice wants to prove she is “Alice” to Bob
• Naturally, Bob should “challenge” Alice 

with stuff only Alice should know
• If predictable challenges

– Eve might know what Bob expects
– Perhaps Eve convinces Alice to identify 

herself before she would do it to Bob. Then 
can simply forward Alice’s answer later.
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Doing It With Encryption
• Alice has (SK, PK) for an encryption scheme

• Bob: chooses random R, lets c = EncPK(R) and 
challenges Alice with c

• Alice: computes R’=DecSK(c) and sends R’ to Bob

• Bob: accepts if R = R’

• Intuition: only Alice can decrypt

• Clearly, insecure if Eve can predict R
– just send R to Bob ignoring c !

• Conversely, can show “secure” if (1) Enc is 
“strong enough” and (2) R is unpredictable:

– for any R1…Rk , PrR( ∃i R= Ri ) = tiny
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Doing It With Signatures
• Alice has (SK,PK) for a signature scheme.

• Bob: send random R to Alice

• Alice: returns SigSK(R)

• Bob: accepts if correct VerPK(σ, R) = true

• Intuition: only Alice can sign

• Assume Eve convinces Alice to identify herself 
before she would do it to Bob
– If R is predicatable, Eve can send same R to Alice 

and learn Sig(R) !

• Conversely, unpredictability (+ good signature) 
are enough for security
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More on Unpredictability
• Does not require true randomness!

– High entropy is necessary and sufficient !

• As we will see, this makes this use of 
randomness more realistic than requiring 
perfect randomness

• Look9ahead questions: 
– can we get perfect randomness from high 

entropy one? (mixed answer, mainly NO)

– What about computational unpredictability, 
where it is only “hard to predict”?
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Reasons for Randomness
• Key Generation

• Privacy: masking, blinding, hiding, re9
randomizing

• Unpredictability (random challenges)

• Freshness (non9repeatability, nonces)
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Freshness
• Sometimes need a value which is 

guaranteed not to happen before
– Do not care about unpredictability

– Just do not want to reuse an old one

• Solution: keep a counter and use 1,2,…
– Problem: requires state (predictability OK !)

• Stateless solution? Yes, pick at random
– If pick from {0,1}K at most q times, then  

Pr[repeat somevalue] < q2 29K (birthday bound)

– High Entropy also suffices ! (~ q2 29H(X))
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Nonces and Their Applications

• Nonce = a value that “never” repeats

• Why do we care?

1. Freshness “in time” (e.g., key exchange)

2. Freshness of input to a block cipher or a 

pseudorandom function (describe later)

• Applications: key establishment (1, now), 

symmetric encryption, authentication  

(2, later), …
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Example: Key Establishment
• Say, Alice and Bob know their public keys and 

want to establish a session key
• Simple solution: A picks K at random and sends  

c = EB(K,”Alice”), σ = SigA(c, “Bob”)
• Problem: after K is gone, Eve might learn it and 

reuse (c, σ), establishing a fake key with Bob
– Replay attack !

• Solution: use a nonce R
– B sends (R, SigB(R))
– A replies with c = EB(K,”Alice”), σ = SigA(c, R, “Bob”)
– Ensures Eve can’t use old R with Bob
– Privacy of R not important, as long as B doesn’t reuse
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Reasons for Randomness
• Key Generation

• Privacy: masking, blinding, hiding, re9
randomizing

• Unpredictability (random challenges)

• Freshness (non9repeatability, nonces)

• Noise (confusing attacker)
– Add noise to data to maintain “global 

features”, but hide individual information

– Mainly used for “database sanitization”

– Recent research area (differential privacy)
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Reasons for Randomness
• Key Generation

• Privacy: masking, blinding, hiding, re9
randomizing

• Unpredictability (random challenges)

• Freshness (non9repeatability, nonces)

• Noise (confusing attacker)

• Efficiency ! (e.g., primality testing)
– Could be that randomness is not inherently

needed, but can speed things up!
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Primality testing
• Want to know if p is prime?

– Only recently know how to do “moderately 
efficiently” (K6 best??) & deterministically

• Still, much faster to do probabilistically!

• Recall, if p9prime, zp91 = 1 mod p

• Which z to test?
– all z: exponential time �

– z = 2: not bad, but many counter9examples

– random z: “almost” works, minor fix needed

– get famous Miller9Rabin test
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Batch Verification of RSA
• Assume need to verify many (t) RSA sigs 

(mi,σi), where σi
e = H(mi) mod n

– Naive solution: t exponentiations

• Idea: for any subset I of {1…t}, let 
– MI = ∏i∈I H(mi) mod n, σI = ∏i∈I σi mod n

– Then σI
e = MI mod n, for any I

• Pick random I and check above equation (1.5 exp)
– If there exists a bad signature, detect w/pr ½ ! 

• Now repeat several (say 80) times: 
– for large t benefit outperforms the cost !
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Reasons for Randomness
• Key Generation

• Privacy: masking, blinding, hiding, re9
randomizing

• Unpredictability (random challenges)

• Freshness (non9repeatability, nonces)

• Noise (confusing attacker)

• Efficiency ! (e.g., primality testing)

• Probabilistically Checkable Proofs
– Includes zero9knowledge proofs…
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Proofs
• Prover P wants to prove to Verifier V 

some statement S is true
• Witness of S: string w s.t. V can check S 

is true using w
– Ex.: S = “Second bit of Dlog(y) is 0”, then    

w = Dlog(y). Test by seeing w2=0 and gw = y

• NP = class of problems where each true 
statement has a witness, and false 
statements do not have any witnesses
– Note, witness might be hard to find, but 

always easy to check ! (big question: P ≠ NP?)
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Some Questions

• P can always convince V by sending w

• Question 1 (orthogonal to us, but nice!): 
If P is unbounded, can we convince poly9
time V in problems outside of NP?
– Yes, can do anything in polynomial space !

– Randomness essential (else “stuck” with NP)

– Unpredictability enough [DOPS04]

– Won’t give example (although fascinating!), 
since in practice no unbounded P
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Short Proof?

• Questions 2: if V is OK to be “fooled” 

with tiny probability, can we send 

significantly shorter string than w?

• Batch verifier for RSA: could be viewed 

as P proving “I know all t signatures” 

without sending all of them !

• Don’t care about leaking witnesses (yet!), 

only efficiency
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Short Proof?
• Remarkable (theoretical result): any NP 

statement can be proven with “polylog” 
communication (under some assumptions)
– Again, randomness essential here !

• In fact, P can write a moderately long 
(poly(n)9bit) “special proof” w’ s.t. V can 
check correctness of w’ w.r.t. S using:
– Using O(log n) random bits 
– Reading CONSTANT number of bits of w’
– Having 99.9% assurance he was not fooled

• Celebrated result, but very impractical �
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Hiding the Witness?
• Questions 3: (most crypto related) Can P 

prove S to V s.t. (1) V is convinced; yet 
(2) V does not learn the witness w?

• Useful for a variety of different reasons

• Ex. 1: identification schemes
– P proves knows SK corresponding to PK

– Don’t send SK as then V can impersonate P

– Still leaked partial knowledge (e.g. some 
signatures V can’t compute), just not enough 
to actively impersonate V
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Signature or Encryption?

• Sig certainly leaks signature of new 
values Sig(R), which V can’t get

• Enc actually doesn’t leak that much…

• V expects to get Dec(c) = R, just wants 
to get convinced P can produce it too !

• If V “knew” P was going to pass, could 
have simulate the entire proof !
– Zero9knowledge proof, nothing is leaked !

– Well… almost. What if V asks Dec(“bad c”)??
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Zero9Knowledge proofs

• Roughly: whatever V learned from talking to P 
(beyond the validity of assertion),   V can 
“simulate” on its own!

• ZK Proofs: concentrate on statements which 
could be true or false (decision)
– Ex.: msb(dlog(y)2)=0 

• ZK Proofs of Knowledge: prove that P knows
something he claims, without leaking any info 
about it !

• Arguments: P is efficient using the witness w
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Big Result

• Under mild assumption (OWF exist), any 

NP statement has a ZK Proof and ZKPoK

– Very important result

– Generic proof is inefficient, but efficient 

solutions exist for many useful languages!

– Generic proof + all protocols use randomness 

in a totally crucial way (e.g., for challenges, 

blinding and commitments !)
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Ex: ZKPoK of Discrete Log

• Common input y =gx

• P proves knowledge of x

– P to V: pick random r ∈ {1..p91} and 
send “commitment” R = gr

– V to P: send random c ∈ {1..p91}

– P to V: send s = r + cx mod (p91)

– V: check that gs = R yc

• Very useful in many9many apps!
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Security?
• Why PoK? 

– if P responds to c ≠ c’ with same R, then 
from (s, s’, c, c’) can solve for x = (s9s’)/(c9c’)

– So V is “really convinced” P knows x !

• Why (honest verifier) ZK?
– V can “fake” conversation with P, for any c

– Recall, only need (R,c,s) s.t. gs = R yc mod p

– Pick random s and set R = gs / yc mod p

– Easy to see same distribution on (R,c,s) 

• Secure as “real” P commits to R before c
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Randomness in ZK Proofs?

• Essential for the verifier !
– Otherwise P can predict all the responses 

and really amounts to normal “NP”9proof, 
which is not ZK

– Is unpredictable randomness enough? (later)

• For many naturally occurring problems 
essential for the prover as well to 
achieve ZK (e.g. “public9coin proofs” like 
the DL example)
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Reasons for Randomness
• Key Generation

• Privacy: masking, blinding, hiding, re9
randomizing

• Unpredictability (random challenges)

• Freshness (non9repeatability, nonces)

• Noise (confusing attacker)

• Efficiency ! (e.g., primality testing)

• Probabilistically Checkable Proofs

• “Pseudorandomness” & “Extraction” !!!
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Pseudorandomness
• R is pseudorandom (given Y) if hard to 

distinguish R from a truly uniform, 
random string (even given Y)

• Information9theoretic: R is random

• Computational: even though R is certainly 
not random, it “looks so” to a 
computationally bonded attacker

• Decisional Diffie9Hellman Assumption: 
– for random x,y,z have 

< g, gx, gy, gxy > ≈ < g, gx, gy, gz >
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DDH and its Applications
• False in standard ZP !

– lsb(gxy) = 0 w/pr ¾, lsb(gz) = 0 w/pr ½ 

– Seems true in prime order subgroup of ZP

– Despite the fact that gxy is uniquely 
determined by g, gx, gy

– Seems important that x,y,z random

– Much stronger assumption than DL (or CDH)!

• Many applications: DH key exchange, 
ElGamal Encryption, Cramer9Shoup  
encryption, algebraic “PRF” (see later),…
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DH Key Exchange from DDH

• Alice and Bob do not share anything. 

Want to get a key by public discussion, 

s.t. secure against eavesdropper Eve

• Alice: x → random, A = gx, send A to Bob

• Bob: y → random, B = gy, send B to Alice

• Alice: compute K = Bx = gxy

• Bob: compute K = Ay = gxy

• Eve: gxy looks like gz given g, gx, gy
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Pseudorandomness

• True randomness is expensive, hard to 
get, store, generate

• PR approach: start with small amount of 
true randomness & get more randomness
which is equally good for applications !
– DDH:  g, x, y � g, gx, gy, gxy (from 3k 9> 4k)

• Does not eliminate true randomness

• Reduces its size at the expense of 
(strong?) computational assumptions
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Relation to Extractors

• More later, but extractors start with 
imperfect randomness, and try to extract 
nearly perfect one
– Typically extract statistically random stuff 

(no computational assumptions)

– Sometimes do not use any additional true 
randomness (but very limited use)

– Sometimes use a “little” true randomness, but 
extract “much more” using the imperfect 
source “instead of” computational assumption
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Main PR Primitives
• PR Generator (PRG)

– Length increasing function G (say k → n) s.t.
– G(Uk) ≈ Un, where Ut 9 uniform on t bits
– DDH more or less gives (a slow) PRG

• PR Function (PRF) family
– F = {fs | s ∈ {0,1}k} indexed by “short” key s
– For random s, fs ≈ truly random function 

(i.e., one with random output for every input)
– Say, fs:{0,1}k → {0,1}. Compress 2k → k bits !

• PR Permutation (PRP) family
– P = {(πs, πs

91) | s ∈ {0,1}k} – each πs invertible!
– For random s, (πs, πs

91) ≈ truly random (g,g91)
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Applications of PRGs

• Beat Shannon bound on key length for 
one9time encryption: 
– Encs(M) = M ⊕ G(s), here |M|>>|s|

• Stream Ciphers: “stateful” PRGs
G(st) → Rt, st+1

– Give stateful sequence of OTPs

• Hybrid public9key encryption:
EncPK’(M) = < EncPK(s) , m ⊕ G(s) >

– Reduces PKE of long messages to short
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Applications of PRFs/PRPs
• PRFs

– Much easier stateful cipher: fs(1),…fs(t),…
– Message authentication codes
– Modes of operations for encryption (e.g., 

OFB, CFB, counter, XOR)
– Repeated generation of same randomness! 
– Huge number of other applications 
– Essentially, fs(nonce) is a new OTP !

• PRPs
– PRP is a length9preserving PRF, so many of 

the above applications work here as well
– Plus unique ones where inverse needed (CBC)
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Example: Encryption

• Idea 1 : use PRP, Encs(m) = πs(m)

– Problem: Enc(m) always the same !

– Cannot encrypt repeated values from small 

space ({sell,buy})

• Moral: repeated encryption of the same 

message should be different

– Either update secret key (stateful �)

– Or must be probabilistic

– Latter only option in the public key setting !
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Example: Encryption
• In symmetric9key setting, nonce suffices

– Enc(m) = fs(nonce) ⊕ M 

– many ways to extend to multiple blocks, get 
OFB, CFB, XOR, counter

• With PRPs, can also use CBC
– Enc(m) = πs(nonce ⊕ M) 

• CBC not secure with counter, need 
unpredictable nonce (like random !)

• Punchline: “convenient” encryption must 
use randomness both for keys and per 
every invocation !
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Relation to Unpredictability
• X is unpredictable (given Y) if hard to 

compute X (given Y)
– Only makes sense in “probabilistic sense”

• Could be information9theoretic
– Random challenge R (trivial)
– Does not inherently require true randomness
– High entropy necessary and sufficient

• Could be computational
– Ex.: discrete log assumption
– Given (p, g, gx mod p), hard to compute x, 

even though x is “mathematically unique”
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Aside: Comparison

• Although sampling unpredictable value (i.e., 

challenge) does not require true randomness, 

most computational unpredictability 

assumptions need it !

– Ex: for discrete log, need to perfectly sample p,g,x 

to claim x is unpredictable

– Can state for imperfect p,g,x, but dangerous

• In general, many differences between i.t. and 

computational unpredictability (stay tuned)
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Back to Unpredictability

• Backbone of (computational) crypto

• Most natural assumptions (factoring, 
discrete log, RSA) says something is 
unpredictable given other info
– Would like to avoid assuming PR if we can !

• Especially useful (i.e., sufficient) for 
authentication applications 
– Secure signature: sig(m) is unpredictable 

even given sig(m1)…sig(mk) for any mi ≠≠≠≠ m
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Relation to Privacy
• Theoretically OK to leak partial info, as 

long as “all of” X is still hard
– Ex: lsb(x) easy from gx mod p, OK to leak 

signature of “old/unimportant” messages

• Compare to privacy apps, where cannot 
leak any partial info

• Question: is having unpredictability 
enough for achieving privacy (i.e., 
pseudorandomness)?
– Depends on whether can sample uniform bits !
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Relation to Privacy
• Beautiful BIG result [Goldreich9Levin]: 

– Assume X is unpredictable to attacker
– Assume r is truly random but known
– Then X ` r (mod 2) looks random to attacker: 

given r, hard to guess X ` r  w/pr. > 51% !

• Generically converts UP to PR
– Huge theoretical result (still not optimal !)

• Example: Alice and Bob share UP value X 
and want to share a PR bit
– Alice picks random r and sends it to Bob in 

“the clear”. Both agree on b = X ` r (mod 2) 
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Relation to Privacy
• Can  view as a “computational extractor” ! 

• However, assumes true randomness r

• A lot of my work: what if cannot sample r?
– E.g., only have unpredictable r’s…

• Is UP still enough? (my work: likely NO)

• To what extent can we base cryptography 
on imperfect randomness ??

• Exciting, rapidly developing area !
– starting point for this course…



Yevgeniy Dodis, New York University. Tutorial on Randomness. 65

Reasons for Randomness
• Key Generation

• Privacy: masking, blinding, hiding, re9
randomizing

• Unpredictability (random challenges)

• Freshness (non9repeatability, nonces)

• Noise (confusing attacker)

• Efficiency ! (e.g., primality testing)

• Probabilistically Checkable Proofs

• “Pseudo9randomness” & “Extraction” !!!
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Main Applications
• Encryption

• Message authentication, fingerprinting

• Secret sharing, AONTs

• Commitment Schemes

• Key Exchange

• Identification Schemes

• Zero9Knowledge Proofs

• Blinding, Anonymity, Privacy, …

• “All together” (sample e9cash application)
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E9cash
Simple payment protocol:
• Sign a document transferring money from your account 

to another account
• This document goes to your bank
• The bank verifies that this is not a copy of a previous 

check
• The bank checks your balance
• The bank transfers the sum
Problems:
• Requires online access to the bank (to prevent reusage)
• Expensive.
• The transaction is traceable (namely, the bank knows 

about the transaction between you and Alice).
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First attempt
Withdrawal
• User gets bank signature on {I am a $100 bill, #1234}
• Bank deducts $100 from user’s account
Payment
• User gives the signature to a merchant
• Merchant verifies the signature, and checks online 

with the bank to verify that this is the first time that 
it is used.

Problems:
• As before, online access to the bank, and lack of 

anonymity.
Advantage:
• The bank doesn’t have to check online whether there is 

money in the user’s account.
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Anonymous cash via blind signatures

• The bank signs the bill without seeing it (e. g. like 
signing on a carbon paper)

• Can use RSA Blind signatures did earlier!

• RSA signature: H(m)1/e mod n

• Blind RSA signature:
– Alice: sends Bob (re H(m)) mod n, where r is a random

– Bob: computes (re H(m))1/e = r H(m)1/e mod n, and sends 
to Alice.

– Alice divides by r and computes Sig(m) = H(m)1/e mod n

• Problem: Alice can get Bob to sign anything, as 
Bob does not know what he is signing.
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Enabling the bank to verify the 
signed value

• Use “cut and choose” protocol
• Suppose Alice wants to sign a $20 bill.

– She prepares 100 different $20 bills for blind 
signature, and sends them to the Bank (Bob).

– The bank chooses 99 of them at random and asks Alice 
unblind them (divide by the corresponding r values). 

– It verifies that they are all $20 bills.
– The bank blindly signs the remaining bill and gives it to 

Alice.
• If Alice tries to cheat she is caught with 

probability 99/ 100.
• 100 can be replaced by any parameter k.
• We would have preferred an exponentially small 

cheating probability.
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Exponentially small cheating 
probability

• Define that a $20 bill is valid if it is the e9th root of the 
multiplication of 50 values of the form H (x) , (H is one9
way) and the owner of the bill can present all 50 x values.

• The withdrawal protocol:
– Alice sends to the Bank z1 , z2 , …, z100 (where zi = ri

e ` H(xi)).
– Bank asks Alice to reveal random ½ of the values zi = ri

e `H(xi).
– Bank verifies them and extracts the e9th root of the 

multiplication of all the other 50 values.

• Payment: Alice sends the signed bill and reveals the 50 
preimage values. The merchant sends them to the bank 
which verifies that they haven’t been used before.

• Alice can only cheat if she guesses the 50 locations in 
which she will be asked to unblind the zi’s, which happens 
with probability ~29100.
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Online vs. offline digital cash

• We solved the anonymity problem, while verifying 
that Alice can only get signatures on bills of the 
right value

• The bills can still be duplicated
– Merchants must check with the bank whenever they 

get a new bill, to verify that it wasn’t used before.

• A new idea:
– During the payment protocol the user is forced to 

encode a random identity string (RIS) into the bill

– If the bill is used twice, the RIS reveals the user’s 
identity and she loses her anonymity.
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Offline digital cash
Withdrawal protocol:
• Alice prepares 100 bills of the form

– {I am a $20 bill, #1234, y1 ,y1’, y2 ,y2’ , …, yk ,yk’}
– S.t. for all i, yi = H(xi), yi’ =H(xi’), xi ⊕ xi’=Alice’s id, 

where H() is a “good” hash function and xi random

• Alice blinds these bills and sends to the bank.
• The bank asks her to unblind 99 bills and show 

their xi and xi’ values, and checks their validity. 
(Alternatively, as in the previous example, Alice 
can do a check which fails with only an 
exponential probability.)

• The bank signs the remaining blinded bill.
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Offline digital cash
Payment protocol:
• Alice gives a signed bill to the vendor

– {I am a $20 bill, #1234, y1 ,y1’, y2 ,y2’, …, yk, yk’}
• The vendor verifies the signature, and if valid 

sends to Alice a random bit string b= b1 b2 …bk of 
length k.

• For all i, if bi=0 Alice returns xi, otherwise (bi=1) 
she returns xi’

• The vendor checks that yi = H(xi) or yi’ = H(xi’) 
(depending on bi). If this check is successful it 
accepts the bill. 

• Note that Alice’s identity is kept secret!
• Also, the merchant does not need to contact the 

bank during the payment protocol.
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Offline digital cash
• The merchant must deposit the bill in the bank. 

It cannot use the bill to pay someone else.
– Because it can’t answer challenges b* different from 

the challenge b it sent to Alice.

• How can the bank detect double spenders?
– Suppose two merchants M and M* receive same bill

– With very high probability, they send different 
queries b, b*

– Suppose bi =0, bi* =1. Then M receives xi and M* 
receives xi’.

– When they deposit the bills the bank receives both xi

and xi’, and can compute xi ⊕ xi’ =Alice’s id.
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Usage of Randomness
Several very different uses !

1. To generate signing/verification key (SK 
and PK)

2. To blind RSA signatures (random r)

3. To perform cut9and9choose proofs 
(random 1/2 blindings to open)

4. To randomly open 19of92 values of xi (b) 

5. To prevent double9spending (split 
randomly xi  ⊕ xi’)


