
Randomness
and

Cryptography

Yevgeniy Dodis

New York University

Yevgeniy Dodis, New York University. Tutorial on Randomness. 2

Popular Children’s Game
• Each child chooses scissors, paper or rock

– Rock beats Scissors

– Scissors beat Paper

– Paper beats Rock

• What do we play?
– For any strategy there is a better response !

• Solution: play AT RANDOM
– No matter what the opponent does, break

even on average !

• Randomization essential here

Yevgeniy Dodis, New York University. Tutorial on Randomness. 3

Randomness
• Crucial in many areas:

– Approximation algorithms

– Distributed computing

– Property testing

– Counting problems

– Symmetry breaking

– Reducing Complexity (sampling, embedding)

– Game theory

– Cryptography

– …

Yevgeniy Dodis, New York University. Tutorial on Randomness. 4

The Big Picture
1. Reasons for Randomness in Crypto

2. Imperfect Sources of Randomness

3. Cryptography from entropy alone?

– Does crypto requires extraction?

4. Randomness Extraction

– Variants: fuzzy, local, interactive,…

5. Leakage+Resilient Cryptography

6. Pseudorandomness

Yevgeniy Dodis, New York University. Tutorial on Randomness. 5

The Big Picture
1. Reasons for Randomness in Crypto

2. Imperfect Sources of Randomness

3. Cryptography from entropy alone?

– Does crypto requires extraction?

4. Randomness Extraction

– Variants: fuzzy, local, interactive,…

5. Leakage+Resilient Cryptography

6. Pseudorandomness

Yevgeniy Dodis, New York University. Tutorial on Randomness. 6

Randomness in Crypto
• Unlike many other examples, randomness

essential for security!
• Secret keys have to be random

– If not, everything is easy

• Security against “replay” attacks (e.g.,
challenge9response, encryption, …)

• Privacy and Anonymity
– Many examples (stay tuned)

• Unpredictability (e.g., of challenges,
fingerprints, …)

Yevgeniy Dodis, New York University. Tutorial on Randomness. 7

Key generation 1
• Toy example: Ceasar cipher

• Enc(letter) = letter + 3 mod 26
– Enc(RANDOM) = UDQGRP

– Can’t rely on secrecy of algorithms, only of
secret keys (Keirkhoff’s principle)!

• Example 2: shift cipher

• Encs(x) = x+s mod 26
– Key is too short, only 26 keys !

– Keys must have enough entropy to defeat
brute force attacks !

Yevgeniy Dodis, New York University. Tutorial on Randomness. 8

Key generation 2
• Example 3: permutation cipher

• Encππππ(letter) = ππππ(letter), where π π π π is
random permutation
– Encππππ(NOT GOOD) = RZP BZZQ

– # keys = 26! = 295 (large enough)

– Not good, see that same letter “Z” appeared
three times (frequency analysis kills it)

– Entropy alone is not enough ! (more later)

– Need to have precise goal and argue that
your system meets it

Yevgeniy Dodis, New York University. Tutorial on Randomness. 9

Key generation 3
• Example 3: one9time pad

• Goal: encrypt n9bit message once and
have ciphertext reveal “no information”
about the plaintext (e.g., H(M) = H(M|C),
for any distribution on M)
– Even the goal is probabilistic in nature !

• EncK(m) = m ⊕ K, DecK(c) = c ⊕ K
– Satisfies defn, provided K is truly random

(aside: |K|=|M|, bad but best possible �)

– How crucial is this assumption?

Yevgeniy Dodis, New York University. Tutorial on Randomness. 10

Randomness of keys?

• If Eve knows some info about K ⇒
translates to the same info about M !
– E.g., M1 = C1 ⊕ K1

– In general, partial info reduces brute force
search and most cryptanalysis techniques !

• Important: assume can generate keys
according to the “distribution we need”
(which is typically uniformly random in
the symmetric key setting)
– Revisit this later, but assume for now !

Yevgeniy Dodis, New York University. Tutorial on Randomness. 11

Randomness of keys?
• What about “practical” ciphers (DES,

AES, RC2, …)?
– Often believe “any key is good”

• Dangerous
– Ex: 056, 028 128, 156, 128 028 weak for DES

– Not the design criteria of creators

– Meaningless formally: any “specific” key is
weak since “know” the secret key

– Need random experiment to even make
sense of security !

Yevgeniy Dodis, New York University. Tutorial on Randomness. 12

Randomness of keys?
• Heuristics: if K has enough entropy,

practical systems based on DES, AES, …
are secure.
– No formal justification !

– In fact, I will later give strong evidence
that this is very suspect ! [DOPS04]

• Punchline: current symmetric key
systems crucially rely on the randomness
of their secret keys !

Yevgeniy Dodis, New York University. Tutorial on Randomness. 13

What about Public Keys?
• Example: ElGamal encryption.

• All we need to know is that need common
prime p where discrete log (from p, g and
y = gx mod p compute x) is “hard”

• “Great” choice: use p of the form 2k + 1
– Recall, order of multiplicative group (p91)

(zp91 = 1 for all z by Fermat’s little theorem)

– Very fast operations !

• Insecure: discrete log is easy !

Yevgeniy Dodis, New York University. Tutorial on Randomness. 14

Attack

• Easy to see: xk is even iff y 2k91 mod p = 1

• More generally x ends with j zeros iff

y 2k9j mod p = 1

• For j = 0 to k91

– Set xk9j = 0 iff y 2k9j91 mod p = 1

– If xk9j = 1, change y:=y/g mod p

• Output x1…xk

Yevgeniy Dodis, New York University. Tutorial on Randomness. 15

Key Generation
• Moral: every crypto system (PK or SK) has a

well defined hardness assumption (or security
proof) involving, among other things,
generation of public/secret keys
– Security might crucially rely on key generation

performed exactly as specified by the assumption

– Most often need uniform random data

• Discrete Log: if p is random k9bit prime, g –
random generator of Zp and x – random
exponent in {1…p91}, then hard to compute x
given (p, g, y = gx mod p)

Yevgeniy Dodis, New York University. Tutorial on Randomness. 16

Lessons
• Crypto depends on randomness of keys

– Even security goal are probabilistic

• Need high9entropy, but not enough

• Most current systems need uniformly random
bits (or something derived from them)

• Security might break if the key distribution is
not what you expect (more later)

• Key assumption: assume have a source of truly
random bits – will revisit later
– separates use of randomness from generation

• What can we do with it???

Yevgeniy Dodis, New York University. Tutorial on Randomness. 17

Reasons for Randomness
• Key Generation �

Yevgeniy Dodis, New York University. Tutorial on Randomness. 18

Reasons for Randomness
• Key Generation

• Privacy: masking, blinding, hiding, re9
randomizing

Yevgeniy Dodis, New York University. Tutorial on Randomness. 19

Ex. 1: Adding 2 Numbers
• Alice has a, Bob has b

• Chris needs to compute S = a ⊕ b

• Alice does not want Chris or Bob to learn a

• Bob does not want Chris or Alice to learn b

• Alice: pick random r and send it to Bob

• Alice: Compute a’ = a ⊕ r and send it to Chris

• Bob: Compute b’ = b ⊕ r and send it to Chris

• Chris: compute a’ ⊕ b’ = a ⊕ b ⊕ (r ⊕ r) = a ⊕ b
– Does not give Chris any info about a, b beside sum

• Alice and Bob also only know random r

Yevgeniy Dodis, New York University. Tutorial on Randomness. 20

Ex. 2: Blind RSA Signature
• Recall RSA: n = pq, where p,q 9 primes

• ϕ(n) = (p91)(q91). For any z, z ϕ(n) = 1 mod n

• Pick random e and let d = e91 mod ϕ(n)

• PK = (n,e). SK = d.

• SigSK(m) = H(m)d mod n,
– here H is “good” hash function (not important)

• VerPK(σ,m): Check σ e = H(m) mod n
– Indeed, σ e = H(m)ed = H(m)1 = H(m) mod n

• Assume Bob knows d, Alice knows m, and wants
to compute Sig(m) without telling m to Bob?
– “blind” signature, useful for e9cahs, etc. (stay tuned)

Yevgeniy Dodis, New York University. Tutorial on Randomness. 21

Ex. 2: Blind RSA Signature

• Alice (knows n,e,m, not d):
– Pick random r and compute A = re H(m) mod n

– Send A to Bob for signing

– Note, A is random and independent from H(m)

• Bob (knows d,τ but not r, m):

– Compute τ = Ad mod n and send τ to Alice

– Note, τ = Ad = red H(m)d = r H(m)d = rσ mod n

• Alice:
– Compute σ =τ r91 = H(m)d mod n

Yevgeniy Dodis, New York University. Tutorial on Randomness. 22

Randomness for Privacy

• We will see many other examples:
encryption, commitment, zero9knowledge,…

• Perhaps most important use in crypto

• Strongly requires uniform randomness
– i.e., non9uniform pads, masks, etc. leak partial

information

• We will see later that it is very hard
(impossible?) to securely realize such
applications without perfect randomness

Yevgeniy Dodis, New York University. Tutorial on Randomness. 23

Reasons for Randomness
• Key Generation

• Privacy: masking, blinding, hiding, re9
randomizing

• Unpredictability (random challenges)

Yevgeniy Dodis, New York University. Tutorial on Randomness. 24

Unpredictability
• Do not want the attacker to guess some

information before it becomes available
• Example: identification
• Alice wants to prove she is “Alice” to Bob
• Naturally, Bob should “challenge” Alice

with stuff only Alice should know
• If predictable challenges

– Eve might know what Bob expects
– Perhaps Eve convinces Alice to identify

herself before she would do it to Bob. Then
can simply forward Alice’s answer later.

Yevgeniy Dodis, New York University. Tutorial on Randomness. 25

Doing It With Encryption
• Alice has (SK, PK) for an encryption scheme

• Bob: chooses random R, lets c = EncPK(R) and
challenges Alice with c

• Alice: computes R’=DecSK(c) and sends R’ to Bob

• Bob: accepts if R = R’

• Intuition: only Alice can decrypt

• Clearly, insecure if Eve can predict R
– just send R to Bob ignoring c !

• Conversely, can show “secure” if (1) Enc is
“strong enough” and (2) R is unpredictable:

– for any R1…Rk , PrR(∃i R= Ri) = tiny

Yevgeniy Dodis, New York University. Tutorial on Randomness. 26

Doing It With Signatures
• Alice has (SK,PK) for a signature scheme.

• Bob: send random R to Alice

• Alice: returns SigSK(R)

• Bob: accepts if correct VerPK(σ, R) = true

• Intuition: only Alice can sign

• Assume Eve convinces Alice to identify herself
before she would do it to Bob
– If R is predicatable, Eve can send same R to Alice

and learn Sig(R) !

• Conversely, unpredictability (+ good signature)
are enough for security

Yevgeniy Dodis, New York University. Tutorial on Randomness. 27

More on Unpredictability
• Does not require true randomness!

– High entropy is necessary and sufficient !

• As we will see, this makes this use of
randomness more realistic than requiring
perfect randomness

• Look9ahead questions:
– can we get perfect randomness from high

entropy one? (mixed answer, mainly NO)

– What about computational unpredictability,
where it is only “hard to predict”?

Yevgeniy Dodis, New York University. Tutorial on Randomness. 28

Reasons for Randomness
• Key Generation

• Privacy: masking, blinding, hiding, re9
randomizing

• Unpredictability (random challenges)

• Freshness (non9repeatability, nonces)

Yevgeniy Dodis, New York University. Tutorial on Randomness. 29

Freshness
• Sometimes need a value which is

guaranteed not to happen before
– Do not care about unpredictability

– Just do not want to reuse an old one

• Solution: keep a counter and use 1,2,…
– Problem: requires state (predictability OK !)

• Stateless solution? Yes, pick at random
– If pick from {0,1}K at most q times, then

Pr[repeat somevalue] < q2 29K (birthday bound)

– High Entropy also suffices ! (~ q2 29H(X))

Yevgeniy Dodis, New York University. Tutorial on Randomness. 30

Nonces and Their Applications

• Nonce = a value that “never” repeats

• Why do we care?

1. Freshness “in time” (e.g., key exchange)

2. Freshness of input to a block cipher or a

pseudorandom function (describe later)

• Applications: key establishment (1, now),

symmetric encryption, authentication

(2, later), …

Yevgeniy Dodis, New York University. Tutorial on Randomness. 31

Example: Key Establishment
• Say, Alice and Bob know their public keys and

want to establish a session key
• Simple solution: A picks K at random and sends

c = EB(K,”Alice”), σ = SigA(c, “Bob”)
• Problem: after K is gone, Eve might learn it and

reuse (c, σ), establishing a fake key with Bob
– Replay attack !

• Solution: use a nonce R
– B sends (R, SigB(R))
– A replies with c = EB(K,”Alice”), σ = SigA(c, R, “Bob”)
– Ensures Eve can’t use old R with Bob
– Privacy of R not important, as long as B doesn’t reuse

Yevgeniy Dodis, New York University. Tutorial on Randomness. 32

Reasons for Randomness
• Key Generation

• Privacy: masking, blinding, hiding, re9
randomizing

• Unpredictability (random challenges)

• Freshness (non9repeatability, nonces)

• Noise (confusing attacker)
– Add noise to data to maintain “global

features”, but hide individual information

– Mainly used for “database sanitization”

– Recent research area (differential privacy)

Yevgeniy Dodis, New York University. Tutorial on Randomness. 33

Reasons for Randomness
• Key Generation

• Privacy: masking, blinding, hiding, re9
randomizing

• Unpredictability (random challenges)

• Freshness (non9repeatability, nonces)

• Noise (confusing attacker)

• Efficiency ! (e.g., primality testing)
– Could be that randomness is not inherently

needed, but can speed things up!

Yevgeniy Dodis, New York University. Tutorial on Randomness. 34

Primality testing
• Want to know if p is prime?

– Only recently know how to do “moderately
efficiently” (K6 best??) & deterministically

• Still, much faster to do probabilistically!

• Recall, if p9prime, zp91 = 1 mod p

• Which z to test?
– all z: exponential time �

– z = 2: not bad, but many counter9examples

– random z: “almost” works, minor fix needed

– get famous Miller9Rabin test

Yevgeniy Dodis, New York University. Tutorial on Randomness. 35

Batch Verification of RSA
• Assume need to verify many (t) RSA sigs

(mi,σi), where σi
e = H(mi) mod n

– Naive solution: t exponentiations

• Idea: for any subset I of {1…t}, let
– MI = ∏i∈I H(mi) mod n, σI = ∏i∈I σi mod n

– Then σI
e = MI mod n, for any I

• Pick random I and check above equation (1.5 exp)
– If there exists a bad signature, detect w/pr ½ !

• Now repeat several (say 80) times:
– for large t benefit outperforms the cost !

Yevgeniy Dodis, New York University. Tutorial on Randomness. 36

Reasons for Randomness
• Key Generation

• Privacy: masking, blinding, hiding, re9
randomizing

• Unpredictability (random challenges)

• Freshness (non9repeatability, nonces)

• Noise (confusing attacker)

• Efficiency ! (e.g., primality testing)

• Probabilistically Checkable Proofs
– Includes zero9knowledge proofs…

Yevgeniy Dodis, New York University. Tutorial on Randomness. 37

Proofs
• Prover P wants to prove to Verifier V

some statement S is true
• Witness of S: string w s.t. V can check S

is true using w
– Ex.: S = “Second bit of Dlog(y) is 0”, then

w = Dlog(y). Test by seeing w2=0 and gw = y

• NP = class of problems where each true
statement has a witness, and false
statements do not have any witnesses
– Note, witness might be hard to find, but

always easy to check ! (big question: P ≠ NP?)

Yevgeniy Dodis, New York University. Tutorial on Randomness. 38

Some Questions

• P can always convince V by sending w

• Question 1 (orthogonal to us, but nice!):
If P is unbounded, can we convince poly9
time V in problems outside of NP?
– Yes, can do anything in polynomial space !

– Randomness essential (else “stuck” with NP)

– Unpredictability enough [DOPS04]

– Won’t give example (although fascinating!),
since in practice no unbounded P

Yevgeniy Dodis, New York University. Tutorial on Randomness. 39

Short Proof?

• Questions 2: if V is OK to be “fooled”

with tiny probability, can we send

significantly shorter string than w?

• Batch verifier for RSA: could be viewed

as P proving “I know all t signatures”

without sending all of them !

• Don’t care about leaking witnesses (yet!),

only efficiency

Yevgeniy Dodis, New York University. Tutorial on Randomness. 40

Short Proof?
• Remarkable (theoretical result): any NP

statement can be proven with “polylog”
communication (under some assumptions)
– Again, randomness essential here !

• In fact, P can write a moderately long
(poly(n)9bit) “special proof” w’ s.t. V can
check correctness of w’ w.r.t. S using:
– Using O(log n) random bits
– Reading CONSTANT number of bits of w’
– Having 99.9% assurance he was not fooled

• Celebrated result, but very impractical �

Yevgeniy Dodis, New York University. Tutorial on Randomness. 41

Hiding the Witness?
• Questions 3: (most crypto related) Can P

prove S to V s.t. (1) V is convinced; yet
(2) V does not learn the witness w?

• Useful for a variety of different reasons

• Ex. 1: identification schemes
– P proves knows SK corresponding to PK

– Don’t send SK as then V can impersonate P

– Still leaked partial knowledge (e.g. some
signatures V can’t compute), just not enough
to actively impersonate V

Yevgeniy Dodis, New York University. Tutorial on Randomness. 42

Signature or Encryption?

• Sig certainly leaks signature of new
values Sig(R), which V can’t get

• Enc actually doesn’t leak that much…

• V expects to get Dec(c) = R, just wants
to get convinced P can produce it too !

• If V “knew” P was going to pass, could
have simulate the entire proof !
– Zero9knowledge proof, nothing is leaked !

– Well… almost. What if V asks Dec(“bad c”)??

Yevgeniy Dodis, New York University. Tutorial on Randomness. 43

Zero9Knowledge proofs

• Roughly: whatever V learned from talking to P
(beyond the validity of assertion), V can
“simulate” on its own!

• ZK Proofs: concentrate on statements which
could be true or false (decision)
– Ex.: msb(dlog(y)2)=0

• ZK Proofs of Knowledge: prove that P knows
something he claims, without leaking any info
about it !

• Arguments: P is efficient using the witness w

Yevgeniy Dodis, New York University. Tutorial on Randomness. 44

Big Result

• Under mild assumption (OWF exist), any

NP statement has a ZK Proof and ZKPoK

– Very important result

– Generic proof is inefficient, but efficient

solutions exist for many useful languages!

– Generic proof + all protocols use randomness

in a totally crucial way (e.g., for challenges,

blinding and commitments !)

Yevgeniy Dodis, New York University. Tutorial on Randomness. 45

Ex: ZKPoK of Discrete Log

• Common input y =gx

• P proves knowledge of x

– P to V: pick random r ∈ {1..p91} and
send “commitment” R = gr

– V to P: send random c ∈ {1..p91}

– P to V: send s = r + cx mod (p91)

– V: check that gs = R yc

• Very useful in many9many apps!

Yevgeniy Dodis, New York University. Tutorial on Randomness. 46

Security?
• Why PoK?

– if P responds to c ≠ c’ with same R, then
from (s, s’, c, c’) can solve for x = (s9s’)/(c9c’)

– So V is “really convinced” P knows x !

• Why (honest verifier) ZK?
– V can “fake” conversation with P, for any c

– Recall, only need (R,c,s) s.t. gs = R yc mod p

– Pick random s and set R = gs / yc mod p

– Easy to see same distribution on (R,c,s)

• Secure as “real” P commits to R before c

Yevgeniy Dodis, New York University. Tutorial on Randomness. 47

Randomness in ZK Proofs?

• Essential for the verifier !
– Otherwise P can predict all the responses

and really amounts to normal “NP”9proof,
which is not ZK

– Is unpredictable randomness enough? (later)

• For many naturally occurring problems
essential for the prover as well to
achieve ZK (e.g. “public9coin proofs” like
the DL example)

Yevgeniy Dodis, New York University. Tutorial on Randomness. 48

Reasons for Randomness
• Key Generation

• Privacy: masking, blinding, hiding, re9
randomizing

• Unpredictability (random challenges)

• Freshness (non9repeatability, nonces)

• Noise (confusing attacker)

• Efficiency ! (e.g., primality testing)

• Probabilistically Checkable Proofs

• “Pseudorandomness” & “Extraction” !!!

Yevgeniy Dodis, New York University. Tutorial on Randomness. 49

Pseudorandomness
• R is pseudorandom (given Y) if hard to

distinguish R from a truly uniform,
random string (even given Y)

• Information9theoretic: R is random

• Computational: even though R is certainly
not random, it “looks so” to a
computationally bonded attacker

• Decisional Diffie9Hellman Assumption:
– for random x,y,z have

< g, gx, gy, gxy > ≈ < g, gx, gy, gz >

Yevgeniy Dodis, New York University. Tutorial on Randomness. 50

DDH and its Applications
• False in standard ZP !

– lsb(gxy) = 0 w/pr ¾, lsb(gz) = 0 w/pr ½

– Seems true in prime order subgroup of ZP

– Despite the fact that gxy is uniquely
determined by g, gx, gy

– Seems important that x,y,z random

– Much stronger assumption than DL (or CDH)!

• Many applications: DH key exchange,
ElGamal Encryption, Cramer9Shoup
encryption, algebraic “PRF” (see later),…

Yevgeniy Dodis, New York University. Tutorial on Randomness. 51

DH Key Exchange from DDH

• Alice and Bob do not share anything.

Want to get a key by public discussion,

s.t. secure against eavesdropper Eve

• Alice: x → random, A = gx, send A to Bob

• Bob: y → random, B = gy, send B to Alice

• Alice: compute K = Bx = gxy

• Bob: compute K = Ay = gxy

• Eve: gxy looks like gz given g, gx, gy

Yevgeniy Dodis, New York University. Tutorial on Randomness. 52

Pseudorandomness

• True randomness is expensive, hard to
get, store, generate

• PR approach: start with small amount of
true randomness & get more randomness
which is equally good for applications !
– DDH: g, x, y � g, gx, gy, gxy (from 3k 9> 4k)

• Does not eliminate true randomness

• Reduces its size at the expense of
(strong?) computational assumptions

Yevgeniy Dodis, New York University. Tutorial on Randomness. 53

Relation to Extractors

• More later, but extractors start with
imperfect randomness, and try to extract
nearly perfect one
– Typically extract statistically random stuff

(no computational assumptions)

– Sometimes do not use any additional true
randomness (but very limited use)

– Sometimes use a “little” true randomness, but
extract “much more” using the imperfect
source “instead of” computational assumption

Yevgeniy Dodis, New York University. Tutorial on Randomness. 54

Main PR Primitives
• PR Generator (PRG)

– Length increasing function G (say k → n) s.t.
– G(Uk) ≈ Un, where Ut 9 uniform on t bits
– DDH more or less gives (a slow) PRG

• PR Function (PRF) family
– F = {fs | s ∈ {0,1}k} indexed by “short” key s
– For random s, fs ≈ truly random function

(i.e., one with random output for every input)
– Say, fs:{0,1}k → {0,1}. Compress 2k → k bits !

• PR Permutation (PRP) family
– P = {(πs, πs

91) | s ∈ {0,1}k} – each πs invertible!
– For random s, (πs, πs

91) ≈ truly random (g,g91)

Yevgeniy Dodis, New York University. Tutorial on Randomness. 55

Applications of PRGs

• Beat Shannon bound on key length for
one9time encryption:
– Encs(M) = M ⊕ G(s), here |M|>>|s|

• Stream Ciphers: “stateful” PRGs
G(st) → Rt, st+1

– Give stateful sequence of OTPs

• Hybrid public9key encryption:
EncPK’(M) = < EncPK(s) , m ⊕ G(s) >

– Reduces PKE of long messages to short

Yevgeniy Dodis, New York University. Tutorial on Randomness. 56

Applications of PRFs/PRPs
• PRFs

– Much easier stateful cipher: fs(1),…fs(t),…
– Message authentication codes
– Modes of operations for encryption (e.g.,

OFB, CFB, counter, XOR)
– Repeated generation of same randomness!
– Huge number of other applications
– Essentially, fs(nonce) is a new OTP !

• PRPs
– PRP is a length9preserving PRF, so many of

the above applications work here as well
– Plus unique ones where inverse needed (CBC)

Yevgeniy Dodis, New York University. Tutorial on Randomness. 57

Example: Encryption

• Idea 1 : use PRP, Encs(m) = πs(m)

– Problem: Enc(m) always the same !

– Cannot encrypt repeated values from small

space ({sell,buy})

• Moral: repeated encryption of the same

message should be different

– Either update secret key (stateful �)

– Or must be probabilistic

– Latter only option in the public key setting !

Yevgeniy Dodis, New York University. Tutorial on Randomness. 58

Example: Encryption
• In symmetric9key setting, nonce suffices

– Enc(m) = fs(nonce) ⊕ M

– many ways to extend to multiple blocks, get
OFB, CFB, XOR, counter

• With PRPs, can also use CBC
– Enc(m) = πs(nonce ⊕ M)

• CBC not secure with counter, need
unpredictable nonce (like random !)

• Punchline: “convenient” encryption must
use randomness both for keys and per
every invocation !

Yevgeniy Dodis, New York University. Tutorial on Randomness. 59

Relation to Unpredictability
• X is unpredictable (given Y) if hard to

compute X (given Y)
– Only makes sense in “probabilistic sense”

• Could be information9theoretic
– Random challenge R (trivial)
– Does not inherently require true randomness
– High entropy necessary and sufficient

• Could be computational
– Ex.: discrete log assumption
– Given (p, g, gx mod p), hard to compute x,

even though x is “mathematically unique”

Yevgeniy Dodis, New York University. Tutorial on Randomness. 60

Aside: Comparison

• Although sampling unpredictable value (i.e.,

challenge) does not require true randomness,

most computational unpredictability

assumptions need it !

– Ex: for discrete log, need to perfectly sample p,g,x

to claim x is unpredictable

– Can state for imperfect p,g,x, but dangerous

• In general, many differences between i.t. and

computational unpredictability (stay tuned)

Yevgeniy Dodis, New York University. Tutorial on Randomness. 61

Back to Unpredictability

• Backbone of (computational) crypto

• Most natural assumptions (factoring,
discrete log, RSA) says something is
unpredictable given other info
– Would like to avoid assuming PR if we can !

• Especially useful (i.e., sufficient) for
authentication applications
– Secure signature: sig(m) is unpredictable

even given sig(m1)…sig(mk) for any mi ≠≠≠≠ m

Yevgeniy Dodis, New York University. Tutorial on Randomness. 62

Relation to Privacy
• Theoretically OK to leak partial info, as

long as “all of” X is still hard
– Ex: lsb(x) easy from gx mod p, OK to leak

signature of “old/unimportant” messages

• Compare to privacy apps, where cannot
leak any partial info

• Question: is having unpredictability
enough for achieving privacy (i.e.,
pseudorandomness)?
– Depends on whether can sample uniform bits !

Yevgeniy Dodis, New York University. Tutorial on Randomness. 63

Relation to Privacy
• Beautiful BIG result [Goldreich9Levin]:

– Assume X is unpredictable to attacker
– Assume r is truly random but known
– Then X ` r (mod 2) looks random to attacker:

given r, hard to guess X ` r w/pr. > 51% !

• Generically converts UP to PR
– Huge theoretical result (still not optimal !)

• Example: Alice and Bob share UP value X
and want to share a PR bit
– Alice picks random r and sends it to Bob in

“the clear”. Both agree on b = X ` r (mod 2)

Yevgeniy Dodis, New York University. Tutorial on Randomness. 64

Relation to Privacy
• Can view as a “computational extractor” !

• However, assumes true randomness r

• A lot of my work: what if cannot sample r?
– E.g., only have unpredictable r’s…

• Is UP still enough? (my work: likely NO)

• To what extent can we base cryptography
on imperfect randomness ??

• Exciting, rapidly developing area !
– starting point for this course…

Yevgeniy Dodis, New York University. Tutorial on Randomness. 65

Reasons for Randomness
• Key Generation

• Privacy: masking, blinding, hiding, re9
randomizing

• Unpredictability (random challenges)

• Freshness (non9repeatability, nonces)

• Noise (confusing attacker)

• Efficiency ! (e.g., primality testing)

• Probabilistically Checkable Proofs

• “Pseudo9randomness” & “Extraction” !!!

Yevgeniy Dodis, New York University. Tutorial on Randomness. 66

Main Applications
• Encryption

• Message authentication, fingerprinting

• Secret sharing, AONTs

• Commitment Schemes

• Key Exchange

• Identification Schemes

• Zero9Knowledge Proofs

• Blinding, Anonymity, Privacy, …

• “All together” (sample e9cash application)

Yevgeniy Dodis, New York University. Tutorial on Randomness. 67

E9cash
Simple payment protocol:
• Sign a document transferring money from your account

to another account
• This document goes to your bank
• The bank verifies that this is not a copy of a previous

check
• The bank checks your balance
• The bank transfers the sum
Problems:
• Requires online access to the bank (to prevent reusage)
• Expensive.
• The transaction is traceable (namely, the bank knows

about the transaction between you and Alice).

Yevgeniy Dodis, New York University. Tutorial on Randomness. 68

First attempt
Withdrawal
• User gets bank signature on {I am a $100 bill, #1234}
• Bank deducts $100 from user’s account
Payment
• User gives the signature to a merchant
• Merchant verifies the signature, and checks online

with the bank to verify that this is the first time that
it is used.

Problems:
• As before, online access to the bank, and lack of

anonymity.
Advantage:
• The bank doesn’t have to check online whether there is

money in the user’s account.

Yevgeniy Dodis, New York University. Tutorial on Randomness. 69

Anonymous cash via blind signatures

• The bank signs the bill without seeing it (e. g. like
signing on a carbon paper)

• Can use RSA Blind signatures did earlier!

• RSA signature: H(m)1/e mod n

• Blind RSA signature:
– Alice: sends Bob (re H(m)) mod n, where r is a random

– Bob: computes (re H(m))1/e = r H(m)1/e mod n, and sends
to Alice.

– Alice divides by r and computes Sig(m) = H(m)1/e mod n

• Problem: Alice can get Bob to sign anything, as
Bob does not know what he is signing.

Yevgeniy Dodis, New York University. Tutorial on Randomness. 70

Enabling the bank to verify the
signed value

• Use “cut and choose” protocol
• Suppose Alice wants to sign a $20 bill.

– She prepares 100 different $20 bills for blind
signature, and sends them to the Bank (Bob).

– The bank chooses 99 of them at random and asks Alice
unblind them (divide by the corresponding r values).

– It verifies that they are all $20 bills.
– The bank blindly signs the remaining bill and gives it to

Alice.
• If Alice tries to cheat she is caught with

probability 99/ 100.
• 100 can be replaced by any parameter k.
• We would have preferred an exponentially small

cheating probability.

Yevgeniy Dodis, New York University. Tutorial on Randomness. 71

Exponentially small cheating
probability

• Define that a $20 bill is valid if it is the e9th root of the
multiplication of 50 values of the form H (x) , (H is one9
way) and the owner of the bill can present all 50 x values.

• The withdrawal protocol:
– Alice sends to the Bank z1 , z2 , …, z100 (where zi = ri

e ` H(xi)).
– Bank asks Alice to reveal random ½ of the values zi = ri

e `H(xi).
– Bank verifies them and extracts the e9th root of the

multiplication of all the other 50 values.

• Payment: Alice sends the signed bill and reveals the 50
preimage values. The merchant sends them to the bank
which verifies that they haven’t been used before.

• Alice can only cheat if she guesses the 50 locations in
which she will be asked to unblind the zi’s, which happens
with probability ~29100.

Yevgeniy Dodis, New York University. Tutorial on Randomness. 72

Online vs. offline digital cash

• We solved the anonymity problem, while verifying
that Alice can only get signatures on bills of the
right value

• The bills can still be duplicated
– Merchants must check with the bank whenever they

get a new bill, to verify that it wasn’t used before.

• A new idea:
– During the payment protocol the user is forced to

encode a random identity string (RIS) into the bill

– If the bill is used twice, the RIS reveals the user’s
identity and she loses her anonymity.

Yevgeniy Dodis, New York University. Tutorial on Randomness. 73

Offline digital cash
Withdrawal protocol:
• Alice prepares 100 bills of the form

– {I am a $20 bill, #1234, y1 ,y1’, y2 ,y2’ , …, yk ,yk’}
– S.t. for all i, yi = H(xi), yi’ =H(xi’), xi ⊕ xi’=Alice’s id,

where H() is a “good” hash function and xi random

• Alice blinds these bills and sends to the bank.
• The bank asks her to unblind 99 bills and show

their xi and xi’ values, and checks their validity.
(Alternatively, as in the previous example, Alice
can do a check which fails with only an
exponential probability.)

• The bank signs the remaining blinded bill.

Yevgeniy Dodis, New York University. Tutorial on Randomness. 74

Offline digital cash
Payment protocol:
• Alice gives a signed bill to the vendor

– {I am a $20 bill, #1234, y1 ,y1’, y2 ,y2’, …, yk, yk’}
• The vendor verifies the signature, and if valid

sends to Alice a random bit string b= b1 b2 …bk of
length k.

• For all i, if bi=0 Alice returns xi, otherwise (bi=1)
she returns xi’

• The vendor checks that yi = H(xi) or yi’ = H(xi’)
(depending on bi). If this check is successful it
accepts the bill.

• Note that Alice’s identity is kept secret!
• Also, the merchant does not need to contact the

bank during the payment protocol.

Yevgeniy Dodis, New York University. Tutorial on Randomness. 75

Offline digital cash
• The merchant must deposit the bill in the bank.

It cannot use the bill to pay someone else.
– Because it can’t answer challenges b* different from

the challenge b it sent to Alice.

• How can the bank detect double spenders?
– Suppose two merchants M and M* receive same bill

– With very high probability, they send different
queries b, b*

– Suppose bi =0, bi* =1. Then M receives xi and M*
receives xi’.

– When they deposit the bills the bank receives both xi

and xi’, and can compute xi ⊕ xi’ =Alice’s id.

Yevgeniy Dodis, New York University. Tutorial on Randomness. 76

Usage of Randomness
Several very different uses !

1. To generate signing/verification key (SK
and PK)

2. To blind RSA signatures (random r)

3. To perform cut9and9choose proofs
(random 1/2 blindings to open)

4. To randomly open 19of92 values of xi (b)

5. To prevent double9spending (split
randomly xi ⊕ xi’)

