KEY DERIVATION

WITHOUT
ENTROPY WASTE

Yevgeniy Dodis

& oo

New York University

Based on joint works with B. Barak, H. Krawczyk, O. Pereira, K. Pietrzak, F-X. Standaert, D. Wichs and Y. Yu

Key Derivation
.

0 Setting: application P needs m—bit secret key R

1 Theory: pick uniformly random R <— {0,1}"

1 Practice: have "imperfect randomness” X € {0,1}"

physical sources, biometric data, partial key leakage,

extracting from group elements (DH key exchange), ...
7 Need a “bridge”: key derivation function (KDF)
h: {0,1}*— {0,1}" st. R = h(X) is “good” for P

... only assuming X has “minimal entropy” k

Fie1.DoEDREAMS

Dreaming Big
=]
-1 Question 1: minimal entropy k enough to achieve

“real security” = “ideal security” for P¢

Dream 1: can get k =m (no “entropy loss”) |

Question/Dream 3: can we ever hope to achieve

comparable security without entropy loss 2!

- Question 2: best security degradation when k = m 2

Dream 2: (almost) no security degradation |

o1 Note: we design /1 but must work for any (n, k)-source X

Formalizing the Problem
s

0 ldeal Model: pick uniform R <— U as the key

Assume P is e—secure against certain class of attackers A

-1 Real Model: use R = h(X) as the key, where
min-entropy(X) = H_(X) = k (Pr[X = x]< 27F, for all x)
h: {0,1}*— {0,1}" is a (carefully designed) KDF

11 Goal: prove that P is €'—secure in the real model

(against same /similar class of attackers A)

Note: we design /1 but must work for any (n, k)-source X

1 What is the smallest €222

. . ' a_ FreLD oEDREAMS
Dreaming Big, formally mbil
=

- Question 1: minimal k (call it £*) to get €' = 2¢€2

Dream 1: can get k*=m (no “entropy loss”) |

Question/Dream 3: can we ever hope to achieve

€’ = 0(¢€) security when k = m (no entropy loss) 2!

- Question 2: smallest € (call it €*) when k=m ¢

Dream 2: can get € = O(€) (no security degradation) !

Theory vs. Practice '

"PRACTLCE
- Practice: heuristic key derivation (7 = SHA,MD5,...)

common belief among practitioner: Dream 3 is TRUE !

1 Amazing (heuristic) bound in “random oracle” model:

e < g+ g2mk

“implies” €* = 2¢ and k™ = m at the same timel

11 Despite lack of “practical” attacks, lots of (valid)

criticism [DHK*04,Kra10,BDK*11]

1 How close can we come in theory (and practice ©)2

Extractors

Tool: Randomness Extractor [NZ96].
Input: a weak secret X and a uniformly random seed S.

Output: extracted key R = Ext(X; S).

R is uniformly random, even conditioned on the seed S.
(Ext(X; S), S) = (Uniform, S)
Many uses in complexity theory and cryptography.

Well beyond key derivation (de-randomization, etc.)

secret: X . extracted key:

Ext » R

seed: S

(Seeded) Extractors

KN
71 Tool: Randomness Extractor [NZ96].

Input: a weak secret X and a uniformly random seed S.
Output: extracted key R = Ext(X; S).

R is uniformly random, even conditioned on the seed S.
(Ext(X; S), S) = (Uniform, S)

1 (k,0)-extractor: given any secret (11,k)-source X,
outputs 11 secret bits “O—fooling” any distinguisher D:

w &I distance

| Pr[D(Ext(X; S), S) =1] = Pr[D(U , S) =1]1 < &

Extractors as KDFs

Lemma: for any €-secure P needing an m—bit key,

(k,0)-extractor is a KDF yielding security € < €+ 0

Note: use potentially restricted distinguishers D
D = combination of attacker A and challenger C

D outputs 1 & A “won” (e.g., forged signature) against C

Best tradeoff between m, k & 0 in a (k,0)-extractor?

Leftover Hash Lemma f§
e

@’ _Lmu
F i

= LHL [HiLL: universal hash functions are (k,0)-extractors

where|0 = /27

0 Corollary: For any P, | € < € + /277K,

In particular,

7 RT-bound [RT]: Any (k,0)-extractor =

k*=m + 2log(1/¢) (entropy loss 2log(1/€) enough)

e*=1 (no meaningful security when k =m ®)

O >+/2mk

Above bounds are optimal (in this level of generality) ®

Theory vs. Practice:
T

Application KDF Sec. Loss o¥ Entr. Loss

Provable?

P h € — € wm k¥—m
Computat. o
SHA/RO | g . M 2€ 0 no
Secure

ANY [“esetl (fom=k | 1 | 2log(l/e) | yes

ﬁ
-
)

How Bad is 2log(1/€) Entropy Loss? :f

—,

| &=rat

&

e

Many sources do not have “extra” 2log(1/€) bits
Biometrics, physical sources, DH keys on elliptic curves

DH: lower “start-up” min-entropy improves efficiency
AES-based P: £ = 2% m =128 = k*=256=2m ®
Heuristic extractors have “no entropy loss”: k* = m

End Result: practitioners prefer heuristic key

derivation to provable key derivation [DGH* Kra]

Can we provably reduce it, despite RT-bound?

g B
S L

-1 Route 1: restrict the power of distinguisher D or

Options for Avoiding RT
KN

7

Ex. 2: computationally bounded D (pseudo-randomness)

the class of (n, k)-sources X

Ex. 1: efficiently samplable sources X [DGKM12]

Ex. 3: implicitly restrict D by considering special classes of

applications P [BDK*11,DRV12,DY13,DPW13]

1 Route 2: do we need to derive statist. random R?¢

-1 Yes for OTP; No for many (most2) other applications P!

Options for Avoiding RT

)l .
SR L
P

Punch line: Difference between

Extraction and Key Derivation |

Ex. 3: implicitly restrict D by considering special classes of

applications P [BDK*11,DRV12,DY13,DPW13]

1 Route 2: do we need to derive statist. random R?¢

=1 Yes for OTP; No for many (most?) other applications P!

Feamcuction r ghils obzaimable fram

o g
Unpredictability Applications | - [LL* jl
05
1 Adv(A) = Pr[A wins] = Pr[D out. 1] € [0,1] ‘wassuiascerain,

maybe."

signatures, MACs, one-way functions, ... (not encryption!)

11 Case Study: key derivation for signature /MAC

Assume: Pr[A forges sig with uniform key] < € (= negl)

Hope: Pr[A forges sig with extracted key] < € (= €)

11 Key Insight: only care about distinguishers D which

almost never succeed on uniform keys (Pr[.] < €) |

E.g., small multiplicative security loss is OK now

Unpredictability Extractors

0 UExt is (k, € €')-unpredictability extractor if

Pr[D(U,,S) =1] < € = Pr[D(UExt(X;S),S) =1] <€’

1 Theorem [DPW13]: efficient (k, €, €)-UExt with

Option 1: € =3¢ and k=m + loglog(1l/¢) + 4

Option 2: €' =¢ - (1 + log(1/¢)) and k =m

Plan of Attack

-1 Step1. Argue any unpredictability applic. P
works well with (only) a high-entropy key R

A
.\

E.g., random R except first bit 0 = €’ < 2¢

Of independent interest |

1: Security with Weak Keys

19| Entropy
1 Fix P and any “legal” A deficiency

01 Let f(r) = [Advantage of A on key '€ [O,1]

Sldeal Adv. € = E[f(U,,)] = By o f (1)

o Real Adv. € = E[f(R)] =). p(r) - f ()

7 Lemma: If f(r) > 0 and H_(R) = m —@

I f(R) 1< 2% E[f(U,)]
Proof: . p(r)-f (r) < 2™max,(p(r): (L (1) g

o Corollary: H_(R) > m — d =|e’ <2%¢

Plan of Attack

[z]
-~

Achieve extremely low 2¢ to compose with Step1!
Option 1: 24 =2 and k=m + loglog(1/¢) + 4
Option 2: 2¢=1og(1/€) and k=m

_—

1 Step2. Build good condenser: relaxation of

extractor producing high-entropy
(but non-uniform!) derived key R = /(X)

_

?5 THE CONDENSER 6

2: Randomness Condensers e

P
0 (k,d,e)-condenser: given (n, k)-source X, outputs m
bits R “e—close” to some (11, m—d)-source Y :

(Cond(X; S), S) =, (¥, S) |and[H_(Y | S) > m —d
Cond + Stepl = €' < (1 + Zd) - €
“|Extractors: d = 0 but only for k > m + 2log(1/e) ®

-1 Theorem [DPW13]: efficient (k,d,€)-condenser with

Option 1: d=1 and k= m + loglog(1/¢e) + 4

Option 2: d = loglog(1/¢) and k=m

Balls and Bins o i

Reduces to simple balls-and-bins game:
Throw 2% balls into 2™ bins

Pick a random ball x
Lose if |Bin(x)| > 2¢ .2k—m
Goal: given d, m, € = min k s.t. Pr[Lose] < €

Easy calculation = parameters of theorem
if throw balls totally independently

Observation: log(1/¢)-independence suffices!

Balls and Bins o i

Reduces to simple balls-and-bins game:

Throw 2% balls into 2™ improve [S| to O(n log k)

using “gradual increase of
Pick a random ball x independence” [CRSW11]

Lose if |Bin(x)| > 29 . 2k~7
Goal: given d, m, € = min k| /Pr[Lose] <€

Easy calculation = paramet /s of theorem
if throw balls totally indeper/dently

Observation: log(1/¢)-independence suffices!

Theory vs. Practice:
B

Application KDF Sec. Loss Entr. Loss
Provable?
P h g — € k*—m
Computat. SHA/RO e . omk re 0 "o
Secure
Unpredict. | %20 1 e1og(1/g)-2m | e-log(1/e) | loglog(1/e) | yes

ANY | ey omk 1 2log(1/e) | yes

=
Theory vs. Practice: \§’

0 Example: CBC-MAC, € = 2%, m = 128

LHL: e* =1 and L% =256
Now: e* = 23579 and k* =138
Heuristic: € =29 and k¥ =128

Indistinguishability Apps? [mw}\
7 Impossible for one-time pad ® ﬁ

0 Still, similar plan of attack:

Step1. Identify sub-class of indist. applications P
which work well with (only) a high-entropy key R

= Will use Renyi entropy instead of min-entropy

u Weaker inequality, but still beat LHL

Step2. Build good condensers for Renyi entropy

Simple Inequality

- Col(R) = Pr[R =R,] = X, p(7)?
Renyi: T1,(R) = —log Col(R) > H_(R)

o Lemma: For all f and ,(R) = m—d,

L[f(R)]—

S[F(U,) 1SV 24—1 -

LF(U,,)°]

0CS: <

7 Proof: LHS = [).-(p (1)

\

2my(p(r) —)%

)-f (1)

142

\

Y f)?

Why is it Nice?
R

- Lemma: For all f and H,(R) = m — d,

| E[f(R]-E[f(U,)1I<V 24-1 -|/E[f(U,,)*
Works even if f(r) can be negative (indist. OK)

First term does not depend on f (i.e., appl. P)

Second term is for uniform distribution
Nicer entropy for condenser: I,(R) = H_(R)

1 Question: | E[f(U,)]| =¢, what is E[f(U)°]?

Square Security Malevich

Def: P is G-square secure (against a class of

a|

attackers A), if for any A = E[f,(U,)’ 1 < ©

Lemma: If P is €-secure and G-square secure,

then P is €'-secure in “(m-d)-real model”,
where € < € + \/G'(Zd — 1)

Motivates studying square security!

Question: how does square security G relate

to regular security €2

Square-Friendly Applications

ER
71 P is square-friendly™® (SQF) if o < ¢
1 Example: all unpredictability applications P
fe[0,11 = o = E[f2] < E[f] = ¢ >
-1Non-SQF applications: OTP, PRF, PRP, PRG ®
0 [BDK*11,DY13]: many natural indistinguishability
applications are square-friendly !

Bl CPA/CCA-encryption, weak PRFs, g-wise
independent hash functions, ...

* Allow for small (say, factor of 2) degradation in the efficiency of the attacker A

indistinguishability Appsz [E5

Em 0.
7 Impossible for one-time pad ® ﬁ/j | R

0 Still, similar plan of attack:

Step1. Identify sub-class of indist. applications P
which work well with (only) a high-entropy key R

® Will use Renyi entropy instead of min-entropy

® Weaker inequality, but still beat LHL

Step2. Build good condensers for Renyi entropy

Universal Hash Functions
KN

0 Universal Hash Family 3C = { h: {0,1}" — {0,1}™}:

Vx#x, Pr,l hi(x)=h(x")] = Zim

0 LHL'. Universal family I defines (k,d,0)-condenser,
with m—bit output, where|2% —1 = 2%
Pr[i(X) = h(X*)] < Pr[X = X’] + Pr[h(X) = h(X’) & X £ X]

= | 2d-m < 27k 4 2m

o Corollary: If P is €-secure and square-friendly, then
universal hashing yields KDF with|€" < € + Ve -2m—k

Theory vs. Practice:

Application KDF Sec. Loss Entr. Loss
Provable?
P h g — ¢ k*—m
Computat. SHA/RO o . omk e 0 no
Secure
Unpredict. if:sgélﬁzh e-log(1/e)-2m~* | e-log(1/e) | loglog(1/e) | yes

Square- universal Ak
Friendly hash g -2 Ve log(1/¢) yes

ANY | e omk 1 2log(1/e) | yes

Theory vs. Practice:
=N

0 Example: CBC Encryption, € = 2°%4, m = 128
LHL: e* =1 and L% =256
LHL’ e¥=232 and k*=192
Heuristic: €= 2°° and k%= 128

g B
S L

Options for Avoiding RT
N

g

-1 Route 1: restrict the power of distinguisher D or

the class of (n, k)-sources X

Ex. 1: efficiently samplable sources X [DGKM12]

Ex. 2: computationally bounded D (pseudo-randomness)

Ex. 3: implicitly restrict D by considering special classes of

v applications P [BDK*11,DRV12,DY13,DPW13]

1 Route 2: do we need to derive statist. random R?¢

71 Yes for OTP; No for many (most2) other applications P!

Efficient Samplability

|36 |
-1 Theorem [DPW13]: efficient samplability of X

does not help to improve entropy loss below
2log(1/€) for all applications P (RT-bound)
= Affirmatively resolves “SRT-coniecture” from [DGKM1 2]
log(1/€) for all square-friendly applications P
loglog(1/€) for all unpredictability applications P

-1 ldea: bounded independent (n, k)-source X is
enough to fool any extractor/condenser/...

g B
S L

Options for Avoiding RT

g

-1 Route 1: restrict the power of distinguisher D or

the class of (n, k)-sources X

v OEx. 1: efficiently samplable sources X [DGKMI12]

Ex. 2: computationally bounded D (pseudo-randomness)

Ex. 3: implicitly restrict D by considering special classes of

v applications P [BDK*11,DRV12,DY13,DPW13]

1 Route 2: do we need to derive statist. random R?¢

‘/D Yes for OTP; No for many (most?) other applications P!

Minimal Assumptions ONE

Theorem [DGKM12 ,DPW13]: -SR—coniecture—=—

efficient Ext beating RT-bound for all
computationally bounded D = OWFs exist

How far can we go with OWFs/PRGs?

Extract-then-Expand [Kra10]: Beats RT-bound,
but only for medium-to-high values of &k @&

Expand-then-Extract (aka “dense-model thm”™):
horrible run-time degradation in reduction ®

—
= -

KR S
L f'\

|
o Mz3456"7 60012
"
r

Computational Extractor
R

I
GEMERIC

7 ldea: Design square-friendly key derivation

Good KDF for any/computationally secure P

-1 Solution: Use weak PRF f:set R = [y (5)

wPRF: secure for random (but public) inputs

I Note: [only needs security against 2 queries!

[DY 13]: Can easily build using one PRG call:
“expand-then-extract w /o time degradation”!

New alternative to “dense model” theorem [&

Theory vs. Practice:
N

Application KDF Sec. Loss Entr. Loss
Provable?
P h g — € k*—m
Computat. SHA/RO e . omk re 0 no
Secure
Unpredict. iﬁfe(lhlzh e-log(1/e)-2m% | e-log(1/e) | loglog(1l/e) | yes
Square- universal p—
Friendly horch Ve -2 Ve log(1/e) | yes
Computat. PR.G * -
Secure | pash Vepg 2" | &+ Vene |log(ens/e?) | yes™
universal
ANY | e No = 1 2log(1/e) | yes

* Under standard and minimal cryptographic assumptions (OWFs)

Summary
L

loglog(1/€) loss for all unpredictability apps /%L
log(1/¢€) loss for all square-friendly apps a2

(+ motivation to study “square security”)
1 Efficient samplability does not help ®
1 Good computational KDFs require OWFs @&

7 Main challenge: better computational KDFs to close

theory-vs-practice gap even further

Questions?

Plaintext
One-Time Pad + Keyworad

Ciphertext

Expect to fail even for min-entropy m — 1
Alc)=c=>f(0)=12,f(1)=-2=¢e=0,0= V4

Similar problem for PRGs/PRFs/PRPs ®

J

CPA Security of Encryption

| 45|
1 Probabilistic Enc/Dec: ¢ < Enc.(m) ; m = Dec,(c)
Charlie r—U, < m Alice

£££ i @l

N
R

— Cqg < Encr(mq-l)> (run-time at most T)
Pick b < (0,1} < Mo M
Set C « Enc,(M,) ¢ .

. b’ Try guessing b
1
0 Define f(r) = Adv(A, r) = Pr[b = b'] — - ¢ [—=,-]

0 Leads to (T, g, €)-security /(T, q, G)-square security

CPA Security of Encryption

|46
1 Probabilistic Enc/Dec: ¢ < Enc.(m) ; m = Dec,(c)

Chquie V — U ml Alice

N m € p

@i - ¢, < Enc,(m,) N ﬁ

_j(@,%: < q-1 ;

— Cqg < Encr(mq—l)> (run-time at most T)
Pick b < (0,1} < Mo M
Set C « Enc,(M,) ¢ .
b’ Try guessing b

<€

1 Lemma: if Encis (27, 2q, 2€)-secure, then

Encis(T, g, €)-square secure (“c = £”)

Square Security of CPA

0 Insight: for any A making g encryption queries,

there exists B making 2qg encryption queried s.t.
Vr Adv(B,r)= 24dv(A, r)>=0 (*%
-1 Here’s B:

1. Run A once against simulated challenger C

m Choose selection bit yourself = can check if A “won”

m Spend g queries to simulate both A and C
2. Run A again against real challenger C (+ g queries)

3. If Alostin Step 1., reverse A’s guess in Step 2.

® Intuition: Step 3. ensures B has advantage > 0

Square Security of CPA

| 48|
0 Insight: for any A making g encryption queries,

there exists B making 2qg encryption queried s.t.

Vr Adv(B,r)= 24dv(A, r)>=0 (*%
-1 Here’s B:

1. Run A once against simulated challenger C

2. Run A again against real challenger C

3. If Alostin Step 1., reverse A’s guess in Step 2.

0 Pr[B wins] = Pr[A wins twice] + Pr[A looses twice]

2 2
Z(Eis) +(1$s) = 2 4 2¢?
2 2 2

Square Security of CPA

| 49|
0 Insight: for any A making g encryption queries,

there exists B making 2qg encryption queried s.t.
Vr Adv(B,r)= 24dv(A, r)>=0 (*%
Hence, c = E[AdvV(A, r)?] < V2 E[AdV(B,r)] <€

1 Corollary: if Encis (27T, 2q, 2€)-secure, then
Encis (T, g, v &-2%)-secure in the (m-d)-real model

[BGO9: ((1+)T, (1+ c*)q,) = (T, q, 0(= - Ve-29))

1 Same argument works for weak PRFs, greatly

simplifying [Pie09] J

New Dense Model Theorem

| had my people and your people
crushed together to create this

How to build PRG with weak seed? one supertense persar
Naive: G (X) not pseudorandom, even if H,(X) =m -1
Dense Model Theorem: if H_(X) > m — d, then
G (X) has “pseudo-entropy” 2m—d >> m
Implies G (Ext(G(X);S)) is psedorandom given S

Pairwise

Problem: bad degradation in run-time € | independent hash

Our Version: if H,(X) = m —d, then G(PIHG(X) (S))

is psedorandom given S

wprf

No degradation in t, security Ve:29 (vs. S-Zd)

New Dense Model Theorem

| had my people and your people
crushed together to create this

h
{ Leads to same concrete instantiation:

pairwise independent hash is a good extractor!

J
~

Open: a single unified proof, giving a smooth
transition between these two “extreme” bounds
Implies G (Ext(G(X);S)) is psedorandom given S

. Pairwise
-time € independent hash

Our Version: if H,(X) = m —d, then G(PIHg (S))

is psedorandom given S

No degradation in t, security Ve-2¢ (vs. £-29) U

Problem: bad degradafi

