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Symmetric Key Cryptography

� Alice and Bob share a secret key W and want to 
communicate securely over a public channel.
� Privacy:  Eve does not learn anything about the message

� Authenticity: Eve cannot modify or insert messages. 

� This is a well�studied problem with many solutions:
� Information�theoretic security (going back to Shannon in1949).

� Computational security  (formally studied since the 1970s).
� e.g. One Way Functions, Block Ciphers (AES).
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Symmetric Key Cryptography with Imperfect Keys

� Standard symmetric key primitives assume that Alice 
and Bob share a uniformly random key W. This is 
unreasonable/undesirable in many scenarios. 

� Imperfect keys:
� Human memorable passwords

� Biometrics

� Partially Compromised keys:
� Side�channel attacks

� Malware attacks in the Bounded Retrieval Model

� Quantum Key Agreement, Wiretap Channel



General View of Weak Secrets

� We want to make minimal secrecy assumptions.  
� The secret W comes from an arbitrary distribution which is 

“sufficiently hard to guess”.
� Formalized using conditional min�entropy. 

� Two important domain�specific problems:
� Biometrics: Successive scans of the same biometric are noisy.
� Bounded Retrieval Model: Cannot read all of W efficiently.

� Goal: Alice and Bob run a “key agreement protocol” to 
agree on a (nearly) uniform, random key R by 
communicating over a public channel controlled by an active 
adversary Eve.



General View of Weak Secrets

� The secret W is a random variable which is “sufficiently 

hard to guess” (conditioned on some side�information Z).

� Formalized using conditional min�entropy. If entropy is k 

then W can’t be guessed with probability better than 2�k.

� Goal: Base symmetric key cryptography on weak secrets.

� Authenticated Key Agreement.  Alice and Bob start out 
with a weak secret W and agree on uniform key K, by 
running a protocol over a public channel.



Computational vs. Information Theoretic

� Can be solved computationally using “Password Authenticated 
Key Exchange” [BMP00, BPR00, KOY01, GL01, CHK+05, GL06]

� Alice and Bob can exchange arbitrarily many session keys using W.  

� Strong guarantees even if W comes from a very small dictionary.

� Only achieves computational security using public key cryptography.

� Efficient solutions require a common reference string or the random 
oracle model.

� Interactive protocol: current best requires three flows.

� This talk: focus on information theoretic security.

� Only get a “one�time” key agreement protocol.

� Need W to have “enough entropy”.

� Minimalist approach – no assumptions!

� Can do non�interactive with CRS or one�round without CRS.



This Talk vs. 
“Password Authenticated Key Exchange” 

“Password Authenticated Key Exchange”  
[BMP00, BPR00, KOY01, GL01, CHK+05, GL06]

� Computational security using public key 
cryptography.

� Alice and Bob can exchange arbitrarily 
many session keys using W.  

� Strong guarantees even if W comes 
from a very small dictionary.

� Efficient solutions require a common 
reference string (CRS) or the random 
oracle model.

� Interactive protocol: current best 
requires three rounds of communication.

This Talk: 

� Information�Theoretic security. 
No assumptions. 

� “One�time” key agreement 
protocol.

� Final key length is smaller than 
entropy of W.

� Two rounds without a CRS.



Key Agreement without Communication?
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� Alice and Bob apply some deterministic function f to 
W such that K=f(W) is uniformly random.

� No difference between active/passive adversary.

� Impossible. There is a random variable W distributed 
over {0,1}n with  n�1 bits of entropy and the first bit of 
f(W) is a constant!

K=f(W) K=f(W)



Non�Interactive (One Round) Key 
Agreement?
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W
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� Alice computes a key K and a “helper” X which she sends to 
Bob. 

� Bob uses W, X to recover K.

� Security Guarantees:
� Key K looks random even if Eve sees X.

� Eve cannot cause Bob to recover K’ ≠ K.

K

X

K



An Alternative View of Non�Interactive 
Key Agreement.

Alice (later) Alice (earlier)

W

Eve

W

� A protocol across time.

� Helper P is stored on “public storage”

� Alice can use it in the future to recover K from W.

� Future Alice cannot “interact” with past Alice. 
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Non�Interactive Key Agreement with Passive 
Attacker

� Randomness Extractor.  A randomized function Ext. 

� Input: a weak secret W and a random seed X.

� Output: extracted randomness K = Ext(W;X).

� K looks (almost) uniformly random even given the seed X.

� Can extract almost all of the entropy of W.
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K= Ext(W;X)K= Ext(W;X)

Choose
seed X.



K’= Ext(W;X’)

Non�Interactive Key Agreement with Active Attacker

� What if Eve is active?

� Can modify the seed X to some other value X’ and cause 
Bob to recover an incorrect key K’ = Ext(W;X’).

� Eve may even fully know K’! 
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K= Ext(W;X)K= Ext(W;X)

Choose
seed X.

XX’



Bob
Alice

W

Eve

W

� Is there some other construction of non�interactive authenticated 
key agreement? 

� Our answer: Impossible when k ≤ n/2 (k = entropy of W, n = 
length of W).

� Solutions exist for k > n/2  [MW97] [DKRS06] [KR09].
� Extracted key is short: k�n/2 bits. Communication is n�k bits.

� For k ≤ n/2 we need interaction.

K,X=Gen(W)

X

K = Rec(W,X)

Non�Interactive Authenticated Key Agreement?



A Simple Protocol in the CRS Model

� Make the seed X a common reference string.
� Chosen by some trusted party (Microsoft?) and hardcoded into 

hardware/software.  Assumed to be public (seen by Eve).  

� No communication required!

� Problem: Requires a trusted party.

� Problem: What if Eve can learn information about W adaptively.
� e.g. Side�channel attacks, Bounded Retrieval Model.
� Not a problem for biometrics.
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K= Ext(W;X)K= Ext(W;X)

Choose
seed X.

Common Reference String:



Side note: biometrics are noisy…

� Solution: Alice sends some “sketch” of W to Bob which allows him 
to “correct” differences and recover W from W’ without revealing 
(much) about W to Eve. [DORS04]

� … but now we need to worry about active attacks again. What if 
Eve modifies the “sketch”?

� Solution 1 (No CRS): Requires k>n/2 [DKRS06] . 

� Solution 2 (CRS): Works for any k  [CDFPW08].
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K= Ext(W;X)K= Ext(W;X)

Choose
seed X.

Common Reference String:

W’

“sketch” of W 



Interactive Key Agreement Protocols

� The only known interactive protocol is a construction 
by Renner and Wolf from 2003. 

� Requires many rounds of interaction.

� Not constant � proportional to security parameter.

� In practice 100s of rounds would be required.

� Question: What is the minimal number of rounds?
Is a two round interactive protocol possible?

� Yes � we show that two rounds is enough!



Interactive Key Agreement Protocols

� The hard part is message authentication. 

� Implies Key Agreement

� Root of inefficiency in Renner�Wolf construction.

� We construct a two round message authentication 
protocol and then convert it into a two round key 
agreement protocol.

� Protocols have a challenge�response structure.

� Bob sends a random challenge to Alice. Alice uses the 
challenge to authenticate a message to Bob. 



I.T. MACs: Authentication using strong keys.

� Warm�up: what if Alice and Bob already share a strong (uniform) 
key?

� I.T. Message Authentication Code (MAC):
� For any m, if adversary sees σ= MACR(m), cannot forge σ’= MACR(m’) 

for m’ ≠ m.
� Known constructions with excellent parameters.
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Authentication with Weak Keys: 
Protocol Template

� Idea: If Eve is passive in round 1, then 
Alice shares a “good” key with Bob and 
can authenticate a message in round 2.

� Problem: What if Eve modifies X?
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σ= MACR(m)m, σ

R= Ext(W;X)

σ = MACR(m)
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R’= Ext(W;X’)

Authentication with Weak Keys: 
Protocol Template
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Authentication with Weak Keys: 
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Bob
Alice
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Message:

m

X

R= Ext(W;X)

X’

R’= Ext(W;X’)

σ= MACR’(m)

m, σm’, σ’

σ’ = MACR(m’)
?

� Eve gets to see MACR’(m) and must forge 
MACR(m’).

� Non�standard security notion.

� If R and R’ are related then Eve may 
succeed!

Authentication with Weak Keys: 
Protocol Template



Authentication Protocols

� Goal: Construct special extractors and MACs for which the 
protocol is  secure.
� Build a special non�malleable extractor Ext so that

R = Ext(W;X) and R’ = Ext(W;X’) 
are related in only a limited way.
� Build a special MAC which is resistant to the limited types of 

related key attacks that are allowed by the extractor.
� Seeing MACR’(m) does not allow the adversary to forge MACR(m’).

� Two approaches:
� Approach 1: A very strong non�malleability property for Ext + 

standard MAC. (Non�Constructive)
� Approach 2: A weaker non�malleability property for Ext + 

special MAC. (Constructive)



Approach 1: Fully Non�Malleable Extractors

� Adversary sees a random seed X and produces an arbitrarily 
related seed X’≠X.
Let R=nmExt(W;X)  ,   R’=nmExt(W;X’).
Non�malleable Extractor: R look uniformly random, even given 
X, X’,R’.
� Extremely strong property. No existing constructions achieve it.

� Natural constructions susceptible to many possible malleability attacks.

� Not immediately clear that it can be achieved at all!

� Surprising result: Non�malleable extractors exist.
� Can extract almost ½ of the entropy of W (optimal).
� Follows from a (non�standard) probabilistic method argument.
� Does not give us an efficient candidate. 
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X

R= nmExt(W;X)

X’

R’= nmExt(W;X’)

σ= MACR’(m)

m, σm’, σ’

σ’ = MACR(m’)
?

� If Eve does not modify X, then Alice and Bob 
share a uniformly random key R’= R.

� Standard MAC security suffices.

� If Eve modifies X, then Bob’s key R is random 
and independent of Alice’s R’.

� MACR’(m) does not reveal anything about R.

Approach 1: Fully Non�Malleable Extractors



Approach 1: Summary

� Strong extractor property: “fully non�malleable” extractor.

� Standard MACs.

� Parameters: To authenticate an m bit message with security 
2�λ using an n�bit secret W we need:
� The entropy of W is k > O(log(log(n)) + log(m)+ λ).

� Communication m + O(log(n) + log(m) + λ).

� Unfortunately, we do not have an efficient construction of 
fully non�malleable extractors.
� Great open problem! Solved for k>n/2 [DLWZ11,Li12,DY13]



Approach 2: “Look�Ahead” Extractors

� Much weaker non�malleability property. The extracted 
randomness consists of t blocks: 

laExt(W;X) =  [R1, R2,  R3,  R4,   R5, …, Rt ]
laExt(W;X’) = [R’1, R’2, R’3, R’4 , R’5 …, R’t]

� Adversary sees a random seed X and modifies it to X’.

Require: Any suffix of laExt(W;X) looks random given a 
prefix of laExt(W; X’).

� Cannot use modified sequence to “look�ahead” into the 
original sequence.



Approach 2: Constructing “look�ahead” extractors.

� Based on “alternating�
extraction” from [DP07].

� Two party interactive protocol 
between Quentin and Wendy.

� In each round i:

� Quentin sends Si to Wendy.

� Wendy sends Ri = Ext(W;Si).

� Quentin computes Si+1 = Ext(Q;Ri) 

Quentin Wendy

Q, S1
W

S1

R1 = Ext(W;S1)R1

S2 = Ext(Q;R1) S2

R2 = Ext(W;S2)R2

S3 = Ext(Q;R2) S3

R3 = Ext(W;S3)R3

S4 = Ext(Q;R3)

…



Approach 2: Alternating�Extraction Theorem

� Alternating�Extraction Theorem: No matter what strategy Quentin 
and Wendy employ in the first i rounds, the values  [Ri+1, Ri+2, …,Rt] 
look uniformly random to Quentin given [R’1, R’2, …,R’i].

Quentin Wendy

Q, S1
W

S1

R1 = Ext(W;S1)R1

S2 = Ext(Q;R1) S2

R2 = Ext(W;S2)R2

S3 = Ext(Q;R2) S3

R3 = Ext(W;S3)R3

S4 = Ext(Q;R3)

Quentin Wendy

Q, S1
W

S’1

R’1

S’2

R’2

S’3

R’3

� Assume that:

� W is (weakly) secret for 
Quentin and Q is secret 
for Wendy.

� Wendy and Quentin can 
communicate only a few 
bits in each round.

� Can they compute Ri, Si in 
fewer rounds?



Approach 2: Alternating�Extraction Theorem

� Intuition: Prior to round i, the values Si, Ri look random to Wendy and 
Quentin respectively. 

� True for i=1 by extractor security.

Quentin Wendy

Q, S1
W

S1

R1 = Ext(W;S1)R1

S2 = Ext(Q;R1) S2

R2 = Ext(W;S2)R2

S3 = Ext(Q;R2) S3

R3 = Ext(W;S3)R3

S4 = Ext(Q;R3)
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W
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R’2
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Approach 2: Alternating�Extraction Theorem

� Intuition: Prior to round i, the values Si, Ri look random to Wendy and 
Quentin respectively. 

� Induction: assume true for i, then for i+1…

Quentin Wendy

Q, S1
W

S1

R1 = Ext(W;S1)R1

S2 = Ext(Q;R1) S2

R2 = Ext(W;S2)R2

S3 = Ext(Q;R2) S3

R3 = Ext(W;S3)R3

S4 = Ext(Q;R3)

Quentin Wendy

Q, S1
W

S’1

R’1

S’2

R’2

S’3

R’3

R1 looks 
random

S2 looks 
random

R2 looks 
random



Approach 2: Look�Ahead Extractor based on Alternating Extraction

Define: laExt(W;X) =  [R1, R2, R3, …, Rt ]
where the extractor seed is X = (Q, S1). 

Quentin Wendy

Q, S1
W

S1

R1 = Ext(W;S1)R1

S2 = Ext(Q;R1) S2

R2 = Ext(W;S2)R2

S3 = Ext(Q;R2) S3

R3 = Ext(W;S3)R3

S4 = Ext(Q;R3)

Quentin Wendy
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W

S’1

R’1
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R’2

S’3

R’3



Approach 2: Look�Ahead Extractor based on Alternating Extraction

Define: laExt(W;X) =  [R1, R2, R3, …, Rt ]
where the extractor seed is X = (Q, S1). 

Quentin Wendy

Q, S1
W

S1

R1 = Ext(W;S1)R1

S2 = Ext(Q;R1) S2

R2 = Ext(W;S2)R2

S3 = Ext(Q;R2) S3

R3 = Ext(W;S3)R3

S4 = Ext(Q;R3)

Quentin Wendy

Q, S1
W

S’1

R’1

S’2

R’2

S’3

R’3

Bob Alice

X=(Q,S1) X’ =(Q’,S’1)

Sample 

X=(Q,S1)

W W

Eve

Alternating/Extraction in Bob’s head Alternating/Extraction in Alice’s head



Approach 2: Look�Ahead Extractor based on Alternating Extraction

� A modified seed X’ corresponds to a modified  strategy by Quentin in Alice’s 
head.

laExt(W;X) =  [R1, R2, R3, …, Rt ]        laExt(W;X’) = [R’1, R’2, R’3,…, R’t]

Quentin Wendy

Q, S1
W

S1

R1 = Ext(W;S1)R1

S2 = Ext(Q;R1) S2

R2 = Ext(W;S2)R2

S3 = Ext(Q;R2) S3

R3 = Ext(W;S3)R3

S4 = Ext(Q;R3)

Quentin Wendy

Q’, S’1
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S’1

R’1

S’2

R’2

S’3

R’3

R’1 = Ext(W;S’1)

S’2 = Ext(Q’;R’1)

R’2 = Ext(W;S’2)

S’3 = Ext(Q’;R’2)

R’3 = Ext(W;S’3)

S’4 = Ext(Q’;R’3)



Approach 2: Look�Ahead Extractor based on Alternating Extraction

� A modified seed X’ corresponds to a modified  strategy by Quentin.

laExt(W;X) =  [R1, R2, R3, …, Rt ],        laExt(W;X’) = [R’1, R’2, R’3,…, R’t]

Quentin Wendy

Q, S1
W

S1

R1 = Ext(W;S1)R1

S2 = Ext(Q;R1) S2

R2 = Ext(W;S2)R2

S3 = Ext(Q;R2) S3

R3 = Ext(W;S3)R3

S4 = Ext(Q;R3)

Quentin Wendy

Q’, S’1
W

S’1

R’1

S’2

R’2

S’3

R’3

R’1 = Ext(W;S’1)

S’2 = Ext(Q’;R’1)

R’2 = Ext(W;S’2)

S’3 = Ext(Q’;R’2)

R’3 = Ext(W;S’3)

S’4 = Ext(Q’;R’3)
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Message:

m

X

R= laExt(W;X)

X’

R’= laExt(W;X’)

σ= laMACR’(m)

m, σm’, σ’

σ’ = laMACR(m’)
?

� laExt ensures that “look�ahead” property 
holds between R, R’.

� Need: laMAC which ensures that Eve 
cannot predict laMACR(m’) given 
laMACR’(m).

Approach 2: “Look�Ahead” Extractors



Approach 2: Authentication using Look�Ahead

� Ensure that given laMACR’(m) it is hard to predict 
laMACR(m’) where R = [R1,R2,..,Rt], R’= [R’1,R’2,…,R’t] 
have “look�ahead” property.

� No guarantees from standard MACs.

� Idea for 1 bit (t=4):  R= [R1, R2, R3, R4 ].

� laMACR(0) = [R1, R4]       laMACR(1) = [R2, R3 ]



Approach 2: Authentication using Look�Ahead

� Ensure that given laMACR’(m) it is hard to predict 
laMACR(m’) where R = [R1,R2,..,Rt], R’= [R’1,R’2,…,R’t] 
have “look�ahead” property.

� No guarantees from standard MACs.

� Idea for 1 bit (t=4):  R= [R1, R2, R3, R4 ].

� laMACR(0) = [R1,            R4]  laMACR(1) = [      R2, R3         ]

� laMACR’(1) = [    R’2, R’3        ]  laMACR’(0) = [R’1,           R’4] 

� R4 looks random given R’2, R’3
� R2, R3 look random given R’1.  R’4 isn’t long enough to 

“reveal” both of them.

� Easy to generalize to m bits with t=4m.



� In general: Find a collection Ψ={S1,…SM} of subsets S⊆
{1,…,t} which are “pairwise top�heavy”.

S1 = {1,       4}
S2 = {    2,3   }

� laMACR(m) = [Ri : i∈Sm]   for m ∈ {1,…,M}.
� Construction with M = 2t/4. 
� Choose orange/blue in each tuple:

{(1, 2, 3, 4) (5, 6, 7, 8) (9, 10, 11, 12) … (t�3,t�2,t�1,t)}

� Sj = {(2, 3) (5, 8)… (a+1, a+2)… (t�2,t�1)}

Approach 2: Authentication using Look�Ahead



� In general: Find a collection Ψ={S1,…SM} of subsets S⊆
{1,…,t} which are “pairwise top�heavy”.

S1 = {1,       4}
S2 = {    2,3   }

� laMACR(m) = [Ri : i∈Sm]   for m ∈ {1,…,M}.
� Construction with M = 2t/4. 
� Choose orange/blue in each tuple:

{(1, 2, 3, 4) (5, 6, 7, 8) (9, 10, 11, 12) … (t�3,t�2,t�1,t)}

� Si = {(2, 3) (5, 8)… (     a+1, a+2 )… (t�2,t�1)}
� Sk = {(1, 4) (5, 8)… (a,                  a+3) … (t�3, t)}

Approach 2: Authentication using Look�Ahead
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Eve

Message:

m

X

R= laExt(W;X)

X’

R’= laExt(W;X’)

σ= laMACR’(m)

m, σm’, σ’

σ’ = laMACR(m’)
?

� laExt ensures that “look�ahead” property 
holds between R, R’.

� laMAC ensures that Eve cannot predict 
laMACR(m’) given laMACR’(m).

Approach 2: “Look�Ahead” Extractors



Approach 2: Summary of “look�ahead”

� Constructed a “look�ahead” extractor based on the idea of 
alternating�extraction.

� Constructed a MAC which is secure against “look�ahead” 
related�key attacks.

� To authenticate an m bit message with security 2�λ, with an 
n�bit weak secret W we need:
� The entropy of W is k > O(m(m + log(n) + λ).

� Communication is O(m(m + log(n) + λ).

� Only efficient for short messages (small m).

� Next: show how to construct key agreement by 
authenticating a very short message!



Key Agreement from Authentication

� Idea: Alice authenticates a seed Y to Bob using an authentication 
protocol. Shared key is K = Ext(W;Y).
� Standard extractor suffices here.

� Problem: May not be secure in general. Authentication protocol may 
reveal something about K=Ext(W;Y).
� This problem occurs in Renner�Wolf construction. Require even more rounds 

to get key agreement.

� Does not occur in our authentication protocols!

Bob
Alice

W
W

Authenticate Y

K= Ext(W;Y)K= Ext(W;Y)



Key Agreement from Authentication

� Eve sees σ which depends on W,Y…

� … but information in σ is subsumed by R’ which is independent 
of Y!

� Therefore K looks uniformly random, even given Eve’s view of 
the authentication protocol (during an active attack).

Bob
Alice

W
WX

R’= Ext*(W;X’)

σ= MACR’(Y)Y, σ

Sample Y.

K= Ext(W;Y)

Sample X. X’



Final Parameters

� Efficient construction: If secret W has length n and 
entropy k and security parameter is λ then the exchanged 
key is of length: k – O(log2(n) + λ2)

� Communication complexity: O(log2(n) + λ2).

� Existential Result: If secret W has length n and entropy k
and security parameter is λ then the exchanged key is of 
length:  k – O(log(n) + λ)

� Communication complexity: O(log(n) + λ).



Properties of Key Agreement Protocol

� Alice derives a key K which stays private no matter what the 
adversary does.

� Bob  confirms that the response is valid. If so then Bob’s key 
matches Alice’s key.

� Alice can use the key in the second round.
� Can encrypt and authenticate a message to Bob (I.T. or comp)! 

Bob
Alice

W
WChallenge

Response

Confirm response
Recover K

Derive key K

Encrypted and Authenticated
message 

Decrypt and validate message



Summary

� Show how to base symmetric key cryptography 
(information theoretic, computational) on weak secrets.

� Build a round�optimal “authenticated key agreement 
protocol”.

� Extends to “Fuzzy” setting, Bounded Retrieval Model

� Interesting new tool: “non�malleable” randomness 
extractors: (1) fully non�malleable (2) “look�ahead”.

� Other applications?

� Open Problem: Efficient construction of fully non�malleable 
extractors.



Extension: Fuzzy Setting (Biometrics)

� Idea: Alice sends some “sketch” of W to Bob which allows him 
to “correct” differences and recover W from W’ without 
revealing (much) about W to Eve. [DORS04]
� … but now we need to worry about active attacks again.       

What if Eve modifies the “sketch”?

� Solution 1 (No CRS, 1 round): Requires k>n/2 [DKRS06] . 
� Solution 2 (CRS, 1 round): Works for any k  [CDFPW08].
� This paper (No CRS, 2 rounds): Works for any k.

Bob
Alice

W W

Eve

W= Rec(W’;S), reduce to prior problem …

W’

“sketch” S of W 

Surprisingly, works for our protocol, even against active attacker, 
and without increasing number of rounds


