
Randomness in Cryptography January 21, 2013

Lecture 7: Privacy ⇒ Extraction Continued

Lecturer: Yevgeniy Dodis Scribe: Travis Mayberry

We have seen that secure encryption, using a source S, implies extraction on that source.
This week we will try to extend that result to other privacy primitives.

1 Last Time

Previously, we showed that encrypting b bits with an n bit key implies extracting b− log n
bits. To prove this, we first constructed a special extractor Ext′ and defined Ext(k) =
Ext′(Enck(0)). Showing this construction adheres to the properties of an extractor required
the following steps:

1. Security: By the security property of Enc, we switched Enck(0) with Enck(Ub), since
the statistical distance between them is less than ε.

2. Correctness: Since all messages must have a unique encryption, ∀k : H∞(Enck(Ub)) ≥
b. This shows us that a ciphertext possesses enough min-entropy for extraction.

3. For all b-sources of size ≤ N = 2n, ∃ε-secure Ext with output ` ≈ b− 2 log 1
ε − log n.

These steps will be useful when we consider other privacy primitives. We can use this
proof as a blueprint with other primitives, as long as they have similar properties we can
use in the security and correctness steps.

The main question we will answer today is: to what extent can we generalize this result
from encryption to other privacy primitives? We will also explore the limits of this proof
and show that it is possible to have encryption on a small number of bits without implying
extraction.

2 Decryption Error

In some settings, allowing for a decryption error γ can circumvent some impossibility results.
We will show that this is not true for our extraction setting.

Definition 1 (Enc,Dec) has (S, γ)-decryption-error if ∀k ∈ S, ∀mPrk←K [Deck(Enck(m)) 6=
m] ≤ γ. ♦

That is, we allow a γ probability that a particular pair, message m and key k, will not
be decrypted correctly.

Lemma 1 (Enc,Dec) with (S, ε) security and (S, γ) decryption error⇒ ∃(Enc′,Dec′) which
has (S, ε+ 2γ) security and (S, 0) decryption error.

Lecture 7, Page 1

Proof: Let Z = (k,m) = Dec(k,Enck(m)) 6= m, that is, all the key-message pairs which
do not decrypt correctly. Define Enc′ as:

Enc′k(m) =

{
0||Enck(m) if(k,m) ∈ Z
1||m if (k,m) 6∈ Z

We know ∀m,∀k ∈ S : Prk←K [(k,m) ∈ Z] ≤ γ. Therefore,

∀m′ : SD(Enc′k(m
′), Enc′k(m)) ≤ Pr[(k,m) ∈ Z]

+ Pr[(k,m′) ∈ Z]

+ SD(Enck(m),Enc(m′))

≤ 2γ + ε

By changing all cases where decryption error would occur into cases where no error
occurs, but security fails, we can transform encryption with decryption error into a less
secure encryption with none. Now, we can apply our main theorem to Enc′ and construct
an extractor. If ε and γ are negligible in the security parameter, then their sum is also
negligible and we obtain the same impossibility results. Also note, this rules out public
key encryption as well, as long as K is the local randomness used for key generation and
encryption.

3 Commitment

A commitment scheme is a function Comk(m) = C. The first part of our theorem for Enc
works for Com as well if we substitute the secrecy property of commitment for the security
property of encryption. With commitment schemes we call the error δ, so we lose a factor
of δ in this step.

For the second step of the proof, we must show that commitments have enough min-
entropy. What we will actually do is show that the statistical distance between the output of
commitment and another distribution with enough min-entropy is very small We can use the
“weak binding” property of commitments to do this. Recall, a commitment scheme is (S, τ)-
weakly-binding if ∀K ← S : Prk←K,(m1,m2)←Ub

[Comk(m1) = Comk(m2)&m1 6= m2] ≤ τ .
That is, the probability that two messages which are not equal will commit to the same value
is less than τ . This also implies that Prk←K,(m1,m2)←Ub

[Comk(m1) = Comk(m2)] ≤ τ + 2−b,

because two randomly chosen messages will be equal only with probability 2−b. Putting this
in terms of collision entropy, we can say Col(Comk(Ub)|k) ≤ τ + 2−b. Define τ ′ = τ + 2−b.

Lemma 2 Col(C|K) ≤ τ ′ ⇒ ∀ε > 0, P rk←K [Col(C|K = k) ≥ τ ′

2] ≤ ε

Proof: τ ′ ≥ Col(C|K) ≥ Prk←K [Col(C|K = k) > τ ′

ε] · τ ′ε

Take X to be C|K.

Lecture 7, Page 2

⌧

✏

Figure 1: Truncate probabilities greater than τ
ε and move to new values.

Lemma 3 Col(X) ≤ τ ⇒ ∀ε > 0, ∃X ′ such that Pred(X ′) ≤ τ
ε and SD(X,X ′) ≤ ε.

Equivalently, ∃X ′ such that SD(X,X ′) ≤ ε and H∞(X ′) ≥ H2(X)− log 1
ε .

Proof: Create a new distribution X ′ where all probabilities greater than τ
ε are truncated

to τ
ε and the extra probability is redistributed to new events. Such a distribution has

Pred(X ′) ≤ τ
ε because no event happens with probability greater than τ

ε .
By Markov’s inequality, the fraction of events that must be truncated is equal to

Prx←X [Pr[X = x] > τ
ε] ≤ ε. Additionally, this means that SD(X,X ′) ≤ ε.

Corollary 4 ∀ε > 0, ∃{C ′k : k ∈ {0, 1}n} such that:

(a) SD(C,C ′k|K) ≤ 2ε

(b) Pred(C ′k) ≤ Col(C|K)/ε2

Theorem 1 If Enc is (S, ε)-hiding and (S, ε)-weakly-binding, S is (`, δ + 3ε)-extractable
where ` = log 1

τ+2−b − 4 log 1
ε − log n−O(1)

Proof: First, we will define two sets of keys: “good” and “bad”. All good keys k will
satisfy Col(C|K = k) ≤ τ ′

ε , while bad keys will not. By lemma 2, the probability that a key
will be bad is at most ε.

SD(Ext(Com(K, 0)), U) ≤ δ + SD(Ext(Com(K,Ub)), U)

≤ δ + Pr[K is bad] + SD(Ext(Com(K,Ub|K is good)))

≤ δ + ε+ SD(Com(K,Ub), C
′
K |K is good) + SD(Ext(C ′K), U`|K is good)

≤ δ + 2ε+ ε

This holds as long as ` ≤ log 1
τ ′ − 4 log 1

ε − log n−O(1).

If δ and τ are both negligible in the security parameter, and b = ω(log λ) (where λ is the
security parameter) we can choose ε′ = δ + 3ε which is still negligible and ` = Ω(log 1

τ) =
ω(log λ).

Lecture 7, Page 3

4 Secret Sharing

Recall that secret sharing is the problem of dividing a secret into two or more shares, where
the original value can only be recovered by combining all of those shares back together. We
will consider just two-out-of-two secret sharing, where the secret is split into two shares.

In order to use our proof that Enc ⇒ Ext, we need something that plays the role of
Enck(0).

4.0.1 Option 1: One share

Use Share1(k,m). This works for our security step since we can go from Share1(k, 0) to
Share1(k, Ub), but it does not satisfy our correctness step. There is no guarantee that
H∞(Share1(k, Ub)|K) ≥ b

2 as all the entropy could be in one share, i.e. Share1 = k, Share2 =
k +m.

4.0.2 Option 2: Both shares

Use (Share1(k,m), Share2(km)). This works for correctness, but fails security because, hav-
ing both shares, there is none.

4.0.3 Option 3: Dynamically choose

Choose Enck(m) =

{
Share1(k,m) if P (k) = 1
Share2(k,m)

Question 1 Can we use option 3 to prove that Share⇒ Ext?

5 Limits of Extraction

Our general proof that Enc⇒ Ext has a loss of log n bits in the extractor. Does this mean
that we cannot extract with encryption less than log n bits? We will show that, in fact,
encryption of less than log n − log log n bits does not imply extraction of even one nearly
unbiased bit.

We begin by showing that one-bit encryption does not imply a one-bit extractor. We
will do this by proving that, given an extractor, there exists a source which allows for secure
encryption but which causes that extractor to be almost completely biased.

First, define this source S = {K} on {0, 1}n and one-bit encryption (Enc,Dec) such
that:

(a) Enc is perfectly secure i.e. Enc(K, 1) ≡ Enc(K, 0)

(b) No (S, 1− ε)-bit extractor for small ε ≈ 2−n/2

Equivalently, ∃(Enc,Dec) s.t. Good(Enc) is not (1− ε)-extractable, where Good(Enc) =
{K : Enc(K, 0) ≡ Enc(K, 1)}.

For our proof, it will be useful to envision this encryption as a graph. Given (Enc,Dec),
define G = (V,E) where V is the set of ciphertexts (|V | = S) and E is the set of keys

Lecture 7, Page 4

Figure 2: Cycle includes at most one red edge.

(|E| = 2n = N). ∀k ∈ E define ek = [Enck(0)→ Enck(1)]. This way, the edges of the graph
describe all possible encryptions under all keys. Our only constraint on this graph is that
it must have no self-loops (otherwise decryption would be impossible).

Having defined our encryption as a graph, what graph should we use for our proof?
The first thing to note is that multiple edges from one node to another are redundant, they
can always be merged and have their probabilities added. More edges are better because it
enlarges our set of encryptions Good(Enc). Therefore, the best graph to use is the complete,
directed graph on |V | vertices.

With this graph, we have V = {1, ..., S}, E = {(c1, c2)|∀c1 6= c2} and S =
√
N = 2n/2.

We call this graph Comp(S). Now, we will show that Good(Comp(S)) is not (1, 1 − ε)-
extractable for small ε.

Theorem 2 Good(Comp(S)) is not (1, 1− 2
S)-extractable.

Hence, there exists S such that S is (1, 0)-encryptable but not (1, 1− 2
2n/2)-extractable.

Proof: Take any extractor E → {0, 1}. This is equivalent to a two-coloring of Comp(S),
because the extractor must take a ciphertext and output a bit (color).

Note that, for all cycles C = (c1 → c2 → ... → ct → c1), k = Uc ∈ Good(G), because
Enc(Uc, 0) ≡ Enc(Uc, 1) ≡ U{c1,...,ct}.

Define Cycles(G) = {Uc|c− cycle} ⊆ Good(G). It suffices now to show that Cycles(G) is
not (1, 1− 2

S)-extractable.
Assuming the extractor colors edges red and blue (for zero and one bits respectively).

There are two cases which could exists:

(a) There exists a cycle which is completely red.

(b) There does not exists a cycle which is completely red.

If a red cycle exists, then we are done because, using this encryption, the extractor
will always choose zero and be completely biased. If a red cycle does not exist, then the
subgraph G′ of red edges acyclic. This means that it can be topologically sorted, so that
lining up vertices from left to right all edges will go in one direction only. Consequently,
there exists an ordering of vertices c1, ..., cS such that ∀i > j : Ext((ci, cj)) = 1. This follows
directly from above because our graph is complete (has edges between all vertices) and all of
the red edges go left to right. Therefore, any edge going right to left must be blue. Knowing
this, we can select the cycle which goes from cS to c1, visiting every node in between, and
then going back to cS . All edges going leftward will be blue. There is single edge going
rightward, (c1, cS), which may be blue or red. If it is blue, then we have a blue cycle and

Lecture 7, Page 5

the extractor can be always forced to output one. If it is red, then the extractor outputs
one with probability 1− 1

S .

Question 2 Some distributions in S had H∞(1). Can we make S ⊆Weak(k)? Yes!

Theorem 3 [1] ∀ε ≥ 2−n/2+1,∃S ⊆ sfWeakn(n − log 1
ε − O(1)) such that S is (1, 0)-

encryptable but not (1, 12 − ε)-extractable.

Question 3 Can we really show log n loss is necessary? Yes

Theorem 4 [2] ∀b ≤ log n − log log n02, ∃S which is (b, 0)-encryptable but not (1, 12 − ε)-
extractable, where ε = 22b−

n
2b

+1 ≤ 1
16n2 .

Question 4 (Open) We have shown b ↔ 1 separation for b ≈ log n. Can we show b ↔
b− log n separation?

References

[1] Yevgeniy Dodis, and Joel Spencer. “On the (non) universality of the one-time pad.”
Foundations of Computer Science, 2002. Proceedings. The 43rd Annual IEEE Sympo-
sium on. IEEE, 2002.

[2] Carl Bosley, and Yevgeniy Dodis. “Does privacy require true randomness?.” Theory of
Cryptography (2007): 1-20.

Lecture 7, Page 6

